1,432 research outputs found

    Performance analysis of compressive sensing recovery algorithms for image processing using block processing

    Get PDF
    The modern digital world comprises of transmitting media files like image, audio, and video which leads to usage of large memory storage, high data transmission rate, and a lot of sensory devices. Compressive sensing (CS) is a sampling theory that compresses the signal at the time of acquiring it. Compressive sensing samples the signal efficiently below the Nyquist rate to minimize storage and recoveries back the signal significantly minimizing the data rate and few sensors. The proposed paper proceeds with three phases. The first phase describes various measurement matrices like Gaussian matrix, circulant matrix, and special random matrices which are the basic foundation of compressive sensing technique that finds its application in various fields like wireless sensors networks (WSN), internet of things (IoT), video processing, biomedical applications, and many. Finally, the paper analyses the performance of the various reconstruction algorithms of compressive sensing like basis pursuit (BP), compressive sampling matching pursuit (CoSaMP), iteratively reweighted least square (IRLS), iterative hard thresholding (IHT), block processing-based basis pursuit (BP-BP) based onmean square error (MSE), and peak signal to noise ratio (PSNR) and then concludes with future works

    Zero-padding Network Coding and Compressed Sensing for Optimized Packets Transmission

    Get PDF
    Ubiquitous Internet of Things (IoT) is destined to connect everybody and everything on a never-before-seen scale. Such networks, however, have to tackle the inherent issues created by the presence of very heterogeneous data transmissions over the same shared network. This very diverse communication, in turn, produces network packets of various sizes ranging from very small sensory readings to comparatively humongous video frames. Such a massive amount of data itself, as in the case of sensory networks, is also continuously captured at varying rates and contributes to increasing the load on the network itself, which could hinder transmission efficiency. However, they also open up possibilities to exploit various correlations in the transmitted data due to their sheer number. Reductions based on this also enable the networks to keep up with the new wave of big data-driven communications by simply investing in the promotion of select techniques that efficiently utilize the resources of the communication systems. One of the solutions to tackle the erroneous transmission of data employs linear coding techniques, which are ill-equipped to handle the processing of packets with differing sizes. Random Linear Network Coding (RLNC), for instance, generates unreasonable amounts of padding overhead to compensate for the different message lengths, thereby suppressing the pervasive benefits of the coding itself. We propose a set of approaches that overcome such issues, while also reducing the decoding delays at the same time. Specifically, we introduce and elaborate on the concept of macro-symbols and the design of different coding schemes. Due to the heterogeneity of the packet sizes, our progressive shortening scheme is the first RLNC-based approach that generates and recodes unequal-sized coded packets. Another of our solutions is deterministic shifting that reduces the overall number of transmitted packets. Moreover, the RaSOR scheme employs coding using XORing operations on shifted packets, without the need for coding coefficients, thus favoring linear encoding and decoding complexities. Another facet of IoT applications can be found in sensory data known to be highly correlated, where compressed sensing is a potential approach to reduce the overall transmissions. In such scenarios, network coding can also help. Our proposed joint compressed sensing and real network coding design fully exploit the correlations in cluster-based wireless sensor networks, such as the ones advocated by Industry 4.0. This design focused on performing one-step decoding to reduce the computational complexities and delays of the reconstruction process at the receiver and investigates the effectiveness of combined compressed sensing and network coding

    Compressed Sensing in Resource-Constrained Environments: From Sensing Mechanism Design to Recovery Algorithms

    Get PDF
    Compressed Sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. It is promising that CS can be utilized in environments where the signal acquisition process is extremely difficult or costly, e.g., a resource-constrained environment like the smartphone platform, or a band-limited environment like visual sensor network (VSNs). There are several challenges to perform sensing due to the characteristic of these platforms, including, for example, needing active user involvement, computational and storage limitations and lower transmission capabilities. This dissertation focuses on the study of CS in resource-constrained environments. First, we try to solve the problem on how to design sensing mechanisms that could better adapt to the resource-limited smartphone platform. We propose the compressed phone sensing (CPS) framework where two challenging issues are studied, the energy drainage issue due to continuous sensing which may impede the normal functionality of the smartphones and the requirement of active user inputs for data collection that may place a high burden on the user. Second, we propose a CS reconstruction algorithm to be used in VSNs for recovery of frames/images. An efficient algorithm, NonLocal Douglas-Rachford (NLDR), is developed. NLDR takes advantage of self-similarity in images using nonlocal means (NL) filtering. We further formulate the nonlocal estimation as the low-rank matrix approximation problem and solve the constrained optimization problem using Douglas-Rachford splitting method. Third, we extend the NLDR algorithm to surveillance video processing in VSNs and propose recursive Low-rank and Sparse estimation through Douglas-Rachford splitting (rLSDR) method for recovery of the video frame into a low-rank background component and sparse component that corresponds to the moving object. The spatial and temporal low-rank features of the video frame, e.g., the nonlocal similar patches within the single video frame and the low-rank background component residing in multiple frames, are successfully exploited

    An energy-efficient sensing matrix for wireless multimedia sensor networks

    Get PDF
    DATA AVAILABILITY STATEMENT : There were no datasets created during this study and all relevant datasets are already publicly available.A measurement matrix is essential to compressed sensing frameworks. The measurement matrix can establish the fidelity of a compressed signal, reduce the sampling rate demand, and enhance the stability and performance of the recovery algorithm. Choosing a suitable measurement matrix for Wireless Multimedia Sensor Networks (WMSNs) is demanding because there is a sensitive weighing of energy efficiency against image quality that must be performed. Many measurement matrices have been proposed to deliver low computational complexity or high image quality, but only some have achieved both, and even fewer have been proven beyond doubt. A Deterministic Partial Canonical Identity (DPCI) matrix is proposed that has the lowest sensing complexity of the leading energy-efficient sensing matrices while offering better image quality than the Gaussian measurement matrix. The simplest sensing matrix is the basis of the proposed matrix, where random numbers were replaced with a chaotic sequence, and the random permutation was replaced with random sample positions. The novel construction significantly reduces the computational complexity as well time complexity of the sensing matrix. The DPCI has lower recovery accuracy than other deterministic measurement matrices such as the Binary Permuted Block Diagonal (BPBD) and Deterministic Binary Block Diagonal (DBBD) but offers a lower construction cost than the BPBD and lower sensing cost than the DBBD. This matrix offers the best balance between energy efficiency and image quality for energy-sensitive applications.https://www.mdpi.com/journal/sensorsam2024Electrical, Electronic and Computer EngineeringNon

    Graded quantization for multiple description coding of compressive measurements

    Get PDF
    Compressed sensing (CS) is an emerging paradigm for acquisition of compressed representations of a sparse signal. Its low complexity is appealing for resource-constrained scenarios like sensor networks. However, such scenarios are often coupled with unreliable communication channels and providing robust transmission of the acquired data to a receiver is an issue. Multiple description coding (MDC) effectively combats channel losses for systems without feedback, thus raising the interest in developing MDC methods explicitly designed for the CS framework, and exploiting its properties. We propose a method called Graded Quantization (CS-GQ) that leverages the democratic property of compressive measurements to effectively implement MDC, and we provide methods to optimize its performance. A novel decoding algorithm based on the alternating directions method of multipliers is derived to reconstruct signals from a limited number of received descriptions. Simulations are performed to assess the performance of CS-GQ against other methods in presence of packet losses. The proposed method is successful at providing robust coding of CS measurements and outperforms other schemes for the considered test metrics

    Compressed sensing with continuous parametric reconstruction

    Get PDF
    This work presents a novel unconventional method of signal reconstruction after compressive sensing. Instead of usual matrices, continuous models are used to describe both the sampling process and acquired signal. Reconstruction is performed by finding suitable values of model parameters in order to obtain the most probable fit. A continuous approach allows more precise modelling of physical sampling circuitry and signal reconstruction at arbitrary sampling rate. Application of this method is demonstrated using a wireless sensor network used for freshwater quality monitoring. Results show that the proposed method is more robust and offers stable performance when the samples are noisy or otherwise distorted
    • …
    corecore