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 The modern digital world comprises of transmitting media files like image, 

audio, and video which leads to usage of large memory storage, high data 

transmission rate, and a lot of sensory devices. Compressive sensing (CS) is 

a sampling theory that compresses the signal at the time of acquiring it. 

Compressive sensing samples the signal efficiently below the Nyquist rate to 

minimize storage and recoveries back the signal significantly minimizing the 

data rate and few sensors. The proposed paper proceeds with three phases. 

The first phase describes various measurement matrices like Gaussian 

matrix, circulant matrix, and special random matrices which are the basic 

foundation of compressive sensing technique that finds its application in 

various fields like wireless sensors networks (WSN), internet of things (IoT), 

video processing, biomedical applications, and many. Finally, the paper 

analyses the performance of the various reconstruction algorithms of 

compressive sensing like basis pursuit (BP), compressive sampling matching 

pursuit (CoSaMP), iteratively reweighted least square (IRLS), iterative hard 

thresholding (IHT), block processing-based basis pursuit (BP-BP) based on 

mean square error (MSE), and peak signal to noise ratio (PSNR) and then 

concludes with future works. 
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1. INTRODUCTION 

The digital revolution of the internet and social media leads to the transmission of many multimedia 

signals over the internet. Compression plays a vital role in limiting the bandwidth and storage space of 

multimedia signals like image audio and video. In 2004, David Donoho and his team proposed compressive 

sensing a signal sampling theory with captures the signal efficiently and the signal is recovered back with 

fewer samples thus reducing the dimensionality of signals known as sparse or compressible [1]–[3]. 

In traditional sampling, the signals are sampled and then compressed whereas in compressive 

sensing the signals are based on the signal sparsity [4]. Sparsity is a property of an image with most of the 

elements is zero and the image can be represented by a few non-zero elements image. The sparsity of the 

matrix is the ratio of zero value elements to the total number of elements. A sparse basis matrix [5] can be 

obtained from the traditional matrixes like discrete wavelet transform (DWT), discrete cosine transform 

(DCT), and discrete Fourier transform (DFT). For example, natural images are highly sparse in wavelet while 

speech signal and medical images have sparsity representation Fourier and random transform [6]. Let X be 

the original image with NxN matrix elements [7] which is transformed into transform data Y then Y can be 

expressed as (1). 

 

https://creativecommons.org/licenses/by-sa/4.0/
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𝑌 = 𝜓(𝑋) (1) 

 

If the entries in matrix Y are close to zero then X is said to be sparse on some basis ѱ. 

The acquisition model [8] can be mathematically represented as Y= ѱ X where X is input signal of 

size N, ѱ is random measurement matrix of size MxN and Y is the measurement vector of size M. At the 

processing end of the reconstruction model [9], the measurement vector Y and reconstruction matrix ʘ is 

space basis X then X is (2). 

 

𝑥 = ∑ 𝑆𝑖𝜓𝑖
𝑛
𝑖=1  (2) 

 

Let K be sparsity vector S [10], [11], then the matrix must satisfy restricted isometry property (RIP) and for 

reconstruction, the measurement matrix ѱ and sparse basis should be incoherent [12]. 

 

 

2. RELATED WORKS 

The image compression system presented in [13] uses the different techniques for the choice of 

image compression techniques and for setting up a compression ratio. The image compression was carried 

out in phases where the first step was to compress the image using DCT, the second to reconstruct, and 

finally to train a set of images. The paper discusses the design of image compressed sensing (CS) to reduce 

redundancy based on objective criteria and subjective criteria. 

The hardware implementation of CS in [14] was done in field-programmable gate array (FPGA) 

which is the best platform for reconfigurability. The image was stored in synchronous dynamic random-

access memory (SDRAM) and a sparse matrix is generated using the transformation process. The recovery of 

the image was found to be more complex and time-consuming. 

An efficient compression scheme in wireless sensor network (WSN) proposed in [15], [16] presents 

a new architecture and protocol to achieve energy efficiency and transmit the image over WSN the 

architecture optimizes high speed in image compression implemented with limited hardware and the power 

consumption is low. The literature [17], [18] presents the image packet queue to minimize error rate and thus 

improving the throughput of image transmission. The block compressive sensing proposed in [19] divides the 

image into blocks thereby maximizing the sparsity and employs an adaptive threshold thereby allocating 

measurements based on the sparsity of individual blocks with a predetermined measurement ratio. 

 

 

3. STATE-OF-THE-ART COMPRESSIVE SENSING 

Signal and image processing systems rely on the recovery of signals from the information [20]. When 

the signal acquired is linear, then it can be solved using the linear system equations mathematically as (3): 

 

𝑌 = 𝐴𝑥 (3) 

 

where Y is observed data, which is 𝜖𝐶m and connected to 𝑋𝜖𝐶N. 

The matrix 𝐴𝜖𝐶mxN is the measurement matrix. Traditionally the number of measurements m should 

be as large as N. If m<N then the linear system is underdetermined with infinite solution, which makes 

recovery of X from Y impossible. The above technology is related to the Shannon sampling theorem. Figure 1 

shows the block diagram of the compressive sensing and also describes the acquisition model as well as the 

reconstruction model. The reconstruction algorithms that make this underlying assumption possible is 

sparsity as shown in Figure 1. 

 

3.1.  Acquisition model 

The measurement of the signal is made randomly [21] by different techniques like random 

modulator, modulated wideband converter (MWC), random modulation pre-integrator (RMPI), random 

filtering, random convolution compressive multiplexer, random equivalent sampling, random triggering 

based modulated wideband compressive sampling, and quadrature analog to information converter. The 

proposed a compressive sampler, random [22] which samples the signals below the Nyquist rate. The low 

pass filter (LPF) results in a unique frequency signature in the low region. The high-frequency signal lies in 

the low-frequency region. This unique frequency signature gives the original signal in random measurements 

and finds its application for wideband signal acquisition. MWC uses a parallel architecture. The input signal 

is multiplexed by different chipping sequences and then passed via LPF thus sampled below the Nyquist rate 

and can be used for the wideband signal. RMPI is a combination of MWC with a parallel version [23] of 

random and only the difference is RMPI uses integrator instead of LPF by which the resultant is a different 
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reconstruction method that helps in acquiring the ultrawideband signal. The random filtering method 

performs convolution with finite impulse response (FIR) and it finds its application in compressing 

continuous and streaming signals. The random convolution consists of random pulses and then the pulses are 

obtained by a circular shift of the first row and can be used as a universal acquisition. In compressive 

multiplexer, the parallel architecture samples multichannel data to obtain a sub-Nyquist rate. 

 

 

 
 

Figure 1. Block diagram for compressive sensing 

 

 

3.2.  Measurement matrix 

The measurement matrix plays a vital in compressing the signal, therefore choosing a measurement 

matrix is important for accuracy and less processing time to recover the signal [24]. Figure 2 gives the 

different types of measurement matrices deployed for compressive sensing. It is broadly classified into the 

deterministic and random matrix. 

 

 

 
 

Figure 2. Different types of measurement matrix 

 

 

a. Random matrix 

Random matrices are identical and independent matrices that are generated by the distribution like 

normal, random, and Bernoulli functions. The random matrix is broadly classified into structured and 

unstructured matrix unstructured matrices are generated randomly. This matrix includes Gaussian, Bernoulli, 

and uniform matrix. 
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b. Gaussian matrix 

The elements are distributed normally and the elements are independent except 0 and σ2 (variance). 

The probability distribution function is (4). 

 

𝑓 (
1

𝜇
, 𝜎2) =

1

√2𝜎2𝜋

𝑒𝑥𝑝(1−𝜇2)

2𝜎2  (4) 

 

Where μ is mean, σ is standard deviation, and 𝜎2 is variance. 

 

𝐾 ≤ 𝐶1𝑁 𝑙𝑜𝑔 (
𝐿

𝑆
) + 𝐶2 𝑙𝑜𝑔 휀 − 1 (5) 

 

Where S is sparsity, N is No. of measurements, L is length of sparse, and C1, C2 is circulant matrix. 

c. Bernoulli matrix 

Bernoulli matrix denoted as 𝐵𝜖𝑅, 𝑚𝑥𝑛  have equal probabilities at −
1

√𝑚
𝑜𝑟

1

√𝑚
, with outcomes n=0 

and n=1. The PDF of the Bernoulli matrix is  
 

𝐹(𝑛) = {

1

2
𝑓𝑜𝑟𝑛 = 0

1

2
𝑓𝑜𝑟𝑛 = 1

} Which satisfies RIP (6) 

 

d. Structured random matrices 

Unstructured matrices are slow and not advisable for large-scale problems since structured matrices 

follow a structure [25] this reduces storage time and randomness. 

e. Random partial Fourier matrix 

Consider the matrix F 𝑁𝑥𝑁 whose entry is  

 

(𝐹)𝑘𝑗 = 𝑒𝑥𝑝
2𝜋𝑖𝑘𝑗

𝑁
 (7) 

 

and 𝑘, 𝑗 takes the value of {1,2 … 𝑁}. The restricted isometric property (RIP) is also satisfied for the material 

by randomly choosing M rows 𝑀 ≥ 𝐶𝐾 𝑙𝑜𝑔 𝑁 ∕ 𝜖. Where 𝑀 is No. of measurements, 𝐾 is sparsity, and 𝑁 is 

length of sparse signal. 

f. Random partial Hadamard matrix 

The entries are 1 and -1 for the Hadamard matrix and the column is orthogonal. Consider a matrix H 

with order n, Then H. 𝐻𝑇 = 𝑁𝐼𝑁 . Where IN is Identity matrix and 𝐻𝑇  is transpose of H. 
g. Deterministic matrices 

The matrix follows a deterministic condition for satisfying the RIP. They are divided into semi-

deterministic and full-deterministic. 

h. Semi-deterministic matrix 

Semi-deterministic matrices are generated in two steps. The first column is generated randomly and 

the full matrix is generated by applying a transformation to the first column thus generating the rows of the 

matrix. 

i. Circulant matrix 

The entry for the matrix is 𝐶𝑗 = 𝐶𝑗 − 𝐼, where 𝐶 = (𝑐1 𝑐2  … 𝑐𝑛) and 𝑖, 𝑗 = {1 …  𝑁} thus the resultant 

matrix is circulant. 
 

𝐶 = ⌊

𝐶𝑛 𝐶𝑛−1 ⋯ ⋯ 𝐶1

𝐶1 𝐶𝑛 ⋯ ⋯ 𝐶2

    ⋮
𝐶 𝑛−1

𝐶𝑛−2 𝐶𝑛

⌋ (8) 

 

j. Toeplitz matrix 

The resultant Toeplitz matrix T is associated with 𝑡 = (𝑡1, 𝑡2 … 𝑡𝑛), 𝑇𝑖𝑗 = 𝑡𝑗−𝑖 with constant diagonal 

𝑇𝑖𝑗 = 𝑡𝑗+1 𝑗+1. 
 

𝑇 = [

𝑡𝑛⋱ 𝑡𝑛−1  ⋯ ⋯ 𝑡1

𝑡𝑛+1
⋮
⋮

𝑡𝑛 ⋯ ⋯ 𝑡2

𝑡2𝑛−1 𝑡2𝑛−2 ⋯ ⋯ 𝑡𝑛

] (9) 
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k. Full deterministic matrices 

The matrices are purely based on RIP properly. 

l. Chirp sensing matrix 

The matrix is based on non-cyclic codes where the columns are generated by chirp signal. The 

matrix of the chirp is given by 𝐴𝑐ℎ𝑟𝑖𝑝 =  [𝑢𝑟1 𝑢𝑟2 𝑢𝑟3 … 𝑢𝑟𝑤] and 𝑈𝑟𝑡 = (𝑡 = 1 … 𝑤) with 𝑀𝑥𝑀 matrix. 

m. Binary BCH matrices 

Binary Bose Chaudhuri Hocquenghem (BCH) matrix is a cyclic matrix and given by (10). 

 

𝐻 = [
1 𝛼 𝛼2

1 𝛼3 𝛼3

⋮ ⋮ ⋮

⋯ 𝛼(𝑛−1)

⋯ 𝛼3(𝑛−1)

⋮ ⋮

] (10) 

 

3.3. Recovery algorithm 

The recovery of the original signal after compression is the essential step of compressive sensing. 

The recovery algorithms are classified into six different categories as shown in Figure 3. Incoherence and 

RIP are two important factors for the reconstruction of the compressed signal. The maximum correlation 

between two elements in a pair of matrices is incoherent that involves quantity to measure the suitability of  

φ [26]. Let the measurement metrics φ and sparse basis Ψ are said to be incoherent to each other. The 

coherence range is 𝜓[𝜑, 𝜓] ∈ [1, √𝑛]. The recovery is better when coherence is small. Let the sparsity of 

vector S be K, then, to recovery from measurements Y [27] the matrix should satisfy RIP with order K 

 

1 − 𝛿 ≤
‖𝛩𝑈‖2

‖𝑈‖2
≤ 1 + 𝛿 (11) 

 

ℓ1 is minimization or basis pursuit (BP). The convex optimization searches for a minimum ℓ1 norm 

solution. The BP [28] recovers the signal only if its measurement is free from noise.  

a. Algorithm for BP 

 
Input: A, Y where A-measurement matrix, Y-measurement vector 

Instruction: X=argmin‖𝑍‖, subject to AZ=Y 
Output: vector x+ 

 

b. Greedy pursuit (GP) 

Step by step method is implemented in greedy approach [28] and each iteration is selected by 

updated columns that are similar to measurements. 

c. Orthogonal matching pursuit (OMP) 

The algorithm is described as 

 
Input: A, Y where A-measurement matrix, Y-measurement vector 

Initialization: s0=Φ; x0=0  

Sn+1=SnU{jn +1} jn+1=argmax {‖𝐴(𝑌 − 𝐴𝑥)‖} 
Xn+1=argmin{‖𝑌 − 𝐴𝑧‖} supp ZCSn+1 

Output:=x+=xn 

 

d. Compressive sampling (CoSaMP) 

Parallel greedy algorithm not only selects by one atom but operates by selecting K or multiplies  

of K. CoSaMP selects 2K column of measurement matrix which will be added to previous k atoms and out of 

this 3K atoms the best K atoms are taken and updated. Subspace pursuit (SP) [29] selects only K atoms for 

each iteration which reduces the complexity. 

e. Threshold approach 

The solution set Si is updated using threshold operation. The iterative hard threshold (IHT) [30] uses 

a non-linear threshold operator 𝜂𝑘 keeping the largest k entries in S all others are set to zero. 

 

𝑆 = 𝜂𝑘(𝑠 + 𝜆ʘ𝑇(𝑌 − ʘ𝑠) (12) 

 

Where λ-denotes step size, if the step size is fixed the algorithm will not recover while step size is adaptive 

[31] it becomes complicated. 

f. Combinal approach 

The algorithms make use of two methods count min and count median. In the count min method, it 

computes the minimum value from a measurement of the previous step. In the count median, the median is 

calculated instead of the minimum value. 
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g. Convex approach 

The ℓ p norm approach is replaced in the place of ℓ1 norm where 0<p<1 and thus approach recovers 

the signal from the fewer components. A weaker version of RIP is enough to reconstruct the signal perfectly.  

h. Bayesian approach 

The Bayesian approach is suitable for signals of a probability distribution. The signals coefficients 

determining using maximum likelihood estimate or maximum posterior estimate. 

i. Block processing-based basis pursuit (BP-BP) 

The proposed basis pursuit along with block processing process the image using mean and standard 

deviation and based on the processed image, the measurement matrix and the DCT transform are performed. 

The processed image is then recovered using BP and the compression ratio is better when compared to other 

algorithms. 

 

 

 
 

Figure 3. Classification of recovery algorithms 

 

 

4. RESULT AND DISCUSSION 

The various recovery algorithms are analyzed by simulating the output for two different images, 

cameraman and Lena images. The peak signal to noise ratio (PSNR) and MSE of both the images for various 

algorithms are tabulated. The peak signal to noise ratio describes the quality metrics of the image. The PSNR 

is expressed as the ratio of the maximum value of the signal to the noise and it is expressed in the logarithmic 

decibel scale. PSNR is also defined in terms of MSE. MSE is defined as (13), (14), and (15). 

 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]𝑛−1

𝑗=0

𝑚−1

𝑖=0
 (13) 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔 10 (
𝑀𝑎𝑥2

𝑀𝑆𝐸
) (14) 

 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔 10 (
𝑀𝑎𝑥2

√𝑀𝑆𝐸
) (15) 



Int J Elec & Comp Eng ISSN:2088-8708  

 

Performance analysis of compressive sensing recovery algorithms … (Mathiyalakendran Aarthi Elavein) 

5069 

Figure 4 shows the images of the cameraman, which was originally taken for compression, 

measurement matrix, the compressed image, and the recovered image with the calculated PSNR. Figure 5 gives the 

comparison of various recovery algorithm for the image’s cameraman and Lena at compression ratio 3:1. The 

PSNR and the MSE for the images are calculated and the tabulation of the images along with their recovery 

algorithms is tabulated in Table 1. 

 

 

 
 

Figure 4. Images of cameraman compressed and recovered 

 

 
 CS Algorithms 

 BASIS PURSUIT CoSAMP GP IHT 

Recovered 

cameraman 

image 

    
Recovered 

Lena image 

    
 

 IRLS OMP SP BP-BP 

Recovered 

cameraman 

image 

 

    
Recovered 

Lena image 

    
 

 

Figure 5. Recovered images of cameraman and Lena with various recovery algorithms 
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Table 1. Comparison table of various recovery algorithms, PSNR, and MSE 
CS Algorithm Cameraman Lena 

MSE PSNR in dB MSE PSNR in dB 

BP 26.14 19.79 18.12 22.97 

CoSamp 40.09 16.07 26.50 19.67 

GP 29.64 18.69 20.66 21.83 
IHT 44.40 15.18 37.86 16.57 

IRLS 23.69 16.67 23.69 16.67 

OMP 32.08 18.01 20.03 22.10 
SP 34.66 17.34 22.30 21.16 

BP-BP 26.04 19.80 18.10 23.01 

 

 

Figures 6 and 7 provide the comparison chart of MSE and PSNR in dB for different images with 

different recovery algorithm. The results of various algorithms with two different images conclude that based 

on the sparsity of the images the recovery algorithms reconstruct the image with a compression ratio of 3:1 

which means 30% of the data are compressed and thus limits the storage and bandwidth of the system. 

 

 

 
 

Figure 6. Comparison chart for mean square error 

 

 

 
 

Figure 7. Comparison chart for PSNR 

 

 

5. CONCLUSION AND FUTURE WORK 

The various compressive sensing recovery algorithms are compared and based on their analysis of 

comparison the recovery of the image depends on the measurement matrix used and the nature of the image. 

The proposed block processing along with Basis Pursuit is comparatively better in performance than the 

other algorithms and the compression ratio of the algorithms is found to be 3:1 which is a moderate 

compression ratio. Based on the present comparison the future work can be enhanced by compressing the 

image and transmitting the image through a wireless network thereby reducing the storage capacity and 

transmission rate. 
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