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 This work presents a novel unconventional method of signal reconstruction 

after compressive sensing. Instead of usual matrices, continuous models  

are used to describe both the sampling process and acquired signal. 

Reconstruction is performed by finding suitable values of model parameters 

in order to obtain the most probable fit. A continuous approach allows more 

precise modelling of physical sampling circuitry and signal reconstruction at 

arbitrary sampling rate. Application of this method is demonstrated using  

a wireless sensor network used for freshwater quality monitoring. Results 

show that the proposed method is more robust and offers stable performance 

when the samples are noisy or otherwise distorted.  
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1. INTRODUCTION 

Compressed sensing (CS) is a relatively new method of signal acquisition and compression 

applicable to sparse signals. The defining feature of CS is that the compression is performed during  

the sampling process, by taking fewer samples than with conventional sampling. The original signal is then 

reconstructed from this reduced record. The main goal of compression remains the same-lower data transfer 

rate and reduced demands on communication channels. Furthermore, CS reduces the computational load 

required for compression to almost none by taking just enough samples to observe the needed information 

without redundancy. As a compression method CS can be implemented on devices with limited power and 

computation resources, such as wireless sensor nodes [1] or wearable electronics [2, 3].CS is also naturally 

encrypting, as there is no way to reconstruct the original signal without detailed knowledge of the sampling 

process [4]. The reason why CS is not yet widely implemented is that it is not versatile. It can only be applied 

on certain signals and the entire framework-sampling and reconstruction-has to be tailored to each individual 

application. Despite this disadvantage CS has found its way into applications such as medical imaging [5-8], 

audio [9] and video [10-12] processing, vibration sensing [13, 14] data gathering [15] etc.  

The basic idea of CS was originally proposed by [16] with a number of sampling methods for CS 

proposed afterwards. Most often used are the earliest random demodulation (RD) [17], random modulation 

pre-integration (RMPI) [18] and random sampling (RS) [19], and the more recent non-uniform wavelet 

sampling [20] The goal is to capture as much information as possible with as few samples as possible without 

introducing aliasing. Reconstruction also presents a specific challenge-solving an underdetermined system of 

linear equations. Reconstruction is conventionally based on a basis matrix defining signal features,  
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obtained analytically [21] or using methods such as principal component analysis [22-25], feature  

extraction [26-28] or methods of machine learning [29-31]. A number of reconstruction methods have been  

established, (orthogonal) matching pursuit [32], CoSaMP [33], iterative hard thresholding [33] or matrix  

pseudoinverse [22] are commonly used. None of these methods is truly versatile, some are more advantageous in  

a certain application than others. Research in this area continues, general approaches [6, 14, 35] as well as 

specific use cases [4, 12] are being proposed.  

The main problem with CS is its weak robustness. There are a lot of conditions and rules that have 

to be followed, which is not easy to guarantee in a practical application. The reconstruction process is 

sensitive to noisy samples, unexpected signal deviations, jitter [36] and other variables associated with input 

circuitry [37]. Any of these easily results in distorted output or a failed reconstruction. Some reconstruction 

methods are more robust than others, with the robustness inversely proportional to the computation load. 

However, CS in general is not a robust framework. 

This paper proposes a continuous reconstruction method that offers stable performance and is  

more robust than conventional matrix-based methods, the continuous parametric reconstruction (CPR). 

Conventional CS reconstruction is reliant on matrices to describe both the signal features and the sampling 

process. Such reconstruction will be referred to as direct linear reconstruction (DLR). Since a matrix 

description is discrete, there are limits in what precision can be achieved. The proposed method is not 

utilizing matrices to describe the sampling process and possible input signal, instead using continuous 

models. Such approach has several advantages that will be discussed. Performance of the proposed method 

will be demonstrated on a specific freshwater monitoring sensor network and directly compared to DLR.  

The article is organized as follows: section 2.1 provides theoretical background on conventional CS;  

section 2.2 shows the limitations of a discrete matrix-based CS framework; the proposed reconstruction 

method is described in section 2.3. Section 3 describes the sensor network and signals that were used as  

a benchmark in 3.1, and provides an example of how the proposed method can be implemented in  

section 3.2. Section 4 shows the results in direct comparison to conventional matrix-based reconstruction and 

discusses the differences. The paper is concluded in section 5.  

 

 

2. THE PROPOSED METHOD 

2.1.  Compressed sensing background 

A conventional approach to CS will now be described in order to put the authors’ proposed method 

in context. CS can be applied if the input signal can be expressed as vector 𝑓 ∈ 𝑅𝑁×1, which is compressible 

and can be classified as sparse. Let there exist a set 𝛹 ∈ 𝑅𝑁×𝐿 of basis functions 𝜓𝑙 ∈ 𝑅𝑁×1, 1 ≤ 𝑙 ≤ 𝐿, such 

that any possible input signal can be described as  

 

𝑓 = 𝛹𝑥 (1) 

 

Vector 𝑥 ∈ 𝑅𝐿×1 performs linear combination of the basis functions. If 𝑥 has only s entries of 

appreciable value and 𝑠 << 𝐿, the signal is denoted as s-sparse. This signal can be sampled by correlating it 

with with 𝑀 measurement signals, 𝑀 < 𝑁, defined by the measurement matrix 𝛷 ∈ 𝑅𝑀×𝑁. Resulting is  

the signal 

 

𝑦 = 𝛷𝑓 ∈ 𝑅𝑀×1 (2) 

 

If 𝛷 displays certain properties [38] and 𝑀 was chosen correctly [39], 𝑦 has fewer samples (lower 

sampling frequency) than 𝑓 but contains all the information needed for reconstruction. 𝑦 is hence referred to 

as the information signal. The measurement matrix usually has random entries so aliasing is avoided and 

matrices 𝛹 and 𝛷 must be mutually incoherent. If the matrix 𝛷 is subject to implementation on a physical 

circuitry, entry values of 0 and ±1 are preferred. The mostly studied sampling methods (see introduction) 

each have their own structure of measurement matrix. 

In the reconstruction phase only bases 𝛹, 𝛷 and the information signal 𝑦 are known. The original 

signal can be recovered if the conditions above are met and 𝑠 < 𝑀 << 𝑁. Let 

 

𝐴 = 𝛷𝛹 ∈ 𝑅𝑀×𝐿 (3) 

 

be denoted as the reconstruction matrix for convenience. Estimate of the original signal 

 

𝑓 = 𝛹�̂� (4) 
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can be obtained after finding �̂� by solving 

 

𝑚𝑖𝑛‖�̂�‖𝑝 subject to 𝐴�̂� = 𝑦 (5) 

 

𝑝 = 0,1,2, … Depending on the solver used. In (1) to (5) with solving a system of linear (5) represent  

the DLR, a conventional approach to CS. (5) can only be solved if the sparsity condition is satisfied and 

enough samples have been taken [38]: 

 

𝑀𝑚𝑖𝑛 = 𝜇𝑠 log10 𝑁 (6) 

 

CS framework with DLR is summarized in Figure 1. 
 

 

 
 

Figure 1. General CS framework 
 

 

2.2.  Elaboration of shortcomings 

As was mentioned in the introduction, the DLR CS framework is sensitive to noise and other 

disturbances and it is not inherently robust. That is because there are a lot of strict conditions (see previous 

chapter) that need to be satisfied. The input signal Nyquist limit, associated to 𝑁, has to be met. Input signal 

has to comply to the dictionary 𝛹, with given upper limit of sparsity related to 𝑀. These properties all meet 

in condition (6), which has to remain satisfied for successful reconstruction. The designer can in no way 

influence the measured signal, only anticipate its properties and set up the CS framework accordingly. 

Complying with the Nyquist limit can be ensured by analog input filter. But, any dictionary 𝛹 is just 

a prediction and any measured signal will not comply to it with mathematical precision. This translates to 

change of sparsity, a small signal difference can cause a great increase of sparsity on a given dictionary 𝛹. 

As a result (6) may no longer be met because 𝑀would have to be increased. Noise that is inadvertently 

present in any measured signal causes that these ideal conditions are rarely met. The reconstruction methods 

intended for CS are designed to be noise tolerant, however, the reconstruction tends to be near-perfect up to  

a certain point and fails beyond that. The behavior under adverse conditions is strongly dependent on 

application and used 𝛹 basis. 

 Another source of imperfection is the sampler circuitry. Investigations on this subject have been 

performed e. g. by [36, 37], including clock jitter and analog multiplier transitions. The jitter has to be 

tolerated by the reconstruction algorithm, but the multiplier characteristics could be moddelled in 𝛷.  

What prevents this modelling is the codependence of M and 𝑁 in DLR CS framework. Let us illustrate on an 

example in Figure 2.  

 

 

 
 

Figure 2. Ideal and realistic analog multiplier behavior and corresponding 𝛷 entries 
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Sampler architectures such as RD and RMPI use analog multipliers usually implemented as 

switching circuits. 𝛷 describing such sampler typically contains only values of ±1, typically a few entries per 

period, assuming ideal instant transition of the multiplication factor between the two values. A real transition 

however is continuous, with the discrepancy resulting in increased reconstruction error. The real transition 

could be modelled in 𝛷, but that would require upscaling it and increasing N. As a result, (6) might no longer 

hold and the reconstruction would be impossible.  

A sampler that is close to ideal is the RS, since it comprizes of just ADC, timing circuit and no other 

sources of imperfection. Neither this type of sampler is immune to the M and 𝑁 codependence. By tying M 

and 𝑁 together by means of the measurement matrix, sampling can not be as close to random as the circuitry 

potentially allows. This has an adverse effect on mutual coherence [38]. Let us describe the RS measurement 

matrix as suggested by [19]. Ξ contains indices of randomly selected samples within the processing frame 𝑁: 

 

𝛯 = {𝜉1, 𝜉2, . . . , 𝜉𝑀} (7) 

 

Entries of Ξ are random numbers, following 

 

∀𝑚 ∈ 𝑁, 1 ≤ 𝑚 ≤ 𝑀: 𝜉𝑚 ∈ 𝑁, 1 ≤ 𝜉𝑚 ≤ 𝑁 (8) 

 

∀𝑖, 𝑗 ∈ 𝑁: 1 ≤ 𝑖 < 𝑗 ≤ 𝑀, 𝜉𝑖 < 𝜉𝑗 (9) 

 

Elements of measurement matrix representing RS can then be obtained as 

 

𝜙𝑚𝑛 = {
1
0

if 𝑛 = 𝜉𝑚

 otherwise
 

(10) 

 

and the information signal elements become 

 

𝑦𝑚 = 𝑓𝜉𝑚
 (11) 

 

Since 𝜉𝑚 is limited by range in (8), it is apparent that RS has a limited variance of inter-sample 

interval. The issue is illustrated in Figure 3 where two sampling series with different elementary time 

increments are shown. The smaller the increment, the closer sampling gets to truly random, but 𝑁 has to be 

increased possibly to the point where (6) no longer holds.  

 

 

 
 

Figure 3. Random sampling with different elementary time increments 

 

 

2.3.  The proposed solution 

The authors believe that a lot of the CS framework shortcomings can be circumvented by 

abandoning the discrete matrix descriptions used in DLR and transitioning to a continuous reconstruction 

method based on models – the continuous parametric reconstruction (CPR). The authors propose to emulate 

the behavior of (5) by 

 

min
�̂�

‖𝐺(�̂�, �̃�) − 𝐲‖
𝑝
 (12) 
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Where 𝐺(�̂�, �̃�) is a parametric signal model with parameters �̂�. This model substitutes a discrete 

dictionary 𝛹 by a suitable multi-parametric function. Signal model is sampled according to �̃�, a descriptor of 

the sampling process. �̃� may be a continuous operator, for example ideal RS may be described using a series 

of modified delta functions so that 

 

𝑦𝑚 = 𝑓(𝑡𝑚) (13) 

 

Time instants 𝑡𝑚, 𝑚 = 1,2, … , 𝑀 at which the samples are taken are not limited to indexes within  

𝑁 available positions. CPR hence does not bound the sampling process to the number of reconstructed 

samples. Besides reconstruction this has also implications on the sampling circuitry. In the case of RS,  

the elementary time increment is only limited by the capabilities of circuitry and the size of quantized 

timestamp 𝑡𝑚 which has to be transferred along with 𝑦𝑚.  

With DLR the reconstruction is performed by finding a linear combination of up to 𝑠 basis 

functions. A large number 𝐿 of constant basis functions within the dictionary 𝛹 is available to choose from. 

By contrast, CPR could be seen as having a dictionary of just one or a few basis functions that are variable 

along their parameters. Reconstruction is performed by finding the right parameter values. The authors 

believe that this approach is potentially more resistant to adverse conditions if a suitable signal model is used. 

By forcing the reconstruction to adhere to a specific signal model the CPR is a form of curve fitting, 

returning the best fit. DLR is more rigid and forces quantization in both time and shape of the signal.  

The proposed method is continuous in both time and parameters, potentially allowing for greater resolution at 

reduced computation cost. The CPR is summarized in Figure 4. 

 

 

 
 

Figure 4. Continuous parametric reconstruction 

 

 

An issue with CPR is ensuring the signal model’s orthogonality and convergence to a single correct 

solution. A solution space needs to be defined, over which the model meets this criterion and still simulates 

any input signal. Furthermore, (12) in general is a nonlinear, nonconvex problem. The authors propose to  

use differential evolution [40] for solving (12), as it can search large solution spaces with no regards to  

the model’s linearity. In this regard the conventional DLR is advantageous, as it involves solving a convex 

problem (5) for which a number of efficient solvers is available [33]. 

 

 

3. RESEARCH METHOD 

The performance of the proposed CPR will be evaluated using a wireless sensor network (WSN) 

used for automated monitoring of river water quality [41]. This network was deployed near the Slovak-

Hungarian border in the Ipel River. The authors investigated CS application in this network because of tight 

energy budget, which can potentially be improved by lowering the sampling frequency. Results of previous 

investigation [22] of conventional DLR CS in the same network will be provided as reference.  

 

3.1.  Freshwater monitoring network 

The WSN was organized as two sub-networks, each containing 5 buoys carrying multiparameter 

probes and sending data to onshore gateways as shown in Figure 5 [41]. The sensor nodes measured multiple 

water parameters such as temperature, salinity, dissolved oxygen, pH, total dissolved solids etc. [42]. 

Measured signals were acquired by on-board sensors, transferred to a central database and stored.  

The developed system was tested in pilot operation spanning over a year, covering periods with extreme 

weather and flash floods.  
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Figure 5. Onshore gateway and buoy deployed in the Ipel River 

 

 

The sensor nodes used solar power for charging the integrated battery. This proved to be of concern 

during winter months, when only a limited amount of solar power is available and the battery performance is 

reduced due to low temperatures. The WSN node power budget comprises of three main parts: the transmitter 

that draws power when transmitting data (~0.8%), MCU and other control circuits (~0.9%), and the probes 

that draw power upon triggering of the measurement process (~98%). Since probes consume most of  

the power, this WSN is a textbook case of saving power by utilizing CS and lowering the sampling rate. 

 

3.2.  Sparse signal model 

This subchapter will demonstrate how to use the proposed CPR (12) and reconstruct a certain type 

of signal. Data acquired by the WSN described above show that signals of all the measured parameters 

correlate and display the same basic pattern. A typical signal contains a large slowly changing DC 

component, a faster AC component with relatively small amplitude and a small amount of noise [22]. 

Examples are shown in Figure 6. The AC component is a distorted sine wave with fundamental frequency 

D=1.157×10-5Hz (1 per day). Frequency analysis shows that there are only up to 4 higher harmonics of 

appreciable magnitude. The signal thus carries only limited information content and can be classified as 

sparse, meeting the criteria for CS application. 

 

 

 
 

Figure 6. Examples of acquired signals 

 

 

A suitable parametric signal model is needed for reconstruction via CPR. The following signal 

model is proposed for the discussed application: 

 

𝑓(𝑡) = 𝑃(𝑡) + 𝑆(𝑡)𝐾  (14) 

 

𝑃(𝑡) = ∑ 𝐵𝛬
𝑖(𝑡)𝑖

𝛬

𝑖=0

 

(15) 

 

is a polynomial of order Λ with coefficients  
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𝑩𝛬 = [ 𝐵𝛬
0 𝐵𝛬

1 . . . 𝐵𝛬
𝛬−1] (16) 

 

That approximates the slowly changing DC component. The AC component is represented by a sum 

of sinusoids, from fundamental to the K-th harmonic 

 

𝑆(𝑡)𝐾 = ∑ 𝐶𝐾
𝑗 𝑠𝑖𝑛(2𝜋𝑗𝐷𝑡 + 𝜃𝐾

𝑗)

𝐾

𝑗=1

 

(17) 

 

defined by their amplitudes 

 

𝑪𝐾 = [ 𝐶𝐾
1 𝐶𝐾

2 . . . 𝐶𝐾
𝐾] (11) 

 

and phases 

 

𝜽𝐾 = [ 𝜃𝐾
1 𝜃𝐾

2 . . . 𝜃𝐾
𝐾] (11) 

 

3.3.  Sampling and reconstruction 

RS was chosen as the sampling method because it can be implemented in the existing WSN with no 

hardware changes. The authors chose to implement RS according to (11). It does not utilize the whole 

potential of CPR as (13) (see section 2.2), but it can be tested using existing data. By inserting (13) and (14) 

into (12) we get the CPR parameters 

 

{ 𝑩𝛬 , 𝑪𝐾 , 𝜽𝐾 } = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑩𝛬 , 𝑪𝐾 , 𝜽𝐾

‖�̂� − 𝒚‖2 (20) 

 

where �̂� are samples of the modeled signal at random sampling instances 

 

�̂�𝑚 = ∑ 𝐵𝛬
𝑖(𝑡𝑚)𝑖

𝛬

𝑖=0

+ ∑ 𝐶𝐾
𝑗 𝑠𝑖𝑛(2𝜋𝑗𝐷𝑡𝑚 + 𝜃𝐾

𝑗)

𝐾

𝑗=1

, 𝑚 = 1,2, . . . , 𝑀 (21) 

 

Parameters 𝐵�̂� , 𝐶𝐾 , 𝜃𝐾  can be used with model (14) for original signal reconstruction at arbitrary 

time instances. The authors propose to use polynomial fit prior to CPR in order to get a rough estimate of 

(16), which can be fed into (20) as a starting point. Reconstructed samples are not bound to integer multiple 

s𝑛𝑇𝑆 , 𝑛 = 1,2, . . . , 𝑁, as was previously discussed. It should be noted that (14) is not a hydrological model 

and it cannot be used for forecasting, which would be done by setting t outside the processing frame.  

 

 

4. RESULTS AND DISCUSSION 

The performance of proposed sensing and reconstruction method was tested on data obtained during 

WSN pilot operation. Testing was performed via simulations that sufficiently represent implementation on 

the physical system. 200 signal frames with length N=120 (5 days) were chosen randomly from the available 

database for testing. Signal-to-deviation ratio (SDR) 

 

𝑆𝐷𝑅 = 10 𝑙𝑜𝑔 (
∑ 𝑓𝑛

2𝑁
𝑛=1

∑ (𝑓𝑛 − 𝑓𝑛)
2𝑁

𝑛=1

) 
(11) 

 

was used for evaluation, with 𝑓𝑛 being samples of the reconstructed signal. 102 test runs were performed on 

each of the test signals with a new sampling sequence generated every time. For every scenario, SDRs of all 

the runs of all the test signals were averaged. 

CPR needs to have the solution space bounds defined prior to reconstruction. The algorithm is not 

particularly sensitive to correctly set bounds but doing so aids the computational cost. The maximum number 

of harmonic components in (17) was set to K=4 (see sect. 3.2). The polynomial order of (15) was set to  

𝛬 = 3. This number was found by investigation of inflection points of acquired signals after filtering out  

the AC component. Both K and 𝛬 could also be found by an educated guess or by trial and error, since they 

are small numbers by the nature of model (14).  
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The study [22] utilized CS with DLR based on extensive trained dictionary. Methods such as 

orthogonal matching pursuit, iterative hard thresholding, CoSaMP etc. [33] were tested for solving (5), with 

pseudoinverse matrix performing the best. These results will be provided as reference. 

 

4.1.  Compression ratio 

The entire purpose of employing CS is the reduction of power consumption, which is in direct 

relation to the average sampling frequency. This reduction can be expressed as the compression ratio 

 

𝐶𝑅 =
𝑁

𝑀
 

(23) 

 

or the ratio of number of hidden Nyquist samples over the number of samples taken nonuniformly. Figure 7 

shows the SDR vs. CR along with projected power consumption (PPC) in % of the original–PPC=100% for 

CR=1. The PPC was computed based on the power consumption of individual sensor node components. 

Implementing CS in the physical WQM system will require choosing a suitable CR. CR=6 is used in further 

experiments, as it displays a reasonable trade-off between high SDR and low PPC with both methods. 

 

 

 
 

Figure 7. Average SDR and PPC vs. compression ratio 

 

 

4.2.  Resistance to noise 

Noise can represent any uncorrelated interference that can alter the acquired samples. Noise is one 

of the inherent signal features that make CS application more complicated. Some CS reconstruction  

methods can be quite noise sensitive, the investigation of noise resistance of a particular CS application is 

therefore prudent. 

The experiment was conducted by adding an artificial noise of varied standard deviation to acquired 

samples after RS. SDR was computed by comparing reconstructed signal to the original signal without noise. 

The test signals were normalized to 1 so that the introduced noise see in Figure 8 presents a consistent 

degradation level. 

 

 

 
 

Figure 8. Average SDR vs. noise level 
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4.3.  Resistance to quantization 

The data that are read out of the probes inside buoys are of high resolution (float, ASCII) data types. 

This high-resolution data are featured out of opportunity rather than necessity-high resolution but low speed 

ADCs are cheap and common. The range and resolution of featured data types are not utilized and not 

practically needed, yet they are being transmitted. A considerable reduction of payload could be achieved by 

simple rescaling and quantizing of the measured data. Provided that the reconstruction algorithm can handle 

it, quantization is a viable means of reducing the data payload and increasing the reliability of a WSN. 

An experiment was conducted where the acquired signals after RS were quantized by a simulated 

ideal unipolar ADC with a range of <0;1>. Testing signals were normalized to 1 prior to RS and quantization 

in order to ensure a comparable level of degradation. SDR was computed by comparison of reconstructed and 

original non-quantized signals. The results are shown in Figure 9. 

 

 

 
 

Figure 9. Average SDR vs. number of bits (NOB) 

 

 

4.4.  Discussion 

Figure 7 shows that under ideal conditions the proposed CPR reconstruction method underperforms 

in comparison to dictionary based DLR. A trained dictionary obtained from an extensive signal database is 

capable of near-perfect-reconstruction. An intentionally simple model like (14) cannot do this as can be seen 

in Figur 10, leading to the 5dB lower achievable SDR (45dB vs. 40dB with CR=6). 

For the end user-hydrologist, recovering all the intricate details is not practically needed  

and reliability is more important. Near-perfect-reconstruction capability may be counterproductive if  

the conditions are not ideal. Figures 8 and 9 show that the DLR performs worse than the proposed CPR under 

adverse conditions. This is most prominent in Figure 8 where even a small amount of noise causes the two 

methods to become equal in achievable SDR. Further increase of noise level causes the proposed CPR 

method to perform up to 8dB better. The reason for this turn can be seen in Figure 11. 

Conventional DLR has too many options when trying to solve (5), which causes it to “invent” its 

own noise and artifacts to fit the distorted samples. The proposed CPR by adhering to the semi-analytical 

signal model yields the most likely fit, resulting in both higher SDR and subjectively more realistic output. 

Model based reconstruction is also naturally denoising, similar to methods used in biomedicine [43, 44]. 

Situation is similar when quantization noise is degrading the samples. Quantization noise is correlated and 

does not lower SDR as much as random interference. Here DLR also starts with higher SDR until it is 

surpassed by the proposed CPR at lower resolutions. Minimal effective resolution needed is 10 bits for DLR 

and 8 bits for CPR. 

The authors propose that with the proposed CPR the compression ratio can be set to CR=6 which 

would reduce the buoys’ power consumption to app. 17% of the original. Implementation of random 

sampling in the analyzed WSN would require no hardware changes at all and no buoy firmware changes. 

Further reduction of data traffic could be achieved by rescaling and quantizing the high-resolution data, 

although this step would require a revision of the buoys’ firmware. Energy cost of data transmission is 

insignificant in this application, but reduced traffic aids the reliability of networks in general. Presented 

reconstruction method can handle 8-bit full scale resolution without degradation of the reconstructed signal. 

12-bit quantization would provide the necessary dynamic range excess while reducing the data payload by 

over 60%, resulting in overall compression ratio over 10. 
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Figure 10. Reconstruction under ideal conditions 

 

Figure 11. Reconstruction from noisy samples 

 

 

It can be concluded that DLR trades robustness off for near-perfect reconstruction, while  

the proposed CPR offers modest but stable performance in challenging conditions. A considerable 

disadvantage of DLR may be the need for Nyquist signal database. WSN described in sect. 3.1 already made 

a pilot run during which the database has been acquired, so in this case both reconstruction methods are 

directly comparable and feasible. However, if the signal database was not available, the proposed CPR would 

be much easier to implement than DLR. The limits of model (14) required to be known for implementation of 

the proposed CPR can be observed in just a few days, possibly by sample grabbing. Obtaining a training 

database for conventional DLR would require deploying the WSN itself, since hundreds of days of Nyquist 

record are needed [22].  

A great advantage of the proposed CPR is that it is not necessarily bound to any underlying Nyquist 

sampling. When designing a CS system with DLR the underlying Nyquist sampling must be kept in mind. 

Sampling that takes place on a physical circuitry is described by the matrix 𝛷 ∈ 𝑅𝑀×𝑁. If proper discrete 

representation of the sampling process requires high sampling rate (tied to N), the limit (6) can be easily 

exceeded, making the reconstruction impossible. For RS this means that sample positions must adhere to  

a sufficiently long elementary time increment 𝑇𝑆. The proposed CPR allows to model the sampling 

continuously, in case of RS by timestamps, and samples can be theoretically taken at truly random time. 

Results show that (6) still has to be met, but with N corresponding to input signal Nyquist rate only, not  

the Nyquist rate required for discrete sampler description. On the side of recovery, the proposed CPR allows 

to sample the output signal at arbitrary sampling rate or at arbitrary time instances. With conventional DLR 

the output sampling is tied to the sampling of bases 𝛷 and 𝛹. 

 

 

5. CONCLUSION  

A novel CS reconstruction method based on continuous models and parametric estimation has been 

presented. Performance of this method was tested on an example of WSN and directly compared to 

conventional linear CS reconstruction. Results show that the proposed method is more robust and offers 

stable performance with varied number of samples or samples that are degraded by noise and quantization. 

The proposed method is compatible with but not limited to random sampling, which is simple to implement 

in general and particularly on the WSN analyzed in this work.  
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