
Technische Universität Dresden

Zero-padding Network Coding and Compressed Sensing for

Optimized Packets Transmission

Maroua Taghouti

der Fakultät Elektrotechnik und Informationstechnik der Technische Universität
Dresden

zur Erlangung des akademischen Grades

Doktoringenieur

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. Christian Georg Mayr

Gutachter: Prof. Dr.-Ing. Dr. h.c. Frank H. P. Fitzek Tag der Einreichung: 06.04.2021

Prof. Dr.-Ing. Wolfgang Kellerer Tag der Verteidigung: 08.11.2021

Dr.-Ing. Dirk Wübben

ii

Abstract

Ubiquitous Internet of Things (IoT) is destined to connect everybody and everything on a
never-before-seen scale. Such networks, however, have to tackle the inherent issues created
by the presence of very heterogeneous data transmissions over the same shared network.
This very diverse communication, in turn, produces network packets of various sizes
ranging from very small sensory readings to comparatively humongous video frames. Such
a massive amount of data itself, as in the case of sensory networks, is also continuously
captured at varying rates and contributes to increasing the load on the network itself,
which could hinder transmission efficiency. However, they also open up possibilities to
exploit various correlations in the transmitted data due to their sheer number. Reductions
based on this also enable the networks to keep up with the new wave of big data-driven
communications by simply investing in the promotion of select techniques that efficiently
utilize the resources of the communication systems.

One of the solutions to tackle the erroneous transmission of data employs linear coding
techniques, which are ill-equipped to handle the processing of packets with differing sizes.
Random Linear Network Coding (RLNC), for instance, generates unreasonable amounts
of padding overhead to compensate for the different message lengths, thereby suppressing
the pervasive benefits of the coding itself. We propose a set of approaches that overcome
such issues, while also reducing the decoding delays at the same time. Specifically, we
introduce and elaborate on the concept of macro-symbols and the design of different
coding schemes. Due to the heterogeneity of the packet sizes, our progressive shortening
scheme is the first RLNC-based approach that generates and recodes unequal-sized coded
packets. Another of our solutions is deterministic shifting that reduces the overall number
of transmitted packets. Moreover, the RaSOR scheme employs coding using XORing
operations on shifted packets, without the need for coding coefficients, thus favoring
linear encoding and decoding complexities.

Another facet of IoT applications can be found in sensory data known to be highly
correlated, where compressed sensing is a potential approach to reduce the overall
transmissions. In such scenarios, network coding can also help. Our proposed joint
compressed sensing and real network coding design fully exploit the correlations in
cluster-based wireless sensor networks, such as the ones advocated by Industry 4.0. This
design focused on performing one-step decoding to reduce the computational complexities
and delays of the reconstruction process at the receiver and investigates the effectiveness
of combined compressed sensing and network coding.

iii

iv

Acknowledgements

My Ph.D. journey holds a very special place in my life, which has allowed me to add
my name to the truly long list of prodigious researchers who have contributed to the
corpus of scientific knowledge. I am glad to be part of this community and feel that I
finally accomplished a crucial mission during my passage on planet Earth. It is very
humbling to thank all those who have guided and supported me throughout and beyond
this expedition. Without them, this achievement would not have been possible.

I would like to start by expressing my deepest gratitude to Prof. Dr.-Ing. Dr. h.c.
Frank H. P. Fitzek for giving me the opportunity to be one of his Ph.D. students and
for making it possible to be part of the Deutsche Telekom Chair for Communication
Networks (ComNets) team. I will always look up to him and will consider him as a
reference in my career. I will always be grateful to my mentor, Assoc. Prof. Daniel
Enrique Lucani Rötter from Aarhus University, Denmark, as well, who has been one of
the first to believe in my small theories and concepts, and who stood by my side during
the development of my research ideas. I very much enjoyed his friendly demeanor and
specialized “tools of supervision”, especially the famous wooden stick he used during my
visits that he referred to as the “performance booster” (though it only worked well while
I was physically at Aalborg University). I appreciate his patience and understanding
throughout all these years and really hope our collaboration and friendship will continue
to evolve in the future.

I thank my husband and ex-colleague, Dr.-Ing. Máté Tömösközi, my catalyst who has
brought a great balance in my life, for his unconditional love and support. I will never
forget when after checking my dissertation for typos, he wrote “vegan” as a comment
when he saw that I mistakenly wrote “meat” instead of “meet”.

I thank our publishing guru, Prof. Martin Reisslein from Arizona State University,
USA, who is not only an exceptional researcher but a one-of-a-kind writer that reminds
me of Stephen King. I also thank my other co-authors, especially Dr.-Ing. Anil Kumar
Chorppath, Dr.-Ing. Morten Pedersen, Tobias Waurick, Malte Höweler, and Huanzhuo
Wu.

I would like to thank my engineering diploma and master’s advisor, Prof. Ammar
Bouallegue from the National Engineering School of Tunis, Tunisia, and Prof. Ali
Abdennadher from Tunisia Polytechnic School of Tunisia, for encouraging me to follow
my dreams for seeking a wider knowledge and for pushing me toward the pursuit of
my studies abroad. Many thanks go to the people I met during my Ph.D. journey,

v

with a special thanks to Ms. Kirsten Nielsen from Aalborg University, who hosted me
in her house in Aalborg, my friends from ComNets, and the Communication Systems
Laboratory of the National Engineering School of Tunis, Tunisia.

I, of course, thank my family, especially my sister Dr.-Ing. Myriam Taghouti and her
kids, Mrimima and Harun, for the great fun and huge support they were constantly giving
to their “tia”. Last, but not least, I will always be grateful to every single person who
taught me any new thing during my studies, starting from my aunt, Sabeh Hammami,
my kindergarten teacher and high school math teacher, Mr. Hussin-Hadj Sassi, who
inspired me to develop my logical thinking, may he rest in peace.

vi

Dedication

To my mother Fatma-Zohra Hammami.

vii

“C’est par la logique qu’on démontre, c’est par l’intuition qu’on invente.
Savoir critiquer est bon, savoir créer est mieux.”

Science et Méthodes
Jules Henri Poincaré

1908

viii

Table of Contents

Acknowledgements v

List of Figures xii

List of Tables xix

List of Acronyms xxi

List of Symbols xxvi

Chapter 1
Introduction 1
1.1 Context and Motivations . 1

1.1.1 Data Deluge . 1
1.1.2 Key Innovation Techniques . 4

1.2 Key Contributions . 6
1.3 Organization of the Thesis . 7
1.4 Original Publications . 8
1.5 Notations and General Terms . 11

Chapter 2
Disruptive Innovation Techniques 13
2.1 Network Coding Theory . 13

2.1.1 Network Coding Branches . 14
2.1.2 Random Linear Network Coding 16
2.1.3 RLNC Parameters . 19
2.1.4 RLNC Based Variant Approaches 23
2.1.5 Schemes Performances Comparison 31

2.2 Compressed Sensing . 32
2.2.1 Overview . 33
2.2.2 Sparsity and Compressibility . 34
2.2.3 Sensing Matrix Design . 34
2.2.4 Common Reconstruction Algorithms 37
2.2.5 Computational Complexity . 38

ix

2.2.6 Sparse Representation . 38
2.2.7 Take Away Conditions . 41
2.2.8 Distributed Compressed Sensing 41
2.2.9 Compressed Sensing and Blind Source Separation 45

2.3 Conclusions . 49

Chapter 3
Padding Overhead Characterization 51
3.1 Characterization of Packet Size Distributions 51

3.1.1 IP-Core Packets . 52
3.1.2 Video Packets . 53

3.2 Padding Overhead in Generation-Based RLNC 54
3.2.1 Over a Point-to-Point Topology 55
3.2.2 Over an ℓ-Hops Topology . 62

3.3 Existing Padding Reduction Approaches 65
3.3.1 Simple Bundling Scheme . 66
3.3.2 Fragmentation Scheme . 67

3.4 Conclusions . 69

Chapter 4
Macro-symbol Based Approaches 71
4.1 Macro-Symbol Concept . 72

4.1.1 Design: From Packets to Macro-Symbols 72
4.1.2 Pre-Processing for Generation Based RLNC 73
4.1.3 Macro-Symbol Size µ Evaluation 74
4.1.4 Simple Macro-Symbol RLNC Scheme 77

4.2 Progressive Shortening Scheme . 81
4.2.1 Scheme Design . 81
4.2.2 Computational Complexity . 83
4.2.3 Performance Evaluation . 86
4.2.4 Recoding . 94
4.2.5 Progressive Shortening and Robust Header Compression version 2

(RoHCv2) . 100
4.3 Conclusions . 103

Chapter 5
Shifting-Based Approaches 105
5.1 Shifting-Based MS RLNC . 106

5.1.1 Design of Shifting MS RLNC Schemes 106
5.1.2 Analytical Characterization of MS RLNC 110
5.1.3 Performance Evaluation . 114

5.2 Evaluation of Padding Overhead RLNC Approaches 117
5.2.1 Computational Complexity . 117
5.2.2 Padding Overhead . 118

x

5.2.3 Number of Coded Packets . 120
5.3 Random Shift and XOR (RaSOR) . 126

5.3.1 RaSOR: Random Shift and XOR Scheme 127
5.3.2 Decoding Analysis and Regions of Operations 130
5.3.3 Impact of Packet Losses . 133
5.3.4 Empirical Results . 134

5.4 Conclusions . 138

Chapter 6
Joint Compressed Sensing and Network Coding 141
6.1 SoA on the Combination of Compressed Sensing and Network Coding . . 142

6.1.1 Common Characteristics and Requirements 143
6.1.2 Combination Results of SoA Approaches 146

6.2 Joint Compress and Code (JoComCo) Scheme 147
6.2.1 Design for a Cluster-Based Topology 148
6.2.2 Reconstruction at the Sink . 152

6.3 Matrices Distributions and Reconstruction Algorithms 152
6.3.1 Joint Sensing and Coding Matrices 153
6.3.2 Reconstruction Algorithms . 153
6.3.3 Theoretical Compression Gain . 154

6.4 Implementation Results . 155
6.4.1 Evaluation Setup . 155
6.4.2 Parameter Selection in a Single-Cluster Topology 157
6.4.3 Performance of Reconstruction Algorithms 160
6.4.4 Performance Evaluation of the Four-Cluster Topology 163

6.5 Conclusions . 165

Chapter 7
Conclusions and Future Directions 167

Chapter A
Proofs for Section 6.4 173
A.1 Proof of Proposition 1 . 173
A.2 Proof of Proposition 2 . 174
A.3 Selecting the Modifier µj via a Fixed Deviation 174

Chapter B
Network Emulation with Compressed Sensing 177
B.1 Implementation in ComNets Emulator 177
B.2 Using DCT for Data Sparsification . 178
B.3 Using a Trained Dictionary for Data Sparsification 181
B.4 Overcomplete Dictionary Robustness . 183

Bibliography 185

xi

List of Figures

1.1 The 5G atom [1] . 4

1.2 General overview of the key contributions. 9

2.1 The most important branches of Network Coding. 14

2.2 Structure of a coded data packet. 16

2.3 The common RLNC-based techniques in the literature. 23

2.4 Systematic network coding decoding matrix example for a generation of
size N = 5, for r = 3. 24

2.5 Band code decoding matrix example for a generation of size N = 5 . . . 27

2.6 Perpetual code decoding matrix example for a generation of size N = 5,
ω = 2, and α is a random non-zero coefficient from GF(q). 27

2.7 Sequential XORing mode decoding matrix example for a generation of
size N = 5. 29

2.8 Distributed Compressed Sensing (DCS) framework for a set of N signals.
For all i ∈ {1, · · · , N}, each original signal xi is transformed using the
common sparsification matrix Ψ into a sparse signal θi. The resulting
sparse signals are each compressed using a specific matrix Φi. At the
receiver, a joint reconstruction is possible thanks to the common features
among the signals. Finally, every signal can be exactly reconstructed [2]. 42

2.9 Compressible Source Separation example with n sources. 46

xii

2.10 Separation time reduction rate Rt and separation accuracy SNR of Fast
Independent Component Analysis (FastICA) and Component-dependent
Independent Component Analysis (CdICA). 47

2.11 Data compression rate Rc and separation rate Rs. 48

3.1 Cumulative Distributive Function (CDF) of IP-based packet sizes in bytes
per packet of the benchmark CAIDA trace of 70 × 105 packets [3]. 52

3.2 CDF of video packet sizes in Bytes per packet of the benchmark traces [4]. 54

3.3 An example of a three packet generation, with original sizes L/2, L and
L/2 respectively. If coding with the largest packet in the generation is
performed, it will result in transmitting at least an overhead (represented
by the black space) that corresponds to 50% of the initial data to transmit.
We are implicitly sending one extra packet in this case. 56

3.4 Percentage of minimum zero-padding overhead carried for different gen-
eration sizes of a Centre for Applied Internet Data Analaysis (CAIDA)
packet trace [3]. 58

3.5 Percentage of the presence of zero-padding overhead as a function of the
generations of the benchmark CAIDA packets trace [3]. 59

3.6 Means and standard deviations of padding overhead OG [in percentage]
as a function of the generation size N [3]. 60

3.7 Box plots of zero-padding overhead OG as a function of the generation
size N for the VP9 (HD) video trace. 61

3.8 Box plots of zero-padding overhead OG as a function of the generation
size N for the H.265 (4k) video trace [3]. 61

3.9 Percentage of minimum padding overhead for a collection of video traces
for N = 100 [4]. 62

3.10 An example of an ℓ-hop line network with loss rate εi per link, i ∈ {1, · · · , ℓ}. 63

3.11 Box plots of padding overhead Oℓ
N in megabits for a Transport Control

Protocol (TCP) trace, as a function of the number of hops ℓ, with N = 32,
ℓ = 8, ε1 = 0.4, and all other links are supposed to be perfect. 64

xiii

3.12 Simple bundling scheme example for a generation of N original unequal-
sized packets. 66

3.13 Simple fragmentation example. 68

4.1 An example of a generation of N = 4 source packets with initial sizes
µ, 5µ, 1µ, and 2µ, whereby µ denotes a prescribed packet size unit, e.g.,
µ = 10 bytes. The packets with sizes 1µ and 2µ are padded out to the
maximum packet size of 5µ before RLNC coding. The resulting padding
overhead (represented by the black rectangles) is OG = 11/9 = 122%,
i.e., the amount of padding overhead is larger than the amount of source
data [4]. 73

4.2 Ratio of zero-padded macro-symbols carried inside one coded packet in
the CAIDA TCP traces [5]. 75

4.3 Percentage of zero-padding overhead for MS RLNC with different macro-
symbol sizes µ for generations of N = 64 packets [4]. 76

4.4 Example illustration of MS RLNC coding for a generation that consists
of N = 2 source packets with maximum size Λmax = 3 MSs. The
coded MS cηλ is created by linearly combining the source MSs siλ in the
column position λ with the random coding coefficients αηi. The coded
packet Cη consists of the coded MSs cηλ from all the column positions
λ, λ = 1, 2, . . . , Λmax, and the coding coefficients αηi, i = 1, 2, . . . , N ;
additionally, one coded packet of the generation has to carry to individual
packet lengths Λi. The illustration on the right depicts the eventual
matrix expansion of an encoding vector at the decoder [5]. 78

4.5 Example of the min-sized last coded packet policy; (a) a generation with N = 4
original packets, (b) coded packets after the encoding process: N − 1 = 3 coded
packets have the full size of the largest original packet Λmax = 5, while the last
has the size Λmin = 1 of the minimum length original packet [5]. 80

4.6 Best case scenario example of Scheme 2. (a) A generation of 4 original packets
with unequal sizes. (b) Coding is performed sequentially on macro-symbols of
different packets to create coded packets with progressively shorter sizes [5]. . 82

xiv

4.7 Decoding of unequal-size coded packets using sub-decoders for a generation
of size N = 4; (a) a set of coded packets to decode. (b) The coding
coefficients (EV) are expanded into a decoding matrix, where each row
corresponds to the size of a coded packet in MSs. (c) The resulting
sub-matrices are shaped based on the number of encoding coefficients
involved in a row [6]. 85

4.8 Probability of decoding in terms of excess output MS to decode a gener-
ation of N = 4 packets of lengths 2, 5, 1, 2 (the example in Figure 4.1)
using progressive shortening scheme [5]. 88

4.9 CDF comparison of the number of coded MS used in decoding H.265 (4K)
video generations in each scheme, where N = 16, and µ = 10 [5]. 89

4.10 Encoding and decoding throughput for different macro-symbols µ. 92

4.11 Encoding and decoding throughput of progressive shortening with µ = 32,
and conventional RLNC for different generation sizes [6]. 93

4.12 Recoding of the shortening scheme in the case of losses; (a) a generation
of N = 4 unequal packets, (b) two short coded packets are lost with a
loss probability ϵ, but compensated with two full-length packets, (c) the
recoder generates coded packets with length distribution matching the
length distribution of the original ones in (a). [6]. 96

4.13 Example of a coded generation where one random packet is lost; (a) the
redundant packet matches the missing data and is not counted as overhead,
(b) the redundant packet is larger and the difference is overhead [6]. . . . 96

4.14 Overhead in ℓ-hops. 99

4.15 Percentage of worst case padding overhead in a network with ℓ-hops,
where µ = 8, N = 32, εi = 0.4 , ∀i ∈ J1 ; 8K [6]. 100

4.16 RoHCv1 [6]. 101

4.17 Network coding payload delivery efficiency for IP, RoHCv2, RLNC and
progressive shortening for a UPD stream over simulated uncorrelated
losses [6]. 102

xv

5.1 Example of random shifting: (a) generation of N = 4 original packets
with unequal sizes; the maximum degree is max

1⩽λ⩽Λmax
∆λ = ∆1 = 4. (b)

pre-coding: randomly shifted packets before MS RLNC encoding; the
shifting reduced the maximum degree to max

1⩽λ⩽Λmax
∆rand

λ = ∆rand
max = 3 [4]. 107

5.2 Example of MS RLNC encoding after random shifting for generation size
N = 4 and maximum source packet size Λmax = 5 MSs with the eventual
matrix expansion of the encoding vector [4]. 107

5.3 Deterministic shifting: (a) Generation of N = 4 source packets with
unequal sizes. (b) The deterministic shifting has reduced the maximum
MS source degree to ∆det

max = 2 [4]. 108

5.4 Example illustrating the determination of the set of coding coefficients that
Aλ are actually involved in the computation of each coded macro-symbol
at the column position λ ∈ J1 ; ΛmaxK. 111

5.5 Probability of decoding for different finite fields in terms of number of
coded packets to recover the generation of N = 4 packets in Figure 4.1,
where “det” refers to the “deterministic shifting”, “rand” refers to the
“random shifting”, and “theoretical” refers to the analytical bounds. . . . 113

5.6 Comparison of the mean number of coded packets needed to decode a
portion of a VP9 (HD) video trace for different generation sizes using
different finite fields, µ = 60 i.e. 25 macro-symbols per packet. 115

5.7 CDF comparison of the number of coded packets needed to decode 16×103

packets from an FHD video trace for the finite fields sizes q = 2 and
q = 28, N = 32 and µ = 60, i.e., 25 MS per packet. 116

5.8 Mean total packets sent by the system in a two-hop topology in the
presence of errors with probabilities ϵ1 = 0.1 and ϵ2 correspondingly. . . . 116

5.9 Box plot comparison of the padding overhead percentage for different
generation sizes N . Fixed parameters: GF(28), µ = 60 bytes, i.e., 25 MSs
per packet [4]. 119

5.10 Box plot comparison of the number K of coded packets needed to decode
the N packets in a generation. Fixed parameters: GF(28), µ = 60 bytes,
i.e., 25 MSs per packet, loss-free network link. 121

xvi

5.11 Box plot comparison of the number K of coded packets for GF(2) needed
to decode the N = 8 packets in a generation. Fixed parameters: N = 8
generation size, GF(2), µ = 60 bytes, i.e., 480 MSs per packet, loss-free
network link. 122

5.12 Box plot comparison of the number of required coded packet transmissions
over a link with 20% packet loss to decode the N = 16 packets in a
generation. Fixed parameters: N = 16 generation size, µ = 60 bytes, i.e.,
25 MSs per packet for GF(28) and 480 MSs per packet for GF(2). 124

5.13 An example of the macro-symbol level encoding process after randomly
shifting the packets to produce C1, generation size N = 3, Λmax = 4. . . . 128

5.14 Markov chain for the generation in Figure 4.1. pi represents the probability
when the next packet is not innovative, and pij the probability of increasing
the rank from i to j during one coded packet transmission, with i ∈
JΛmax ; N − 1K and j ∈ JΛmax ; NK, j ⩽ i. 135

5.15 Probability of decoding using different schemes for the example in Fig-
ure 5.2 consisting of N = 4, (Λ1, Λ2, Λ3, Λ4) = (1, 5, 1, 2). 136

5.16 Number of coded packets needed in average when using various schemes
to decode 32 × 103 packets of a sequence of the CIF video trace. N is the
generation size. 137

5.17 Number of coded packets sent on average in the presence of losses with
probability ϵ, for N = 32, µ = 30, 32 × 103 packets were used from the
CIF video trace. 137

6.1 On the fly decoding of Lena’s picture originally encoded using Galois
Field (GF)(2); (a) the data partially is decoded, (b) the image starts to
appear as the decoding matrix rank increases, (c) the image is completely
decoded [7]. 142

6.2 An example of a four-cluster topology [8], where CHi, i = 1, · · · , 4 is the
cluster head. 147

6.3 Probability to receive more than (lj − 1) measurement vectors at the CHj ,
j = 1, · · · , 4 [8]. 157

6.4 A single cluster topology with N sensors including the cluster head CH1,
which is a more powerful sensor compared to the rest of the cluster sensors,
and a sink [9, 10]. 157

xvii

6.5 CDF of the reconstructed data after receiving l packets at the sink for
different m using the Orthogonal Matching Pursuit (OMP) reconstruction
algorithm, with Smeas = 103, k = 5, N = 256 and n = 512 [9, 10]. 158

6.6 Decoding probability as a function of the transmission probability ptx

with N ∈ {32, 64, 128, 256}, Smeas = 100/∆ptx [9, 10]. 159

6.7 Decoding probability over r, the number of packets received at the sink for
different intra-cluster network coding coefficients or random subselection
at the cluster head with the OMP algorithm, where Smeas = 103, k = 5,
N = 256, n = 512 and m = 64 [9, 10]. 160

6.8 Comparison of the reconstruction algorithms for Smeas = 1000/Smeas =
100(†), k = 5, N = 256, n = 512, m = 64, l = 96 and µ = 1.4 [9, 10]. . . . 161

6.9 Average RSNRS after spatial recovery over number of packets received at
the sink with inter cluster recombinations, different algorithms, Smeas =
1000/Smeas = 100(†), k = 5, N = 256, n = 512, m = 64, l = 96 and
µ = 1.4 [9, 10]. 162

6.10 Decoding probability over number of packets r received at the sink with
(non-)normalized coefficients, two recombinations, SP, Smeas = 1000,
k = 5, n = 512, m = 64, µj = 1.4 ∀j = 1, 2, · · · and RSNR = 150 dB [9,10]. 163

6.11 Distribution of network coding matrix elements of a single measurement
sequence with two recombinations fitted to a Gaussian distribution, with
and without normalization, with r = 96, k = 5, n = 512, m = 64 and
RSNR = 150dB, and the Subspace Pursuit (SP) reconstruction algorithm
used [9, 10]. 164

6.12 Received normalized data by the sink for the four-cluster topology setting
based on the original readings sparsity factor, when Nj = 128, µj = 1.2,
∀j ∈ C, n = 512, and SNR= 150dB [8]. 164

B.1 An example of single cluster scenario where one sensor transmits its
compressed readings to a sink [11]. 178

xviii

List of Tables

2.1 Computational complexity for encoding/recoding/decoding in finite field
operations in the absence of packets losses. 31

2.2 Total encoding vector overhead created for the transmission of exactly N
coded packets equal to the generation size per category. 32

2.3 Summary of the main conditions to be fulfilled to solve a compressed
sensing problem of the form y = Ax. 41

3.1 Characteristics of the benchmark video traces from the online library of
Arizona State University [12, 13] with 30 Frame Per Second (FPS) for
Common Intermediate Format (CIF) resolution video and 24 fps for the
remaining videos [4]. 54

4.1 Average extra number of coded MS needed to decode a generation of
N = 4 input packets (Λ1, Λ2, Λ3, Λ4) = (2, 5, 1, 2) [5]. 88

4.2 Payload delivery efficiency E of the progressive shortening scheme for
different generation sizes N and macro-symbol sizes µ, in a loss-free
point-to-point communication session. 94

5.1 Comparison of encoding and decoding complexity for a generation con-
sisting of N packets. The number of unknowns indicates the number of
unknown elements during RLNC decoding. The minimum number of coef-
ficients indicates the minimum number of coding coefficients required for
RLNC decoding (in absence of linear dependencies of coding coefficients
and losses) [4]. 118

6.1 Compressed sensing and network coding common characteristics. 143

xix

6.2 Comparison of computational complexities for reconstruction algorithms
in the KL1p library [9, 14]. 154

xx

List of Acronyms

5G Fifth Generation of mobile communication system

AMP Approximate Message Passing

AONC Adaptive Opportunistic Network Coding

API Application Programming Interface

ARQ Automatic Repeat reQuest

AWGN Additive White Gaussian Noise

BATS BATched Sparse code

BIHT Binary Iterative Hard Thresholding

BP Basis Pursuit

BPDN Basis Pursuit De-Noising

BSS Blind Source Separation

CAIDA Centre for Applied Internet Data Analaysis

CDF Cumulative Distributive Function

CdICA Component-dependent Independent Component Analysis

CF Chain and Fragment

CH Cluster Head

CIF Common Intermediate Format

xxi

CNC Compressive Network Coding

ComNetsEmu Communication Networks Emulator

CoSaMP Compressive Sampling Matching Pursuit

CSS Compressible Source Separation

DCS Distributed Compressed Sensing

DCS-SOMP DCS-Simultaneous Orthogonal Matching Pursuit

DCT Discrete Cosine Transformation

DSC Distributed Source Coding

ECG ElectroCardioGram

EEG Electroencephalogram

EMBP Expectation Maximization Belief Propagation

EV Encoding Vector

F2OMP Finite Field Orthogonal Matching Pursuit

FastICA Fast Independent Component Analysis

FEC Forward Error Correction

FFT Fast Fourier Transform

FHD Full High Definition

FIT Fast Iterative Thresholding

FlexONC Flexible and Opportunistic Network Coding

FNDS Factory Noise Data Set

FPS Frame Per Second

FS Fragmentation Size

xxii

GF Galois Field

GIDNC Generalized Instantly Decodable Network Coding

GoP Group of Pictures

GPSR Gradient Projection for Sparse Reconstruction

HEVC High Efficiency Video Coding

ICA Independent Component Analysis

IDNC Instantly Decodable Network Coding

IHT Iterative Hard Thresholding

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

IST Iterative Soft Thresholding

JoComCo Joint Compress and Code

JPEG Joint Photographic Experts Group

JSM Joint Sparsity Model

LARS Least Angle Regression

LASSO Least Absolute Shrinkage Operator

LDPC Low Density Parity Check

LT Luby Transform

MEC Mobile Edge Cloud

MIMO Multiple Input Multiple Output

MMV Multiple Measurement Vector

xxiii

MOD Method of Optimal Directions

MRI Magnetic Resonance Imaging

MS Macro Symbol

MSE Mean Squared Error

MTU Maximum Transmission Unit

NS3 Network Simulator 3

NSP Null Space Property

OMP Orthogonal Matching Pursuit

OSGA One-Step Greedy Algorithm

OSI Open Systems Interconnection

P2P Peer-to-Peer

PRNC Pseudo-Random Network Coding

PRNG Pseudo-Random Number Generator

QoE Quality of Experience

RaSOR Random Shift and XOR

RE Restricted Eigenvalue

ReC Revolving Code

RIP Restricted Isometry Property

RLNC Random Linear Network Coding

RoHCv2 Robust Header Compression version 2

ROMP Regularized Orthogonal Matching Pursuit

RSNR Reconstruction Signal-to-Noise Ratio

xxiv

SDN Software-Defined Networking

S-IDNC Strict Instantly Decodable Network Coding

SL0 Smoothed l0

SNC Sparse Network Coding

SNR Signal-to-Noise Ratio

SOMP Smoothed Orthogonal Matching Pursuit

SP Subspace Pursuit

SSAC Small Set of Allowed Coefficients

SVC Scalable Video Coding

SVD Singular Value Decomposition

TCP Transport Control Protocol

TP Trivial Pursuit

TSNC Tunable Sparse Network Coding

UDP User Datagram Protocol

URLLC Ultra-Reliable Low-Latency Communication

VBR Variable Bit Rate

VNI Visual Networking Index

WBAN Wireless Body Area Network

WSN Wireless Sensor Network

xxv

xxvi

List of Symbols

Network Coding

αηn Coding coefficient for source packet n when generating coded packet
η

C Number of macro-symbols that could be XORed together in the
RaSOR scheme

cηλ Coded MS in coded packet η in MS position λ

χi Number of possibly lost coded packets (among the first N trans-
missions, i.e. non-redundant packets)

Ci Coded packet of index i

cij Coded macro-symbol number j of coded packet Ci

∆λ Source MS degree of column λ, i.e., # of MSs in column λ position
= N −∑λ−1

ℓ=1 Πℓ

∆det
max Maximum source macro-symbol degree for the deterministic shifting

scheme
∆rand

max Maximum source macro-symbol degree for the random shifting
scheme

∆rand/det
max Maximum source macro-symbol degree for the random or deter-

ministic shifting scheme
∆opt Maximum source macro-symbol degree for the RaSOR scheme
E payload delivery efficiency
ϵ packet loss probability
FS Fragmentation size, FS ⩽ Lmax

K Number of coded packets sent

xxvii

λ MS position, i.e., column position in a given packet, λ =
1, 2, . . . , Λmax

Λn Size of source packet i [in MSs], Λi = ⌈Li/µ⌉
Λmax Size of largest source packet in a generation [in MSs]
Li Size of source packet i in number of symbols in GF (2q)
ℓ Number of hops in a line network
Lmax Maximum size of source packetin number of symbols in GF (2q) of

a generation
µ Macro-symbol size in number of symbols in GF(q)
N Generation size in number of source packets
NCF Generation size in the Chain and Fragmentation scheme
Nmax Generation size [in number of source packets] with packet index

n = 1, 2, · · · , j, where j corresponds to the maximum number of
packets in an IP flow from a CAIDA trace, Nmax ⩾ N

NSB Generation size in the Simple Bundling scheme
OG Ratio of padding overhead of a generation G

Ω Real network coding matrix in Rl×S

ω Window size
OMS Ratio of padding overhead of a generation G in MSs
OMS,N Ratio of padding overhead of a generation G created due to the

macro-symbol design
Φη Size of coded pkt. η, η = 1, 2, . . . , K, in MSs
ϕi Random offset to the right of original packet Pi, ϕi = 0, · · · , Λmax

Pi Source packet of index i

Πλ Source packet size distribution, Πλ = # of source packets with size
λ MSs; ∑1≤λ≤Λmax Πλ = N

Ψ number of full-length packets to transmit in progressive shortening
scheme

q Specification of finite field size
R Code rate for RLNC, N

K

sij Source macro-symbol number j of source packet Pi

snλ Source MS in column pos. λ, λ = 1, 2, . . . , Λn in source packet n

υRLNC Overhead due to coding coefficient
χi Number of lost coded packets

xxviii

Compressed Sensing

A Measurement matrix in Rm×n, incorporates Ψ and Φ
ai i-th raw of A
D Over-complete dictionary in Rm×n (change dim)
k Sparsity
n Length of signal x
Φ Measurement matrix in Rn×m

Prx Probability that ensures the delivery of at least lj −1 measurements
to CHj

Ψ Transformation matrix in Rn×n

ΨT Projection matrix in the temporal sparse basis, in Rn×n

Q Separation quality for CSS
S Number of sensors in a cluster
θ Sparse coefficient vector in Rn

Θ Sparse representation of X in RS×n

ε Link loss rate
x Original data vector in Rn

X Original readings from S sensors, X = [x1 · · · xS] in RS×n

x̂ Estimated reconstructed signal in Rn

xi Original data vector in Rn

xji Original data vector of sensor node i in cluster j

y Measurement data vector in Rm

Y Temporally compressed readings, Y = [Y1 · · · YS] in RS×m

yi Measurement data vector in Rm

yi Temporally compressed data vector of sensor node i in cluster j

Z Data from all cluster heads after spatial compression
zc Common component
zi Innovative component
Zj Data from cluster head j after spatial compression

xxix

xxx

Chapter 1 |
Introduction

This chapter highlights the current technological trends and requirements where our
contributions throughout this dissertation are a potential fit. We discuss our motivations
based on the latest advances, focusing on the current trend in the data deluge problem,
which is partially due to data provided from sensors deployed in all of the IoT devices.
Our vision in curbing such an issue relies on the adoption of key 5G innovation techniques,
that promote either the data size reduction, such as compressed sensing techniques, or
the overhead carried in the network and later stored in devices, using the network coding
techniques. Furthermore, we highlight our main contributions of this dissertation and
present a collection of our published research papers that support our theses. We also
include a roadmap to guide readers to easily navigate between independent topics in the
following chapters.

1.1 Context and Motivations

We highlight the enormous impact of Big Data on current 5G communication systems
and relate its inter-connection with IoT, namely the sensors. We discuss the continuum
of data deluge and the newly established inter-connections between sensors, IoT, and
Big Data in the new era of 5G. Furthermore, we introduce the key innovation techniques
adopted in this dissertation to reduce the data volume and the overhead needed for the
transmission.

1.1.1 Data Deluge

The IoT is considered to be the fastest emerging technological trend since it provides
a limitless supply of information that has never been witnessed before [15]. Sensors

1

are an integral component of IoT that are embedded everywhere. They are small and
power-constrained devices capable of detecting and responding to any environmental
change. The commonly deployed IoT sensors record temperature, humidity, infrared,
gyroscope, accelerometer, proximity, and optical readings, to name a few. They are
crucial for enabling intelligent road traffic monitoring, water pipe leakage monitoring,
congestion avoidance, smart cities establishment [16], etc. This universal deployment of
sensors results in the generation of a massive amount of sensory data [17]. Additionally,
the current number of IoT devices is derisory compared to what is expected in the next
decade. The democratization of connected devices with the advent of 5G are the core
drivers of this explosion. This pervasive connectivity will lead to having an estimated
107 devices per km2 in dense areas and over 125 billion devices by 2030 [18,19].

As data has become a fundamental factor of production, having over 50 billion
sensors deployed throughout all IoT devices, which instantly measure various physical
phenomena and other types of signals, allows for continuous monitoring and human-less
decision making in a wide range of scenarios in conjunction with Industry 4.0. In many
cases, this data is collected and later analyzed to create certain statistics about the
overall performance and surrounding conditions, such as the factory floor temperature and
humidity to detect anomalies or defect devices. Its requirements have further stress-tested
our ability to do fast data ingestion and quickly discover insights with minimal delay for
real-time scenarios such as monitoring. IoT sensors have the critical role of improving the
industrial sector efficiency by decreasing the overall costs, as well as increasing workers’
safety. For instance, it has become crucial to monitor industrial IoT devices on a factory
floor in order to remotely detect any anomalies or deficiencies in the responsible device.
The deployed sensors are therefore continuously transmitting the acoustic data to remote
servers, which in turn, are capable of detecting any occurring problem at an early stage
problem detection, thus preventing the production breakdown. Nevertheless, with the
staggering number of sensors that generate massive data, it has become a challenging
task to quickly and accurately locate malfunctioning devices. Additionally, the high
latency during remote data separation could yield to a poor Quality of Experience (QoE).
These IoT devices do not just generate environmentally sensed data, but also a huge
portion is just video provided from high-end devices such as smartphones, 360-degree
video, and variable video quality from drones and surveillance cameras broadly deployed
to assist 5G communication systems. By 2021, the volume of mobile video delivery is
expected to reach 78% of the mobile data traffic [20].

One of the major side effects of IoT deployments is that they generate a massive

2

amount of data that hugely contributed to the big bang of big data. And despite the fact
that they evolved independently, IoT and big data have become inevitably inter-connected
or interrelated over time. Generally, the collected sensory data is labeled as “data rich,
information poor”, which could be translated into correlations or redundancy that could
be intelligently dealt with, instead of increasing the demands on storage systems. As a
matter of fact, data can be spatially, temporally, or dynamically correlated (combined
types of correlations), as well as structured or unstructured. Information extracted from
data could differ in complexity, provenance, reliability, representation, etc. It can also
differ in the rate or pace at which it is generated and accessed.

On the other hand, in order to avoid confusion with the term big data from other
fields perspectives, we remind the reader that the data classified as big data is checked
using the concept of five V, using health data;

i) Volume: there is a massive volume of data created by hospitals and clinics that are
estimated at around 2314 exabytes annually.

ii) Velocity: the data is usually generated at a high-speed

iii) Variety: there exist various types of data; structured, e.g., Excel files, semi-
structured, e.g., log records, and unstructured, e.g., X-Ray images.

iv) Veracity: the data must be accurate and trustworthy.

v) Value: allows for faster disease detection and more adequate treatments at reduced
costs.

This definition matches perfectly the data that the sensors continuously generate. The
increasing challenges in managing Big Data are inciting for revolutionary and fundamental
techniques, as well as for technologies that are expected to handle the complexity and
the unprecedented volume of this data. Therefore, from our perspective, it is important
to focus on the root problem, namely sensors lead to big data. This dissertation does not
propose solutions and techniques to analyze and manage large amounts of data. Instead,
it presents means to reduce the data volume from the perspective of the communications
field. We strongly believe that common wisdom and standard analysis are no longer
sufficient to face this unprecedented increase in the staggering volume of data, and more
efforts should be invested at the early stages of the data cycle to curb its impact on
communications and storage systems.

3

1.1.2 Key Innovation Techniques

Latency

Through‐
put

Security

Massive

Resilience

Hetero‐
geneity

Network
Coding

Network
Slicing

Multi‐
Path

Mobile
Edge
Cloud

Air
Interface

Machine
Learning

SDN NFV

SDR

Energy

ICN

concepts

technologies

innovations

requirements

Mesh

5GUC UC

UC

Block
Chaining

Com‐
pressed
Sensing

UC

UC

UC

UC

SFC

CDN

Figure 1.1: The 5G atom [1]

Globally, IP traffic will reach an annual run rate of 2.3 Zettabytes in 2020, up
from 870.3 Exabytes in 2015 [20,21]. This has urged the need for proposing innovative
approaches to deal with this amount of data, which consists mainly of video and envi-
ronmentally sensed data, in all stages of the data cycle. The METIS project proposed
to use network coding in the 5G standard [22]. Figure 1.1 illustrates the 5G atom that

4

describes the vision at the Deutsche Telekom Chair of Communication Networks, where
most of the research related to this dissertation was conducted, for the main attributes
and contributors to the 5G standard, mainly the concepts, technologies, and innovations
proposed for the 5G use cases and their stringent requirements. The fourth tier of the
5G atom, innovations, relies mainly on network coding and compressed sensing, which
will be the main focus of this dissertation since the inevitable data increase has led to
the convergence of these innovative techniques. Network coding has the outstanding
ability to significantly improve the throughput, robustness, transmission efficiency, delay
reduction, etc. Compressed sensing proved its ability to reduce the size of any type of
data, such as sensor readings, audio, medical imaging, etc., without altering it when it is
later reconstructed. It is also known that the reconstruction algorithms for compressed
sensing are stable, flexible, as well as scalable, which widens the potential applications
for such a technique.

1.1.2.1 Network Coding

Network coding [23] is a coding technique that breaks with the end-to-end view on data
dissemination of the old-fashioned store-and-forward networks. Network coding promotes
a novel networking paradigm where the intermediate nodes are no longer passive entities
that store and forward data packets. Its exclusive in-network computing ability allows for
increased overall network performance. More interestingly, it is considered as an enabler
of flexible and disruptive future network designs, known to be rather unstructured, very
dynamic, and highly heterogeneous, as is the case with IoT systems. Network coding is
widely used in 5 G-related applications and critical systems, including Ultra-Reliable
Low-Latency Communication (URLLC), industrial robotics, connected vehicles, etc. Its
remarkable performance resides in the fact that it is the unique rateless code that allows
for recoding at intermediate nodes, unlike legacy coding techniques that would require
decoding at relay nodes before encoding again.

The most adopted form of network coding is Random Linear Network Coding
(RLNC) [24], [25], when provided a set of coding coefficients drawn at random from a
finite field, creates a coded packet using the combination of original packets mapped with
these random coefficients. At least as many coded packets as the original packets, along
with the coefficients employed, are needed by the receiver to recover the original packets,
as it is done by analogy to linear systems of equations. Because it is traffic agnostic,
RLNC represents one of the best solutions for wireless mesh networks with varying loss
rates.

5

1.1.2.2 Compressed Sensing

Compressed sensing [26, 27] is the field that enables the solving of under-determined
linear systems of equations, provided that the system is very sparse, using optimization
algorithms such as convex relaxations thanks to the established equivalence between
the ℓ0 and the ℓ1 norm [28]. As a result, a signal could be compressed far beyond
the Shannon-Nyquist theory. Despite the challenging mathematical background, few
properties must be fulfilled in order to guarantee the exact or approximate reconstruction
of the compressed data. For example, a non-sparse signal could undergo a sparsification
process using well-known transforms such as the Discrete Cosine Transformation (DCT)
or simply by designing an over-complete dictionary [29].

In a nutshell, any set of sufficiently large data could be compressed and reconstructed
efficiently exactly or approximately. This has widened the applications for compressed
sensing and made it one of the most promising innovation technologies for IoT devices
known to generate massive amounts of data that cannot be handled easily with the
current data management systems. Therefore compressed sensing serves as an effective
data communications plugin that reduces the delay of data transmission and the load on
the storage systems.

1.2 Key Contributions
This dissertation’s contributions consist mainly of proposing new RLNC approaches that
minimize the padding overhead when transmitting variable-sized packets. Three major
novel techniques were designed, each of which could be used under specific scenarios and
conditions. First, we proposed the first RLNC based scheme that generates unequal-sized
coded packets regardless of their distributions, when coding on a finer grain using the
concept of Macro Symbol (MS) [5] that we introduce in this thesis. Such a scheme called
“Progressive Shortening” [5] creates coded packets with an optimized percentage of padding
overhead. Moreover, we proposed a linear complexity encoding and decoding scheme,
called “Random Shift and XOR (RaSOR)” [30], which works using only binary XORing
operations on macro-symbols, to create less coded packets compared to traditional RLNC,
very low padding overhead, very low encoding vector overhead, and, obviously, very
low computational complexities for encoding and decoding. Finally, we advocated for a
more flexible scheme, called the “Deterministic Shifting” [4] scheme that fully exploits
the advantages of RLNC while producing less coded packets and less padding overhead,
thanks to the accurate design of the macro-symbols and the shifts that the uncoded

6

packets undergo during the precoding step.
On the other hand, we proposed the first compressed sensing and network coding

scheme “Joint Compress and Code (JoComCo)” [8] for Wireless Sensor Network (WSN)
that judiciously combines both techniques while preserving their major features, such
as the robustness, resilience, and the ability to recode for network coding, as well as
the correlations exploitation to recode the data size for compressed sensing. We also
investigate the right parameters to maximize the gains from this joint design. For
instance, our numerical results show that real network coding normalized coefficients
drawn from the Gaussian distribution do not alter the compression gains and allow
for higher reconstruction Signal-to-Noise Ratio (SNR). Furthermore, in Appendix B,
we contributed with an implementation of compressed sensing for simple topologies to
give the students a flavor about the feasibility of this technique in the communication
field [11].

1.3 Organization of the Thesis

All the topics covered in this dissertation were originally published at peer-reviewed
international conferences and journals. This means that the results discussed, including
equations, figures, etc., were extracted from our publications, unmodified or slightly
modified so that they match the unified writing style we designed for this dissertation.
This clearly affects in part the text, because rewriting everything knowing that the
concepts, ideas, results, etc., are the same, is a very challenging task. We also deduce
from our experience in writing this manuscript, that avoiding self-plagiarism could lead
to diverging from the straightforward meaning of the specific topic discussed. We tried
to make it clear at the right positions of the extracted text where it was originally
published. Furthermore, we note that some of the results present in this manuscript were
not previously published, but we are soon submitting them for review in some journals
and conferences.

We briefly introduce the different topics covered in the dissertation, chapter by chapter,
in order to facilitate the navigation through it. As the wide lines of the dissertation are
mainly related to the techniques of network coding and compressed sensing, the reader
could skip some chapters without affecting the reading chronological order.

Chapter 2 provides a survey-style overview of the theories of network coding and
compressed sensing. The first part deals with RLNC more specifically. It reviews
the major contributions related to RLNC, including the variant approaches of RLNC,

7

as well as the main their main characterizations in terms of overhead, computational
complexities, and decoding delays, i.e. probability of decoding, based on different
scenarios and topologies. The second part explains the crucial properties to have a
compressed sensing problem as well as accurately solving it. It also presents the results
of our combined design of compressed sensing and blind source separation for industrial
applications. Chapter 3 unveils the randomness in the distributions of packet sizes of
various real-life traces, and how most of the coding techniques, including RLNC, deals
naively with it using the zero-padding approach when coding packets with variable
sizes. It characterizes its magnitude and impact on the coded packets to transmit, using
different traces from Internet Protocol (IP) core networks (TCP and User Datagram
Protocol (UDP)), and the standard video codecs, such as VP9 and H.264. Additionally,
it studies the existing approaches to overcome the issue of the zero-padding and specifies
the percentage of the remaining padding overhead, as well as the exact mathematical
expressions for the computational complexities. Chapter 4 explains the concept of the
macro-symbols, which are subsets of the packet in the operating finite field. Additionally,
it presents the first macro-symbol-based schemes, mainly the Progressive shortening
approach, and it compares its performance to the standard RLNC. Chapter 5 introduces
different macro-symbol approaches, which rely on right shifting the macro-symbols before
performing the coding operations. It provides a full analysis of their decoding delay and
compares the performance of all the state-of-the-art approaches and the ones advocated
in this dissertation using video traces. Chapter 6 describes the efficient design of an in-
network computing scheme based on the combination of network coding and compressed
sensing for WSN. Finally, Chapter 7 gives a summary of the main contributions and draws
the conclusions of this thesis. Furthermore, it suggests some research directions that could
be carried out in the future. It is worth mentioning that Chapter 1- 2 serve as a general
introduction and overview of the topics covered in the dissertation. Chapters 3- 5 are
inter-connected, and they cover the problem of zero-padding when transmitting variable
size packets using the technique of RLNC. Chapter 6 however, stands on its own and
could be studied separately from the aforementioned chapters. Figure 1.2 summarizes
the key contributions of the dissertation.

1.4 Original Publications

1. [3] Maroua Taghouti, Daniel E. Lucani, Morten V. Pedersen, and Ammar Boual-
legue. “On the impact of zero-padding in network coding efficiency with Internet

8

Figure 1.2: General overview of the key contributions.

traffic and video traces”. in 22nd European Wireless Conference, (EW), 2016.

2. [5] Maroua Taghouti, Daniel E. Lucani, Morten V. Pedersen, and Ammar Boual-
legue. “Random Linear Network Coding for streams with unequally sized packets:
Overhead reduction without zero-padded schemes”. in 23rd IEEE International
Conference in Telecommunications, (ICT), 2016.

3. [30] Maroua Taghouti, Daniel E. Lucani, and Frank H. P. Fitzek. “Random Shift
and XOR of unequal-sized packets (RaSOR) to shave off transmission overhead”. in
51st IEEE Annual Conference on Information Sciences and Systems, (CISS), 2017.

4. [31] Maroua Taghouti, Daniel E. Lucani, Frank H. P. Fitzek, and Ammar Bouallegue.
“Random Linear Network Coding schemes for reduced zero-padding overhead:
Complexity and overhead analysis”. in 23rd European Wireless Conference, (EW),
2017.

5. [6] Maroua Taghouti, Mate Tömösközi, Malte Howeler, Daniel E Lucani, Frank

9

H. P. Fitzek, Ammar Bouallegue, Peter Ekler “Implementation of network coding
with recoding for unequal-sized and header compressed traffic”. in IEEE Wireless
Communications and networking conference (WCNC), 2019

6. [4] Maroua Taghouti, Daniel E Lucani, Juan A. Cabrera, Martin Reisslein, Morten
Videbæk Pedersen, and Frank H. P. Fitzek, “Reduction of padding overhead for
RLNC media distribution with variable size packets”. in IEEE Transactions on
Broadcasting, 2019

7. [2] Maroua Taghouti, “Compressed Sensing”, book chapter, Fitzek, Frank H P;
Granelli, Fabrizio ; Seeling, Patrick (Ed.): 1 , Chapter 10, Elsevier, 1, 2020

8. [11] Maroua Taghouti, and Malte Howeler “In-network Compressed Sensing”, book
chapter, Fitzek, Frank H P; Granelli, Fabrizio ; Seeling, Patrick (Ed.): 1 , Chapter
22, Elsevier, 1, 2020

9. [10] Maroua Taghouti, Tobias Waurick, Mate Tömösközi, Anil K. Chorppath, and
Frank H. P. Fitzek, “On the Joint Design of Compressed Sensing and Network
Coding for Wireless Communications”. in Transactions on Emerging Telecommuni-
cations Technologies, 2019

10. [8] Maroua Taghouti, Tobias Waurick, Anil K. Chorppath, and Frank H. P. Fitzek,
“Practical Compressed Sensing and Network Coding for Intelligent Distributed
Communication Networks”. In 14th International Wireless Communications and
Mobile Computing Conference (IWCMC), 2018

11. [9] Maroua Taghouti, Tobias Waurick, Anil K. Chorppath, and Frank H. P. Fitzek,
“On the Design of a Joint Compressed Sensing and Network Coding Framework”.
In 24th European Wireless Conference (EW), 2018

12. [32] Ludwig, S., M. Karrenbauer, A. Fellan, H. D. Schotten, H. Buhr, S. Seetaraman,
N. Niebert, A. Bernardy, V. Seelmann, V. Stich, A. Hoell, C. Stimming, H. Wu,
S. Wunderlich, M. Taghouti, F. Fitzek, C. Pallasch, N. Hoffmann, W. Herfs, E.
Eberhardt, and T. Schild- knecht “A 5G Architecture for the Factory of the Future”

13. [33] Huanzhuo Wu, Ievgani Tsokalo, Maroua Taghouti, Hani Salah, and Frank H.
P. Fitzek, “Compressible Source Separation in Industrial IoT Broadband Commu-
nication”. in 24th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2019

10

14. [34] Karrenbauer, M., S. Ludwig, H. Buhr, H. Klessig, A. Bernardy, H. Wu, C.
Pallasch, A. Fellan, N. Hoffmann, V. Seelmann, M. Taghouti, et al. (2019) “Future
industrial networking: from use cases to wireless technologies to a flexible system
architecture,” at-Automatisierungstechnik, 67(7), pp. 526–544

15. [35] M. Karrenbauer et al., “Towards a Flexible Architecture for Industrial Net-
working," 23th VDE/ITG Conference on Mobile Communication (23. VDE/ITG
Fachtagung Mobilkommunikation), Osnabrück, 2018.

16. [36] H. Klessing, S. Ludwig, M. Karrenbauer, H. Schotten, H. Wu, M. Taghouti,
F. H. P. Fitzek, and P. T. Lozano, “A Factory of the Future Reference Network
Architecture”, submitted to IEEE Communications Magazine.

17. [37] Maroua Taghouti, “PhD Forum: Padding Overhead Reduction in Random
Linear Coded Variable Size Media Streams”, 22nd IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2021

1.5 Notations and General Terms
In order to clarify the mathematical notations used, we note in the remainder of the
dissertation that bold lower case symbols represent one-dimensional vectors and bold
upper case symbols represent two-dimensional vectors, i.e., matrices. Additionally, Ja ; bK
denotes intervals of integers, which is equivalent to {a, a + 1, · · · , b − 1, b}. The ceiling
function which gives the smallest integer larger or equal to a is defined by ⌈a⌉. We refer
to the rank of a matrix as rk, whereas rk{a1, · · · , an} represents the rank of vectors
a1, · · · , an. Finally, we remark that GF(a) and Fa are used interchangeably.

11

12

Chapter 2 |
Disruptive Innovation Techniques

Inefficient traditional signal acquisition techniques and the mathematically proved possi-
bility in compressing far beyond the Shanon-Nyquist theory gave rise to the disruptive
compressed sensing field. On the other hand, network coding is the only Forward Error
Correction (FEC) code that allows for recoding at intermediate nodes, which is extremely
important for wireless mesh networks. Both techniques are considered pillar enabler
technologies for 5G. This chapter provides an introduction of these key techniques that
this dissertation relies on, and provides a complete survey style overview that allows
the reader to easily follow the remainder of the dissertation. In particular, it proposes
a comprehensive taxonomy of the main concepts and the branches mainly related to
the RLNC technique. This study is intended to bring insights to engineers as well
as researchers, regarding the performances in terms of decoding delays, i.e. decoding
probabilities, computational complexities, and overheads of these RLNC based techniques.
Furthermore, it proposes a lightweight overview of compressed sensing as well as the
crucial components and properties to be fulfilled to allow any set of data to be efficiently
reconstructed [1, 2]. Finally, it proposes our latest results in combining blind source
separation and compressed sensing in the context of Industry 4.0 [32,35,36].

2.1 Network Coding Theory

Network coding is a disruptive paradigm that was first introduced at the turn of the
millennium by Ahlswede et al. [38]. The breakthrough of network coding was that
intermediate nodes were able to recode the received data without the need to decode
first, unlike all other coding techniques, such as Reed Solomon and Raptor codes.

13

2.1.1 Network Coding Branches

Looking at the big picture of network coding, we can classify its major directions as
illustrated in Figure 2.1, into a Linear and non-linear Network Coding discipline. This
represents our vision in classifying the different network branches, thus it is not unique [39].
We note that non-linear and deterministic network coding are the branches with the
least research interest given, because of their limited improvements compared to the
other branches. Douik et al. provided a comparison between RLNC, opportunistic
network coding, and instantly decodable network coding, based on various criteria such
as throughput, delay, overhead, buffer size [40].

Network Coding

Linear Network Coding Non-Linear Network Coding

Opportunistic Network Coding Deterministic Network Coding Random Linear Network Coding

Instantly Decodable Network Coding

Figure 2.1: The most important branches of Network Coding.

2.1.1.1 Linear Network Coding

It encloses most of the common types of network coding in the literature. It achieves
the min-cut max-flow [41,42]. Two key approaches are found under the linear network
coding umbrella, namely inter-flow and intra-flow network coding, also called inter-session
and intra-session network coding. The former is performed on packets from different
network flows, which complicates the problem in general. That is why opportunistic
network coding (discussed below) guarantees some of the common network coding benefits.
On the other hand, intra-flow network coding is performed on packets from a unique
network flow to increase the resilience to packet losses. Additionally, its recoding ability
helps in compensating for lost packets, thus increasing the throughput. There are also
research works and implementations that combine inter-flow network coding to efficiently
exploit the network topology, and intra-flow network coding to increase the robustness
against packet loss, such as the CORE protocol [43, 44]. This diversity of the design
and applications of linear network coding has led to the design of the three following
sub-branches.

14

2.1.1.1.1 Opportunistic Network Coding It is a simple technique that allows the
intermediate nodes to decide whether to transmit an uncoded packet, if no additional
packets are available, or simply wait for the next opportunity to create a coded packet and
transmit it. Proposed by Chen et al., it aims at overcoming the packet loss rates and the
large delays incurred due to the encoding process of network coding [45]. Opportunistic
network coding approaches join the field of inter-flow network coding and opportunistic
routing, such as Flexible and Opportunistic Network Coding (FlexONC) and Adaptive
Opportunistic Network Coding (AONC). The former [46] creates coding opportunities
by considering the packets of the neighboring nodes, while the latter enhances the video
transmission quality of wireless multimedia sensor networks [47]. The performance of
opportunistic network coding usually depends on the network topology, but overall it
has a moderate decoding delay, sub-optimal throughput compared to random network
coding, and allows progressive coded packets decoding [40].

2.1.1.1.2 Instantly Decodable Network Coding It is a subclass of the Oppor-
tunistic Network Coding that was first introduced by Traskov et al. [48]. The encoding is
performed using only XOR operations. Additionally, it is characterized by the fact that
every received coded packet is immediately employed to decode an original packet without
being kept for future decoding opportunities, and the non-instantly decodable ones are
simply discarded. This makes the decoding process straightforward and much simpler.
Since it performs XOR operations only, Instantly Decodable Network Coding (IDNC)
has a low overhead and computational complexity, which results in low decoding delays.
However, it has a sub-optimal throughput and its performance is mostly dependent on
the feedback, compared to standard RLNC [40]. Overall, it has two major branches,
namely Strict Instantly Decodable Network Coding (S-IDNC) [49], where the sender is
constrained to either send instantly decodable (systematic) or non-innovative packets,
and Generalized Instantly Decodable Network Coding (G-IDNC) [50] that relocates this
constrained to the receiver. This logically makes the valid coded packets in S-IDNC valid
in GIDNC as well, but not necessarily the other way around [40]. This type of network
coding is better applied on critical real-time applications such as video streaming and
online video games, where the outdated packets are not needed [51,52].

2.1.1.1.3 Deterministic Network Coding It uses predefined and unchanged coding
coefficients that fulfill the requirements for efficient performance of a certain strategy.
Deterministic network coding is employed in static topologies such as wired transmissions,

15

where the channel conditions do not usually change, and can also bring high network
coding gains when the network sizes increase.

2.1.1.1.4 Random Linear Network Coding It provides a practical and distributed
approach to fully exploit the potential benefits of network coding [25]. In a nutshell, it
creates coded packets by randomly combining the packets using randomly and uniformly
generated coding coefficients from a finite field. The decoder solves then the resulting
linear system of equations and retrieves the original packets [53]. Unlike traditional FEC
codes, its ability for recoding, without the need of first decoding, allows it to increase the
throughput and the robustness against packet losses. Per contra, it is better suited for
scenarios that tolerate relatively large delays, as progressive decoding cannot be supported
with the conventional approach. Some RLNC variants were designed to overcome the
limitations of the standard RLNC. These are later discussed in this chapter. We note
that in this dissertation we are only interested in the RLNC based techniques.

2.1.1.1.5 Non-Linear Network Coding Non-linear network coding tackles the
problems related to arbitrary networks, where linear codes cannot achieve the capacity
or that do not have a scalar linear solution over any finite field [54], such as Cockroach
network, Caterpillar network, and Beetle network [55,56]. As far as we know, there is
very little research interest given to this type of network coding.

2.1.2 Random Linear Network Coding

Chou et al. introduced a practical solution for network coding that obviates the need to
learn about the encoding and decoding operations, as well as the topology [57], preparing
the playground for its efficient deployment. In order to reduce its large costs, they
proposed to perform generation based RLNC, which operates on subsets of the original
packets, called generations, also referred to as chunks [58], classes [59], batches [60], etc.

header data coding
coef. K

coding
coef. 1

h bits x bits g bits

Figure 2.2: Structure of a coded data packet.

16

According to their design, the resulting coded packets should have a part reserved
to the coding coefficients as depicted in Figure 2.2, generally referred to as the coding
vector. It reveals all the information needed to learn about the operations performed
at the packets. This allows the decoder to recover the original packets by inverting the
coding operations. We note that all the operations involved in the process of RLNC
encoding/recoding/decoding are performed on finite fields only. In the following, we
consider a point-to-point scenario, for simplicity and without loss of generality to a
multicast topology.

2.1.2.1 Encoding

We consider transmitting a generation consisting of N input packets P1, · · · , PN to a
destination node, without loss of generality to multiple generations transmission, as they
are independent, or simply non-overlapping. We suppose that the link is perfect and no
erasures or losses could occur. Formally,

Cη =
N∑

i=1
αηiPi, (2.1)

where η ∈ J1 ; KK represent the index of the created coded packet. The encoding process
could be also expressed in terms of matrices as:



C1
...

Cη

...
CK


=



α11 · · · α1N

... ...
αη1

. . . αηN

... ...
αK1 · · · αKN


︸ ︷︷ ︸

M


P1
...

PN

 , (2.2)

where the coding matrix (also called decoding matrix) M contains all the coefficients
mapped to the original packets, where the number of columns represent the number of
original packets Pi and the rows refer to the number of coded packets generated. Since
RLNC is a rateless code then K does not have an upper bound, and successful decoding
depends only on obtaining exactly N linearly independent (also called innovative) coded
packets among the K created ones. Moreover, M is a dense matrix, because the
coefficients are independently and uniformly generated at random from a finite field.

It is a versatile code that does not require any state tracking, and where the code is

17

embedded within the data itself. The coding coefficients used to create a coded packet
Cη are stored in the encoding vector so that they are later used by the decoder to retrieve
the original packets. Figure 2.2 illustrates where the coding coefficients vector is padded
to a coded packet. This incurs the creation of coding vector overhead. It usually depends
on the finite field choice as well as the generation size. Let υRLNC be the coding vector
overhead that we express as:

υRLNC = log2(q) · N (bits) (2.3)

, where q is the finite field size used. As for the network coding implementation, there
exists the Kodo library, which is a friendly network coding framework that contains the
fastest finite fields library [61]. This makes the RLNC implementation faster and more
optimized.

2.1.2.2 Recoding

It is typically performed by the intermediate nodes (relays), and it consists of the process
where the coded packets are re-encoded (recoded) without the need to decode them first.
This operation involves both the coded packets (payload), as well as their corresponding
encoding vectors. Similar to the encoding process, the intermediate node draws random
coefficients from the previously used finite field and combines the coded packets and
their coding coefficients too. This operation guarantees to preserve the packet and the
coding vector sizes. This is the most important reason why network coding is usually
performed using finite fields.

2.1.2.3 Decoding

Since RLNC encoding creates a generation of coded packets as a linear system of
equations, decoding is nothing more than solving these equations using the traditional
algorithms, mainly using Gaussian elimination. We recall that it requires two steps,
namely triangulation step and backward substitution step. Specifically, it consists of
converting the decoding matrix that contains the encoding coefficients using elementary
row operations, then column reordering in order to obtain the shape of a triangular
matrix. The back substitution step consists of converting this triangular matrix into
the identity matrix. We note that decoding is mainly commanded by multiplication
operations performed during the Gaussian elimination, which is a leading factor of the
decoding computational complexity. In general, the decoding complexity of conventional

18

RLNC is cubic, and we note it by O(N3) in the finite field used. Nonetheless, other
approaches that inherit most of the RLNC properties have lower decoding computational
complexities, especially those which have sparse coding vectors, as they result in sparse
decoding matrices, with lower computational costs to invert. Moreover, on-the-fly
Gaussian elimination (OFGE) was proposed to enable the decoding process using the
first arriving coded packets, instead of waiting for the entire generation [62]. This allows
reducing the computational complexity of decoding.

2.1.3 RLNC Parameters

The main four contributors that hinder the great performance promised by RLNC are
namely,

i) coding vector overhead, which is the overhead to signal the coding coefficients,

ii) linear dependency overhead, which refers to the excess packets needed due to linear
dependency among the coded packets,

iii) computational complexity for encoding, recoding, and especially decoding,

iv) zero-padding overhead, which is added to original packets to enable the algebraic
coding operations.

There exist in the literature different names for the aforementioned, such as the delay,
which could be considered as the number of extra packets required for decoding, due
to losses or the fact that the decoder cannot identify an innovative packet [63]. From
a theoretical point of view, we consider the delay to be determined by the probability
of decoding the entire transmitted generation. It is also worth mentioning that the
problem of computational complexity becomes very daunting when the generation size
increases, as the Gaussian elimination becomes impractical. Both the field size and the
generation size choices have a heavy impact on the performance and the complexity for
encoding and decoding. Consequently, a well-designed code could balance the limitations
based on the requirements of each application. As for iv), it depends on the packet
sizes of a generation and is the subject of focused research and proposed solutions in
Chapters 3 - 5. Therefore, we omit to discuss it in this chapter, and rather focus on the
remaining parameters and their aforementioned effects.

19

2.1.3.1 Field Size Choice

RLNC is designed to perform over finite fields of the form 2p, where any symbol from such
type of fields consists of p concatenated binary bits. Designing an efficient implementation
of finite fields remains an active topic. Nevertheless, the network coding library Kodo is
considered as the fastest available library that not only proposes a neat implementation
of RLNC and some of its variants but also have a fast implementation of the finite fields
Fq, where q = {1, 4, 8, 16} [64]. It is also recommended to use composite extension finite
fields that have the form of a series of smaller fields in order to reduce the overhead and
the complexity [65–67]. For example, F22 , which is a field consisting of 4 elements, is
based on polynomial arithmetic over the finite field F2. Likewise, the finite field F222

with 16 elements uses F22 as a base field, and so on and so forth.
In general, high finite fields are better suited for applications that tolerate large delays,

or for senders that have limited ability in transmitting extra coded packets. GF(28)
remains the finite field most employed following these constraints. On the other hand,
low finite fields, e.g., GF(2), are required in applications where the encoder, recoder,
or/and decoder have limited memory or computational power.

2.1.3.2 Generation Size

The need for performing RLNC over generations formed by original packets reduces the
computational complexity and the decoding delay. However, this comes at the cost of
introducing additional signalling [68, 69]. This tradeoff could be tuned based on the
requirements of an application or a network. Overlapping generations mechanisms were
proposed to overcome the delay issue resulting from the computational complexity within
a single generation [58,70–72]. Nevertheless, there exist some approaches that break with
this block code feature of RLNC, and propose “generation-less” [73] mechanisms such as
sliding window, which will be discussed later in this chapter.

2.1.3.3 Overheads

The exceptional features of RLNC come at the cost of generating different overhead
types that could become inevitable for decoding in most cases. The parameters related
to RLNC, mainly the generation size and the finite field choice, represent a trade-off in
the performance metrics such as the throughput and delay. These are highly dependent
on the complexity of decoding as well as the types of overheads that we discuss in the
following.

20

2.1.3.3.1 Coding vector overhead It consists of the apriori knowledge required
by the decoder to solve the linear system of equations related to a generation of coded
packets. In fact, the N coding coefficients used for the creation of one coded packet
are juxtaposed as illustrated in Figure 2.2, forming, therefore, a coding vector. When
performing RLNC over GF(2), the coding vector simply signals the original packets
employed in forming a coded packet. In general, the coding vector overhead is the length
of the coefficients vector as follows:

υRLNC = N. log2(q) (bits). (2.4)

This means that as the finite field size or the generation size increases, this overhead
becomes significant. Due to their considerable size compared with the packet’s payload,
the coding vectors could become a burden that typically affects the system’s goodput
and consumes substantial bandwidth resources. Because IoT-generated packets tend to
have small payloads, the coding vector overhead should no longer be neglected, as in
some cases this overhead could be larger than the packet to encode itself. This has led
to focusing on reducing its size to the size of one symbol while maintaining the ability to
recover the original packets using the linear combinations of RLNC using Vandermonde-
based coding vectors [74]. Nonetheless, the cyclic property of Vandermonde matrices
restricts the generation size to an upper bound equal to N = log2 q, as well as only
tolerating for additional operations in the finite field. This makes the approach more
suitable for packets with small payloads, such as WSNs known to have very limited power
and generating small payloads. Moreover, some efforts were focusing on compressing
the coding vector since it requires more energy to communicate a single bit of data
than performing compression in wireless network systems. Gligoroski et al. proposed
the Small Set of Allowed Coefficients (SSAC) algorithm that reduces the coding overhead
size by two to seven times compared with the related compression techniques [75]. On
the other hand, seed-based RLNC, sometimes called Pseudo-Random Network Coding
(PRNC) [76], was suggested to shorten the coding vector to the seed size. It simply
requires to convey a seed of a Pseudo-Random Number Generator (PRNG) along with
the coded packet. The decoder then recomputes the coding vector elements once it
receives the coded packets [77,78]. Seed-based network coding does not allow for recoding
at the intermediate node, which is a huge obstacle for a large set of scenarios and
topologies. This way network coding loses the unique salient feature that promotes it over
all other coding techniques. The seed adoption should therefore be limited to multicast

21

or broadcast scenarios.

2.1.3.3.2 Linear dependent packets overhead It consists of the extra number of
coded packets transmitted to fully recover a generation. This is highly dependent on the
finite field choice, where small fields require a larger number of excess packets compared
to the higher fields. Since obtaining a full-rank decoding matrix attests to the successful
decoding of a generation, the rank of a random matrix over a finite field shows exactly
the impact of the finite field choice on decoding [79]. Receiving enough coded packets for
decoding is similar to the coupon collector problem [80,81].

Furthermore, determining the decoding probability gives insights about a coding
scheme’s efficiency. We characterizes the additional transmissions needed and could be
anticipated by calculating the probability of decoding a generation of size N original
after receiving K coded packets as follows [82]:

P(K, N) =


N−1∏
i=0

(1 − 1
qK−i) K ⩾ N

0 otherwise
(2.5)

The proof relies on the counting formula of all K × N matrices of rank N in GF(q),
K−1∏
i=0

(qN − qi) ,over the set of all possible N × K matrices over GF(q), which equals
qNK [82, 83].

The expression in Eq. 2.5 does not hold when losses occur in the network, since
we should account for the loss rates. For a point-to-point communication with a loss
probability ϵ, the decoding probability of decoding N packets over K received coded
packets is [82]:

Pϵ(K) =
K∑

i=N

(
K

i

)
ϵi(1 − ϵ)K−i.P(i, N). (2.6)

Additionally, Claridge et al. provided the exact probability expression of the partial
decoding of an RLNC generation and proved that it is very unlikely to recover portions
of the generations before acquiring all the coded packets needed [84]. Nevertheless, this
proves that RLNC is a robust code against eavesdroppers that would not be able to
retrieve even partial information. Other RLNC variants that we will further discuss in
this chapter actually promote partial recovery, e.g. systematic RLNC [84].

22

2.1.3.4 Computational Complexities

They represent an important metric that impacts the RLNC performance, such as latency,
energy consumption, and throughput to name a few. The encoding process requires
multiplications and additions in the finite field of N packets in order to generate one
coded packet. This results in an encoding complexity of the order of O(N). To the
best of our knowledge, the RLNC based approaches have linear encoding and recoding
computational complexities in general. As for decoding, it was mainly covered in
Section 2.1.2.3. It is of the order of O(N3) in the finite field used, as it performs the
Gaussian elimination. Some efforts have suggested modifying this algorithm and proposed
on-the-fly Gaussian elimination for a lighter decoding computational complexity [62]. We
note that it is suggested in general to use small finite fields when the decoder has limited
computation power, at the cost of receiving an extra number of coded packets to be able
to finish decoding. Likewise, higher finite field sizes could be adopted for systems capable
of handling this high decoding computational complexity unlike sensors for example.
Eventually, some RLNC based techniques, e.g. fulcrum codes [85], which we describe
in the following, offer a balanced combination of different finite fields, depending on a
device’s capabilities.

2.1.4 RLNC Based Variant Approaches

RLNC has spanned into various techniques that mainly focus on overcoming the limita-
tions of conventional RLNC including, the overhead of delivering the coding coefficients,
the complexity of recovering original packets, and the delays of decoding [63].

RLNC

RLNC inherited Fulcrum Systematic Sparse

Telescopic Non-Binary

Binary

Gamma

BATS

Sliding

Tunable Sparse

Banded Perpetual Sequential

Perpetual Random

Figure 2.3: The common RLNC-based techniques in the literature.

23

We provide a classification of the RLNC based approaches found in the literature in
Figure 2.3. We believe that there exist four main branches based on common characteris-
tics, namely,

• Sparse: schemes that have a high probability of generating zero coefficients.

• Systematic: schemes that transmit copies of the packets before switching to sending
RLNC coded packets.

• Fulcrum/composite extension: schemes that employ composite extension fields
instead of the commonly used finite fields.

• RLNC inherited: schemes that combine other coding techniques with RLNC.

We discuss these schemes and compare their performance based on our extensive
literature study as well as our efforts.

2.1.4.1 Systematic Network Coding

1

1

1

ααααα

α αααα

C1

C2

C3

C5

C4

Figure 2.4: Systematic network coding decoding matrix example for a generation of size
N = 5, for r = 3.

This approach was first proposed by Shrader et al. in order to give flexibility to
intermediate nodes to replicate and recode packets [86]. The process consists of first r

transmitting packets among the K packets in total are identical copies of the original
packets. The remaining K − r are generated using standard RLNC. The coding matrix
illustrated in Figure 2.4 could be expressed as:

M =
I
J

 , (2.7)

24

where I is a sub-matrix with the identity matrix properties.
It was shown that this strategy results in low decoding complexity as it requires

fewer decoding operations, thus reducing the decoding delays without compromising the
throughput [87]. Systematic network coding is well suited for streaming applications
as well as multimedia broadcasting [88]. Other research works have considered binary
systematic network coding, which refers to using GF(2) coefficients for the matrix J.
It was implemented on power-constrained devices, such as mobile phones and wireless
sensors [89]. Furthermore, it allows partial or progressive decoding for binary sparse
network coding [88, 90, 91]. Unfortunately, systematic coding can only be performed
at source nodes as it does not support the recoding feature [92]. It can also become
impractical to use systematic network coding with high loss rates in the network and
should be substituted with standard RLNC.

2.1.4.2 Sparse Network Coding

As previously discussed, small finite fields guarantee lower computational complexity,
but they require extra transmissions as they are more susceptible to generating linearly
dependent coded packets. To overcome this entangled trade-off, the idea of designing a
sparse network code emerged, where sparsity is a key performance metric. This code is
characterized by the fact that not all the packets are combined in each transmission. We
note that RLNC operates on dense coding vectors because the probability of generating
zero coefficient is proportional to the field size, e.g., this probability is equal to 1

28 = 1
256

for GF(28). It should be understood that despite the fact that GF(2) is a sparse code, it
generates only either 0 or 1. This makes it challenging to create innovative packets.

Sparse Network Coding (SNC) are similar to the conventional RLNC, with the
exception that the coding coefficients are randomly and independently drawn from GF(q)
based on the following distribution:

P(αij = t) =

 p, t = 0
1−p
q−1 , t ∈ Fq \ {0},

(2.8)

where 0 ⩽ p ⩽ 1 represents the level of the code sparsity. When p = 1
q

for instance, we
are back to the RLNC case, whereas SNC is characterized by p > 1

q
. The aim is therefore

to design the sparsest code, which increases the throughput but keeps the encoding
vector overhead and complexities to a minimum. The benefits of SNC reside mainly in
reducing the computational complexities and the coding vector overhead, which in result

25

contribute to saving the energy [93]. A tight bound of the performance of SNC in terms
of decoding probability was proposed using absorbing Markov chain [94]. Nevertheless,
to the best of our knowledge, there is no exact decoding probability for sparse network
coding, or more broadly, there is no probability expression of a sparse matrix in a finite
field being full-rank [95,96].

2.1.4.3 Tunable Sparse Network Coding

Tunable Sparse Network Coding (TSNC) is a sparse code that controls the coding
process by tuning the density of the coding vectors over the network [97]. It was proposed
by Feizi et al. in order to overcome the limitation of SNC due to the trade-off between
the computational complexity and the linear dependency overhead [98]. In a nutshell,
TSNC dynamically adapts the level of sparsity depending on the decoding status at
the receiver. This approach guarantees to reduce the computational complexity, but at
the cost of a slight overhead rise. Based on the theorem in [97], a coded packet with
a density equals to ρ(i, N) ⩽ 1

2 , is linearly independent with the previously received i

coded packets with a probability PT SNC(i, N) defined as:

PT SNC(i, N) ⩾ 1 − (1 − ρ(i, N))N−i, (2.9)

where ρ(i, N) = w
N

, and w is the number of non-zero coefficients per coded packet.
According to Soerensen et al., TSNC can practically outperform the decoding speed of
RLNC by four-folds, without bringing larger overheads [99].

2.1.4.4 Band Codes

It is a structured code that allows RLNC to be performed on a band (window) of input
packets in order to control the computational complexity, that results in almost triangular
decoding matrices as depicted in Figure 2.5 [100, 101]. Within every band, standard
GF(2) RLNC is performed, with a probability of drawing a coding coefficient αi = 1
defined by:

P(αi = 1) =


1
2 if f ⩽ i ⩽ d

0 otherwise

where f is the leading edge, and d is the trailing edge. Window size defined as ω = d−f +1,
and it is imposed that 0 ⩽ f ⩽ d ⩽ N − 1 in order to prevent the window from wrapping
around, as this may pose an issue for recoding at intermediate nodes.

26

1 0

0

001

1000

0 0 1 1 0

10000

0 1000

ω

C1

C2

C3

C5

C4

Figure 2.5: Band code decoding matrix example for a generation of size N = 5

Nevertheless, generating a low overhead requires the band ω to be relatively wide,
similar to the generation size issue for RLNC. The decoding complexity drops with Band
codes thanks to the sparsity of the code, and it is in the order of O(Nω) [100]. This
implies that the energy consumption is reduced, which would extend the battery life of
constrained mobile devices.

2.1.4.5 Perpetual Codes

1 α α

αα1

1 α α

α1α

α 1α

ω

C1

C2

C3

C5

C4

Figure 2.6: Perpetual code decoding matrix example for a generation of size N = 5,
ω = 2, and α is a random non-zero coefficient from GF(q).

Proposed by Heide et al. [102] where the term was adopted from the work by
Maymounkov et al. [103]. It is a band code that is characterized by the wrapping and
the pivot element p that equals the 1 coefficient element, and the width ω that refers
to the number of non-zero coefficients that are consecutively placed after the pivot p.
This is expected to increase the speed of real processors during encoding and decoding.

27

The pivot element p refers to the position of the 1 elements, i.e. defines which original
packet will not undergo a coding coefficient multiplication but will be added to the linear
equation corresponding to a coded packet. This sparse but structured code comprises
two main modes. Sequential/pseudo-systematic mode refers to the mode where p is
sequentially drawn from 0 to N − 1, and with a width ω, 0 < ω < N (see the example
in Figure 2.6). When the loss probability is low to moderate, such a mode could be
adopted as it reduces the overall overhead as well as the decoding complexity. We note
that this mode is reverted to the systematic RLNC when ω = 0. The Random mode
refers to the case where p is drawn at random from J0 ; N − 1K, and 0 < ω < N − 1. It is
suggested to be used when systematic modes are not beneficial, such as when the loss rate
is extremely high. Pahlevani et al. provided an analytical model for the random strategy
in the presence of packet loss and showed that ω length is responsible for generating
linearly dependent coded packets [104].

In general, the benefits of the code heavily depend on N and ω. According to [102],
perpetual codes have simpler decoding algorithms and allow for faster encoding, recoding,
and decoding operations thanks to the sparsity of the structured code, which is retained
even when recoding is performed. Additionally, RLNC could be extravagantly more
computationally demanding than the perpetual codes for a sufficiently large generation
size and low width ω size. This obviously results in a higher throughput compared to
RLNC. Nonetheless, recoding is not a natural process as in RLNC, and it requires to be
judiciously performed.

2.1.4.6 Sequential XORing

We propose this mode of coding as an ultimatum solution for the perpetual codes and
band codes. It consists of simply XORing all input packets in a window ω, i.e. only 1
valued coefficients are drawn from GF(2). Based on a pre-defined step size f we create
the next coded packet similarly using packets at the positions f, · · · , f + ω. This policy
enables the wrapping as displayed in Figure 2.7. It is worth mentioning that in order
to be able to decode the generation, i.e. obtain a full-rank matrix, where rk(M) = N ,
some conditions must be applied on the window ω or the step size f . As a matter of

28

1 1

1

1

11

 1 1 1

1 1 1

1 1 1

ω

C1

C2

C3

C5

C4

f

(a) Working example

1 1

1

1

11

 1 1 1

11 1

1 11

ω

C1

C2

C3

C5

C4

f

(b) Non-working example

Figure 2.7: Sequential XORing mode decoding matrix example for a generation of size
N = 5.

fact, matrices designed as such have four possible ranks values rk(M), defined as follows:

rk(M) =



N if ω ∤ N and f ∤ N
N

f∧N
if ω ∤ N and f | N

N − (f ∧ N) + 1 if ω | N and f ∤ N
N−(f∧N)

f∧ω
+ 1 if ω | N and f | N

As a result, ω and f should be chosen in a way that they do not divide the generation
size N . In this case, we only need to signal the window size ω and the step f instead
of an entire coding vector of at least N elements of the finite field used. For instance,
Figure 2.7 illustrates two examples where f and ω choices, influenced by the generation
size N , could result in a non-decodable generation. Sequential XORing is best applied in
multicast scenarios, and could be considered as an index coding scheme [105–108].

2.1.4.7 Fulcrum Codes

Lucani et al. proposed Fulcrum codes to allow a fluid allocation of complexity in the
network, while maintaining the high fields performance and a low encoding overhead,
thanks to the use of composite extension fields [65, 66]. This is a suitable solution for
heterogeneous devices, which definitely have different computational capabilities. It is
characterized by a low overhead like when coding using GF(2), which is of the order
of 1 + r

N
≈ 1bit per coefficient in a coded packet, where r is the number of excess

coded packets transmitted. Additionally, the total number of packets that need to be
transmitted is around N + O(2−r), which is similar to the number of transmissions

29

assured by high finite fields. The encoding procedure mainly consists of an outer and
inner code, that gives the opportunity for several decoding approaches. For instance,
power-constrained devices perform inner decoding using GF(2) only, whereas powerful
devices that could operate on higher finite fields such as GF(28) employ outer decoding.
Combined decoding balances the performance for medium power devices. Additionally,
the processing speed for the encoding process is five to 25 times faster than with GF(28),
and for decoding it is twice to 20 times faster than GF(28) decoding speed.

2.1.4.8 Telescopic Codes

Unlike standard RLNC that allows one finite field only to be used in generating coded
packets, we discussed Fulcrum codes that allows for a balanced trade-off between the
complexity and overhead thanks to the flexibility in the field size choice based on the
decoder’s capabilities. Telescopic codes expand this idea to a larger set of compatible
fields, namely composite extension fields [65], in order to benefit from the low overhead
insured by small finite fields and the low linear dependency of coded packets insured by
large finite fields. Leveraging several composite extension fields in a single generation
of packets enables a better overhead trade-off between the composite extension fields.
Additionally, it retains the recoding feature of network coding [109].

2.1.4.9 RLNC Inherited Codes: BATS

This class of codes refers to the approaches that adopt RLNC partially in their design,
e.g., BATched Sparse (BATS) [60, 110] and Gamma codes [111]. For instance, these
codes usually require an outer code and an inner code, as well as precoding in some
cases. The precoding and the outer coding steps are performed at the source nodes,
whereas the inner coding is done on the relay nodes, similarly to recoding with RLNC.
For instance, BATS is a well-suited code for wireless multicast and considered as the
best joint code based on fountain codes and network coding, which was first advocated
by Yang et al. [60,110]. It consists of an outer code and an inner code. The latter is a
matrix generalization of an LT code, i.e., if the matrix related to the BATS code has
the size N × 1, then this would result in an LT code. The outer code is a pre-coding
step that has the potential of generating an unlimited number of batches because the
rateless feature of the LT code is preserved. The inner code comprises the conventional
RLNC operations, which are applied to the symbols that belong to the same batch. It
achieves the throughput gain of RLNC and more importantly maintains its recoding

30

Table 2.1: Computational complexity for encoding/recoding/decoding in finite field
operations in the absence of packets losses.

Branch Encoding Recoding Decoding
Standard RLNC O(N) O(N) O(N3)

Slide & XOR O(ω) not supported O(ω)
Perpetual O(ω + 1) not supported O(ω3)

Band Codes O(ω) O(ω) O(Nω)
Systematic O(N − r) not supported O((N − r)3)

BATS O(TMd) O(TMd) O(nM3 + TM
∑

i di)

feature. BATS codes have a lower computational complexity since they use the Belief
Propagation and inactivation decoding algorithms for decoding.

2.1.5 Schemes Performances Comparison

It is worth mentioning that the RLNC based variants were proposed in order to improve
RLNC performance. These approaches present certain trade-offs that could be exploited
depending on the application and its requirements. In the following, we summarize some
of the critical features of these approaches, namely the encoding vector overhead and
the computational complexities, since they give a flavor to the throughput, delay, energy
consumption, etc.

2.1.5.1 Complexity

The encoding and recoding complexities of RLNC do not pose as big of a problem as its
cubic decoding complexity, wchich is the reason behind proposing the RLNC variants.
Table 2.1 summarizes the overall complexities related to some of these approaches, that
basically present reduced computational complexities, despite the omnipresent cubic
factor of the Gaussian elimination. Nevertheless, the issue with recoding, in general,
relies on the fact that the intermediate node that is supposed to perform recoding should
not be aware of the packet design it received in the first place, otherwise it would be
counted as decoding. As recoding should be performed blindly, the node cannot decide
whether a certain coded packet is for example a systematic copy of an original packet
or densely coded packet using RLNC. The losses and erasures that might occur during
coded packets transmissions do not allow nodes to keep track of the general information
regarding the packets it receives. This explains why some RLNC variants cannot have
the recoding feature.

31

Table 2.2: Total encoding vector overhead created for the transmission of exactly N
coded packets equal to the generation size per category.

Branch Coding Overhead (bits)
Standard RLNC N log2(q)

Traditional sparse s log2(q)
Sliding window ω log2(q)
Slide & XOR ⌈log2(f)⌉ + ⌈log2(ω)⌉

Perpetual log2(N) + ω log2(q)
Fulcrum N(1 + r

N
)

Telescopic
N∑

j=1
⌈log2(qi)⌉

Band Codes N + C
Systematic N

2.1.5.2 Overhead

Aside from the basic techniques to reduce the encoding overhead of RLNC, such as the
header compression and the randomly generated seeds, the variants of RLNC propose
interesting solutions in reducing the encoding vector overhead as well. Table 2.2 shows
the various possibilities for reduced overhead based on the schemes’ designs. For instance,
the systematic approach generates minimal overall overhead per generation transmission,
especially when the number of systematic packet transmissions is relatively high. We
note that it is interesting to have encoding vector overheads that are independent of the
finite field size choice, as this could significantly contribute to increasing the overhead’s
size.

2.2 Compressed Sensing

Compressed sensing is a disruptive transform coding technique that enables efficient
signal acquisition and later an effective exact or approximate reconstruction, far below
the Shannon-Nyquist sampling rate. It is the outcome of a long research [26,27,112,113].
Namely, it was first introduced in 2005 by Candes et al. [28], and later Donoho et al.
gave it its current name [113]. Compressed sensing fulfills the sufficient conditions for
a perfect or approximate reconstruction of a signal using very few measurements, i.e.,
sample. This promising performance gave compressed sensing a tremendous interest
from various fields, aside from signal processing, where it first arose. For instance, it is
currently used by power and bandwidth-constrained systems to optimize the measurement

32

process. Nevertheless, its core issues are mainly the proper design of the measurement
matrix that will not damage the signal during the compression step and the design of an
efficient reconstruction algorithm that will accurately restore the original signal. The
key properties to be satisfied are incoherence and sparsity. Our goal in this section is to
provide answers to the following questions:

i) Under which conditions an under-determined linear system of equations could be
considered as compressed sensing, i.e. admits an exact or an approximate solution?

ii) Which reconstruction algorithms are able to effectively retrieve original signals?

Furthermore, there is a vast number of papers and books surveyed the compressed
sensing [2, 114]

2.2.1 Overview

From a mathematical point of view, compressed sensing proposes to find the sparsest
solutions to under-determined linear systems of equations, of the form of y = Ax, by the
means of optimization techniques. The compressed sensing problem is summarized as
follows:

min
x

∥x∥0 subject to y = Ax, (2.10)

where x ∈ Rn is a sparse signal to compress, y ∈ Rm is the measurement vector, i.e.
compressed version of x, and A ∈ Rm×n is the measurement matrix, which transforms x
into y. We remind that the ℓ0 pseudo-norm counts the number of non-zero elements in a
vector. The exact locations of such elements lie in the support set, denoted supp. This
non-convex optimization problem becomes an enormous burden for large values of n. In
general, the Euclidean vector space Rn is provided with ℓp norms as follows:

∥x∥p :=


(

n∑
i=1

|xi|p)1/p, p ∈]0, ∞[

max
i∈{1,··· ,n}

|xi|, p = ∞.
(2.11)

Furthermore, we started talking about compressed sensing when Candes et el. proved
that substituting the ℓ0 pseudo-norm with the ℓ1 norm allows for exact reconstruction
with a reasonable computational complexity, changing the under-determined system of
equations in Eq. 2.10 to a convex problem. They proposed the use of Basis Pursuit (BP),
which is a linear program based on the ℓ1 and demonstrated that it could approximate

33

ℓ0 under certain conditions that we clarify later in this section. The new problem in
question is therefore:

min
x

∥x∥1 subject to y = Ax. (2.12)

2.2.2 Sparsity and Compressibility

A signal x ∈ Rn is called sparse if most of its components are zeros. This means that it
has a low information rate. Therefore, most of the signal’s elements can be discarded
without losing important information. Specifically k-sparse if it has k ∈ J1 ; n − 1K non
zero elements, defined as:

∥x∥0 := Card(supp(x)) = Card({i ∈ J1 ; nK : xi ̸= 0}) = k. (2.13)

It constitutes a crucial condition to ensure the reconstruction of x. However, finding
an exact sparse representation could be challenging for some real-life signals. Thus,
the sparsity concept could be a tough constraint in some cases. The substitution with
the weaker concept of compressibility actually does not affect the compressed sensing
reconstruction, but it widens its usage for far more cases. A compressible signal is not
exactly sparse, but has a small error of the best k-term approximations σk(x)p, that we
define as:

σk(x)p := inf{∥x − y∥p, ∥x∥0 = k}, (2.14)

with p ⩾ 1. It is worth noting that the difficulty in solving Eq. 2.10 lies in finding the
exact locations of the non-zero coefficients of a sparse vector, i.e. the support.

2.2.3 Sensing Matrix Design

A momentous part of the compressed sensing research was devoted to the design of the
appropriate sensing matrix, in order to guarantee the success of the problem in Eq. 2.12.
This means that the gap between the estimated recovered signal x̂ and the original one to
be robust and stable, has a negligible value. The reconstruction accuracy highly depends
on the incoherence property of the matrices. In the following, we discuss some of the
common conditions to impose on the sensing matrix A in order to guarantee a stable
recovery.

34

Incoherence is denoted by µ(A), and defined as the largest absolute and normalized
dot product between two different atoms/columns of A as follows:

µ(A) = max
i ̸=j

∥⟨Ai, Aj⟩∥
∥Ai∥2∥Aj∥2

, (2.15)

where Ai is a column of A, i = {1, · · · , j, · · · , n}. For full rank matrices specifically,
µ(A) satisfies [115] √

n − m

m(n − 1) ⩽ µ(A) ⩽ 1. (2.16)

A low mutual coherence guarantees to elevate the reconstruction accuracy [116], and
it is a more practical option for deterministic matrices, e.g., Magnetic Resonance Imaging
(MRI) matrices [117].

Null Space Property “was first proposed in [118]. It depends exclusively on the null
space (kernel) of the measurement process. It is known to be the necessary and sufficient
conditions on the successful reconstruction of sparse signals when using the basis pursuit
algorithm, or other ℓ1-relaxations, in the absence of noise.

We denote by T ⊂ {1, · · · , n} and T c = {1, · · · , n}\T as its complement. Additionally,
we define υ ∈ Rn and υT ∈ R|T | as the vector containing the coordinates of υ on T ,
similarly for υTc . We denote by AT the m × |T | sub-matrix of A ∈ Rm×n, that encloses
the columns of A indexed by T . If we define T = supp(x), x ∈ Rn, then Ax = ATxT [2]”.

Definition 1. (Definition)
A matrix A has the NSP of order k if,

∥υT∥1 < ∥υTc∥1, ∀υ ∈ Ker(A) \ {0}, T ∈ {1, · · · , n} with Card(T) ⩽ k.

Restricted Isometry Property is an alternative property that still captures the idea
of incoherence, and provides a finer measure about the suitability of the measurement
matrix, which was first introduced by Candes et al. in 2005 [28, 119]. It basically charac-
terizes nearly orthonormal non-square matrices in the context of sparse or compressible
signals.

Lemma 1. If there exits a constant δk ∈ (0, 1), called the k-th restricted isometry
constant of a matrix A ∈ Rm×n , such that for any k-sparse signal x ∈ Rn, we have

(1 − δk)∥x∥2
2 ⩽ ∥Ax∥2

2 ⩽ (1 + δk)∥x∥2
2, (2.17)

35

then A is said to satisfy the RIP of order k.

These properties to fulfill are considered adequate conditions to accurately recon-
struct a signal. An efficient design of the measurement matrices is a crucial aspect of the
compressed sensing theory. They influence the precision of the reconstruction process
at the decoder, determining an exact or approximate reconstructed signal. Different
structures of matrices are used, e.g., random, deterministic, and structured, with a huge
success given to random matrices in theory. However, when it comes to hardware realiza-
tion, light-weight and easy implementation even with a slight performance compromise
is extremely important. We note the gap between the Restricted Isometry Property
(RIP) and Null Space Property (NSP) is discussed in [120]. Despite the fact that both
properties are NP-hard, RIP remains easier to justify theoretically and has a wider set of
applications to various reconstruction algorithms.

2.2.3.1 Suitable Sensing Matrices

In general, generating adequate measurement matrices that enable exact or a high recon-
struction accuracy remains unfortunately an intriguing endeavor, and remains an open
research problem in the field of compressed sensing. Surprisingly, random matrices are ca-
pable of fulfilling the RIP constraint, with a special focus given to Bernoulli, Rademacher,
Gaussian, and sub-Gaussian matrices. For instance, the Gaussian matrices are most
used in the literature since it goes hand in hand with the RIP and allows an accurate
reconstruction of Eq. 2.12 with a sufficiently high property [121]. Bernoulli matrices
have a discrete probability distribution, which simplifies the coefficients management and
storage. The simple implementation reduces the complexity costs, since the signals in
question are either added or subtracted, avoiding the heavy costs for multiplication and
storage. Moreover, Weibull random matrices guarantee an accurate signal reconstruction
with high probability using an optimal number of measurements [122].

There exists also a class of deterministic matrices that are not commonly adopted
because, as previously explained, it is computationally complex to verify if a matrix
fulfills the RIP property. Nevertheless, they facilitate the hardware implementation
and could be used in applications where precise signal recovery is not mandatory. For
instance, Vandermond matrices of size k × n have guarantees for recovering a k-sparse
signal. Other examples include chirped sensing matrices [123], second-order Reed-Muller,
and LDPC matrices. However, these matrices cannot achieve the expected bound of
random matrices because of the weaker RIP that they can fulfill.

36

2.2.4 Common Reconstruction Algorithms

In compressed sensing theory, the computational load is shifted to the reconstruction
side instead of the sampling process. This makes the task of having an efficient and less
costly reconstruction algorithm competitive and challenging. This is explained by the
large indescribable number of algorithms found in the literature. Zhang et al. provided a
detailed survey covering major important algorithms in [124]. In the following, we discuss
some of the reconstruction algorithms classes that we are adopting in the dissertation.

2.2.4.1 Convex relaxation

Convex relaxation is a class of algorithms that relies on convex optimization, such
as linear programming. Amongst these algorithms we refer to BP [125], Gradient
Projection for Sparse Reconstruction (GSPR) [126], Least Absolute Shrinkage Operator
(LASSO) [127], Basis Pursuit De-Noising (BPDN) [128], etc. For instance, Basis Pursuit
is a decomposition method that, due to the advances in linear programming, is able to
choose the right solution – with the minimum ℓ1 norm coefficients – for under-determined
linear systems of equations among the many possible solutions. Nevertheless, these
algorithms remain computationally complex, and cannot be considered optimal for
large-signal sizes [129].

2.2.4.2 Greedy Pursuit

The basic goal of greedy algorithms is to gradually find the support of the unknown
vector. For instance, at each iteration, one or more coordinates of the vector are selected
for testing, based on the correlations between the columns of A and the regularized mea-
surement vector. OMP [130], Regularized Orthogonal Matching Pursuit (ROMP), which
is a variant of the OMP [131], Compressive Sampling Matching Pursuit (CoSaMP) [132],
and Subspace Pursuit (SP) [133], are the predominantly utilized greedy algorithms.For
instance, OMP is often the chosen algorithm for compressed sensing and sparse coding
in general thanks to its high performance.

2.2.4.3 Thresholding

Iterative thresholding algorithms were introduced for compressed sensing as an alternative
to convex optimization. They are divided into two sub-classes, namely soft-thresholding
also known as shrinkage, e.g., Iterative Soft Thresholding (IST) [134], and hard threshold-

37

ing, e.g., Iterative Hard Thresholding (IHT) [135]. This class of algorithms start by posing
the first condition x0 = 0, and continue with the following iteration, for n = 1, 2, · · · :

xn+1 = Hk(xn + AT (y − Axn)), (2.18)

where Hk is a non-linear operator that sets the input vector coefficients other than the k

largest ones to zero.

2.2.4.4 Message Passing

Message passing is a class based on Fast Iterative Thresholding (FIT), and is also inspired
by the Belief Propagation for graph decoding. This is known as sum-product message
passing [129], as well. Amongst this category of algorithms, we refer to Approximate Mes-
sage Passing (AMP) [129], Expectation Maximization Belief Propagation (EMBP) [136]
and Smoothed l0 (SL0) [137].

2.2.5 Computational Complexity

As for the computation complexities of compressed sensing reconstruction algorithms,
they are known to be costly since they have to find the support of a vector using various
optimization mechanisms. This can actually be a handicap for next-generation real-time
applications, where millisecond response is expected. Nonetheless, some of these state-
of-the-art algorithms provide lower complexities. For instance, the BP algorithm has
a cubic complexity due to the fact that the ℓ1 norm is also computationally expensive.
On the other hand, greedy iterative algorithms seem to have the lowest complexities, as
expected. Note that although the reconstruction algorithms have high computational
complexities, they are not employed at the sensors, but rather at the sink side, which
would normally have more available computational resources or could even potentially
leverage the capabilities of future Mobile Edge Cloud (MEC) [138] implementations.

2.2.6 Sparse Representation

Sparse representation is the theory that is focused on finding a representation of a vector
(e.g. a signal or an image) as a linear combination of a few elementary vectors, called
atoms in the literature, that are obtained either from a well-known transform or using
a learned dictionary. It is useful in many fields including pattern recognition, signal
processing, image classification, and segmentation [124]. Many modern fields rely on

38

sparsity thanks to its effectiveness in alleviating common research problems. For example,
compressed Sensing assures that if a signal x ∈ Rn can have a sparse representation in an
orthogonal basis Ψ ∈ Rn×n using θ ∈ Rn, then, only a few non-adaptive measurements
y ∈ Rm are needed in order to reconstruct the signal. Based on the nature and the
structure of a certain signal, a set of representation systems could provide a sparse
approximation. In general, they expand based on the latest research trends. For instance,
it was recently shown that the novel shearlets transform, which is a natural extension of
wavelets, provides an optimal sparse representation of most natural images unlike the
conventional wisdom regarding the wavelet transform [139]. In the general case where x
is not necessarily sparse, the signal x could be then expressed as:

x = Ψθ, (2.19)

where,Ψ ∈ Rn×n is the sparsifying basis, and θ ∈ Rn is the sparse representation of x
resulting from its projection in the basis Ψ. For simplicity, we consider in the following
that the sensing matrix A is represented as A = ΨΦ, where Φ is the measurement
matrix. Thus, the optimization problem is rewritten as:

min ∥θ∥1 subject to y = ΨΦθ. (2.20)

2.2.6.1 Well-known Transformations

“Understanding the transformation from one basis to another, which has a lower dimension,
could be simply done by considering a common vector of three dimensions (localization).
However, in reality, it is lying in a very big dimension different from its usual three-
dimensional coordinates. This means that sparse signals contain much less information
than their ambient dimension suggests. [140] explains how to exploit the sparsity properties
of signals in order to process wireless signals in different applications. One of the most
known examples is the JPEG2000 coding standard, which used the sparsity of the
wavelet coefficients of natural images [141], and the Joint Photographic Experts Group
(JPEG) standard, which uses the DCT basis. There exists a large set of sparsifying
transforms, including, but not limited to, steerable wavelets, Gabor dictionaries, chirplets,
warplets, multi-scale Gabor dictionaries, wavelets packets, cosine packets, etc. Despite
the large number of sparsifying transforms, some data unfortunately cannot be sparsely
approximated using the aforementioned common bases. The sparse representation of
signals based on orthogonal bases in general highly depends on whether the signal’s

39

characteristics could be matched with the specific basis’ function. [2]”.

2.2.6.2 Over-Complete Dictionary Learning

Learning over-complete dictionaries is a new approach closely related to compressed
sensing that allows sparsifying the signals that cannot undergo this procedure using
the previously discussed well-known transforms. It is also used in the field of machine
learning for the purpose of classification, which aims for example to designate the correct
label to a certain image. Finding an over-complete dictionary D requires a large set
of training samples, denoted X ∈ Rn×l, l ⩽ n. The sparsest representation is obtained
using either of the following optimization problems:

min
X

∥X∥0 subject to Y = DX, (2.21)

or

min
X

∥X∥0 subject to ∥Y − DX∥2 ≤ ϵ, (2.22)

where Y ∈ Rn×l, and ϵ has a negligible value in R.

There exist a set of standard algorithms for training over-complete dictionaries,
e.g., Method of Optimal Directions (MOD) [142], union of orthonormal bases, maximum
a posteriori probability approach, and K-SVD [29]. The latter algorithm relies on the
K-means clustering, as well as the Singular Value Decomposition (SVD) algorithms.
It basically iteratively operates over two-stages, alternating between finding a sparse
approximation of X based on the current state of the dictionary, and update the dictionary
atoms accordingly. The related optimization problem is defined as follows:

min
D,X

{∥Y − DX∥2
F} s.t. ∀i, ∥xi∥0 ⩽ T0, (2.23)

where ∥.∥F is the Frobenius matrix norm, defined as ∥A∥F :=
√

tr(A∗A).

In practice, the K-SVD algorithm could be easily implemented using the scikit-Learn
framework [143]. Appendix B shows the impact in practise of the reconstruction that
trained over-complete dictionaries guarantee compared to well-known transformations,
given a large set of data to train the dictionary [11].

40

Table 2.3: Summary of the main conditions to be fulfilled to solve a compressed sensing
problem of the form y = Ax.

Element Conditions
x sparse

Not sparse? Find a sparse representation in a different transform
No pre-existent transform? Train an over-complete dictionary

Not exactly sparse? Compressible signals work as well
A Obeys the mutual coherence or one of the common properties e.g. RIP, NSP

NP-hard problems? Use Gaussian or Bernoulli matrices
m m << n: the number of measurements m is far fewer

than the signal’s dimension n
k k < m: the sparsity of the signal is lower

2.2.7 Take Away Conditions

Compressed sensing theory asserts that sparse signals could be recovered from a small
number of linear measurements using ℓ1-minimization and other optimization techniques.
It is mandatory to consider the main conditions to be fulfilled when tackling under-
determined linear systems of equations. In order to determine whether one deals with a
compressed sensing problem, it is crucial to verify that the vector x is sparse and that the
matrix A fulfills the coherence property. However, as previously explained, sparsity is no
longer an issue for vectors that are sufficiently large. As a matter of fact, a wide class of
signals could be sparsified using standard transformations or bases, or simply by training
an over-complete dictionary. Moreover, compressible signals are also a good fit. This
makes any large signal susceptible to being compressed, which widens the applications of
compressed sensing and especially makes it a powerful tool against big data. On the other
hand, it is easy to obtain a measurement matrix, despite the expensive computational
cost of verifying the right properties to fulfill. It has been proved that Gaussian and
Bernoulli matrices for example obey the RIP with a very high probability. Table 2.3
summarizes the main conditions to be verified in order to guarantee to have a compressed
sensing problem, i.e., being able to exactly or approximately reconstruct the original x
using the right reconstruction algorithm.

2.2.8 Distributed Compressed Sensing

DCS is the field resulting in combining compressed sensing and Distributed Source Coding
(DSC) [144]. Such a combination allows the exploitation of inter-signal and intra-signal

41

Original signal
x1

Sparse
representation

𝜃1

Measurement
y1

Reconstructed
signal x1

Joint
reconstruction

Original signal
xN

Sparse
representation

𝜃N

Measurement
yN

Reconstructed
signal xN

𝚿 𝚽1

𝚽n𝚿

Figure 2.8: DCS framework for a set of N signals. For all i ∈ {1, · · · , N}, each original
signal xi is transformed using the common sparsification matrix Ψ into a sparse signal
θi. The resulting sparse signals are each compressed using a specific matrix Φi. At the
receiver, a joint reconstruction is possible thanks to the common features among the
signals. Finally, every signal can be exactly reconstructed [2].

correlations efficiently. As a matter of fact, large sets of similar data types have generally
a structure or a pattern that could be modeled, enabling intelligent ways of processing
and representing the data. DCS promoted compressed sensing to be employed in a wider
set of applications, aside from being a signal processing tool. For instance, DCS is
now strongly involved in the communications fields, where WSNs are a major hardware
element of IoT devices. Signals generated by WSN are perfect for DCS application.
Figure 2.8 depicts the basic idea behind the DCS framework, where n original signals are
in play. Each original signal xi is independently sampled into yi, and then transmitted
to a common sink, where all the measurements are used to jointly reconstruct in one-step
an estimation of the set of original signals. This allows for a considerable reduction in
computational complexity, which leads to reduced delays at the sink for reconstruction.

In the scenario of DCS, we suppose that there is a set of signals X = [x1x2 · · · xN]T

from N nodes, where xi ∈ Rn, i ∈ {1, · · · , n}, is a sparse signal. The compressed
measurements Y are expressed as:

Y = ΦX, (2.24)

42

where Y = [y1y2 · · · yN]T , and the measurements matrix Φ is defined as

Φ =


Φ1 0 · · · 0

0 Φ2 0 0
... 0
0 · · · 0 ΦN

 . (2.25)

This means that every measurement vector can be expressed as yi = Φixi, i ∈ {1, · · · , N},
for yi ∈ Rm and Φi ∈ Rm×n.

2.2.8.1 Joint Sparsity Models

The signal in question xi is represented by a common component that is present in all
of the signals in a set, and an innovation component, that is unique to each signal. As
such, xi can be expressed as

xi = zi + zc, i = 1, 2, · · · . (2.26)

JSM-1 known as sparse common component + innovation model. It is characterized
by the fact that

xi = zc + zi, i ∈ J1 ; SK,

with,

zc = Ψc · θc ∥θc∥0 = kc

zi = Ψi · θi ∥θi∥0 = ki

where kc and ki are the respective sparsity values. This example describes best a network
of sensors, which are geographically located close to one another and simultaneously
monitoring a natural phenomenon that smoothly fluctuates in space and time, such
as humidity and temperature. The readings share inter and intra-signal correlations,
translated as temporal and spatial correlations.

JSM-2 known as Common sparse support model. It is characterized by signals that
can be formed using the same sparse basis, however, with different coefficient for each

43

signal.
xi = Ψθi, i ∈ J1 ; SK.

It is most used for multi-lead ElectroCardioGram (ECG) [145], and Multiple Input
Multiple Output (MIMO) [146] for example.

JSM-3 Known as Non-sparse common component + sparse innovations model. Each
signal is supposedly composed of an arbitrary common component, denoted zc, and a
sparse innovation component zi. Unlike the JSM-1, the common component does not
have to be sparse. This model can be used in situations where it is difficult or impossible
to acquire a sparse representation zc in any basis or frame. This makes it adequate
for scenarios where the inter-signal correlations are predominant compared with the
non-existence of intra-signal correlations.

2.2.8.2 DCS Reconstruction Algorithms

“The joint recovery could be performed via ℓ0-minimization, but as discussed earlier in
this chapter, it is more reasonable to relax it and recover the signal ensemble via the ℓ1-
minimization. Without loss of validity of the standard compressed sensing reconstruction
methods, many algorithms were proposed for DCS, just as for Compressed Sensing itself.
Their properties differ based on the nature of the signal set, application, and requirements
of the system – mainly the computational complexity and the tolerated reconstruction
error. Additionally, various reconstruction strategies were proposed for each JSM model,
in order to meet the desired specifications. For example, One-Step Greedy Algorithm
(OSGA) solves the DCS data ensemble modeled using the JSM-1. Moreover, Trivial
Pursuit (TP) is a greedy algorithm that was designed for the JSM-2. It demands a
large signal set in order to perform well. Furthermore, DCS-Simultaneous Orthogonal
Matching Pursuit(DCS-SOMP) [147] is a DCS-based Smoothed Orthogonal Matching
Pursuit (SOMP) (which is a variant of OMP). This strategy requires a small number of
measurements that are proportional to the sparsity k for a moderate number of signals.
Baron et al. [148] showed that reconstructing one signal of the set could be achieved
using k + 1 measurements as the number of signals tends to infinity. More algorithms are
available in the literature, but the choice of discussing TP and DCS-SOMP was made as
they were some of the first reconstruction strategies for DCS [2]”.

44

2.2.9 Compressed Sensing and Blind Source Separation

We target at outlining key innovation technologies that can enrich and improve the
network and processing layers in the data flow view of the proposed architecture for
Industry 4.0 applications with a huge number of Industrial Internet of Things (IIoT)
sensor devices, which allow for continuous monitoring and human-less decision making in
a wide range of scenarios in conjunction with Industry 4.0 [32,34]. For instance, it has
become crucial to monitor IIoT devices on a factory floor in order to remotely detect any
anomalies or deficiencies in the responsible device. Here, deployed sensors continuously
transmit, for example, acoustic data to remote servers, which in turn are capable of
discovering any occurring deviation. This allows for early-stage problem detection to
prevent production breakdown. Nevertheless, with the massive number of sensors that
generate massive data, it has become a challenging task to quickly and accurately locate
the malfunctioning device. Also, the high latency during the remote data separation
could yield a poor QoE.

Such a situation could be dealt with using the Blind Source Separation (BSS) technique
that enables separate signal extractions from a set of mixed signals [149], where both
the source and the mixing process are unknown. It separates multivariate data from
observers, X ∈ Rn×m, into additive n components, S ∈ Rn×m [149]. The n additive
components S are original sources in m time slots. These n components of sources should
be statistically independent and non-Gaussian distributed. The multivariate data X are
the mixtures obtained from n observers in the same m time slots. The component xi of
the observed mixtures X at each time instant is generated as a linear combination of the
source components si. The mixing model can be understood as a function M defined as:

X = M(A, S) = AS, (2.27)

where A is the mixing matrix.

Along with compressed sensing, both techniques are cheap and trustworthy for
sensors thanks to their minimal encoding requirements as the main calculations for
data reconstruction are performed at the receiver, which is expected to have powerful
computation resources. Their adoption in scenarios, like continuous monitoring of
factories, is of tremendous interest as they relax the problem of Big Data. To overcome the
major bottlenecks of low-latency and massive data, we adopt in the following CdICA [150]
and Compressible Source Separation (CSS) [33].

45

Figure 2.9: Compressible Source Separation example with n sources.

2.2.9.1 Fast Blind Source Separation

CdICA is a new framework proposed to separate multiple randomly mixed signals into
independent source signals for fast decision making in time-sensitive applications. Based
on the notable FastICA algorithm [149], CdICA generates an initial separation matrix
relying on the known mixture components in order to increase the separation speed of
the traditional Independent Component Analysis (ICA).

Up to 30 industry-related audio signals were randomly selected from Google Audio
Data Set (GADS) [151], which is a widely used large-scale data set including engines,
tools, motors, and so on, as the original sources S. This enabled our test data to cover as
many types of audio data in different industrial production scenarios as possible. Each of
them was a 10-second audio signal with 32 kHz sampling rate. The length of each source
was m = 320000. The mixtures X were generated using eq. (2.27), as the known input
of the CdICA and FastICA. For each given source number n, 30 samples were tested.
The metric Rt indicates the percentage of the separation time reduction rate, which is
the ratio of the time by CdICA and the time by FastICA.

Rt = TCdICA

TF astICA

× 100%. (2.28)

Figure 2.10 shows the separation time reduction rate Rt and separation accuracy SNR
of FastICA and CdICA. The latter can reduce the separation time to about 60% without
losing separation accuracy, compared to FastICA. The performance of CdICA is stable for

46

0 5 10 15 20 25 30

Source Number n

0

20

40

60

80

100

S
N
R
(d
B
)

0

20

40

60

80

100

R
t
%

Rt

FastICA

CdICA

Figure 2.10: Separation time reduction rate Rt and separation accuracy SNR of FastICA
and CdICA.

large n. Therefore, CdICA could be a key technology for time-sensitive factory process
monitoring on the millisecond level.

2.2.9.2 Compressible Source Separation

The CSS scheme combines BSS to separate the mixed sound of several working machines
and compressed sensing for reducing the amount of data transmitted over the network
for partially correlated data sources. It balances between the amount of transmitted data
and the separation quality. Benefiting from compressed sensing, the network throughput
is optimized for the given value of desired BSS separation quality.

A total of 300 factory acoustic signals from the GADS and Factory Noise Data
Set (FNDS) are used as source signals for testing. For each test, we randomly select
n ∈ {5, 200} original sources S to show the compatibility of the CSS to both small and
a large number of sources. Each source component si was a 0.01-second signal with
32KHz sampling rate, thus the amount of data was up to n × m = 64000 as a massive
data scenario. The input mixtures X were generated with a randomly mixing matrix X
following eq. (2.27). The mixtures X were compressed and reconstructed by compressed
sensing through the convex optimization. The amount of transmitted data is adjusted
by the data compression rate Rc, which is the ratio of compressed data by compressed
sensing to the original input mixtures. Through the selection of Rc, the information

47

0 20 40 60 80 100

Compression Rate Rc%

60

80

100

120
S

ep
a
ra

ti
o
n

R
a
te
R
s
%

n = 5 GADS

n = 200 GADS

n = 5 FNDS

n = 200 FNDS

Figure 2.11: Data compression rate Rc and separation rate Rs.

losses vary due to the compression. The impairment of the separation quality comparing
to FastICA can be evaluated as separation rate Rs, defined as the ratio of the CSS SNR
and the FastICA SNR.

Rc = (1 − ∥Xcomp∥
∥X∥

) × 100%. (2.29)

Reduction rate of separation quality Rs, due to data compression:

Rs = SNRCSS

SNRF astICA

× 100%. (2.30)

Figure 2.11 shows that a large amount of data transmission is dropped, with a slight
penalty on the separation quality. It is worth noting that the separation quality remains
around Rs = 100% when the Rc < 50% data is compressed. Along with the increased
source number n, the performance of the CSS scheme remains higher than Rs = 90%
compared to FastICA, showing its suitability for large numbers of sources. In practical
applications, this trade-off can be employed to achieve a certain separation quality for a
given maximum amount of transferred data.

48

2.3 Conclusions
This chapter gave a detailed introduction to the major innovation techniques, namely
network coding and compressed sensing, that we consider employing in this dissertation for
reducing the padding overhead of heterogeneous data packets as well as the correlations,
respectively.

RLNC is a powerful rateless coding technique that allows store-code-and-forward
instead of the conventional wisdom of store-and-forward. Additionally, it enables the
enhancement of throughput and robustness, as well as the reduction of energy consumption
and delays. We proposed a detailed overview for RLNC, which is planned to be further
extended for a survey/tutorial review submission. We believe that our classification is
unique and covers all the RLNC variants in the literature.

On the other hand, we proposed a simplified compressed sensing overview that was
originally published in [2] in order to highlight its importance in many communication
fields and stressed the basic conditions that it needs to fulfill for accurate data recon-
struction, namely sparsity and incoherence [121]. This technique allows for dramatically
reducing the size/dimensionality of signals without being damaged when reconstructed.
For that, it has shown to be a powerful plugin for sensors as it drastically reduces the
size of the measured events, extends the battery life of constrained devices, and supports
asymmetrical processing where most of the workload is shifted to the decoder. What was
not explicitly reported in the literature is that compressed sensing could be applied in
any field that involves large vectors. Furthermore, we proposed a blind source separation
and compressed sensing approach that has the potential of leveraging anomaly detection
in factory floors with low delays without the need for human intervention.

Despite the current technological advances, it remains challenging to adopt compressed
sensing and network coding in some applications, such as time-sensitive and power-
constrained applications. For instance, compressed sensing cannot yet achieve the 1-ms
delay requirement for some Fifth Generation of mobile communication system (5G)
applications, and network coding-decoding complexity remains an open issue despite the
advocated variants of RLNC.

The fusion of network coding and compressed sensing is reserved for Chapter 6,
where we showcase the common combination approaches in the literature and discuss in
detail the conditions to enhance the overall system performance when joining them in
our JoComCo scheme for cluster-based WSNs.

49

50

Chapter 3 |
Padding Overhead Characteriza-
tion

In network coding and other FEC codes, it is commonly assumed that combined and
transmitted packets have equal sizes. This is a best-case scenario, which allows the
isolation of the coding benefits and policies that employ it without having a close look at
the effect of individual data streams. It is therefore important to investigate whether
this assumption has a valid impact on the technique’s performance. Tackling this issue
requires first an in-depth understanding of the real-life packet size distributions.

In this chapter, we provide an exhaustive characterization of various real-life packet
traces from IP-core to video packets. We quantitatively prove that they can be irregularly
distributed over the available maximum packet size and that they could considerably
vary packet-by-packet. Due to the fact that the global IP traffic grew three-fold from
2015 until 2020, which makes monthly traffic to 194.4 Exabytes [20], it has become
extremely crucial to pay attention to the transmitted padding overhead when performing
linear coding techniques. Therefore, we evaluate and quantify this padding overhead
for conventional RLNC in point-to-point and serially connected multi-hop topologies.
Finally, we present and discuss the effectiveness of the available state-of-the-art solutions
to zero-padding, as well as their computational complexities.

3.1 Characterization of Packet Size Distributions

We analyze the packet size distributions using large sets of anonymous passive real-life
traces captured in 2015 and provided by CAIDA [152,153]. We focus on TCP and UDP as
they are the most used transport protocols. We also carry out a measurement campaign
using a set of video traces from the online library of Arizona State University [13,154].

51

This includes different video codecs and qualities, from the exceptional 4K video standard
to the low quality Scalable Video Coding (SVC) standard.

3.1.1 IP-Core Packets

Figure 3.1: CDF of IP-based packet sizes in bytes per packet of the benchmark CAIDA
trace of 70 × 105 packets [3].

CAIDA sets yearly anonymized passive traces with real Internet packets that we
consider in this dissertation. As a matter of fact, it was confirmed that the packet
size distribution is bi-modal with large portions of 40 and 1500 bytes, and uniformly
distributed variable sizes in between [155,156]. It is known that most Internet traffic is
transported via the TCP protocol. However, now that the UDP is adopted as a transport
protocol for Peer-to-Peer (P2P) protocols and streaming applications, it has become
crucial to study both IP traffics.

Figure 3.1 depicts the CDF of the packet sizes for TCP and UDP protocols using
a randomly selected CAIDA trace. It contains around 70 × 105 packets, which are
dominated by 77.66% of TCP packets and 21.58% of UDP packets. It exposes the
bimodality of the packet size distributions for TCP and UDP and shows two strong
modes at 40 bytes and 1500 bytes, but with different proportions for each protocol.
As for the TCP distribution, creating a generation from the trace flows is expected to
contain packets of sizes 1400 bytes and 1500 bytes, with a probability close to 0.65, along
with random smaller packets. According to the UDP distribution, this is different as the
generations are expected to have more small packets, with a probability of around 0.5.

52

3.1.2 Video Packets

As a result of the substantial growth in mobile video traffic, nearly a million minutes
of video content was expected to cross the network every second by 2019, based on the
predictions of the Cisco VNI [157]. Moreover, visual websites such as Dailymotion and
YouTube, as well as video calling applications, including Whatsapp and Zoom, encounter
an exponential increase in the number of video downloads and uploads. Not only their
video exchanges escalated, but also the consumers’ demand for higher quality videos
as the performances of their systems have increased. According to the Cisco statistics,
the IP video traffic reached 82% of all IP traffic in 2020, while it used to be around
70% in 2015 [20]. As for business IP video traffic, it has reached 64% of the business IP
traffic of 2020, after being just 42% is 2015 [20]. Generally, there are two broad types
of video models, namely conversational videos including conferencing applications and
full-motion videos, such as movies, TV shows, and sports events. Nevertheless, we will
more or less focus on the full-motion video types, as they display a wide range of scenes
with varying levels of activity. This includes background and foreground with scene
changes as in video surveillance, sports broadcast, and movies. The global fluctuation
of activities generates a set of Variable Bit Rate (VBR) sequences when the video is
encoded using modern efficient video coding standards [158–163]. The varying degree of
movement produces frames with different sizes (in bytes), which in turn results in varying
sizes of the packets that carry the encoded data over multimedia networks. As a result,
studying video data size distributions and their impact on the network coding padding
overhead is interesting. For this purpose, we selected a collection of five representative
full video traces of long full-motion videos that were encoded using various video coding
techniques from the publically available Arizona State University online library [154].
The library has different encoding/decoding standards [164] resolutions, ranging from
the low resolution CIF to the 4k format, as detailed in Table 3.1.

Despite the fact that universal Ethernet Maximum Transmission Unit (MTU) is
around 1500 bytes, video frames can grow up to more than 10 Kbytes due to their
nature [165, 166]. With the aim of ensuring their transmission, they should undergo
fragmentation and a packetization step to meet the MTU constraint. Consequently, an
entire frame of high definition video might require 100 IP packets in order to carry all of
its elementary stream packets.

Figure 3.2 depicts the CDFs of the video packet sizes that correspond to the video
traces in Table 3.1. We observe that video traces have a quite diverse packet size
distributions. However, they have a common strong mode at 1500 bytes, which is

53

Table 3.1: Characteristics of the benchmark video traces from the online library of
Arizona State University [12,13] with 30 FPS for CIF resolution video and 24 fps for the
remaining videos [4].

Video Label: Enc. Resolution Number of Number of
Appr. (Resol. Format) [pixels × pixels] Video Frames Resulting Packets

SVC (CIF) 352 × 288 289040 336345
VP9 (HD) 1920 × 816 17592 45388
SVC (HD) 1920 × 1080 86268 336345
H.264 (HD) 1920 × 816 17592 91551
H.265 (4k) 4096 × 1744 17592 163921

Figure 3.2: CDF of video packet sizes in Bytes per packet of the benchmark traces [4].

expected since it is the predefined MTU when chunking a video frame. Additionally,
videos with higher resolutions, i.e which have larger frames, such as the 4k video trace,
have a larger probability of being fragmented into packets of the MTU size compared with
others. For instance, only around 20% of the SVC (CIF) video packets have 1500 bytes,
whilst approximately 90% of the H.265 (4k) video packets have 1500 bytes.

3.2 Padding Overhead in Generation-Based RLNC

In order to reduce the complexity that the technique of network coding brought due
to the need for centralized knowledge of the graph topology, Chou et al. introduced
a practical solution to handle it [57], which consists of performing network coding on

54

sets of packets called generations (also called chunks, batches, classes, etc.). The size of
these generations highly depends on the type of application, e.g., video streaming and
file transmission. Accordingly, employing generation-based network coding should not
bring delays, overhead and extra computational complexity [167,168].

On the other hand, linear codes for FEC, including RLNC, come at the cost of
creating different kinds of overhead. Generally, there exist three common types that we
could counter when using RLNC, namely coding vector, linear dependent packets, and
padding overheads. The first refers to the size of the encoding vector, which is constituted
by the number of coding coefficients. The second depends on the finite field size when
linearly dependent packets are generated and it represents the extra transmissions. The
third is created due to the fact that the linear combinations can only be created using
entities of the same size. The former two types of overhead were covered in lots of studies,
and since they are highly controlled by the field size, an appropriate finite field size choice
is sufficient to minimize them. Besides, they can be predicted and estimated in advance.

In this section, we exclusively focus on the padding overhead, as it is treated the least
from the research community compared to the other forms of overhead.

3.2.1 Over a Point-to-Point Topology

We consider the case of a basic point-to-point transmission of generations of data packets
using RLNC. Each generation to transmit is composed of N consecutive packets of
a given source packets sequence P1, P2, ..., PN . We denote their sizes by L1, L2, ..., LN

respectively, in symbols of the GF(q), i.e., log2(q) bits per symbol. In this chapter, we
stick with bytes for simplicity. The largest packets in the generation have the size Lmax,
defined as Lmax = max

1⩽i⩽N
Li.

3.2.1.1 Padding Overhead Characterization

In preparation for the encoding process, the sender needs to fill the packets that are
smaller than the largest ones of size Lmax inside the generation with trailing zero symbols.
We refer to these trailing symbols as the zero-padding overhead (see Figure 3.3). The
sender then encodes the generation using random linear combinations of these full-size
packets obtained by drawing random finite field coefficients.

When using block codes, such as generation-based RLNC, the sender usually forms the
generation after acquiring a priori knowledge of the packets, which is used for generating
coded packets. In most cases, the packets to combine are already available at the sender’s

55

N
um

be
r o

f p
ac

ke
ts

Length of the largest packet to
encode

P’
1

P2

L/2

L

L/2

P’
3

Figure 3.3: An example of a three packet generation, with original sizes L/2, L and
L/2 respectively. If coding with the largest packet in the generation is performed, it
will result in transmitting at least an overhead (represented by the black space) that
corresponds to 50% of the initial data to transmit. We are implicitly sending one extra
packet in this case.

buffer, i.e. their sizes are already known. Therefore, the problem of unknown traffic
size can be eliminated principally if the node adapts dynamically to this size change.
Regardless of the original sizes, the padding overhead always depends on the size of the
largest packet, since each packet is padded out to the size Lmax, as well as the sum of
all the packet sizes present in the generation. We calculate the zero-padding overhead
created and carried within every generation regardless of the coding approach employed
as follows [3]:

OG =
N∑

i=1
(Lmax − Li) × (

N∑
i=1

Li)−1 (3.1)

where Lmax represents the size of the largest packet in the generation, and Li is the size
of Pi inside one generation. Additionally, the packet size distribution cannot say much
about the overhead in general, because the generation depends only on the consecutive
packets in a flow.

3.2.1.2 Numerical Results

We previously showed that packet sizes present a high level of randomness. Additionally,
we proved analytically that performing generation-based RLNC on real-life packets comes
at the cost of creating padding overhead. To further look into it, we investigate its
minimal magnitude as well its occurrence using the same aforementioned traces in terms

56

of the generation size.

3.2.1.2.1 IP-core Packets First of all, we define Nmax as the number of packets in a
unidirectional flow that should not exceed the default generation size N . As a matter of
fact, packets in some flows in the CAIDA traces are used up before filling the generation
of size N . Nevertheless, we decided to keep them in the simulation procedure to remain
faithful to the real-life traces. For example, Nmax = 50 encompasses all the possible
maximum generation sizes that are equal or less than 50, depending on the unidirectional
flow. During the encoding process, we filled the smaller packets with trailing zeros before
performing the standard RLNC operations as detailed in Chapter 2.

In the following, we use box plots for an accurate statistical overview of the padding
overhead. We remind that the boxes give the median, as well as the upper and lower
quartiles. The whiskers give the 10% and the 90% quartiles.

Figure 3.4 depicts the padding overhead OG as a function of the generation size Nmax

for the TCP and UDP traces that we consider in this chapter. For small generation sizes,
such as Nmax = 5, we observe an overhead dominated by an enormously random outlier
that surpasses 200% of the original packets inside such small generations. For higher
TCP generation sizes in Figure 3.4a, we observe that the padding overhead increases
sharply and remarkably exceeding the amount of input data when the generation size
increases. For example, it has a third quartile close to 140% for Nmax = 200. As for
the UDP trace, Figure 3.4b shows that for larger generation sizes, the padding overhead
rises as well. Even so, it has less significant overhead compared to the TCP generations.
For instance, the third quartile for large generations never exceeds 70%, and the median
is located around 20%.

Overall, because of the mingled minimum and the first quartile at 0%, we cannot
estimate or predict the number of generations that are not susceptible to carrying padding
overhead. As a result, we complement our numerical results with Figure 3.5, in order to
highlight the percentage of generations that exactly contain unequal packet sizes, i.e.,
inevitably create padding overhead when performing RLNC.

Figure 3.5 shows the presence of padding overhead when performing RLNC on TCP
and UDP packets in percentages as a function of the generation size. We observe that
a CAIDA trace contains at least 20% and 29% of the generations have padding overhead
for the TCP and UDP respectively. This overhead rises exponentially when the generation
size increases. For example, around 85% of the TCP data transmitted in a generation of
size Nmax = 200 contains trailing zeros. As for its presence in UDP-based generations

57

(a) TCP

(b) UDP

Figure 3.4: Percentage of minimum zero-padding overhead carried for different generation
sizes of a CAIDA packet trace [3].

when using RLNC, the padding overhead presence converges around 68% for generations
with Nmax = 150 and above. It remains, however, alarming to observe the presence of
padding overhead, regardless of the generation size. Such numbers are expected because
of the packet size distributions displayed previously in Figure 3.1, where around 70% of
the packets have sizes between 1400 and 1500 bytes, and most of the remaining are around

58

Figure 3.5: Percentage of the presence of zero-padding overhead as a function of the
generations of the benchmark CAIDA packets trace [3].

40 bytes. Various statistical factors demonstrate the potential of large TCP generations
in carrying enormous padding overhead. From the Internet traffic classification point of
view, it is due to the fact that the TCP protocol generally supports a wider range of
Internet applications.

3.2.1.2.2 Video Packets Figure 3.6 illustrates the means and standard deviations
percentages of the zero-padding overhead OG carried inside a generation compared to
the size of the original packets as a function of the generation size. We recognize that
the generations of the CIF video format include on average a huge padding overhead,
which is of a size that is more than double the original data itself. For generations of
sizes N = 20 and above, the padding overhead already exceeds 200%, which implies
that the video data is tripled. This extravagant padding overhead is due to the highly
variable frame sizes with many small frames, as displayed in Figure 3.2. Furthermore, we
observe that higher resolution videos tend to have less padding overhead. For example,
for N = 50, the padding overhead of the VP9 (HD) video has a mean around 35%, as
well as a median of 20%, whereas, for the H.265 (4k) video, it has a mean of 7% and a
median around 3.8%.

For in-depth insights, Figure 3.7 and Figure 3.8 depict box plots of the padding
overhead for the VP9 and the H.265 video traces. We remark in Figure 3.7 that the
generations’ padding overhead have medians around 20%, and means around 30-35%.

59

For every bit of real
data more than an
extra bit of padding is
added.

(a) Mean of Padding Overhead OG

(b) Standard Deviation of Padding Overhead OG

Figure 3.6: Means and standard deviations of padding overhead OG [in percentage] as a
function of the generation size N [3].

This is due to its high proportion of small packets, as displayed in Figure 3.2. However,
for Figure 3.8, the median overheads are around 3-4%, and means are around 6-7%, which

60

Figure 3.7: Box plots of zero-padding overhead OG as a function of the generation size N
for the VP9 (HD) video trace.

Figure 3.8: Box plots of zero-padding overhead OG as a function of the generation size N
for the H.265 (4k) video trace [3].

is not as high as the VP9 (HD) video, due to its large size frames by default. Additionally,
both Figures show a high occurrence of outliers for small generation sizes such as N = 5,
compared to large size generations, e.g., N = 200. This means that these generations
are susceptible to comprising very large padding overheads. As a matter of fact, small
generations only “sample” short portions of the video frames sequence. When we consider

61

only a few consecutive encoded video frames, there is actually a potential for immensely
different frame sizes. For example, when the frames include a large intra-coded I-frame
and some small bidirectionally B-frame predicted frames of the Group of Pictures (GoP)
structure of the coding [12].

Figure 3.9: Percentage of minimum padding overhead for a collection of video traces for
N = 100 [4].

Finally, Figure 3.9 shows the box plots of the zero-padding overhead from all the
videos in Table 3.1, for the generation size N = 100. We notice that the higher the
video resolution, the lower the padding overhead it tends to have. This is due to the
fact that video frames for high-resolution videos are quite large, thus requiring a large
proportion of the MTU-size packets. However, their outliers are mostly present between
20% and 50%. Consequently, generation-based network coding comes at the expense of a
substantial padding overhead, despite the fact that video frames are usually large and
require a substantial number of full-size packets for their transmission.

3.2.2 Over an ℓ-Hops Topology

Although the padding overhead is usually canceled out by the decoder due to the fact that
the delivered data should not grow and maintain its initial size, the coding systems still
put additional computational effort into processing both at the source and the destination,
without neglecting the fact that it is uselessly carried across the channel. This investment
and practice adds up to the overall energy consumption, and it constitutes a real handicap

62

for the communication systems that intend to become more efficient and cope with the 5G
standard. In scenarios where larger network topologies are used, this padding overhead
could become a bigger burden if it is transmitted over and over with every encountered
recoder. On the other hand, it is known that RLNC has the salient feature of enabling
intermediate nodes to recode the received coded packets, unlike other FEC codes.

We focus on a portion of a wireless mesh network, that only consists of ℓ-hops, to
persuade the reader about the effect of losses as well as the incurring overhead on RLNC
performance. Moreover, we only consider high field sizes in order to emphasize the
principal contributions independently with the linear dependency overhead without loss
of generality to smaller finite fields.

Figure 3.10: An example of an ℓ-hop line network with loss rate εi per link, i ∈ {1, · · · , ℓ}.

3.2.2.1 Characterization

We consider, similarly to the previous setups, the transmission of a generation composed
of N packets through an ℓ-hop wireless network similar to the one depicted in Figure 3.10.
We recall that this scenario is also valid for topologies with similar settings, such as
wireless mesh networks. We suppose that we propose to transmit N packets, P1, · · · , PN

of sizes L1, · · · , LN respectively and in units of symbols of the finite field specification.
The size of the largest packet in the generation is denoted as Lmax = max

1⩽i⩽N
Li.

We start by defining the minimum effective payload that is sent in an ℓ-hop network
by E ℓ

N , as follows:

E ℓ
N =

ℓ∑
j=1

N∑
i=1

Li

1 − εj

(bytes), (3.2)

where, εj represents the loss rate for the link j, j = 1, 2, · · · .
Since RLNC is a compute-and-forward scheme, it fulfills the rule of the min-cut

max-flow, i.e., the probability of successful delivery between the sender and the receiver
nodes is min

1⩽j⩽ℓ
{(1 − εj)}. However, for standard routing and other coding approaches,

such as Luby Transform (LT), Reed Solomon, Raptor, and Low Density Parity Check
(LDPC) codes, they are only capable of store-and-forward. This makes them vulnerable
to losses in such network topologies. Their probability of successful delivery can be

63

expressed as
ℓ∏

j=1
(1 − εj), which diverges from the aforementioned end-to-end delivery

probability of network coding. According to these conditions, in total we send with
standard RLNC in an ℓ-hop network:

T ℓ
N =

ℓ∑
j=1

⌈
NLmax

1 − εj

⌉
(bytes). (3.3)

Eventually, we define the total padding overhead, in bytes, created by RLNC encoders
in ℓ-hop network, Oℓ

N , as follows:

Oℓ
N = T ℓ

N − E ℓ
N (3.4)

=
ℓ∑

j=1

(⌈
NLmax

1 − εj

⌉
−

N∑
i=1

Li

1 − εj

)
. (3.5)

3.2.2.2 Numerical Results

1 2 3 4 5 6 7 8
Number of hops `

30

40

50

60

70

80

90

100

R
L
N
C

O
ve
rh
ea
d
O
` N
(M

B
)

Figure 3.11: Box plots of padding overhead Oℓ
N in megabits for a TCP trace, as a function

of the number of hops ℓ, with N = 32, ℓ = 8, ε1 = 0.4, and all other links are supposed
to be perfect.

Figure 3.11 illustrates the overall padding overhead in an ℓ-hop network, where the

64

first link has a loss probability ε1 = 0.4. The remainder of the links is assumed to be
loss-free. We notice that such padding overhead increases exponentially with the number
of hops. We used a TCP trace from CAIDA containing 12 · 103 packets. We observe that
we have transmitted in total 50% of the coded data as trailing zeros once by the fifth hop
in the network. This continues to climb as the number of hops increases, despite the fact
that no losses or erasures occur. After a certain number of hops, the padding overhead
will simply surpass the meaningful coded data being conveyed. We conclude that RLNC
unfortunately loses its statelessness and behaves similarly to the traditional linear codes,
which have no control over the losses or the overhead as the number of hops increases,
except that here RLNC is unable to deal with the propagation of the padding overhead.

3.3 Existing Padding Reduction Approaches

To the best of our knowledge, the padding overhead issue in RLNC for the distribution
of common IP-core packets and VBR encoded media has only received limited attention
to date, despite its aggravation in large multi-hop networks especially, as previously
discussed. Compta et al. proposed in 2015 four padding overhead reduction approaches
that aim to pack the unequal-sized packets into fixed size packets, which are amenable
to conventional RLNC [169]:

1. Simple fragmentation

2. Fragmentation and bundling

3. Simple bundling

4. Chain and fragmentation

They can be grouped into two categories based on bundling and fragmentation, before
finishing with padding to the MTU size. Two of the suggested solutions showed a
significant reduction, which is below 5% when tested on video packets from Arizona
State University online traces [169]. Since these schemes are RLNC related approaches,
we propose to encode and decode the resulting generations similarly to the ones with
RLNC, in order to have a fair comparison. For instance, we propose the usage of the
Gaussian elimination algorithm for decoding in all the approaches. In the following, we
briefly describe the schemes and discuss their effectiveness through their computational
complexities.

65

P1

P2

P3

C1

C2

C3

(a)

000

.

.

.
PN

Lmax

P1+P3

P2

P4+PN

PN’
CN’

.

.

.

.

.

.

(b) (c)

0

Figure 3.12: Simple bundling scheme example for a generation of N original unequal-sized
packets.

3.3.1 Simple Bundling Scheme

Such a scheme relies on finding the best possible bundling solution that allows the filling
of the gaps in smaller packets using other small ones to reduce or, if applicable, eliminate
the need for padding. The encoding is later performed on the resulting NSB new packets,
NSB ⩽ N . This procedure is similar to a bin packing problem, which strives to pack
different sized objects (here packets) into the minimal number of containers (packets)
of the same volume (fixed packet size). This turns out to be an NP-hard problem with
high computational complexity. Nonetheless, other bundling strategies seem to alleviate
it while compromising on padding. Figure 3.12 illustrates a basic example of how the
small packets are being packed together without exceeding the size of the largest packet
in the generation (here P2). We notice that the zero-padding is indeed inevitable in this
example to match with the generation’s largest packets. Therefore, it cannot always
guarantee a solution to the issue. For example, with the simple bundling scheme, the
padding overhead drops from 100% to 10% according to the benchmark video trace
portion used in [169].

Inspired by the bin packing idea, we would like to find the best and valid arrangement
to store the packets of a generation with the least padding overhead Oj that incurs in
every newly created packet P ′

j . These packets have size Lmax each, which corresponds
to the largest original packet size in the original generation. Moreover, we denote the
total zero-padding overhead by OSB, and the resulting new generation size by NSB.

66

Consequently, the problem can be formulated as:

min
NSB∑
j=1

ζj ≡ min
NSB∑
j=1

(Lmax −
NSB∑
i=1

Liδij) ≡ min
NSB∑
j=1

Oj (3.6)

subject to:

NSB∑
i=1

Liδij ⩽ Lmaxζj (3.7)

NSB∑
i=1

δij = 1 (3.8)

where,

δij =

 1 if Pi can be stored in P ′
j

0 otherwise/
(3.9)

The indicator function δij informs whether Pi is stored in the j new packet, and its
existence is also expressed using the indicator function ζj as follows:

ζj =

 1 if P ′
j exists

0 otherwise.
(3.10)

As a result, there are up to NSB new packets P ′
j , 1 ⩽ j ⩽ NSB ⩽ N to encode. The first

fit decreasing heuristic algorithm is an optimal working solution to the simple bundling
problem. It simply consists of sorting the packets based on their sizes in decreasing order
and then placing the current largest packet in the first position where it can fit [170].
This method on its own has a complexity of O(N2). As a result, if the RLNC approach
is applied to the newly formed generation of size NSB, the total encoding complexity per
generation is expected to be O(N2 + N2

SBLmax) in the finite field. As for the decoding
complexity, it is in the order of O(N3

SB). This is similar to the decoding complexity
of RLNC, since it is mainly led by the cubic factor related to the Gaussian elimination
operation for a generation decoding.

3.3.2 Fragmentation Scheme

Whilst the aforementioned scheme does not allow the fragmentation of packets, the
class of fragmentation approaches attempts to fill the previously unfillable gaps that
resulted in generating the padding by defining a fragmentation size Fs for the packets

67

before bundling them. This scheme’s performance is highly dependent on Fs as well as
the overall size of all packets in one generation. Figure 3.13 illustrates an example of
a randomly chosen fragmentation size. We observe that the fragmentation size choice
resulted in the increase in the number of packets in the generation (N ′ ⩾ N) as well as a
clear presence of the padding overhead. Instead of simply reducing the gaps generated
from the bin packing by chunking the packets down to a prescribed size, it generated
more packets to encode, i.e., larger encoding vector overhead, a higher encoding/decoding
complexities as well as a padding overhead due to the filling of the gaps that could not
be filled with the fragments.

P1

P2

P3

C1

C2

C3

(a)
000

.

.

.
PN

FS

.

.

.

P’1

P’’1

P’2

PN’

P’’2

P’1

P’’1+P3

P’2

PN’

P’’2

CN’

.

.

.

.

.

.

(b) (c) (a)

Figure 3.13: Simple fragmentation example.

Additionally, this procedure incurs a signaling overhead due to the entire reconstruc-
tion of all packets. As much as it seems simple and capable of extremely reducing the
zero-padding overhead, it literally exchanges it with this new form of signaling overhead,
which we denote by OF .

As a result, FS has to be carefully tuned to avoid the aforementioned issue. The
simultaneous reduction of the padding and the fragmentation overhead is a paramount
for such a scheme. We express it using the multi-objective optimization problem as
follows:

min OF (3.11)
min #Fs (3.12)

68

subject to:

NF∑
i=1

L′
iδij ⩽ Fsζj (3.13)

NF∑
i=1

δij = 1 (3.14)

Fs ⩽ CMTU, (3.15)

where L′
i is the size of the data filled inside the new packet P ′

i , and NF is the new
generation size after fragmentation. Being more interested in decreasing the padding
overhead, we could decide it to be the dominating function of the optimization problem.
This is referred to as the chain and fragmentation scheme, which consists of concatenating
the packets together back-to-back into one long string then deciding the appropriate
fragmentation size, i.e., the new packet size, denoted FCF [169], before fragmenting the
long string into fixed size packets. Hence, the problem could be rewritten as:

Find FCF ∈ N∗ : FCF ∧ (
N∑

i=1
Li + OCF), FCF ⩽ CMTU. (3.16)

Thus, OCF ̸= 0 iff FCF ∤
N∑

i=1
Li . Furthermore, this is a linear problem that does

not instigate a higher complexity to the encoding process, which is in the order of
O(FCF N2

CF). As for decoding, it requires O(N3
CF) operations in the finite field to recover

the generation. With the chaining and fragmenting scheme, the excess data to be
transmitted decreases logarithmically when FS increases. Ultimately, for high FS values
(with max{Fs} = CMT U), the zero padding becomes minimal compared to the other
approaches (including RLNC).

3.4 Conclusions

In this chapter, we examined the overhead that arises from the zero-padding of variable
size packets, including packets of VBR videos and IP packets, for reliable transmission
with RLNC, and showed its strong connection with the real-life packet size distributions.
Our numerical results revealed that padding the small packets with trailing zeros to
the maximum packet size generates an overhead on the order of 20% − 50% or more
for the benchmark video traces. Furthermore, TCP traffic could, on average, have an
overhead equivalent to 75% of the total data transmitted, i.e., three out of four bits

69

are overhead. State-of-the-art padding overhead reduction approaches proposed to pack
the unequal size packet into fixed-sized packets, through bundling or simply chaining
and fragmenting. The chain and fragmentation scheme that relies on chaining the input
packets, forming bulk data to be fragmented according to a specific parameter size,
dramatically reduced the padding overhead. Nevertheless, these schemes incurred a high
computational complexity due to bundling and signaling overhead when fragmenting.
Additionally, the performance evaluations in [169] have been limited to 320 frames of a
mostly motion-free video, which is not enough to confirm the effectiveness of the proposed
schemes. In the following two chapters, we proposed novel schemes that effectively deal
with the padding overhead problem. Interestingly, the heterogeneity in the packet sizes
enables some schemes to exploit it in a way that allows them to produce unequal-sized
coded packets, and some to solemnly XOR data packets without the need for generating
any coding coefficients.

70

Chapter 4 |
Macro-symbol Based Approaches

In this chapter, we introduce an alternative to the state-of-the-art padding overhead
reduction techniques, which pack the unequal-sized packets into fixed-sized ones for
conventional packet granularity RLNC. For instance, we propose a different class of
RLNC that operates on columns of macro-symbols (MS). These are small subsets of the
packets, such as concatenated bytes, which allow the partition of the variable-size packets
into fixed-size macro-symbols, while preserving the overall concept and properties of
RLNC. We quantify the impact of the macro-symbol sizes on the padding overhead, as
well as the computational complexity for encoding and decoding.

Relying on macro-symbols, we propose the progressive shortening scheme, which
is the first RLNC based approach to ever generate unequal-sized coded packets, even
when recoding is performed at intermediate nodes. We provide numerical results about
the number of macro-symbols needed for decoding compared to the traditional RLNC,
as well the throughput for encoding and decoding when implemented in Kodo, the
fully-fledged network coding software library [171]. Our results show that this scheme
reduces significantly the padding overhead even for small field sizes despite the penalty on
the decoding throughput. Furthermore, we analytically and numerically prove that this
scheme has the capability of healing the coded generations when losses and unnecessary
redundant data are being transmitted to the recoder. Consequently, the padding overhead
cannot be propagated, which is unlikely for unlike conventional RLNC and other coding
techniques, as we showed in Chapter 3.

In order to verify that the progressive shortening can be applied with general source
coding techniques, just like RLNC, we propose to show the gain obtained with Robust
Header Compression version 2 (RoHCv2) in a real-life application. Consequently, our
implementation results reveal a 20% payload delivery efficiency enhancement compared
to standard RLNC.

71

Finally, we highlight that the progressive shortening approach does not only inherit
recoding from conventional RLNC, but it also shows improvements when sparse coding
coefficients and overlapping generations are considered. Note that the remainder of this
chapter was originally published in [4–6,31].

4.1 Macro-Symbol Concept

Macro-symbols are subsets of concatenated symbols of the packet in the finite field (e.g.,
bytes or bits). We propose and describe their concept and show how macro-symbol-based
RLNC (MS RLNC) can mitigate the padding overhead thanks to the finer granularity
that facilitates a clever way of coding and decoding.

4.1.1 Design: From Packets to Macro-Symbols

The zero-padding overhead with generation-based RLNC appears because of the packet
level granularity of the common coding. Specifically, coded packets are generated in
traditional RLNC by linearly combining the stack of packets that have the same size Lmax

in a generation. Our idea for reducing this type of overhead consists of performing network
coding based on small subsets of the data, instead of packets inside one generation, because
it gives the opportunity to seize and exploit the overhead incurred due to the heterogeneity
of packet sizes. To do so, we decided to work on what we named macro-symbols, which
are equal size sets of symbols that are present in each packet of a generation.

When deciding the macro-symbols size, it is crucial to avoid the creation of zero
paddings. This is not straightforward because it only depends on the packet size
distribution, which is quite random. We expect that the smaller the macro-symbols
are, the least trailing zeros have to be added. Nevertheless, their sizes can therefore
vary from one symbol (e.g., one byte) to the size of MTU CMTU. We denote the size of
macro-symbols set for all macro-symbols in a generation by µ. It is inevitable to have
some padding overhead within the last macro-symbol of a packet. We also define the
resulting number of macro-symbols in packet Pi as:

Λi =
⌈

Li

µ

⌉
, (4.1)

with ⌈a⌉ being the smallest integer larger or equal to a. As such Pi could be seen as a
concatenation of macro-symbols si1, · · · , siλ, · · · , siΛi

.

72

N
um

be
r o

f p
ac

ke
ts

 N

Length of longest packet

P1

P2

P4

P3

µ

Figure 4.1: An example of a generation of N = 4 source packets with initial sizes µ, 5µ,
1µ, and 2µ, whereby µ denotes a prescribed packet size unit, e.g., µ = 10 bytes. The
packets with sizes 1µ and 2µ are padded out to the maximum packet size of 5µ before
RLNC coding. The resulting padding overhead (represented by the black rectangles) is
OG = 11/9 = 122%, i.e., the amount of padding overhead is larger than the amount of
source data [4].

4.1.2 Pre-Processing for Generation Based RLNC

When forming a generation as displayed in Figure 4.1, two crucial elements should be
taken into consideration [168], namely, the number of packets N to be mixed (referred
to as the generation size) and the packet sizes, which can be a network constraint, e.g.,
taking into consideration that the MTU for Ethernet is 1500 bytes. Therefore, the
generation should contain the maximum number of packets that do not introduce neither
extra computational complexity nor decoding delays.

Without loss of generality, we consider the design and the transmission of one
generation only in a point-to-point network. Let G be a generation formed of N source
packets, G = {P1, P2, ..., PN} with corresponding sizes L = {L1, L2, ..., LN}, and we
denote the largest packet size in a generation as Lmax, i.e., Lmax = max

1⩽i⩽N
Li. The pre-

processing to move from the packet level to the macro-symbol level results in having N

packets with corresponding sizes Λ1, Λ2, · · · , ΛN in macro-symbols.

Furthermore, we define the degree distribution as the number of macro-symbols

73

chosen altogether to generate the coded macro-symbol number λ of the coded packet Ci:

∆λ =


N if λ = 1

N −
λ−1∑
ℓ=1

Πℓ if λ ∈ {2, · · · , Λmax}
(4.2)

where Λmax is the total count of packets of size j, and Πℓ is the source MS degree of
column λ, i.e., # of MSs in column λ position = N −∑λ−1

ℓ=1 Πℓ.

4.1.3 Macro-Symbol Size µ Evaluation

As previously explained, the design of the macro-symbol could induce a small padding
overhead inside the last macro-symbol of a packet, defined by O

(i)
MS as follows:

O
(i)
MS = Li mod µ. (4.3)

For instance, if we choose µ to be equal to the symbol size (e.g., a byte when GF(28) is
used), then O

(i)
MS equals zero.

The overall padding overhead that is expected when moving from the packet to
macro-symbol level in generation-based RLNC is [31]:

OMS =
(

µΛmax −
N∑

i=1
O

(i)
MS

)/
N∑

i=1
Li. (4.4)

It is important to study the effect of macro-symbol sizes on the zero-padded data
that is processed with RLNC. Computing on the symbol level seems to be the accurate
solution to seize the trailing zero symbols. However, a large portion of internet packets
has the same size as the MTU, making the decoding process slower and bringing delay
issues, which we discuss later in this chapter. Considering these concatenated blocks
with a reasonable size is more convenient as it provides an acceptable trade-off between
computational complexity and the ability to address zero-padding. Intuitively, using large
MSs comes at the cost of hiding the padded zeros inside the last payload MSs. Thus, we
shall study the effects of macro-symbol size on the overhead and the overall performance.
We propose the use of the IP packets and video traces introduced in Chapter 3.

IP packets We run tests in order to estimate the average ratio of the padding overhead
sent when tuning the macro-symbol sizes. We used a TCP traffic of 106 packets from a
CAIDA trace [172] and formed generations based on the unidirectional flow of packets.

74

We set Nmax as the maximum number of packets that could be combined in a generation,
as described in Chapter 3.

Figure 4.2: Ratio of zero-padded macro-symbols carried inside one coded packet in the
CAIDA TCP traces [5].

Figure 4.2 illustrates the ratio of padding overhead included in a macro-symbol based
generation on average that is relative to the amount of data in the generation ∑N

n=1 Ln,
as a function of the macro-symbol size µ, for TCP flows from an online CAIDA trace.
We observe that for small macro-symbols sizes, little padding overhead is expected to be
created. For instance, its ratio is between 0.2 and 0.47 for µ = 10 and a generation size
Nmax varying between 16 and 64. Furthermore, the generation size matters as well when
using MSs, e.g., for µ = 150 the padding overhead is around 1.2 for Nmax = 64 and is
around 0.6 for Nmax = 16. Therefore, it is also crucial to carefully choose the generation
size to employ in macro-symbol-based RLNC. However, the padding overhead stabilizes
at µ = 25 and above, which allows for a set of options to be considered based on the
application. For example, the ratio of padding overhead is around 0.6 for Nmax = 16,
whether the macro-symbol size is µ = 25 or µ = 300.

Video Packets Figure 4.3 shows boxplots of the resulting padding overhead OMS due
to performing macro-symbol based RLNC, as in Eq. (4.4) in percentage for a generation of
size N = 64 and different macro-symbol sizes µ. For the VP9 (HD) video in Figure 4.3b,
we observe that for small macro-symbol sizes µ, the overhead is mainly present as outliers.
Particularly, for small MS sizes between µ = 5 and µ = 25 bytes, the median padding

75

(a) SVC (CIF)

(b) VP9 (HD)

Figure 4.3: Percentage of zero-padding overhead for MS RLNC with different macro-
symbol sizes µ for generations of N = 64 packets [4].

overhead is close to zero and the few individual outliers stretch to only about 20%. Unlike
the behavior with the TCP trace in Figure 4.2, the padding overhead with MS RLNC
increases for the video traces with increasing macro-symbol size µ. For example, we

76

notice from Figure 4.3a that for the SVC (CIF) video trace, the median padding overhead
comes near 20% for a macro-symbol size of µ = 150 bytes. Nevertheless, such median
MS RLNC padding overheads are still completely low compared to the median padding
overheads with the standard RLNC, which we remind was on the order of 100% for SVC
(CIF), see Figure 3.9. As for VP9 (HD), the median standard RLNC padding overheads
were around 20% according to Figure 3.7. Note that choosing the macro-symbol size µ to
be equal to the MTU size would result in overheads that are as large as or greater than
the overheads in Figure 3.9. Specifically, larger overheads for µ = 1500 bytes appear
for generations with Lmax < 1500 bytes which require only padding to Lmax in standard
RLNC. We overall conclude from Figure 4.3 that reducing the macro-symbol size µ

considerably diminishes the MS RLNC padding overhead. Moreover, the reductions are
dramatic for macro-symbol sizes µ that are below 100 bytes.

4.1.4 Simple Macro-Symbol RLNC Scheme

The idea of performing network coding on macro-symbol is motivated by the fact that
such small entities allow the control of the data at a finer grain without the need for
padding in general.

Our encoding approach is faithful to the conventional RLNC generation based tech-
nique, with the exception that our approach encodes at the granularity of individual
macro-symbols on the set of packets. Recall that siλ, with i ∈ J1 ; NK and λ ∈ J1 ; ΛiK,
denotes the macro-symbol of the source packet Pi (row position i) and MS position
(column position) λ. We denote by αηi the coding coefficient mapped to the source packet
Pi when creating the coded packet Cη, η ⩾ 1. We denote by cηλ the coded MS in the
coded packet Cη (row position η) and the MS position (column position) η. Following
the exact procedure in generation based RLNC, cηλ is created by linearly combining all
the source MSs siλ, i ∈ J1 ; NK, in the column position λ with the weights provided by
the coding coefficients αηi. This means that every source MS in the column position λ is
multiplied with the corresponding coding coefficient αηi for its row i. The products are
then summed over the entire column, as shown in Figure 4.4. A coded macro-symbol cηλ

can be formally expressed as:

cηλ =
N∑

n=1
αηnsnλ, η ≥ 1, 1 ≤ λ ≤ Λn. (4.5)

Note that the degree ∆λ gives the number of source macro-symbols that are linearly
combined to generate the coded MS cηλ.

77

4

*

s21*
+

2

s22 s23

s11

Coding
Coefficients

2cη1 cη2 cη3

Coded packet Cη

Coding
Coefficients

Packets
Lengths

cη1

Λ
m

ax

Coded MSs

4 1 3

2 4 0 0
0 0 4 0
0 0 0 4

Λ1 Λ2

Contribution to the MS
decoding matrix when
packet Cη is received.

Figure 4.4: Example illustration of MS RLNC coding for a generation that consists of
N = 2 source packets with maximum size Λmax = 3 MSs. The coded MS cηλ is created
by linearly combining the source MSs siλ in the column position λ with the random
coding coefficients αηi. The coded packet Cη consists of the coded MSs cηλ from all the
column positions λ, λ = 1, 2, . . . , Λmax, and the coding coefficients αηi, i = 1, 2, . . . , N ;
additionally, one coded packet of the generation has to carry to individual packet lengths
Λi. The illustration on the right depicts the eventual matrix expansion of an encoding
vector at the decoder [5].

As depicted in Figure 4.4, the coded packet Cη is constructed with the coded MSs
cη1, cη2, . . . , cηΛmax along with the coding coefficients αη1, αη2, . . . , αηN . The coding coeffi-
cients require N log2(q) bits. Additionally, one coded packet in the generation needs to
convey the individual packet lengths Λ1, Λ2, . . . , ΛN of the source packets involved in the
considered generation to the destination to enable decoding. As a matter of fact, MS
RLNC is not able to decode the generation exclusively from the coding coefficients as
it is the case with the conventional RLNC. Recall that every packet is at most of Λmax

MSs long. Therefore, the overhead of sending the N packet sizes has an upper bound of
N log2(Λmax) bits. It is not required to send the packet sequence numbers for MS RLNC
decoding, just the packet lengths Λ1, Λ2, . . . , ΛN . In general, the coded packets carry a
generation index when the data stream consists of several generations.

78

4.1.4.1 Coded Packet Size Distribution

As in conventional RLNC, the source needs to transmit as many coded packets Cη, η =
1, 2, . . . , K, with K ≥ N , as required to ensure the complete recovery of the data at the
decoder. We consider a code rate R = N/K = 1 for ease of explanation. The MS RLNC
encoding that we introduced enables a set of policies for setting the sizes of the encoded
packets Φη in units of MSs, whereby one macro-symbol corresponds to one encoded
macro-symbol cηλ.

Full-Length Coded Packets A full-length coded packet policy generates N coded
packets of size Φη = Λmax coded MSs each, with η = J1 ; NK. This encoding strategy
corresponds to the standard packet granularity RLNC encoding, and it consequently
incurs the padding overhead examined in Chapter 3. When effectively creating the coded
macro-symbols following Eq. (4.5), the non-existent original symbols are considered to
be zero-symbols, such as the four rightmost symbols s12, s13, s14, and s15 in the source
packet P1, as displayed in the Figure 4.1. This means that all source packets are implicitly
padded with zeros to the full-length of the largest packet size Λmax of the generation.

Min-Sized Last Coded Packet The min-sized last coded packet policy generates
N − 1 coded packets that have the full-length of the maximum source packet size Λmax.
The last coded packet’s length is set to ΦN = Λmin = min

1≤i≤N
Λi, as shown in Figure 4.5.

This allows the min-sized last coded packet policy to reduce the padding overhead by
Λmax − Λmin MSs compared to the aforementioned policy and the conventional RLNC.

4.1.4.2 General Macro-Symbol Decoding

We choose to perform MS RLNC decoding based on on-the-fly Gaussian elimination [62],
due to its lower computational complexity compared to the standard Gaussian Elimination,
which starts after receiving the entire batch of coded packets. Contrarily, the triangulation
step starts as soon as a new coded packet Cη, i.e., a set of Φη coded MS is received.
The MS RLNC decoding strategy consists of forming a triangular decoding matrix of
dimension

N∑
i=1

Λi ×
N∑

i=1
Λi by incorporating any received coded MS, starting from the very

first one. The receiver decodes the original packets by exploiting the coding coefficients
αηi that are carried in the transmitted coded packets identically to conventional RLNC
decoding.

The individual packet sizes Λi, i ∈ J1 ; NK, are crucial for decoding the original

79

macro-symbols in MS RLNC. They determine the dimension of the decoding matrix
resulting from every coded packet. Unlike standard RLN, every coding vector is expanded
to a partial decoding matrix, as depicted on the right side of Figure 4.4, where Λmax

corresponds to the number of rows, and
N∑

i=1
Λi to the number of columns, resulting in a

matrix of size Λmax ×
N∑

i=1
Λi. Every column set of original symbols s1λ, s2λ, . . . , sNλ can

be completely recovered after receiving the coded macro-symbol in the column position
λ of the coded packet number ∆λ, i.e., after decoding exactly λ + Λmax(∆λ − 1) coded
MSs, which is analogous to standard RLNC decoding [90,171,173].

P1

P3

P2

C1

(a)

P4

C3

C4

C2

(b)

Λmax

Λmin

Figure 4.5: Example of the min-sized last coded packet policy; (a) a generation with N = 4
original packets, (b) coded packets after the encoding process: N − 1 = 3 coded packets have
the full size of the largest original packet Λmax = 5, while the last has the size Λmin = 1 of the
minimum length original packet [5].

4.1.4.3 Encoding Vector Overhead

Performing macro-symbol-based RLNC requires the communication of the packet sizes
in MSs in addition to the random coefficients employed for encoding so that the receiver
knows how to expand the coding coefficients to create the decoding matrix (see Figure 4.4).
Nevertheless, the transmission of the sizes could be transmitted with the first coded
packet only, if we have a perfect channel communication. In general, the encoding vector
overhead is calculated in bits as:

εMS = (log2(q) + log2(N))N (bits). (4.6)

80

4.2 Progressive Shortening Scheme

We present the encoding and decoding process of the progressive shortening scheme, which
is capable of generating unequal-sized coded packets. The encoding procedure is similar
to the previously presented approach, with the exception of reducing the combination of
macro-symbols that are expected to be decoded. Moreover, we show that the progressive
shortening scheme has the full potential of keeping the conventional RLNC features, such
as recoding, while ensuring that the padding overhead is not propagated as is the case
with RLNC, thanks to its ability to heal a generation during the recoding phase.

4.2.1 Scheme Design

Here we discuss the encoding and decoding design for the progressive shortening scheme.
We also explain the policies for generating unequal-sized coded packets.

4.2.1.1 Coded Packet Size Distribution

This scheme brings enhancements for both the sender and receiver compared to the
conventional RLNC. With the progressive shortening schemes, coded packets are created
with a size distribution that matches the length distribution Πλ of the original packets, as
shown in Figure 4.6. As a matter of fact, the number of original macro-symbols that are
combined to form the coded MS cηλ in the column position λ is equal to the degree ∆λ

as in Eq. 4.2, i.e., the number of occurrences of the original macro-symbols in the column
position λ. This means that the first coded macro-symbol cη1 (for λ = 1) in the coded
packet Cη, with η ⩽ K, contains exactly N combined original macro-symbols. Moreover,
the remaining coded macro-symbols, with column positions λ ⩾ 2, contain fewer combined
original macro-symbols as controlled by the original packet length distribution ∆λ.

If there are no corruption or loss of coded packets during the transmission, and if we
suppose that there is no finite field dependencies [92,174], then the receiver can decode
the packets that have the length distribution Πλ to recover the original packets with
the same length distribution. Nevertheless, additional coded macro-symbols need to
be transmitted in order to guard against packet corruption or loss, as well as linear
dependencies. An elementary strategy would be to set a prescribed number of full-length
coded packets Ψ beyond the number of full-length coded packets ΠΛmax in the original
packet length distribution before proceeding by shortening the coded packets according
to the original packet size distributions. In Figure 4.6, the coded packet lengths are 5,5,1

81

P1

P3

P2

C1

(a)

P4

C3

C4

C2

(b)

Figure 4.6: Best case scenario example of Scheme 2. (a) A generation of 4 original packets
with unequal sizes. (b) Coding is performed sequentially on macro-symbols of different packets
to create coded packets with progressively shorter sizes [5].

and 1 MSs for Ψ = 1. Another policy consists of shorten-and-hold, which holds the coded
packet length at prescribed lengths. For example, one can send a certain number Ψ
of full-length, as well as half-length coded packets before resuming the aforementioned
shortening strategy. Specifically with Ψ, original packets of lengths 8, 7, 5, 5, 4, 2, 1,
and 1 result in coded packet lengths 8, 8, 5, 5, 4, 4, 1, and 1. An alternative approach to
control the number of coded macro-symbols is to exchange feedback between the sender
and the receiver. Due to its simplicity, we adopt the elementary policy that adds Ψ
coded of length Λmax packets.

4.2.1.2 Shortened Coded Packet Decoding

We previously discussed the decoding with the min-sized last packet policy, which
transmits coded packets of length Λmax, except for the last one that is of length Λmin.
With the progressive shortening, the decoder receives coded packets that have a length
distribution matching the length distribution of the original packets. For any of the
progressive shortening policies, the decoding process starts with the very first coded
packet received. Similar to the example on the right side of Figure 4.4, the encoding
vector is expanded into a decoding matrix, and the conventional decoding of RLNC
commences [61,94,175,176].

It is crucial to check whether a coded packet is linearly dependent or not, as this
determines whether to keep the packet for decoding or discarding it. The attractive
feature of MS RLNC schemes is that they do not require the verification of the dependency

82

within every single coded macro-symbol. Checking the first coded macro-symbol cη1 of
a specifically coded packet Cη is sufficient to decide for the entire set of coded macro-
symbols. Particularly, the same set of coding coefficients αη1, · · · , αηN is used for the
encoding of all macro-symbols present in coded packet Cη. This means that the random
coefficients αη1, · · · , αηN used for creating the coded macro-symbol cηλ is similarly used
for cη(λ−1), if ∆λ = ∆λ−1, or a reduced set when ∆λ ≤ ∆λ−1. As a result, the rank does
not change, and the entire set of coded macro-symbols is discarded by the receiver. This
reduces the computational effort invested in non-innovative packets.

4.2.2 Computational Complexity

We note that standard RLNC operates on N packets with size Lmax. It has an encoding
complexity of O(LmaxN2) and a decoding complexity of O(N3) in the finite field [92,
175, 177–179]. Furthermore, we note for the state-of-the-art schemes that the simple
bundling can be solved with a complexity O(N2 + LmaxN2

SB) when the first fit decreasing
heuristic is used [170], which results in NSB, with NSB ⩽ N , packets of size Lmax for the
encoder, and a decoding complexity of O(N3

SB). The encoding and decoding operations
are conducted on a symbol by symbol basis when the Kodo library is used [171].

4.2.2.1 Macro-Symbol RLNC Encoding

The MS RLNC encoding complexity is proportional to the number of original macro-
symbols considered for the generation’s encoding. Particularly computing a coded packet
Cη that consists of Φη coded macro-symbols requires exactly the computation of Φη

macro-symbols. In particular, computing the coded macro-symbol cηλ that has a degree
∆λ, requires that the ∆λ macro-symbols involved in the encoding to be multiplied with
the coding coefficient that corresponds to the packet they belong to. We note that each of
these macro-symbols is of size µ in the finite field employed, and are at column position
λ. Since the encoding is performed symbol-by-symbol in the corresponding finite field
(e.g., byte-by-byte), going through all the symbols for processing and encoding is not an
option, whether we perform the conventional RLNC or the MS RLNC schemes. As a
result, the encoding of the ∆λ macro-symbols available at the column λ that requires
multiplications and summations, incurs a computational complexity O(µ∆λ) for the λ

coded macro-symbol. The coded packet resulting from summing over all the considered
coded macro-symbols λ, λ ∈ J1 ; ΦηK and Φη ⩽ Λmax, is obtained with a computational
complexity

83

O
(

µ
Φη∑

λ=1
∆λ

)
. (4.7)

Therefore, the resulting computational complexity for encoding an entire generation
that contains N original packets using MS RLNC is

O
(

µ
N∑

η=1

Φη∑
λ=1

∆λ

)
. (4.8)

In comparison to the conventional RLNC encoding of a generation consisting of N

original packets (all padded to the full-length of the largest packet Lmax), it follows that

µ
N∑

η=1

Φη∑
λ=1

∆λ ⩽ LmaxN2. (4.9)

We conclude that MS RLNC, that involves shortened coded packets, i.e., Φη ⩽ Λmax,
incurs a similar or lower computational complexity compared to the conventional RLNC.

We note that this analysis considers a code rate N/K equals to one, and no redundant
packets are involved. An extra coded packet would simply incur the encoding complexity
in Eq. 4.7 for MS RLNC, and O(LmaxN) for the standard RLNC.

4.2.2.2 Progressive Shortening’s Sub-Decoders

When MS RLNC schemes are used, every encoding vector within a coded packet Cη

is actually expanded into an Λmax ×
N∑

i=1
Λi decoding matrix. Despite the fact that the

coding coefficients are chosen uniformly at random from the finite field, their location
and significance in the related decoding matrix are deterministic. Stacking the decoding
matrices obtained after expanding every encoding vector results in a huge matrix with a
dimension NΛmax ×

N∑
i=1

Λi, if we consider a code rate of one. Unfortunately, this decoding
strategy undermines the decoding performance and is expected to incur higher decoding
complexities that will curb the throughput and the overall performance of the MS RLNC
approaches.

Practically, we can partition the decoding into sub-decoding steps, similar to the
non-overlapping generations decoding in conventional RLNC [81]. Figure 4.7 displays
an example of a generation decoding using sub-decoders. Each row corresponding to

84

Λ1

1 7 0 0 0 1 4 0
0 0 7 0 0 0 0 4
0 0 0 7 0 0 0 0
0 0 0 0 7 0 0 0

Λ2 Λ3 Λ4

9 1 0 0 0 8 7 0
0 0 1 0 0 0 0 7

7 3 0 0 0 7 5 0

C1

C2

C3

C4

11 0 0 0 0 10 10 0

9 1 8 7
11 0 10 10
7 3 7 5

1 7 1 4

1 7
7 4

(b) Theoretical EV expansion, using 1
decoder

(c) sub-decoders

c11 EV

EV

EV

(a) Coded packets

c12 c13 c14

c21 c21

c31

EVc31

immediate

Figure 4.7: Decoding of unequal-size coded packets using sub-decoders for a generation
of size N = 4; (a) a set of coded packets to decode. (b) The coding coefficients (EV) are
expanded into a decoding matrix, where each row corresponds to the size of a coded
packet in MSs. (c) The resulting sub-matrices are shaped based on the number of
encoding coefficients involved in a row [6].

the encoding of a macro-symbol λ is merged into a specific sub-decoding matrix based
on their degree ∆λ. As such, any coded macro-symbol of a degree equaling one is
immediately decoded, and further processing is omitted, e.g., c13 and c14 in Figure 4.7.
We effectively integrated the sub-decoders in the Kodo library for performance evaluation
of the progressive shortening scheme.

4.2.2.3 Progressive Shortening Decoding

We note that the decoding complexity of MS RLNC schemes, in general, follows the
same principle, with the exception that the coded macro-symbols generated with the
progressive shortening scheme follow the length distribution of the original packets.

It is clear that the decoding task when macro-symbols are used is the recovery
of exactly

N∑
i=1

Λi original macro-symbols. This is equivalent to decoding a matrix of

dimension
N∑

i=1
Λi ×

N∑
i=1

Λi. However, as we previously explained, we rather decode the
sub-matrices due to their expected reduced complexity. Nevertheless, inverting the
progressive shortening sub-matrices using the Gaussian elimination yields a decoding
complexity of [4]:

O
(Λmax∑

λ=1
∆3

λ

)
= O

(
ΛmaxN3

)
, (4.10)

85

which remains larger than the O(N3) computational complexity of the standard RLNC,
because [31]:

N3 ⩽
Λmax∑
λ=1

∆3
λ ⩽

(N∑
i=1

Λi

)3
. (4.11)

We note that our analysis considers that the coded macro-symbols (on the columns
λ ∈ J1 ; ΛmaxK) are decoded independently, which is wasteful of the inter-knowledge
between the columns and is also impractical. For an efficient implementation of the
decoder, the columns must be decoded jointly as the same set of random coding coefficients
are used for all the columns.

O
(

N3 + (Λmax − 1)N2
)

= O
(

N3
)

(4.12)

The decoding strategy that was previously proposed for this scheme is the same as of
the traditional RLNC with the exception of the formation of a

N∑
i=1

Λi ×
N∑

i=1
Λi triangular

matrix. Since traditional decoding undermines the performance of the decoder due to
the large dimensionality of the decoding matrix, we propose to perform decoding using
sub-decoders. As it is depicted in Figure 4.7, each new coded macro-symbol is merged
into multiple decoding matrices based on their degree. Any symbol having a degree
of ∆i = 1 is immediately decoded and is omitted from further processing (see c13 and
c14 in Figure 4.7.a). The computational complexity of this sub-decoder based decoding
is O(∆3

max) − O(Λmax∆3
max), which is faster than the previously proposed decoding

algorithm in [30].
Since the same coding coefficient is used for the encoding of all the macro-symbols

corresponding to a given packet, this scheme has the favorable advantage of discarding
an entire coded packet if its first coded macro-symbol turns out to be non-innovative.
This is done by checking for linear dependency between the available decoding matrix
and the new packet only with one of the sub-decoders. A symbol, therefore, is considered
non-innovative if it does not increase the rank of a single decoder, in which case the
processing of the remaining macro-symbols can be omitted.

4.2.3 Performance Evaluation

We implemented the introduced MS RLNC coding schemes using the Kodo library [171].
Building on the functionality of the Kodo library, we designed the MS RLNC encoding

86

and decoding modules as wrappers of the corresponding Kodo modules. Our encoder
wrapper maps the source data packets to source MSs. To encode the data, we generate
random coefficients from the corresponding coding vectors and execute the Kodo encoder
to produce the coded packets. Finally, we append the meta-data to the coded packet, i.e.,
the coding coefficients, the packet lengths (and the packet shifts for random shifting). For
decoding, we map the coding vector from each received coded packet to a coding matrix.
We then feed the coding matrix along with the coded data to the Kodo decoder [4].

We provide numerical results related to the min-sized last coded packet and progressive
shortening schemes in terms of the data transmitted before total recovery for different
finite fields. We consider performance comparison with data transmitted without coding,
where we do not perform any processing and send every packet as it is. This approach is
related to traditional routing, which does not guarantee the achievability of the network
capacity. In contrast, network coding achieves network capacity in a variety of scenarios.
As part of our evaluation, the “RLNC packet-level scheme” is also used for comparison
as it represents a common technique that uses zero-padding in the case of heterogeneous
packet sizes (see Figure 4.1). Since it operates on a packet-level instead of an MS level,
zero-padding is treated as payload, which results in the network carrying useless padded
data that obviously limits the benefits from RLNC.

4.2.3.1 Data Transmitted

In the following, we consider the evaluation of the total payload transmitted for different
schemes including the ones introduced in this chapter, using the example in Figure 4.1
and H.265 (4K) video data frames from the online library of Arizona State University [13].
We note that “Prog. Sho.” refers to the progressive shortening, “Min. Size” refers to
the Min-sized last coded packet, “Theo. bou.” refers to the theoretical bound obtained
when the linear dependencies due to the field size are discarded, “RLNC” refers to the
conventional RLNC, and “No coding” refers to the case where packets are simply being
forwarded without coding (e.g., traditional routing that does not achieve the network
capacity in general).

Basic schemes comparison We focus in this part on the decoding behavior and
the payload overhead (excess MS) of the various aforementioned schemes through the
previous example presented in Fig. 4.1. We run 104 encoding/decoding for each scheme,
assuming that there are no erasures and that 0 encoding vector is acceptable unlike
practical RLNC for an overall understanding.

87

Schemes q = 2 q = 24 q = 28 q = 216
Min. Size 8.206 6.133 6.007 6
Prog. Sho. 8.18 6.13 3.007 0

RLNC 11.6 10.069 10.004 10
No coding 0 0 0 0

Table 4.1: Average extra number of coded MS needed to decode a generation of N = 4
input packets (Λ1, Λ2, Λ3, Λ4) = (2, 5, 1, 2) [5].

The results in Table 4.1 show that our strategies require significantly less MSs on
average for decoding compared to the naive solution adopted for RLNC. For small
generations and small finite fields, both macro-symbol schemes perform similarly, since
the sender transmits enough full-sized redundant packets to ensure possible MS recovery
before the process of the output packet shortening starts. For this example, only two
extra full coded packets are needed for finite fields of size q = 2 and q = 24, whereas, one
redundant packet suffices for q = 28.

RLNC starts
decoding MS

Figure 4.8: Probability of decoding in terms of excess output MS to decode a generation
of N = 4 packets of lengths 2, 5, 1, 2 (the example in Figure 4.1) using progressive
shortening scheme [5].

Even though redundant packets were needed when using some Galois Fields, Figure 4.8
shows that decoding using “Prog. Sho.” can be finished with a probability close to one
even before RLNC packet recovery starts. Without neglecting the fact that minimum or
no prior payload overhead is created and transmitted, and the decoding cost in terms of

88

the size of the data processed for decoding, such an approach outperforms the RLNC
schemes when managing unequally-sized packets.

(a) CDF for a finite field size set to q = 2

(b) CDF for a finite field size set to q = 216

Figure 4.9: CDF comparison of the number of coded MS used in decoding H.265 (4K)
video generations in each scheme, where N = 16, and µ = 10 [5].

89

Video Frames We employ the MS RLNC schemes on a portion of 1600 original frames
of the H.265 (4K) video trace from Table 3.1. The fragmentation to the MTU size
resulted in 9952 packets with 82% of the packets being equal to 1500 bytes, which leaves
a maximum expected gain in terms of padding overhead to be around 18% [5].

Figure 4.9 illustrates the CDF of the number of macro-symbols needed for decoding
the portion of the H.265 (4k) video trace used for the specific finite fields GF(2) and
GF(216), when a set of coding schemes are adopted. The generation size for the schemes
that require coding is set to N = 16, and the macro-symbol size is µ = 10. We observe
that the conventional RLNC performs the worst, as the number of macro-symbols
needed before finishing decoding the entire portion of the trace is larger compared to the
remaining schemes. This is due to the practice of padding in RLNC, where this trailing
data is counted as payload. Additionally, the min-sized last coded packet policy is slightly
better than RLNC because of the shorter coded packets sent at the end of the generation
transmission with size Λmin = min

1⩽i⩽N
Λi.

On the other hand, the impact of the field size choice is noticeable between Figure 4.9a
and Figure 4.9b. For instance, the progressive shortening scheme is capable of recovering
around 2000 macro-symbols with a probability around 0.42 for GF(216), whereas this
probability drops to around 0.08 with the small finite field GF(2). This difference is
legitimate as the progressive shortening scheme inherits most of the RLNC features
and weaknesses, including its sensitivity to the used field size. As a matter of fact,
the progressive shortening scheme compensates for the linear dependencies or losses in
general by simply sending more full-length coded packets, which unfortunately degrades
its performance to the level which approaches the performance obtained with conventional
RLNC. For such a small macro-symbol size, the trailing zeros that need to be filled in
the last macro-symbols of a packet are considered as outliers.

Furthermore, Figure 4.9b shows that the performance with the progressive shortening
coincides with the “No coding” scheme. This means that in the absence of linear
dependencies, and the padding overhead resulting from the macro-symbol design is
minimal, etc., the proposed macro-symbol scheme not only generates unequal-sized coded
packets that match the size of the source packets but also dramatically reduces the
padding-overhead created with generation-based RLNC.

4.2.3.2 Throughput

For the evaluation, we keep using a real-life trace transmission obtained from CAIDA.
The trace contains over 12 · 103 packets from unidirectional flows between a sender and a

90

receiver. We propose to evaluate the throughput and the payload delivery efficiency using
our implemented progressive shortening scheme in the Kodo library, which is known for
providing conventional RLNC and all its features. We note that we only use GF(28), i.e.,
we manipulate bytes only, without loss of generality to other finite fields, including our
implementation for GF(2).

In computer networks, the throughput is the rate at which packets are successfully
transmitted on a specific channel. We believe that the throughput is a metric of
complexity, which gives additional insight into our analytical evaluation of the encoding
and decoding computational complexities. In particular, it evaluates the rate at which
the sender produces network coded packets and the receiver decodes them. For instance,
for a given generation gi ∈ G, where G is the complete set of N size network coding
generations of a transmission session [6]:

θ(gi) = N−1
N∑

j=1
||f(yj)|| · ∆t−1

j (4.13)

is the throughput of gi, where yj ∈ gi is the input (coded) packet, and f(y) is the network
coding (decoding) function. ||f(yj)||, in turn, represents the length of a given coded
packet yj, and ∆tj is the elapsed time for the whole coding (decoding) process.

To account for the encoder producing enough coded packets in the presence of losses,
Eq. 4.13 is modified as follows [6]:

θε(gi) = 1
2

θ(gi) + (K − N)−1
(K−N)∑

j=N

||f(yj)|| · ∆t−1
j

 , (4.14)

with K being the total number of encoded packets that depends on the expected loss
probability ε. The throughput of the entire system under ε loss probability is derived
as [6]:

Θε = (2 · |G|)−1
|G|∑
i=1

θε
e(gi) + θd(gi). (4.15)

θε
e(gi) and θd(gi) represent the encoding and decoding throughputs, respectively. |G|

is the sum of all generations considered. We note that we only consider the actual
coding/decoding operations to ascertain the complexity. Both procedures of the encoding
and decoding involve other steps, including choosing random coefficients, as well as
packet sorting. Nevertheless, they could be subject to more optimization effort that
would prevent obtaining an efficient evaluation of the coding mechanisms.

91

8 32 376 1500
Macro Symbol Size (byte)

0

50

100

150

200

250

T
h
ro
u
gh
p
u
t
(M

B
/s
)

Encoder G=8

Encoder G=32

Encoder G=128

Decoder G=8

Decoder G=32

Decoder G=128

Figure 4.10: Encoding and decoding throughput for different macro-symbols µ.

“Because the throughput metric involves a time-based component, we dedicate a
separate computer, specifically the T470s ThinkPad from Lenovo, with an Intel i5-7200U
CPU of 2.5 GHz base frequency, 32–256–3072 Kb L1, L2, and L3 cache sizes respectively.
We utilized a bare minimum installation of the Linux Mint 18.3 64-bit operating system,
which is based on Ubuntu 16.04, and disabled the graphical shell and network functionality
to ensure that the measurements have the same run-time conditions” [6].

Figure 4.10 shows the impact of the macro-symbol size µ , as well as the generation
size on the throughput. We observe that the larger µ and the smaller N become, the
higher the throughput gets, which can reach up to ∼ 170MB/s for µ = 376 and N = 8.
As for µ = 1500, this is simply the case of using RLNC full-size packets, i.e., one packet
is equivalent to one macro-symbol. Nevertheless, a larger µ does not solve the problem of
the padding overhead meticulously. Consequently, we need to tune N and µ in a way that
keeps a balanced tradeoff between zero-padding overhead and throughput (depending on
the network requirements).

For closer insights, Figure 4.11 shows the average throughput of encoding and decoding
for the standard RLNC and the progressive shortening as a function of the generation
size N . As expected, the throughput is inversely proportional to the generation size (N),
because the computational complexities are mainly led by the factor N . Moreover, we

92

8 16 32 64 128
Generation Size

0

100

200

300

400

T
h

ro
u

gh
p

u
t

(M
B

/s
)

Encoder RLNC

Decoder RLNC

Encoder Progressive Shortening

Decoder Progressive Shortening

Figure 4.11: Encoding and decoding throughput of progressive shortening with µ = 32,
and conventional RLNC for different generation sizes [6].

notice a similar encoding performance for both schemes, but a lower decoding throughput
for the progressive shortening, which is a good match with the results in [31]. Note that
this scheme’s implementation lacks a parallelization between macro-symbol decoders
as they are agnostic to one another. The enhancement of this is a part of our ongoing
efforts.

4.2.3.3 Payload Delivery Efficiency

We evaluate the payload delivery efficiency in order to confirm the gain of the shortened
transmissions using the metric E that is defined as the ratio between the entire data
received in bytes at the destination, without accounting for the errors and losses through
the transmission, and the total data in bytes that was actually transmitted by the sender,
including the redundant packets. E is expressed as:

E = Rx

Tx
. (4.16)

Table 4.2 showcases the payload efficiency advantage of using the progressive shortening
scheme over conventional RLNC. We find that the scheme’s efficiency is enhanced and
clearly outperforms standard RLNC, referred to as the case with µ = 1500, for all the
generation sizes considered. As we anticipated, the largest gains are obtained when larger

93

Table 4.2: Payload delivery efficiency E of the progressive shortening scheme for different
generation sizes N and macro-symbol sizes µ, in a loss-free point-to-point communication
session.

µ
N 8 16 32 64 128

8 95.97% 96.03% 96.04% 96.05% 96.06%

32 95.86% 95.88% 95.92% 95.92% 95.93%

376 94.15% 94.21% 94.24% 94.26% 94.27%

1500 88.61% 88.64% 88.65% 88.65% 88.66%

generation sizes and smaller macro-symbol sizes are employed. The macro-symbols have
the finest control and granularity, and they adapt to even the smallest changes in packet
lengths. We note that the gain in efficiency is contrasted by the complexity of solving
different sub-decoders with high generation sizes, as we previously showed in Figure 4.11.
Moreover, the progressive shortening scheme’s efficiency reaches only 0.95 for N = 128
because we still carry a small portion of zero-padding overhead (see Eq. 4.4).

4.2.4 Recoding

The design of the progressive shortening scheme allows natural preservation of the salient
features of standard RLNC, including recoding. As reviewed in Chapter 2, the recoding
procedure in RLNC happens in a way that the coded payload and the newly drawn
random coefficients are combined with the previous ones that are already provided by the
coded packet to recode. On the other hand, we proved in Chapter 3 that the problem of
the padding overhead is aggravated with RLNC when transmitting coded unequal-packets
via a wireless mesh network, and showed that it increases linearly with the number of
hops. This padding overhead, along with the losses on the links, will in turn cause a
decline in throughput. In the remaining part of the chapter, we analytically characterize
the expected padding overhead of the progressive shortening scheme and compare it
through numerical results to the overhead generated with RLNC. We also note that this
part was mainly published in [6].

94

4.2.4.1 Characterization

It is a fact that progressive shortening needs to be accompanied by a policy that counters
the occurring losses, corruptions, or linear dependencies among the coded packets. The
simplest and most convenient way is to simply send extra full-length coded packets once
the transmission with the progressive shortening scheme is done. As such, it wrongly
appears that recoding the newly created batch of coded packets will result in changed
length distribution of the recoded packets. However, as the original packet sizes are
carried along with the coding coefficients on the coding vector, the task of determining
the packet sizes resulting from recoding becomes trivial. Accordingly, the recoder checks
within one of the coded packets (if multiple coded packets carry the sizes) in order to learn
about the mechanism to adapt when generating new coded packets with sizes matching
the lengths of the original ones [6]. This feature of generation healing during recoding is
also performed with standard RLNC. The difference resides in the fact that standard
RLNC is naively transmitting the padding overhead over and over while maintaining the
generation size to a fixed size N . Under perfect conditions, and the progressive shortening
can intervene in eliminating the padding overhead that it needs to carry during one
transmission due to redundancy, aside from updating the generation size to N for the
following recoding step.

Figure 4.12 illustrates that receiving coded packets with sizes not matching the
numbers carried on the encoding vector does not prevent the recoder from generating
coded packets following the length distribution of the original packets. Even in the
presence of losses, the padding overhead is compensated for in the next transmissions.
In this example, macro-symbols c13 and c14 are of degree ∆3 = ∆4 = 1, as they result
from the multiplication of the original macro-symbols s23 and s24, respectively. The
recoder can therefore easily detect that c53, c54, c63, and c64 are just redundant coded
macro-symbols. With this large choice of coded macro-symbols for recoding, we simply
opt for sticking with the first occurring coded macro-symbols at ∆3 and ∆4. Thus r14

and r15 are coded copies of c13 and c14 respectively.

4.2.4.2 Expected Padding Overhead

It is important to note that the padding overhead is highly dependent on the size of
the coded packets that are lost in the transmission. Due to the fact that we usually use
the policy of compensation with full-length coded packets, a padding overhead could be
generated in the case of smaller coded packet loss. The example in Figure 4.13 showcases

95

S11
P1

P3

S42S41

P2

S31

C1

(a)

S21 S23

P4

C3

C4

S22 S24 C2

C13C12C11

C31

(b)

C41

C21 C22

C14

S R D

(c)

R1

R3

R4

R2

R13R12R11

R31

R41

R21 R22

R14

C5 C53C52C51 C54

C6 C63C62C61 C64

𝜖

Figure 4.12: Recoding of the shortening scheme in the case of losses; (a) a generation of
N = 4 unequal packets, (b) two short coded packets are lost with a loss probability ϵ,
but compensated with two full-length packets, (c) the recoder generates coded packets
with length distribution matching the length distribution of the original ones in (a). [6].

C1

C3

C4

C2

C13C12C11

C31

C41

C21 C22

C14

C5 C53C52C51 C54

C1

C3

C4

C2

C13C12C11

C31

C41

C21 C22

C14

C5 C53C52C51 C54

C1

C3

C4

C2

C13C12C11

C31

C41

C21 C22

C14

C5 C53C52C51 C54

(a) Effective packets
sent

(b) No padding
overhead

(c) C52,C53 and C54
account for padding
overhead

redundancy

Figure 4.13: Example of a coded generation where one random packet is lost; (a) the
redundant packet matches the missing data and is not counted as overhead, (b) the
redundant packet is larger and the difference is overhead [6].

96

two different situations with different coded packets being lost, where the size of the lost
packet determines whether we are transmitting padding overhead or not. Ideally, as is
the case in Figure 4.13.a, if the lost packet is a full-length packet, e.g., C1, then the extra
coded packet C5 sent as compensation does not account for padding overhead. However,
in Figure 4.13.b, 3/4 of C5 size is padding overhead.

Nevertheless, the interesting capability of the progressive shortening scheme to heal a
generation allows it to stop the propagation of this padding overhead, unlike what we
previously showed analytically and through simulations for RLNC in Chapter 3. It is
therefore appealing to characterize the expected padding overhead of a generation of N

packets transported through an ℓ-hop network. We denote the expected overhead with
one hop being considered by E[O], where χi ∈ J0 ; σK is the number of possible coded
packets (among the first N transmissions, i.e., non-redundant packets) which might be
lost due to the loss probability εi, with σ ∈ J0 ; NK. This is expressed as follows [6]:

E[O] =
N∑

χi=0
E[O|X = χi] · P(X = χi), (4.17)

where χi = 0 accounts for the case where no losses occur. P(X = χi) is the probability
of delivery of N packets, knowing that χi coded packets were lost, and defined by:

P(X = χi) =
(

N

χi

)
εχi

i (1 − εi)N−χi . (4.18)

We denote J (χi) = {J (χi)
1 , · · · , J (χi)

r , · · · , J (χi)
|J (χi)|} as the set of indices of packets that

could be lost due to the loss rate at the ith hop, i.e., the tuples (here seen as sets) resulting
in the combination of N packets among χi. Thus, J (χi)

1 ̸= J (χi)
2 ̸= · · · ̸= J (χi)

r ̸= · · · ̸=
J (χi)

|J (χi)|, and |J (χi)| = Card(J (xi)) =
(

N
χi

)
. As for J (χi)

r , r ∈ {1, · · · , |J (χi)|}, it is a
sub-set of J (χi), defined as:

J (χi)
r = {(α1, α2, · · · , αχi

) : αj ⩾ αj−1, j ∈ {2, · · · , N}}. (4.19)

Let O(J (χi)) be the amount of the possible overhead (in macro-symbols), which is created
due to loss rate εi, during one single transmission:

O(J (χi)) =
|J (χi)|∑

n=1

χiΛmax −
∑

a∈J (χi)
n

Λa

 . (4.20)

Therefore, the expected overall overhead, knowing that χi losses could occur is defined

97

as:
E[O|X = χi] = O(J (χi)) · χi

|J (χi)|
. (4.21)

Consequently,

E[O] =
N∑

χi=0
E[O|X = χi] · P(X = χi) (4.22)

=
N∑

χi=0

(
N

χi

)
εχi

i (1 − εi)N−χi (4.23)

.

|J (χi)|∑
n=1

χiΛmax −
∑

a∈J (χi)
n

Λa


 1

|J (χi)|
. (4.24)

For an ℓ-hop network, the expected overhead that is carried hop-by-hop until the
destination is reached is defined by E[Oℓ] as follows:

E[Oℓ] =
ℓ∑

i=1

N∑
χi=0

E[O|X = χi] · P(X = χi) (4.25)

=
ℓ∑

i=1

N∑
xi=0

(
N

xi

)
εχi

i (1 − εi)N−χi (4.26)

.

|J (χi)|∑
n=1

χiΛmax −
∑

a∈J (χi)
n

Λa


 1

|J (χi)|
. (4.27)

4.2.4.3 Numerical Results

Figure 4.14 depicts the size of the padding overhead, in megabyte (Mb), generated
when using conventional RLNC and the progressive shortening scheme as a function
of the number of hops (ℓ) within a network. As expected, the conventional RLNC’s
padding overhead is not only larger than the proposed scheme, but it increases linearly
with the number of hops, whereas the padding overhead of the other scheme does not
simply increase. We remind that we designed the progressive shortening to encounter the
padding overhead, but by nature of its design it cannot always eliminate the overhead,
and in this example, it is around 34 Mb. These results complement Figure 3.11 in showing
that the progressive shortening scheme is capable of stopping the padding overhead from
propagating when the network consists of more hops. For instance, the padding overhead
reaches 68 Mb for ℓ = 8 and 37 Mb for ℓ = 1, but it remains almost unchanged for the
progressive shortening scheme and is around 34 Mb for all ℓ ∈ J1 ; 8K.

98

1 2 3 4 5 6 7 8
Number of Hops

35

40

45

50

55

60

O
ve

rh
ea

d
(M

b
)

RLNC Progressive Shortening

Figure 4.14: Overhead in ℓ-hops.

Based on the extensive statistical study in [3] using real-life TCP traces from [153]
in a typical generation of size of N = 50 around 80 % of the transmitted data contains
zero-padding overhead [3]. In a practical example, a Variable Bit Rate (VBR) video (the
video trace employing the CIF video codec) would, for example, transmit more than
200 % overhead in extra (per generation) when coding is applied to it. The effect could
even deteriorate more with large topologies, e.g., line networks, where the aforementioned
overhead will be carried over and over within every single link, resulting in humongous
bandwidth consumption.

Figure 4.15 depicts the percentage of maximum padding overhead generated due to
the scheme design and the packet losses occurring due to channel imperfections. This
percentage is obtained using the ratio of the transmitted overhead by the actual data to
send per hop. At first glance, we expectedly notice that the RLNC percentage of overhead
is ten times larger than that of the progressive shortening for a single lossy hop. It
naturally follows that this percentage is held if the same losses, εi = 0.4, ∀i ∈ {1, · · · , ℓ},
occur at the next hops. As for the case where one link is lossy, e.g., ε1 = 0.4, we observe
that the RLNC overhead percentage decays fast (hop-by-hop) whilst it slightly drops
from 8.3% to almost 2% for the progressive shortening. We conclude that the penalty of
RLNC’s padding overhead becomes more serious as the number of hops increases in the
network. Interestingly, both schemes can heal a generation for the next hop, nevertheless,
traditional RLNC is not equipped to compensate for overhead stemming from padding.

99

1 2 3 4 5 6 7 8
Number of Hops

0

20

40

60

80

100

O
ve

rh
ea

d
(%

)

RLNC, ε1 = 0.4

RLNC, εi = 0.4 ∀i
Progressive Shortening, ε1 = 0.4

Progressive Shortening, εi = 0.4 ∀i

Figure 4.15: Percentage of worst case padding overhead in a network with ℓ-hops, where
µ = 8, N = 32, εi = 0.4 , ∀i ∈ J1 ; 8K [6].

4.2.5 Progressive Shortening and Robust Header Compression version
2 (RoHCv2)

In order to show the benefits of the progressive shortening scheme over the conventional
RLNC, we propose to combine our scheme with a protocol header compression. Our
goal is to further decrease the transmission overhead by applying the RoHCv2 [180].
According to [181], header compression techniques, as their name suggests, allow reducing
the amount of data transmitted, mainly the packet header overhead, which results in
energy savings especially for power-constrained devices such as sensors. In the following,
we provide a general RoHCv2 overview along with the performance evaluation of the
combination’s efficiency.

4.2.5.1 Overview of RoHCv2

Header compression is a source coding technique that reduces the size of individual packet
headers. The compression itself relies on the exploitation of header field progression
characteristics between consecutive packets. As an example, IP addresses commonly stay
constant during the transmission of a specific stream, and the RTP timestamp increases
by a constant delta from packet to packet. Such characteristics can be utilized to reduce

100

the size of the individual headers. It has been shown that Robust Header Compression can
effectively guarantee 80-90 % header compression gain even on unreliable channels [182].

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

H
ea

de
r S

ize
 (b

yt
e)

Packet Index

RTP

ir

uor_2

r_1
uor_2

ir

co_common

pt_0_crc3 pt_1_rnd

uncompressed
RoHCv1
RoHCv2

Figure 4.16: RoHCv1 [6].

However, the presence of channel losses, as well as multiple compressed streams,
will inevitably lead to the generation of compressed headers with sizes ranging between
1 to 40 or more bytes (assuming RTP/UDP/IPv4 encapsulation). Even if the logical
payload (data that is not compressed and is located after the headers) is expected to
have a constant length over multiple packets, the presence of header compression would
result in the transmission of compressed packets with various sizes. As an example,
Figure 4.16 shows a comparison of packet header sizes and types generated during the
compression of an RTP/UDP/IPv4 stream with Robust Header Compression version
1 and 2. In this case, even without the presence of packet losses, both compression
standards produce compressed packets with sizes that differ either by a single byte or by
at least five bytes between packets, even though the original header had a constant length.
However, when the compressor is recovering from decompressor context desynchronization
or preemptively generates redundant updates, this difference is further accented by even
larger compressed packet headers.

4.2.5.2 Efficiency of the Joint Combination

In order to ascertain the efficiency of the joint combination of the progressive shortening
scheme and the RoHCv2, we use header compressed streams based on UDP traces
obtained from CAIDA. We assume for the operation of the RoHCv2, that the receiver

101

delivers the decoded packets in order, and that sufficient redundant coded packets are
sent within every generation, to assure the delivery to the decompressor. This enables
the header compression, in turn, to function on a unidirectional mode with minimal
requirements for robustness. As such, we guarantee to achieve the highest compression
gain for header compression. As a matter of fact, we set the optimistic repetition count
to 0 and the unimode timeout to 103. On the other hand, as the complete harmonization
of header compression and RLNC is a part of our ongoing work, they both operate
independently from one another, and the header compression operation is encapsulated
by the network coding process.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Loss Probability

0.0

0.2

0.4

0.6

0.8

1.0

E
ffi

ce
n

cy

IP

RoHCv2

RoHCv2 + Progressive Shortening

RoHCv2 + RLNC

Figure 4.17: Network coding payload delivery efficiency for IP, RoHCv2, RLNC and
progressive shortening for a UPD stream over simulated uncorrelated losses [6].

Figure 4.17 depicts the payload delivery efficiency as a function of the loss probability
when different mechanisms are employed on a UDP stream with uncorrelated losses.
We observe a gain for an artificial hard-to-compress RTP/UDP/IP stream, based on
the features considered in [183]. RoHCv2 is about 20 % more efficient compared to the
baseline IP. Additionally, conventional network coding when boosted with RoHCv2 still
performs lower than the IP. Nevertheless, the combination of progressive shortening
and RoHCv2 surprisingly produces better efficiency than the standard RLNC. This is
explained by the considerable reduction of the padding overhead, which would normally
hinder the gains from the header compression adoption. Moreover, the efficiency of
RoHCv2 represents the maximum attainable gains. We note that dynamic configuration

102

should be adopted when more robustness is required [183,184].

4.3 Conclusions
This chapter was dedicated to the design of the progressive shortening scheme that aims
to handle the heterogeneity of real data packets, as well as the padding overhead created
with linear coding techniques, e.g., RLNC. This approach relies on macro-symbols, which
are subsets of the packets allowing to drastically reduce the padding overhead compared
to RLNC. We stress that progressive shortening has an exclusive and alluring ability in
generating unequal-sized coded packets.

Furthermore, we promote progressive shortening as a fully-fledged network coding
technique that inherits all the RLNC features, including recoding that enables intermedi-
ate nodes to be engaged and no longer passive entities. Our numerical results in a line
network show that our scheme is capable of recovering a recoded generation without
propagating the padding overhead, resulting from excess transmissions in lossy networks,
unlike standard RLNC. Moreover, combining the progressive shortening scheme and
the RoHCv2 yields a 20% higher payload delivery efficiency compared to the standard
RLNC.

Despite the fact that the progressive shortening scheme fulfilled its task in reducing
the padding overhead of real-life packets coding using conventional RLNC, it did not
exploit these gaps on which it was operating to reduce the number of coded packets
transmitted. In chapter 5, we introduce other macro-symbol-based RLNC schemes that
reduce the number of coded packets needed compared to the original generation size
whenever variable-sized packets are to be coded.

103

104

Chapter 5 |
Shifting-Based Approaches

In this chapter, we advocate for novel approaches for macro-symbol-based RLNC that
mainly rely on an RLNC compatible pre-coding stage, consisting of shifting the packets
before performing macro-symbol encoding. The idea originated from the fact that the
progressive shortening approach was not able to take advantage of the length distribution
of the packets to encode in decreasing the number of coded packets it generates. We
observed that the padding locations in shorter packets could be adequately exploited to
effectively reduce the number of coded packets needed to decode a generation. Our random
and deterministic shifting-based schemes allow the variation in the degree distribution
of the macro-symbols corresponding to specific columns. The task is, therefore, to
leverage the zero-padding-reduced feature of macro-symbol-based schemes, while reducing
the decoding latency of the scheme. This means that each individual macro-symbol
can be decoded using less coded packets. We analytically derive an exact decoding
probability of our schemes and validate it using simulation results. Additionally, we make
a practical implementation and perform an extensive evaluation using our benchmark
video traces, including a multi-hop performance with intermediate nodes performing
recoding operations and processing speed of the enhanced decoders. Furthermore, we
provide a full performance comparison of all the RLNC related schemes that we are
aware of for overcoming the padding overhead issue.

The second part of this chapter introduces another macro-symbol and shifting-based
scheme, called Random Shift and XOR (RaSOR), which does not employ any coding
coefficients, but simply performs XORing operations over the shifted macro-symbols
for encoding and decoding. This approach is characterized by generating less coded
packets compared to the original generation size for unequal-sized packets, as well as
linear encoding and decoding complexities, which could promote macro-symbol coding
for power-constrained devices. Finally, we note that the material for this chapter has

105

been previously published, mainly in [4, 30].

5.1 Shifting-Based MS RLNC

The design of the progressive shortening forced the leftmost column of original macro-
symbols to have a degree ∆1 = N , as shown in Figure 4.6, with a possibility that more
columns have a degree N . Despite the flexibility that the macro-symbol concept gives
for handling the encoding and decoding of variable-sized packets, this scheme’s design
poses a critical aspect for decoding, since at least N packets are required to recover
these sets of original N combined macro-symbols. If the longest column of the original
macro-symbol is reduced, i.e., the maximum degree defined by max

1⩽λ⩽Λmax
∆λ, then the

number of macro-symbols combined with one another is reduced, which leads to the
reduction of the overall number of coded packets needed to decode a generation. Shifting
the packets is a cheap way to rearrange them in a way that reduces the maximum degree
of a generation. In the following, we present our shifting-based schemes and evaluate
their performance analytically, as well as through simulations.

This section proposes two simple mechanisms that judiciously exploit the packet
size heterogeneity to reduce the number of coded packets needed for decoding while
maintaining low encoding and decoding costs.

5.1.1 Design of Shifting MS RLNC Schemes

We introduce the pre-coding step of shifting and the macro-symbol-based approaches
for the variable-sized packets. As the shifting allows the redistribution of the degree of
coded macro-symbols for encoding and decoding.

5.1.1.1 Random Shifting

This pre-coding moves the original packet Pi from its original position using a random
offset to the right ϕi, drawn randomly from a uniform distribution over J0 ; Λmax − 1K.
As such, the original macro-symbol siλ, in the column position λ of the original packet i

is shifted to a higher column position, as depicted in Figure 5.1. The moving to a higher
indexed column position wraps around at column position Λmax, which means that the
macro-symbol siλ is moved to the column position λ + ϕn mod Λmax. The encoding
process of this scheme is similar to the general MS RLNC approaches that we explained
in Chapter 4, except for adding the shifts to the coded packet’s header.

106

P1

P3

P2

P’
1

(a)

P4

P’
3

P’
4

P’
2

(b)

1

3

2

2

Δmax=3Δ1=4

s11

s31

s21 s22 s23 s24 s25

s41 s42

s11

s31

s22s23 s24 s25 s21

s41 s42

 rand

C1

C2

(c)

c21 c22 c23 c24 c25

c11 c12 c13 c14 c15

C3 c31 c32 c33 c34 c35

Figure 5.1: Example of random shifting: (a) generation of N = 4 original packets with
unequal sizes; the maximum degree is max

1⩽λ⩽Λmax
∆λ = ∆1 = 4. (b) pre-coding: randomly

shifted packets before MS RLNC encoding; the shifting reduced the maximum degree to
max

1⩽λ⩽Λmax
∆rand

λ = ∆rand
max = 3 [4].

*

s23* s24 s25

Coding
Coefficients

cη1 cη2 cη3

Coded packet Cη

Coding
Coefficients

Packets
Lengths

cη4

Λ
m

ax

Coded MSs

0 0 0 2 0 0 0 0 0

Λ1

Contribution to the MS
decoding matrix when
packet Cη is received.

1

3

s11

s21

* s31

Right
Shifts

+

+

cη4

s22

s41

+
s42*

2

2 7

3

2

4

+

cη5 4 2 73 1 5 1 2 1 3 2 2

Shifts

4 0 0 0 2 0 0 0 0
0 0 0 0 0 2 3 7 0
0 2 0 0 0 0 0 0 7
0 0 2 0 0 0 0 0 0

Λ2 Λ3 Λ4P’
1

P’
2

P’
3

P’
4

Figure 5.2: Example of MS RLNC encoding after random shifting for generation size
N = 4 and maximum source packet size Λmax = 5 MSs with the eventual matrix expansion
of the encoding vector [4].

As these shifts are generated only once per the transmission of a generation, they are
communicated only once, similarly to the packet sizes. The encoding of the example in
Figure 5.1 is detailed in Figure 5.2.

The drawback of the random choice of the shifts is that we might end up by having
the maximum degree equal to the number of original packets N , max

1⩽λ⩽Λmax
∆rand

λ = N .

107

P1

P3

P2

P’
1

(a)

P4

P’
3

P’
4

P’
2

(b)

0

1

1

2

Δmax=2Δ1=4

s11

s31

s21 s22 s23 s24 s25

s41 s42

s11

s31

s25 s21 s22 s23 s24

s41 s42

 det

C1

C2

(c)

c21 s22 s23 s24 s25

c11 c12 c13 c14 c15

Figure 5.3: Deterministic shifting: (a) Generation of N = 4 source packets with unequal
sizes. (b) The deterministic shifting has reduced the maximum MS source degree to
∆det

max = 2 [4].

On the other hand, this scheme could have the advantage of supporting privacy and
security mechanisms in general. Altogether a deterministic approach to shifting definitely
minimizes the maximum number of original macro-symbols to be encoded.

5.1.1.2 Deterministic Shifting

This deterministic mechanism is inspired by the chain and fragmentation scheme [169],
where the original packets are consecutively chained to form a bulk data set, and then are
fragmented into equal packets based on a fragmentation size choice Fs. As we discussed in
Chapter 4 this approach mitigates the padding overhead but incurs substantial signaling
overhead. In order to avoid both the bulk of padding overhead and the signaling overhead,
we do neither fragment nor bundle the packets as we employ macro-symbols instead.

We deterministically right shift the original macro-symbols in a way that the successive
original packets essentially form a long chain, which continuously cycles through the
column positions 1, 2, . . . , Λmax, 1, 2, . . . Λmax, 1, 2, More specifically, we right shift the
first MS si,λ of source packet i into the column position following the position of the last
MS si−1,Λi−1 of the preceding source packet i − 1 after the right shifting of source packet
i − 1. Specifically, the first original packet P1 (i = 1) is not shifted by nature, i.e., the last
macro-symbol s1Λ1 of the first original packet stays in column position Λ1 corresponding
to the length (in MSs) of the packet i = 1. The first macro-symbol of the second packet
P2, i.e., macro-symbol s21 is right shifted into the position immediately to the right of
column position Λ1, i.e., into position Λ1 + 1 mod Λmax (where the mod Λmax accounts
for the wrap-around). Then, the other MSs of source packet i = 2 are placed successively

108

to the right (with wrap-around, if needed) of its first macro-symbol, as illustrated in the
second row of Figure 5.3. This right shifting continues for the subsequent source packets.
In the example in Figure 5.3, the last source MS of packet i = 2 is shifted into column
position 1; thus, the first MS s31 of packet i = 3 is right shifted into column position 2,
and so on.

The chaining of the original packet through the right shifting effectively creates
one long chain with ∑N

i=1 Λn macro-symbols. This chain fills the column positions
1, 2, . . . , Λmax completely for a total of ⌊∑N

i=1 Λi/Λmax⌋ times and “spills” over (∑N
i=1 Λi/Λmax)

mod Λmax macro-symbols into the next row. Therefore, the maximum original macro-
symbol degree is [4]

∆det
max =

⌈
N∑

i=1
Λi

/
Λmax

⌉
. (5.1)

This maximum original macro-symbol degree ∆det
max constitutes a lower bound for the

expected number K of coded packets needed for decoding the generation of N source
packets at the destination, i.e., K ⩾ ∆det

max.
We note that the shifts do not need to be encapsulated into the header with the

deterministic shifting, as their values are deduced from the packet sizes, which are
carried in the packet header, as all the MS RLNC schemes. Both shifting schemes can
adopt two transmission policies. The first consists of transmitting K, K ≥ ∆rand/det

max ,
equal size coded packets η, η = 1, 2, . . . , K, each containing Φη = Λmax coded macro-
symbols. The second follows the min-sized last coded packet policy as described in
Chapter 4. It transmits ∆rand/det

max − 1 full-length coded packets followed by a “spill-over”
packet consisting of (∑N

i=1 Λi/Λmax) mod Λmax macro-symbols. For simplicity, we opt
for generating equal size coded packets following the first policy

5.1.1.3 Recoding

We note that the shifting of the source packets is a pre-coding step that occurs only at
the encoder. Recoding in the network does not affect the properties and performance
described from a receiver’s perspective. Recoding is oblivious of the pre-coding shifting
and will operate as in standard RLNC. However, as the shifting allows the reduction of the
generation size in general, the recoding is expected to maintain this number. As the coded
packets generated using the shifting schemes are full-size, it makes more sense to recode
the generation on the packet level instead of on the macro-symbol level to guarantee a
reduced computational complexity. Since RLNC, in general, is finite field-dependent,
therefore whether we multiply a coding coefficient by a set of macro-symbols that form a

109

packet or simply an entire packet, the result is the same as the multiplication operations
are performed on a symbol by symbol basis (e.g. a byte if q = 28 or a bit if q = 2).

5.1.2 Analytical Characterization of MS RLNC

We discuss the decoding delay of the macro-symbol based shifting schemes through the
decoding probability analysis, as well as the computational complexities of the encoding
and decoding operations.

5.1.2.1 Decoding Probability

We note that this part appeared in [4], and has not been edited for the sake of the clarity
of the analysis. “MS RLNC multiplies the coding coefficients αηi, i = 1, 2, . . . , N , with
the original macro-symbols in the column position λ (or the original macro-symbols
that have been shifted into the column position λ) in (packet) rows i to compute coded
macro-symbol cηλ. We define Aλ as the set of coding coefficients that are actually involved
in the computation of coded macro-symbol cηλ, i.e., the coefficients that have encountered
an actual original macro-symbol, and we define these coding coefficients as actual coding
coefficients. We denote aλ = |Aλ| for the number of actual coding coefficients involved
in computing coded symbol cηλ. Furthermore, we define aℓλ = |Aλ ∩ (⋃

1≤ℓ<λ
Aℓ)| as the

number of actual coding coefficients that were involved in computing coded symbol cηλ

and in computing any of the preceding coded symbols cηℓ, 1 ≤ ℓ < λ, in the considered
coded packet η. For instance, in the example in Figure 5.3, a1 = 2, a2 = 2, and aℓ2 = 1.

We define E
(K)
λ , λ = 1, 2, . . . , Λmax, as the event of decoding the ∆det

λ coded MSs in
column position λ after the receipt of the K-th coded packet (see Figure 5.4). The event
E

(K)
1 of decoding the coded MSs in column position λ = 1, and the event E

(K)
2 for column

position λ = 2, and so on, up to and including the event E
(K)
Λmax

for column position
λ = Λmax all joined together correspond to the event of decoding the entire generation,
i.e., the complete set of N (shifted) source symbols after the receipt of coded packet K

Thus, the probability of decoding the generation with K received coded packets is

P
(K)
dec = P

 ⋂
1≤λ≤Λmax

E
(K)
λ

 . (5.2)

For conventional packet based RLNC with GF(q), N source packets are decoded after

110

P’
1

P’
3

P’
4

P’
2

α1
(i)

α2
(i)

α3
(i)

α4
(i)

{α1
(i),α2

(i)} {α2
(i),α3

(i)} {α2
(i),α4

(i)} {α2
(i),α4

(i)} {α2
(i)}

Figure 5.4: Example illustrating the determination of the set of coding coefficients that
Aλ are actually involved in the computation of each coded macro-symbol at the column
position λ ∈ J1 ; ΛmaxK.

the receipt of K, K ≥ N , coded packets with probability [82,83]:

N−1∏
i=0

(
1 − 1

q(K−n)

)
. (5.3)

In MS RLNC, there are ∆1 macro-symbols in column position λ = 1, which were encoded
with a1 = ∆1 actual coding coefficients. Replacing N in Eq. (5.3) with a1 gives the
probability for decoding these a1 = ∆1 macro-symbols from K, K ≥ ∆max, received
coded packets, i.e.,

P
(
E

(K)
1

)
=

a1−1∏
n=0

(
1 − 1

q(K−n)

)
. (5.4)

We proceed to evaluate the probability of decoding column 1 (event E
(K)
1) and column

2 (event E
(K)
2) with the conditional probability of decoding column 2 given that column 1

has already been decoded, i.e., we evaluate P
(
E

(K)
1 ∩ E

(K)
2

)
= P

(
E

(K)
1

)
· P
(
E

(K)
2 |E(K)

1

)
.

The ∆2 MSs in column position 2 have been encoded with a2 actual coding coefficients.
However, aℓ2 of these actual coding coefficients have been involved in the coding of the
MSs in column 1, which have already been decoded. Thus, there are only a2 − aℓ2 new
coding coefficients that have not been involved in decoding the preceding columns. Thus,
only a2 − aℓ2 new coding coefficients need to effectively be considered in the decoding of
the present column. However, there are also effectively only K − (a2 − aℓ2) new received
coded packets available that have not been involved in the decoding of the preceding

111

columns. Hence, the conditional decoding probability is

P
(
E

(K)
2 |E(K)

1

)
=

a2−aℓ2−1∏
n=0

(
1 − 1

q(K−(a2−aℓ2)−n)

)
. (5.5)

Continuing this reasoning for the subsequent columns up to and including column
Λmax gives

P
(K)
dec = P

(
E

(K)
1

)
× · · · × P

E
(K)
Λmax

∣∣∣∣∣ ⋂
λ<Λmax

E
(K)
λ

 . (5.6)

Thus, with product notation,

P
(K)
dec =

Λmax∏
λ=1

P

E
(K)
λ

∣∣∣∣∣ ⋂
ν<λ

E(K)
ν

 , (5.7)

whereby, analogous to Eq. (5.5),

P

E
(K)
λ

∣∣∣∣∣ ⋂
ν<λ

E(K)
ν

 =
aλ−aℓλ−1∏

n=0

(
1 − 1

q(K−(aλ−aℓλ)−n)

)
. (5.8)

Therefore, combining Eqs. (5.7) and (5.8),

P
(K)
dec =

Λmax∏
λ=1

aλ−aℓλ−1∏
n=0

(
1 − 1

q(K−(aλ−aℓλ)−n)

)
. (5.9)

” [4].

5.1.2.2 Numerical Verifications

We investigate the decoding probability related to the example given in Figure 4.1 as
a function of the number of coded packets needed in excess of ∆det

max, which represents
the optimal performance, as well as the finite field choice. We run 104 simulations for
every scheme (without considering packet losses) in order to exclusively focus on the code
structure of this stage. The benefits of needing fewer packets to decode are compounded
when losses are introduced into the system. Figure 5.5 displays a perfect matching
between the analytical results and our encoding/decoding shifting schemes, with a minor
difference of the order of 10−3. For instance, around 10% of the generation is decoded
after two transmissions K = 2 for the deterministic, thus we approve the advocated

112

RLNC pkt
starts decoding

Figure 5.5: Probability of decoding for different finite fields in terms of number of coded
packets to recover the generation of N = 4 packets in Figure 4.1, where “det” refers to
the “deterministic shifting”, “rand” refers to the “random shifting”, and “theoretical”
refers to the analytical bounds.

probability of decoding P
(K)
dec .

5.1.2.3 Computational Complexity

The encoding complexities for the random shifting and the deterministic schemes are
similar to the encoding complexity of the previously discussed MS RLNC approaches in
Chapter 4. Thus, the overall encoding complexity is of the order

O(µΛmax∆rand/det
max). (5.10)

As for decoding, for each subsequent column λ, λ = 2, 3, . . . , Λmax, the decoding is
simplified if the set Aλ of actual coding coefficients for column λ is identical to one of
the sets of the actual coding coefficients for any of the preceding columns Aℓ, 1 ≤ ℓ < λ.
If Aλ = Aℓ for some prior column ℓ, 1 ≤ ℓ < λ, then only the final Gaussian elimination
step with complexity contribution O(∆2

λ) = O(N2) needs to be completed. Thus, in
the best case scenario when Aλ = A1 for all λ, λ = 2, 3, . . . , Λmax, the computational
complexity of MS RLNC decoding is

O(N3 + (Λmax − 1)N2) = O(N3). (5.11)

113

For instance, in the example in Figure 5.2, the complexity contribution is O(N3) for
column λ = 1 of the source symbols (on the left), or equivalently for the first row of
the decoding matrix (on the right). Similarly, column λ = 2 of the source symbols
(or equivalently the second row of the decoding matrix) incurs a decoding complexity
contribution O(N3). However, column λ = 3 of the source symbols (third row of the
decoding matrix) has the same coding coefficient (the four) as the preceding source
symbol column (row of the decoding matrix); thus incurring only a decoding complexity
of O(N2).

5.1.3 Performance Evaluation

We evaluate the random and deterministic shifting schemes through the number of coded
packets K needed to decode a generation of size N source packets. Our results are based
on a point-to-point topology as well as three-node topology to showcase the impact of
recoding on our proposed schemes.

5.1.3.1 In a Point-to-point Network

Figure 5.6 shows that on average, both schemes behave similarly. Independent of the
field size, the more a generation grows in size the less coded packets are required for
decoding compared to RLNC pkt (the conventional RLNC). For example, around 23% of
the overhead due to zero-padding is eliminated for N = 64, i.e., the overhead effect is
basically eliminated.

Figure 5.7 depicts the CDF of the VP9 (HD) trace’s portion using the shifting schemes
when q = 2 and q = 28. At first glance, we notice that decoding is achieved for both
schemes even before conventional RLNC starts with a probability close to one. We proved
that 30% of padding overhead results from performing RLNC on such a trace [3,4], is
not only extremely reduced but also the varying sizes were exploited intelligently. This
has allowed diminishing the number of received coded packets before decoding to K = 25
when using high field size, on the deterministic scheme with a probability close to 0.45,
and the random shifting scheme with a probability close to 0.24. Additionally, the gap
between the improvement brought by these schemes compared to RLNC is important
even for the binary field. Such optimization is, however, finite field-dependent like any
other RLNC strategy.

114

(a) q = 2

(b) q = 28

Figure 5.6: Comparison of the mean number of coded packets needed to decode a portion
of a VP9 (HD) video trace for different generation sizes using different finite fields, µ = 60
i.e. 25 macro-symbols per packet.

5.1.3.2 In Two-hop Network

To show the recoding capabilities of the system in a multihop setup and its ability to
decode in the presence of random losses, we simulated a two-hop network topology of a
sender, a relay, and a destination. Figure 5.8 shows the mean total number of packets
transferred by the system in the aforementioned setup in the presence of random losses
on both links when using the deterministic scheme and a traditional RLNC scheme. Each
link has an error probability, ϵ1 and ϵ2 correspondingly. For Figure 5.8 we fixed ϵ1 to 0.1,

115

0 5 10 15 20 25 30 35 40 45
K

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

det, q = 2

rand, q = 2

RLNC pkt, q = 2

det, q = 28

rand, q = 28

RLNC pkt, q = 28

Figure 5.7: CDF comparison of the number of coded packets needed to decode 16 × 103

packets from an FHD video trace for the finite fields sizes q = 2 and q = 28, N = 32 and
µ = 60, i.e., 25 MS per packet.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Packet error rate ε2

0

50

100

150

200

250

To
ta

lp
ac

ke
ts

se
nt

det
RLNC pkt

Figure 5.8: Mean total packets sent by the system in a two-hop topology in the presence
of errors with probabilities ϵ1 = 0.1 and ϵ2 correspondingly.

and varied the value of ϵ2 in the range {0.1, .., 0.8}, and set N = 32 for both schemes.
We notice that the mean total number of packets transferred over the network is lower in
our scheme than in the RLNC scheme. The reason for this is that an RLNC strategy

116

always needs to convey at least N packets to the destination. On the other hand, our
proposed scheme requires fewer packet transmissions per link.

5.2 Evaluation of Padding Overhead RLNC Approaches

We evaluate the performance of all state-of-the-art schemes, as well as our proposed
MS RLNC approaches against a naive adoption of the zero-padding as a solution to
eliminating the unequal-sized packets encoding and decoding issues in RLNC. We note
that based on the recommendations in [169], we set the largest packet size of the simple
bundling, and the fragmentation size of chaining and fragmentation to the largest packet
size Lmax of a given generation. To do so, we consider in the following the transmission
of excerpts of 16,000 video frames from the benchmark VP9 (HD) and the SVC (CIF)
video traces, see Chapter 3. Moreover, we set the macro-symbol size to µ = 60 bytes
based on the results in Chapter 4. This means that one macro-symbol corresponds to
480 bits or 60 symbols in GF(28).

The metrics considered in the following comparisons are the computational complexity,
padding overhead, and number of coded packets. For instance, we evaluate the overhead
percentage, which is the total amount of padding overhead (bytes) to the total amount of
data (bytes) that needs to be transmitted over an end-to-end network for each generation
consisting of N variable size packets. We report the overhead for all generations using
box plots for a complete and fairer comparison. Moreover, we evaluate the number of
coded packets K required to complete the RLNC decoding at the receiver of each of the
generations constituting the considered video trace portion. We report the K values for
the individual generations in box plots. The K values represent a delay measure, i.e.,
the total number of coded packet transmissions required to transport a generation of
video packets to the receiver. Finally, we remind that the results of this section appeared
first in [4].

5.2.1 Computational Complexity

The complexities of the MS RLNC schemes are summarized in Table 5.1 and are compared
to the existing approaches.

117

Table 5.1: Comparison of encoding and decoding complexity for a generation consisting of
N packets. The number of unknowns indicates the number of unknown elements during
RLNC decoding. The minimum number of coefficients indicates the minimum number
of coding coefficients required for RLNC decoding (in absence of linear dependencies of
coding coefficients and losses) [4].

Scheme # Unknowns Min. Encoding Decoding
coef

Conv. RLNC N N2 O(LmaxN2) O(N3)
Simple bundl. NSB N2

SB O(N2 + LmaxN2
SB) O(N3

SB)
Chain & Fragm. NCF N2

CF O(LmaxN2
CF) O(N3

CF)

Progr. short.
Λmax∑
λ=1

Λλ N2 O(µΛmax∆max) O(∆3
max) − O(Λmax∆3

max)

Random shift.
Λmax∑
λ=1

Λλ ∆rand
max

2 O(µΛmax∆rand
max) O(∆rand

max
3) − O(Λmax∆rand

max
3)

Det. shift.
Λmax∑
λ=1

Λλ ∆det
max

2 O(µΛmax∆det
max) O(∆det

max
3) − O(Λmax∆det

max
3)

5.2.2 Padding Overhead

Figure 5.9 illustrates in the form of box plots the padding overhead for the considered
generations, containing each N consecutive video packets. The box plots marked with
“MS” represent all the macro-symbol-based approaches that we proposed in this dis-
sertation because the macro-symbols create a fixed padding overhead regardless of the
scheme adopted. We note that the random shifting approach achieves similar results if
it is combined with a shortening policy. We remark that the macro-symbol approaches
generate significantly less padding overhead than the other considered schemes, namely,
chaining and fragmentation (CF) and simple bundling (Bund) for the small generation
sizes N = 4 and N = 8. This difference shrinks, however, as the generation sizes increase.
All the macro-symbol approaches as well as the ones proposed in [169] have similar
padding overhead, as is the case for N = 16. We note that we did not add the additional
evaluations for larger generation sizes to avoid clutter.

The bundling, as well as the chaining and fragmentation schemes encode equal packets
of size Lmax each. The zero-padding arises in chaining and fragmentation due to the
long chain of packets that have a cumulative length of ∑N

n=1 Ln, which is not necessarily
an integer multiple of Lmax. There are ⌊∑N

n=1 Ln/Lmax⌋ portions of size Lmax, and a
last one of size ∑N

n=1 Ln mod Lmax, which needs to be padded with Lmax − (∑N
n=1 Ln

mod Lmax) zero symbols before the encoding operations. The padding overhead is on
average Lmax/2 if we assume a uniform distribution of the size of the last portion size.

118

(a) SVC (CIF), N = 4 (b) SVC (CIF), N = 8 (c) SVC (CIF), N = 16

(d) VP9 (HD), N = 4 (e) VP9 (HD), N = 8 (f) VP9 (HD), N = 16

(g) H.265 (4k), N = 4 (h) H.265 (4k), N = 8 (i) H.265 (4k), N = 16

Figure 5.9: Box plot comparison of the padding overhead percentage for different
generation sizes N . Fixed parameters: GF(28), µ = 60 bytes, i.e., 25 MSs per packet [4].

Accordingly, the equivalent average padding overhead ratio is Lmax/(2∑N
n=1 Ln), which

is inversely proportional to the generation size N . We also note that decreasing the
fragmentation size Fs considerably compared with Lmax would lead to a spike in the
number of resulting packets. This is not a viable strategy as it simply increases the
number of coding coefficients required, thus the computational complexities, and the
energy consumption to communicate the coded packets. On the other hand, the padding
overhead percentage of the simple bundling approach is, similarly, inversely proportional
to the size of the generation N . “On the other hand, the macro-symbol approaches pad
every packet to an integer multiple of the macro-symbol size µ. If we assume that the
packet sizes are integer multiples of µ plus a “spill-over” part that is uniformly distributed
over µ, the average padding overhead is µ/2 per packet. The corresponding percentage

119

overhead is Nµ/(2∑N
n=1 Ln), which is independent of the generation size N” [4].

We remind that the deterministic shifting approach firstly pads the packets to an
integer number of macro-symbols, then shifts the resulting packets at the granularity
of macro-symbols, as explained earlier in this chapter. An alternative approach could
start by shifting the packets at the granularity of individual symbols (bits in GF(2)),
analogous to the chain and fragmentation approach. The shifted packets could be
afterward fragmented into macro-symbols (whereby a given MS may contain parts of
multiple packets) and encoded using macro-symbol RLNC. This alternative approach
guarantees that the only “spillover” into the last macro-symbol padded out to a full
macro-symbol occurs in the last row. This decreases the average padding overhead to µ/2
for the entire generation. With such an approach, one has to signal the packet sizes at the
granularity of symbols, thus needing up to N log2 Lmax bits for the generation, whereas
the deterministic shifting approach is only required to signal the packet lengths at the
granularity of macro-symbols, i.e., up to N log2 Λmax bits (the difference of N log2 µ bits
is considered negligible in most cases).

From Figure 5.9 we observe that the SVC (CIF) video requires higher padding
overhead generally compared to the VP9 (HD) video, for all the various padding reduction
techniques without an exception. This is because the SVC (CIF) video trace has a higher
probability of packet sizes below the MTU, unlike the VP9 (HD) video (as shown in
Chapter 3). We concluded in Chapter 3 that the padding overhead increases in general,
with the tendency for the video to have smaller packets. Additionally, we remark from
the previous results, as well as from Figure 5.9, that the padding overhead tends to
increase with a larger generation size N . We conclude, therefore, from this comparison
that the padding overhead reduction is considerably more critical when the generation
size is large. Nevertheless, the macro-symbol-based approaches are more effective than
the state-of-the-art approaches for small generation sizes N . Moreover, for moderate to
large generations, all of the schemes we discussed perform approximately similarly.

5.2.3 Number of Coded Packets

We evaluate using two-channel conditions, with and without losses to understand if
the losses could impact a specific scheme’s overall number of coded packets needed to
transmit. We maintain the same aforementioned settings.

120

(a) SVC (CIF), N = 4 (b) SVC (CIF), N = 8 (c) SVC (CIF), N = 16

(d) VP9 (HD), N = 4 (e) VP9 (HD), N = 8 (f) VP9 (HD), N = 16

(g) H.265 (4k), N = 4 (h) H.265 (4k), N = 8 (i) H.265 (4k), N = 16

Figure 5.10: Box plot comparison of the number K of coded packets needed to decode
the N packets in a generation. Fixed parameters: GF(28), µ = 60 bytes, i.e., 25 MSs per
packet, loss-free network link.

5.2.3.1 Without Packet Losses

Figure 5.10 and Figure 5.11 compare the box plots for the number of coded packets K

required to completely recover all the generations of size N formed from the portions of
video frames considered. Figure 5.10 illustrates the box plots for GF(28) for generation
sizes N ∈ {4, 8, 16}, whereas Figure 5.11 illustrates the box plots for GF(2) for N = 8.
We observe from both figures that standard RLNC and the progressive shortening scheme
require, on average, around K = N coded packets for GF(28), but slightly more coded
packets for GF(2). This is expected since the linear dependency among the coded packets
increases with smaller finite fields, which explains the extra coded packets beyond N that
are conveyed. However, we remind that although the standard RLNC and the progressive

121

(a) SVC (CIF)

(b) VP9 (HD)

(c) H.265 (4k)

Figure 5.11: Box plot comparison of the number K of coded packets for GF(2) needed
to decode the N = 8 packets in a generation. Fixed parameters: N = 8 generation size,
GF(2), µ = 60 bytes, i.e., 480 MSs per packet, loss-free network link.

shortening scheme transmit a similar number of coded packets, shorter packets require
fewer transmission resources compared to full-size packets.

Furthermore, we remark from Figure 5.10 and Figure 5.11 that the deterministic
shifting, as well as chaining and fragmentation, and bundling approaches tend to transmit

122

the least number of coded packets K. The random shifting scheme tends, in general, to
transmit slightly more coded packets, but this is still lower than the number of coded
packets of conventional RLNC. Specifically, we observe from Figure 5.10 that the third
quartiles of K for the deterministic shifting, as well as for chaining and fragmentation,
and bundling are lower than the number of original packets N themselves, mainly for VP9
(HD) for N = 16 and all SVC (CIF) scenarios. This shows that these novel approaches
can decode more than 75% of the generations before receiving N coded packets, whereas
N coded packets is the bare minimum required for standard RLNC to successfully decode
a generation. We also observe that the upper whiskers of K for the deterministic shifting,
for chaining and fragmentation, and for bundling approaches for VP9 (HD) with N = 16,
and for SVC (CIF) with N = 8 and 16 for GF(28) are at or below the minimum K values
for conventional RLNC. This means that these approaches enable the decoding of 90% of
the generations before conventional RLNC finishes decoding any generation. These lower
numbers of coded packets K required with the padding reduction approaches indicate
lower latencies for the network transport of the media packet generations.

These reductions in terms of the number of coded packets required are achieved
through the “packing” of the N variable size packets into fewer full-sized packets.
Particularly, these padding reduction schemes judiciously exploit the heterogeneous
packet sizes to “pack” the data belonging to one generation into fewer packets, which
are later used for RLNC encoding and transmission of newly designed generations. On
the other hand, the random shifting scheme packs the data somewhat less effectively
compared to the other approaches. This is mainly due to the fact that random shifting
does not always guarantee minimizing the length of the longest column to encode.

“Large generation sizes N and videos with a significant number of small packets
provide extensive opportunities for the “packing” of unequal size packets into fixed-size
packets. Therefore, we observe more pronounced reductions of the number K of required
coded packets for the SVC (CIF) video (with a substantial portion of small frames) than
for the VP9 (HD) video. Also, the large considered generation size of N = 16 exhibits
more pronounced reductions of K than the smaller N = 4 and 8 generation sizes. We
verified in additional evaluations that are not included to avoid clutter that generation
sizes above 16 further slightly increase the packing opportunities. For instance, for VP9
(HD) for N = 64 and GF(28) the upper (90%) whisker of K for deterministic shifting
MS RLNC is at 62” [4].

123

(a) SVC (CIF), GF(28) (b) SVC (CIF), GF(2)

(c) VP9 (HD), GF(28) (d) VP9 (HD), GF(2)

(e) H.265 (4k), GF(28) (f) H.265 (4k), GF(2)

Figure 5.12: Box plot comparison of the number of required coded packet transmissions
over a link with 20% packet loss to decode the N = 16 packets in a generation. Fixed
parameters: N = 16 generation size, µ = 60 bytes, i.e., 25 MSs per packet for GF(28)
and 480 MSs per packet for GF(2).

5.2.3.2 With Packet Losses

We present the results that are related to the number of coded packet transmissions over
a lossy link required to completely recover all the generations of N = 16 packets of the

124

benchmark video traces. The considered link drops 20% of the conveyed coded packets
independently at random. From Figure 5.12 we observe a similar performance behavior as
in Figure 5.10 and Figure 5.11 despite considering a loss-free network link. The padding
overhead reduction approaches continue to outperform the standard RLNC technique by
requiring fewer coded packet transmissions. Such results are expected since these schemes
are designed for preserving the RLNC features and mechanisms, including error correction.
Simple bundling, as well as chaining and fragmentation, are basically pre-processing steps,
which occur before the common RLNC encoding step at the sender’s side, and are simply
undone once decoding at the receiver is done. The progressive shortening approach makes,
by design, the last macro-symbols of longer packets more susceptible to losses, especially
when small finite fields are employed. This is because these last macro-symbols are less
involved in creating coded packets compared to other macro-symbol-based RLNC schemes,
which mainly generate full-length coded packets. The evaluation results displayed in
Figure 5.12 reveal that this vulnerability effect of the progressive shortening is somewhat
mild. We hardly notice a very slight increase in the median of the numbers of transmitted
packets compared to the conventional RLNC with GF(2). As for GF(28), we observe a
similarity in the medians of the progressive shortening and the standard RLNC. It is
also worth reminding from Figure 5.9 that progressive shortening remains a favorable
solution as it significantly reduces the padding overhead compared to conventional RLNC.
The deterministic and random shifting approaches mainly operate on full-length packets,
except for the last coded packet that has a size complying with the min-sized last coded
packet policy described in Chapter 4. Accordingly, these shifting approaches have nearly
similar packet decoding capabilities as the standard RLNC for any finite field considered.
The evaluation results in Figure 5.12 particularly confirm that the deterministic shifting
approach requires essentially the same low number of coded packets as the chaining and
fragmentation over lossy links, while it incurs either similar or slightly lower padding
overhead as previously shown in Figure 5.9.

When we closely compare Figure 5.12(a), (c), and (e) for the transmission over the
lossy network link with the corresponding Figure 5.10(c), (f), and (i) to the transmission
over the perfect network link, we notice that the losses slightly amplify the differences
between the standard RLNC and the padding reduction schemes. Specifically, for the VP9
(HD) video, the deterministic shifting, and the chaining and fragmentation approaches
have median K values of 14 compared to a median K value of 16 for standard RLNC in
Figure 5.10(f), but median K values of 17.49 and 17.45, respectively, compared to 20 for
the standard RLNC in Figure 5.12(c). Thes padding overhead reduction approaches are

125

known to “pack” the unequal-sized packets of a certain generation into fewer packets to
be communicated over a lossy network link. Transmitting fewer packets implies losing
fewer packets, thus fewer additional transmissions are required to be able to solve an
entire generation at the receiver. We conclude that the results in Figure 5.12 prove that
the padding reduction approaches are effectively capable of reducing the number of coded
packets to transmit over lossy network links compared to the standard RLNC, mainly
for videos that have small frames.

5.2.3.3 Discussion of the Schemes Comparison

“We have conducted an extensive performance evaluation of padding reduction approaches
with long traces of full-motion VBR video. We found that for small RLNC generation
sizes that are required for low-latency video transmission, the MS RLNC approach
with deterministic shifting reduces the padding overhead the most. For moderate to
large RLNC generation sizes that incur moderate to large network transport delays, the
chaining and fragmentation approach and the bundling approach of forming fixed-size
packets from variable size packets and MS RLNC with deterministic shifting effectively
reduce the padding overhead” [4]. We note that the extensively shifting of the original
packets before generating a new coded packet resulted in a slow down of the simulations
due to the very lengthy delays of decoding. That is why we decided not to include it
in the dissertation. However, we would like to look into it in the future to understand
the issue. This approach seems to increase the robustness of the code since we vary the
shifts and the coding coefficients with every coded packet. Finally, since the performance
of these shifting schemes is dependent on the used finite field, designing other schemes
that overcome this issue will be the core of the following section.

5.3 Random Shift and XOR (RaSOR)

We have demonstrated the bottleneck in conventional and macro-symbol RLNC tech-
niques, resulting from the cubic decoding computational complexity. This is prohibitive
for power-constrained devices, like sensors. As we are shifting the distributed computing
in IoT and mobile devices, the computational complexity along with the performance
have both become critical factors that play a crucial role in the choice of coding strategies.
Our idea is, therefore, to diminish the complexity of macro-symbol schemes, by simply not
using any coding coefficients. We propose RaSOR, a macro-symbol and shifting approach
that does not classify as RLNC based. This is the reason why we could not classify it

126

with the previous approaches. It is, namely, based on an extensive pre-coding step of
macro-symbol shifting, which is identical to the pre-coding of the random shifting scheme,
and then only XOR operations are directly performed on the columns λ of the newly
distributed macro-symbols. This approach could be easily and efficiently implemented
on hardware and could be considered as an efficient code for multicast and broadcast
transmissions, where recoding nodes are not needed. We note that the remaining of this
section has first appeared in [30].

5.3.1 RaSOR: Random Shift and XOR Scheme

Without loss of generality, we propose the unicast transmission of a generation consisting of
N original packets P1, P2, · · · , PN of sizes Λ1, Λ2, · · · , ΛN macro-symbols respectively [4].
The pre-coding step is exactly the same as the previously described pre-coding for the
random shifting (see Figure 5.1).

5.3.1.1 Encoding

This scheme has two modes for encoding, namely, random shift-and-XOR and systematic
encoding.

Random Shift-and-XOR Mode The encoding process is simply composed of two
phases, namely, a random shifting of the packets [4], then XORing the macro-symbols
available on the similar column λ. Normally, XORing does not work on its own as it either
needs additional coding coefficients or different unknowns to create linearly independent
elements. Scattering the macro-symbols at random before XORing creates possibilities
for an innovative coded macro-symbols generation. In a nutshell, the encoding process
consists of XORing vertically all macro-symbols that are shifted to the same position.
Intuitively, there are exactly Λmax coded macro-symbols to be stored in joint blocks
to form a new coded packet, as illustrated in Figure 5.13. The largest packet P2 has
Λmax = 5 macro-symbols. Shifting and then XORing the newly arranged macro-symbols
results in the coded packet Cη.

The coded macro-symbol cηλ, referring to the λ, macro-symbol of the coded packet
Cη is the result of XORing the shifted input macro-symbols. Formally,

cηλ =
⊕

1⩽i⩽N
1⩽l⩽Λi

silζil, (5.12)

127

S23 S24 S25

Cη1 Cη2 Cη3

Coded packet Cη

Packets
Lengths

L
m
ax

Coded MSs

0 0 0 1 0 0 0 0 0

Λ1

Contribution to the MS
decoding matrix when
packet Cη is received.

1

3

S11

S21

S31

Right
Shifts

⊕

⊕

Cη4

S22

S41

⊕

S42

2

2

⊕

Cη5 1 5 1 2 1 3 2 2

Shifts

1 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 0
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0

Λ2 Λ3 Λ4P’
1

P’
2

P’
3

P’
4

Figure 5.13: An example of the macro-symbol level encoding process after randomly
shifting the packets to produce C1, generation size N = 3, Λmax = 4.

where ζil is an indicator function that tells whether the input macro-symbol sil is involved
in generating the coded macro-symbol cηλ. ζil is defined as:

ζil =

 1 if l ∈ W (i)

0 else,
(5.13)

and W (i) = W
(i)
1 ∪ W

(i)
2 represents the set of all possible positions that a packet Pi could

take after applying the random offset ϕ
(i)
l , i = 1, 2, · · · , K, and

W
(l)
1 = {ϕ

(i)
l , · · · , (ϕ(i)

l + Λn)} when (ϕ(i)
l + Λn) mod Λmax = 0

W
(l)
2 = {ϕ

(i)
l , · · · , (ϕ(i)

l + Λn)} ∪ {1, · · · , (ϕ(i)
l + Λn − Λmax)}.

(5.14)

On the other hand, we denote by ∆ηλ the degree of the coded macro-symbol cηλ,
i.e., the number of original macro-symbols XORed together to obtain cηλ. It represents
the number of macro-symbols from different original packets put in a same position j,
thus encoded together, here using XOR wise operations, where 1 ⩽ ∆ηλ ⩽ N . Based on

128

Eq. 5.12, the number of packets with contribution in cηλ is:

∆ηλ =
∑

1⩽i⩽N
1⩽l⩽Λi

ζil. (5.15)

The design of this scheme depends on shifting, thus knowing the positions of the macro-
symbols is crucial. As a result, we need to communicate the sizes as well as the shifts
of the original packets. There is no need for an encoding vector, and the sizes could be
transmitted only once if the channel is perfect. However, every coded packet must come
along with the shifts, as these vary with every new coded packet created.

Systematic Encoding Mode Systematic network coding was first proposed in [86,185],
where nodes forward or replicate the packets aside from sending coded versions, to avoid
the reduction of the system’s throughput due to the computations of a heavy linear
combination among others. Furthermore, it was implemented using GF (2) in battery-
constrained mobile devices known to have low computational capabilities. Lucani et al.
analyzed it from computational complexity and field size perspectives in [87]. It was
also adopted in scenarios related to erasures, and the linear dependency brought by the
use of small finite fields and the computational complexity. In order to comply with the
design of the previously presented schemes in this dissertation, we propose to employ
the systematic coding approach on macro-symbols. As such, a coded packet is simply
a set of Lmax consecutive macro-symbols transmitted using the systematic mode. We
note that such a mode requires minimal coding overhead when used on its own. Thus we
communicate the packet sizes within the first transmission. Nonetheless, we send the
macro symbols index, δi, starting from systematic packet Ci, that is created for enhanced
decoding reliability. The utility of this index will be further discussed in this chapter.

5.3.1.2 Decoding: On-the-Fly XORing

The benefits of using on-the-fly decoding are that it enables the destination to start
the decoding of a generation from the very first received coded packet, because the first
coded packet itself comprises Λmax coded macro-symbols. The coding vector contains
solely the original packet sizes in the number of macro-symbols and random shifts that
vary with every coded packet. This information is expanded into the decoding matrix
of size

N∑
i=1

Λi × N (see the rightmost part of Figure 5.13). This matrix has exactly
N∑

i=1
Λi “1” bits coefficients, i.e., 1

/
Λmax of the matrix’s size is just one bit elements. The

129

positions of these ones vary with every transmission, following a certain pattern that
obeys the random shifts and the packets’ sizes. We propose to use on-the-fly Gaussian
elimination [62], where we insert every row of the matrix related to coded packet Ci

into the overall decoding matrix of size
N∑

i=1
Λi ×

N∑
i=1

Λi, if and only if it has a pivot that
was not identified previously. We note that graph-based mechanisms, such as the belief
propagation, could be adopted in such types of coding where only XORed elements
are in play. Eventually, the use of macro-symbols may provide a way to do parallel
computation.

5.3.2 Decoding Analysis and Regions of Operations

We discuss the conditions under which the random shift-and-XOR mode of the RaSOR
scheme is capable of generating coded packets that could be solved by the decoder. We
provide a mathematical framework that explains this limitation, and we propose some
potential policies, namely the hybrid encoding and the macro-symbol policies for equal
packets.

5.3.2.1 Condition

The shift-and-XOR mode of the RaSOR scheme, unfortunately, cannot be applied to
generations that have more than exactly one full-length packet, i.e., a packet of size Λmax

MSs. This limitation is due to the constrained design which only allows the coding
exclusively inter-packets. For example, two or more macro-symbols from the same source
packet cannot be XORed together. To better understand this disadvantage, we display
the source packets as independent sets, and their respective macro-symbols constitute
the corresponding elements, as follows:

Pi = {sij, j ∈ Lj = {1, · · · , Λi}, i = 1, 2, · · · , K}, (5.16)

where Λi = Card(Pi) = |Pi|. We propose to count the possible number of linear
combinations obtained when we choose at random at most one element from each set to
XOR together (some packets might be shorter, so they cannot be involved in all coded
macro-symbols). This is analogous to the random shift-and-XOR mode, i.e., we apply a
random shifting vector on the packets before XORing the macro-symbols of the same
positions together. We note that the following definitions and propositions previously
appeared in [30].

130

Equal-sized packets This is the case where all the possible combinations should have
exactly N elements. This means that exactly one element is picked at random from each
set. Thus, the number C of all different XOR combinations obtained if we use up all
shifting possibilities is according to [30]

C = Λmax
N . (5.17)

Unequal-sized packets This case refers to the encoding of packets that have one or
more original packets that are not full-length. We denote the set of indices of full-length
packets K, i.e.,

K = {i : Λi = Λmax, i ∈ J1 ; NK},

Kc its complementary set, and |K| and |Kc| their respective cardinals. Specifically, a set
with |Kc| could participate with one element in the combinations or could simply not be
chosen to participate. Accordingly, we express C as:

C = Λ|K|
max

[
1 +

∑
i∈Kc

Λi +
∑

i1,i2∈Kc

i2 ̸=i1

Λi1Λi2 + · · · +
∏

i∈Kc

Λi

]
. (5.18)

Definition 2. [30] We define the maximum rank that a linear system consisting of
iΛmax equations could have, i.e. the maximum rank evolution after receiving exactly i

coded packets, each of which has exactly Λmax macro-symbols:

max rk(iΛmax) = max rk
{
C1, · · · , Ci

}
= max rk

{
c11, · · · , c1Λmax , · · · , ci1, · · · , ciΛmax

}
.

(5.19)

Proposition 1. [30] The maximum number of independent linear equations in a linear
system of equations constructed by XORing randomly chosen elements from N sets with
the same cardinality is

max rk(C) = NΛmax − (N − 1). (5.20)

Proof. The proof is available in Appendix A.

Proposition 2. [30] If at least two packets have size Λmax in a generation, i.e., |K| ⩾ 2,
then the linear system of equations can never be full rank, regardless of all possible shift

131

combinations used, and the maximum rank it could reach is

max rk(C) =
N∑

i=1
Λi − (|K| − 1). (5.21)

Proof. The proof is available in Appendix A.

Definition 3. Let ∆opt be the minimum number of coded packets needed in total to recover
a generation, i.e. the minimum number of macro-symbols that constitute a maximum of
full-size packets:

∆opt =
⌈

N∑
i=1

Λi

/
Λmax

⌉
= ∆det. (5.22)

In addition, we prove that decoding starting from the bare minimum ∆opt is not
possible for the cases where ∆opt | Λmax, i.e., ∆opt is a divisor of Λmax.

Proposition 3. The probability that the linear system of equations obtained after receiving
i coded packets is full rank, i.e. equals to iLmax is

P{rk
{
C1, · · · , Ci

}
= iΛmax} =

 1 if i = 1

0 else
(5.23)

and,
max rk

{
C1, · · · , Ci

}
= iΛmax − (i − 1), ∀i > 1 (5.24)

Therefore, if ∆opt | Λmax then we need at least K = ∆opt + 1 coded packets to decode, and
the maximum rank achieved when obtaining ∆optΛmax linear equations is

max rk(∆optΛmax) =
N∑

i=1
Λi − 1. (5.25)

Proof Sketch. We prove it by contradiction. Suppose that 2 coded packets are innovative.
Then, 2Λmax linear equations related to the coded macro-symbols are independent, i.e.
rk{C1, C2} = 2Λmax. However, XORing any 2Lmax −1 equations is equal to the remaining
one, which contradicts the hypothesis.

5.3.2.2 Hybrid Encoding

We proved that the random shift-and-XOR mode has the limitation of being able to
operate solely when the generation has exactly one full-length packet. To address this

132

condition, we propose to combine it with the systematic mode. Practically, it is clear
that the shift-and-XOR mode should only be used if there is no more than one full-length
packet in the generation. Otherwise, the encoder operates on the systematic mode and
communicates the first Lmax macro-symbols systematically in one coded packet. Overall,
if a generation of size N packets has η full-length packets (η ∈ J1 ; NK), then at least
η − 1 coded packets should be created using the systematic mode, in order to be able to
recover the generation at the receiver. The source macro-symbols that are transmitted
in a systematic fashion are expected to bring more degrees of freedom for full-length
packets. This would enable the recovery of the remaining macro-symbols, which could
not be solved by the shift-and-XOR mode on its own.

5.3.2.3 Macro-Symbol Policies for Full-Length Packets

Only for convenience, a generation that contains only full-length packets is better
transmitted using the systematic mode. This approach is expected to outperform the
systematic network coding when the generation contains variable-size packets since
macro-symbols themselves reduce the padding overhead regardless of the macro-symbol
scheme adopted. Nonetheless, the systematic mode becomes slightly costly in terms of
computational complexity due to the higher number of macro-symbols when the packets
are all full-length. This is because encoding and decoding operations are both performed
on a practically larger generation, i.e., larger decoding matrices.

5.3.3 Impact of Packet Losses

As the RaSOR scheme cannot perform recoding, we propose some practical mechanisms
for reliable point-to-point communications when losses occur. We assume the transmission
of a generation of coded packets to a receiver via an erasure channel, which is capable
of carrying one packet per time slot but has a loss probability ε. We also assume that
packet losses are inter-independent across the channel and feedback is not permitted,
otherwise, we would not fully benefit from the coding scheme’s rateless feature. We
note that different transmission strategies play a role in reducing the impact of losses on
the solving of generations. They could be characterized based on the coding mode and
the number of full-length packets in a generation. In the latter case, the sender could
randomly shift-and-XOR the macro-symbols and transmit the resulting coded packets in
a rateless fashion to guarantee to decode. Nonetheless, it could adopt the systematic
mode first in order to transmit η ⩽ ∆opt ⩽ N packets before switching to the random

133

shift-and-XOR mode as proposed in [186]. In this manner, we assure the transmission of a
maximum number of macro-symbols systematically, i.e. without investing in the shifting
and the XOR computations, before moving to the non-systematic mode that leverages the
recovery of lost macro-symbols without the need for Automatic Repeat reQuest (ARQ).
Under the constraint that a generation contains a large number of full-length packets, the
aforementioned strategy is certainly not accurate, as the systematic mode is not rateless.
This means that full-length packets are not necessarily decoded. Consequently, solving
this type of generation is impossible. To be more concise, in the following we emphasize
the transmission of generations with one full-length packet only and leave the other case
for future work.

5.3.4 Empirical Results

We propose to demonstrate the enhanced performance of the RaSOR scheme compared to
the conventional RLNC and provide numerical results throughout extensive simulations
since we were not able to determine analytically some performance metrics like the
decoding delay. We start with the example in Figure 4.1, and show the rank evolution
until complete decoding of the generation using a Markov chain, and additional simulations
to have the exact numbers for the probability of decoding, as we showed with the other
MS RLNC. Furthermore, we perform simulations on generations formed by the video
trace from CIF [154].

As far as we know, there is no straightforward decoding probability formulation,
which could express the expected number of coded packets needed for decoding. We also
showcase that there is no generalized Markov chain, which could cover the rank evolution
of the decoding matrix during the decoding process. We were actually constrained
by the difficulty of characterizing the random behavior of the shifts, as well as the
size distributions altogether. Nonetheless, we are constantly working on finding other
analytical means that would characterize the decoding delay for a wider range of cases.

5.3.4.1 Basic Example

Figure 5.14 illustrates the rank evolution of the generation in Figure 4.1 at the receiver.
The maximum rank to be achieved is

4∑
i=1

Λi = 9. We denote by pi the probability
of remaining at rank rk = i when a received coded packet is not innovative, and pij

represents the probability of the rank increase from being rk = i to rk = j, j ⩾ i when a
received coded packet is innovative. It is clear that this graph changes completely based

134

rk = 5

rk = 6

rk = 7

rk = 8

rk = 9

p5 p56

p57

p58

p59

p6

p67

p68

p69

p7

p78

p79

p8

p89

Figure 5.14: Markov chain for the generation in Figure 4.1. pi represents the probability
when the next packet is not innovative, and pij the probability of increasing the rank from
i to j during one coded packet transmission, with i ∈ JΛmax ; N −1K and j ∈ JΛmax ; NK,
j ⩽ i.

on the generation in question, and it adapts to new possible achievable ranks. In general,
we note that the first coded packet brings a rank rk = Λmax since we cannot have a zero
vector with RaSOR. The next coded packet Pi, i = 1, 2, · · · , K, could bring multiple
possibilities for the rank evolution as shown in the example of Figure 5.14.

We characterize this rank evolution using Figure 5.15, which depicts the probability
of decoding the generation of N = 4 in Figure 4.1, in terms of the number of coded
packets transmitted (K). We observe that the RaSOR scheme starts decoding at the
theoretical optimal number ∆opt = 2 with a probability P(2) = 0.173. The conventional
RLNC starts decoding at K = N = 4 coded packets, with a probability for GF(2) around
0.33, whereas RaSOR reaches a decoding probability of 0.96. Furthermore, the mean
decoding probability of the RaSOR scheme for this example is E(K)RaSOR = 3.0575,
which is by far more impressive than the mean value expected by RLNC for any finite
field in use, without forgetting the fact that such a scheme has a reasonable encoding
and decoding complexity thanks to its basic calculations that are limited to shifting and
XORing the macro-symbols.

135

2 3 4 5 6 7 8

K

0.2

0.4

0.6

0.8

1.0
P

(K
)

d
ec

RaSOR

Figure 5.15: Probability of decoding using different schemes for the example in Figure 5.2
consisting of N = 4, (Λ1, Λ2, Λ3, Λ4) = (1, 5, 1, 2).

5.3.4.2 Video Frames

CIF is one of the common resolution formats used for video surveillance by constrained
devices. It is therefore important to employ a coding scheme that has low encoding
and decoding computational complexities, like what RaSOR offers. We present the
performance of the RaSOR scheme along with the conventional RLNC when applied to
32 × 103 of the SVC (CIF) video trace from the Arizona State University online library.
Since RaSOR is constrained with the condition that a generation could be decoded only
when it contains only one full-length packet, we propose to also employ the hybrid and
systematic encoding modes. We present the expected number of coded packets needed
for two scenarios, namely, the one without losses in order to emphasize the capabilities
of the RaSOR scheme, and the one that considers losses to point out that RaSOR is also
a rateless code.

Without losses Figure 5.16 depicts the average number of coded packets needed to
decode as a function of the generation size for the hybrid encoding mode of the RaSOR
scheme, conventional RLNC for GF(2) and GF(28), compared to the theoretical optimum
case that recalculates the number of packets needed (∆opt) if we use macro-symbols. We
observe at first glance an impressive decrease in K, the number of coded packets needed

136

Figure 5.16: Number of coded packets needed in average when using various schemes to
decode 32 × 103 packets of a sequence of the CIF video trace. N is the generation size.

for decoding compared with the original number N . For instance, we transmit around
four-folds fewer coded packets with the hybrid mode compared to RLNC with N = 64.
Furthermore, the overall performance of the hybrid mode is close to the theoretical
numbers. This proves that extensively shifting the packets before encoding and sending
is an effective approach in creating innovative packets with an overwhelming probability.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

0

50

100

150

200

250

300

350

E
[K

]

Systematic First
RaSOR
RLNC pkt,q = 2

RLNC pkt, q = 28

Figure 5.17: Number of coded packets sent on average in the presence of losses with
probability ϵ, for N = 32, µ = 30, 32 × 103 packets were used from the CIF video trace.

137

With losses Figure 5.17 illustrates the average number of coded packets needed when
transmitting the portion of the video trace using generations of sizes N = 32 as a function
of the loss rate ϵ. Expectedly, the number of coded packets K grows when ϵ increases.
In comparison to the results from Figure 5.16, the difference in K between the RaSOR
scheme and the conventional RLNC is maintained for all values of the loss probability ϵ.
Nonetheless, when we adopt the systematic mode, we send one packet less on average
compared to RaSOR. This has the potential to further improving the RaSOR scheme.
We note that the results obtained with the conventional RLNC for GF(28) are similar
to the results when we exclusively employ the systematic mode, because the number of
original packets is always equal to N .

5.4 Conclusions

This chapter dealt with the design and implementation of macro-symbol-based techniques
that rely on the pre-coding step of shifting the original packets before encoding. For
instance, we proposed the deterministic shifting, random shifting, and RaSOR schemes
that take advantage of the variable-size input packets to produce less coded packets
instead of naively filling the shorter packets with zeros, and generate as many coded
packets as the original ones. The extensive performance evaluation of macro-symbol
approaches has shown that they are heavily dependent on the packet size distributions.
The first couple of schemes fully inherit the standard RLNC features, e.g., recoding
ability and drawbacks (like field choice dependency). The deterministic shifting scheme
generates the least number of coded packets as in Eq. 5.1.

Moreover, the simple but effective pre-coding design provides an extra lightweight
cipher for the data to disseminate, since, aside from coding on a macro-symbol basis, all
packets are susceptible to being shifted.

However, RaSOR does not employ any coding coefficients, as it simply relies on
shifting the packets extensively each time a new coded packet is to be created. In fact, we
do not consider it as an RLNC based approach, since it does not have the recoding ability.
It is also not rateless, since the number of possible combinations for coded packets is
limited, and it is exclusively determined by the number of random shifting combinations
within the set of unequal-sized packets. Moreover, we proved that the packet sizes play a
crucial role in determining the effectiveness of this scheme, and proposed some simple
mechanisms to counter this issue. Despite this limitation, it remains the cheapest and
easiest approach to encode and decode unequal packets, with basically an expected

138

padding overhead determined by the size µ of the macro-symbols. Finally, we believe
that RaSOR could be oriented to be an instantly decodable code [40]. Furthermore,
we highlight that this scheme allows for online coding [185], i.e., coding decisions are
adapted according to the data arrival in the sender’s buffer. This is an interesting feature
for live video streaming applications that are extremely sensitive to delays.

Finally, the degree distribution of encoded macro-symbols during the transmission of
the whole generation makes decoding using the simple Belief Propagation and inactivation
decoding algorithms as for the BATS codes [60] possible, since both algorithms are known
to have lower computational complexity compared to the Gaussian elimination.

139

140

Chapter 6 |
Joint Compressed Sensing and Net-
work Coding

Network coding and compressed sensing share a broad interest in various disciplines
over the last decade. As they are currently considered to be a part of the core of 5G
technologies, the idea of combining both techniques in order to maximize the systems’
performance became very appealing. This translates into leveraging the benefits from
network coding while exploiting the correlations in the data thanks to compressed sensing.
The potential gains, including lower latency for large-scale sensing scenarios, lower energy
consumption, and a decrease in the amount of data during transmissions, are alluring to
many use-cases. However, efficiently joining the techniques requires a careful tweak in
their designs to meet the expected improvements compared to an agnostic combination.
Network coding was mainly designed to operate on finite fields, whereas compressed
sensing is primarily concerned with real numbers.

This chapter focuses on highlighting the common characteristics and the requirements
for an effective combination approach, through understanding and determining the right
field over which to operate, the coding and compression matrices design, as well as the
efficient algorithms for a fast and accurate reconstruction. To do so, we propose the
design of Joint Compress and Code (JoComCo) scheme for cluster-based WSNs that
enables a one-step decoding strategy, instead of agnostically cascading the reversion
operations from both techniques aside. It consists of exploiting the temporal and spatial
correlations among the sensory data, as well as intra-flow and inter-flow real network
coding exploiting the cluster topology. We employ the KL1p compressed sensing library
and the Network Simulator 3 (ns-3) [187] to evaluate this joint design. Our results
show that normalized coefficients from Gaussian distributions provide higher scalability
and efficiency for multi-hop networks, where the recoding feature of network coding is

141

required.

Figure 6.1: On the fly decoding of Lena’s picture originally encoded using GF(2); (a) the
data partially is decoded, (b) the image starts to appear as the decoding matrix rank
increases, (c) the image is completely decoded [7].

Additionally, the SP reconstruction algorithm outperforms the benchmark algorithms
provided by the KL1P library [14], with respect to the Reconstruction Signal-to-Noise
Ratio (RSNR), by more than two folds. Moreover, our scheme dramatically reduces
the number of transmissions and their payloads by around 94%, while maintaining a
high RSNR. We note that the content of the remaining of the chapter was published
in [8–10].

6.1 SoA on the Combination of Compressed Sensing and
Network Coding

The idea behind a potential compression gain from RLNC relates to 2009 when Pedersen
et al. [188] observed that having less number of coded packets required to decode a
generation in GF(2) did not prevent them from already guessing the original generation,
which has led them to think of an inherent compression capability that could be further
investigated. Figure 6.1 depicts the decoding progress of the famous Lena picture that
was originally encoded using GF(2). Being able to observe early guesswork returns to the

142

Table 6.1: Compressed sensing and network coding common characteristics.

Compressed Sensing Network Coding
Linear superposition Linear superposition
Random (sampling) Random (coefficients)

Source aware Source agnostic
under-determined Over-determined (full rank)

optimization problem Linear system of equations
ym×1 = Am×nxn×1; m << n y(n+r)×1 = A(n+r)×nxn×1; r ≥ 0

fact that the decoding matrix is sparse, as these results are not observable when larger
finite fields are in use. The idea is therefore to investigate the common characteristics
that could relate to network coding and compressed sensing, as well as the requirements
for a cross potential.

6.1.1 Common Characteristics and Requirements

The main characteristics of compressed sensing and network coding are both summarized
in Table 6.1. The fundamental differences reside in the fact that compressed sensing is
concerned with under-determined linear systems of equations, i.e., it relies on optimization
algorithms to solve the problem and finding exact or approximate solutions, whereas
network coding cannot solve the linear system of equations without acquiring at least
as many coded packets (equations) as the original packets (unknowns), i.e., the all-or-
nothing condition, leading to using the Gaussian elimination algorithm to retrieve the
original data. Furthermore, compressed sensing is aware of the data characteristics,
i.e., the sparsity or compressibility, and employs this knowledge in the reconstruction
procedure. However, network coding is completely agnostic to the data it operates on.

Performing network coding in large-scale WSNs guarantees the enhancement of the
overall network performance thanks to its impressive features that we discussed in
Chapter 2, such as exploiting the path diversity, error correction, and the broadcast
nature of WSNs. Unfortunately, RLNC’s successful decoding relies on acquiring as
many linearly independent coded packets as the original ones. Compared with the most
promising ability of compressed sensing, this is a critical drawback that will hold RLNC
back from participating in reducing the number of transmissions despite the spatial
correlations that are inevitable in WSNs. Furthermore, applying intra and inter nodes
distributed compressed sensing [189] suppresses this constraint, but cannot be as robust
as network coding against erasures.

143

On the other hand, the idea of agnostically combining compressed sensing and network
coding could be more efficient, in the sense that together they guarantee a decrease in
the payload and the number of packets transmitted even in the presence of erasures.
Nevertheless, the data reconstruction procedure cannot be faster because it simply
requires several independent decoding steps, to revert the agnostic operations of network
coding and compressed sensing. Consequently, both techniques should operate using the
same field type, as well as having compatible coding and compression matrices, to obtain
the full effectiveness of a joint approach. As far as we know, these are the most important
characteristics to guarantee one-step joint decoding. Subsequently, it is expected to have
lower energy consumption and lower computational complexities.

It is, therefore, crucial to understand the cross variants of compressed sensing and
network coding, in order to be able to choose the expected beneficial option that does not
agnostically combine the techniques, but rather modify them in a way that guarantees
higher gains. For instance, we discuss in the following the branches of real network coding
and finite field compressed sensing.

6.1.1.1 Real Network Coding

The traditional RLNC implementation favors algebraic operations over finite fields
instead of the real field as these operations are expected to generate larger results than
the allocated space inside the coded packet, leading the coded packet and encoding
vector sizes to explode. Additionally, the recoding and decoding procedures increase in
complexity as the coded packets do not have matching sizes any more. These RLNC
features are not guaranteed when operating on other than finite fields and might result
in reconstruction inaccuracies or errors. On the other hand, the problem of compressed
sensing is mainly concerned with recovering a certain sparse signal using only far few
samples. Such a property does not go hand in hand with the all-or-nothing property of
finite field network coding. Moreover, finite fields do not provide normalization for the
finite field vector spaces, as simply there are no such things as the ℓp (p ⩾ 1) norms in
finite fields.

Consequently, it seems to be more beneficial to realize a combination approach
when both techniques operate in the real field, in order to improve the expected gain.
Accordingly, real network coding is designed in a way that complies with the com-
pressed sensing [190], i.e., the coding matrix must satisfy the sensing matrix properties,
e.g., RIP, Restricted Eigenvalue (RE), etc., or simply drawn from a Gaussian distribution.
Therefore, it is currently mandatory to think of a real field version of network coding,

144

which also preserves the fundamental features of RLNC. The idea of real network coding
was introduced in 2007 slightly after the advocacy of the compressed sensing field [190].
Additionally, it is reasonable to think of a real network code as signals in practice
are better described in the real domain. This inspiration aims mainly to break with
the all-or-nothing principle while mimicking the compressed sensing behavior.

The difference relies on the fact that real network coding remains unaware of the
sparsity present in the data, i.e., it does not rely on the data correlations. Therefore,
this class of network codes benefits from features of both areas, providing an attractive
potential in increasing the network’s throughput and reliability, while decreasing the
computational complexity, and consequently the delays. The techniques combined are
expected to deliver progressively more accurate approximations of the data, unlike the all-
or-nothing property. Nevertheless, this combination comes at the cost of some practical
challenges that we will further discuss in this chapter, including finite precision during
decoding, as well as the vector overhead explosion during the encoding process. For
this reason, it is essential to study the impact of the coding matrix distributions on the
reconstruction accuracy [9, 10,191].

6.1.1.2 Finite Field Compressed Sensing

Draper et al. [192] were the first to introduce compressed sensing in finite fields that mainly
targets sparse finite-alphabet sources. They developed an error exponent theoretical
framework of sparse finite alphabet sources in the absence of noise while parameterizing
the alphabet size as well as the level of sparsity. Based on their results, Seong et
al. [193,194] proposed some necessary and sufficient conditions for the recovery of such
sparse signals, in terms of the dimension of the signal space, the sparsity, and the number
of measurements. They proved that the sensing matrix should be dense to ensure the
recovery of very sparse signals. As the RIP is hard to verify for finite field matrix because
ℓ2 cannot be accurately computed for finite fields, the NSP is a more reliable option [192].

Interestingly, perfect reconstruction could be achieved using a number of measurements
that is larger than the support for sufficiently large and dense matrices in a large finite
field size [193]. Furthermore, only two other works were devoted to security [195], as well
as sparse image recovery using a Finite Field Orthogonal Matching Pursuit (F2OMP)
reconstruction algorithm [196]. The research related to finite field compressed sensing
remains a challenging topic, that requires tighter properties than the ones proposed for
standard compressed sensing.

145

6.1.2 Combination Results of SoA Approaches

With a strong emphasis on WSNs and IoT in general, there exist several research works
that considered the combination of these two innovation techniques in different areas,
including but not limited to wireless communications, security, and data privacy [197],
spectrum sensing [198], distributed stoarge [199], etc. For instance, Nabaee et al. [200,201]
proposed a quantized network coding and compressed sensing approach for correlated
sources in order to reduce the delivery delays of the network thanks to the few transmis-
sions needed at the destination for reconstruction. The idea of compressed sensing and
analog network coding, which is a physical-layer network coding [202], was proposed for
WSNs chain-type topologies to effectively reduce the energy consumed by the sensors,
thus increasing their lifetime [203,204].

Most of the efforts focused on the combination design with the real field, because the
compressed sensing properties are tighter than that of the conventional RLNC [205,206],
as previously discussed. Nevertheless, we simultaneously noticed that only a little
attention was given to the temporal and spatial correlations. For instance, Nguyen
et al. [207] proposed the Netcompress approach for WSNs that enables the sensors to
compress their data before applying real network coding at the intermediate nodes.
Unfortunately, the scheme could not prevent packet header explosion [208], which has led
to dropping some of the packets whenever this issue occurs. This has resulted in a limited
compression gain for the payload size, partially due to the temporal compressed sensing.
Furthermore, the works by Feizi et al. [209,210] exploited the cross potential between
compressed sensing and real network coding and discussed interesting theoretical gains,
but without further implementation for validation. Compressive Network Coding is a
joint source and network coding method for approximate data gathering that is robust
against burst transmission errors and maintains a good overall performance when the
values of the sensor readings abruptly change [211]. Finally, Chen et al. [204] provide a
table that summarizes the characteristics and drawbacks of the common state-of-the-art
approaches in.

Other works focused on proposing a finite field compressed sensing approach in order
to maintain the salient features of conventional RLNC [192–194,196,212]. These combined
techniques aim to also solve the all-or-nothing issue of RLNC that could hinder the
benefits from compressed sensing [213]. For example, Xie et al. [197] proposed a privacy-
preserving approach that secures network-coded packets using finite field compressed
sensing at the source. The framework can resist data and tag pollution attacks. Moreover,
common compressed sensing influenced algorithm used for this type of combination is

146

the finite field OMP [214], sometimes referred to as F2OMP [196].

CH1

CH2

CH3

CH4

Sink

Figure 6.2: An example of a four-cluster topology [8], where CHi, i = 1, · · · , 4 is the
cluster head.

Additionally, Rajawat et al. [215] focused on formulating a maximum a posteriori
estimation for the Bayesian finite field compressed sensing and proposed a low-complexity
sum-product algorithm for factor graphs. A similar idea was proposed by Wenjie et
al. [101, 216]. Nevertheless, we believe that finite field compressed sensing loses a lot
of its features and sometimes could become impractical due to the constrained finite
field design. Therefore, investing in the research of new approaches that reduce the
computational complexities and obey the basic compressed sensing properties, mainly
NSP, could be an interesting future research direction.

6.2 Joint Compress and Code (JoComCo) Scheme

In order to overcome the drawbacks of the state-of-the-art approaches, we propose the
design of an in-network computing scheme, which does not only exploit the temporal
and the spatial correlations of the sensors and the corresponding data but also allows for
the fusion of network coding and compressed sensing while avoiding the drawbacks of
the previously discussed agnostic approaches. To do so, we introduce in this section the
design of the JoComCo scheme, which relies on real network coding and conventional
compressed sensing. This approach is designed for cluster-based WSNs topologies.

147

6.2.1 Design for a Cluster-Based Topology

To better illustrate the problem and propose a related solution, we propose a simple
topology consisting of four-cluster of N sensors, including cluster heads (CHj), j = 1, · · · 4,
and a sink, as illustrated in Figure 6.2. A sensor node is an entity capable of connecting
(wirelessly) to its related CH – including the cluster head itself – and can harvest and
transmit specific measurement values. Moreover, a node should have enough available
resources to execute the necessary algorithms. The cluster heads are provided with more
hardware resources and higher computational capabilities and are the only nodes in
charge of communicating with one another, as well as the sink.

6.2.1.1 Temporal Compression

We assume that the sensors are all capable of sampling their readings and that they are
observing the same natural phenomenon or process.

Let νk ∈ {ν1, ν2, ..., νN} be one of the sensor nodes and xi ∈ Rn, xi = [xi1, · · · , xin],
the readings vector obtained by νk in n time slots. The sensory data are supposed to
follow the JSM-2 model [148], known as the common sparse support, in which case the
signals are constructed from the same basis vectors while having different coefficients as
follows:

xi = ΨTθi, i ∈ {1, · · · , N}, (6.1)

where ΨT ∈ Rn×n is the sparsification matrix of xi, and ∥θ∥0 = k. Let X = [x1, · · · , xN]T

and Θ = [θ1, · · · , θN]T be the matrices for the N sensed vectors and their representations
in the sparse basis, respectively.

Every sensor i = 1, 2, · · · Nj belonging to a cluster j = 1, 2, · · · performs a temporal
compression on its readings xji that results in a dimension reduction of the resulting
measurement yji as follows:

yji = Φxji, (6.2)

where Φ ∈ Rm×n represents the measurements matrix that obeys the RE property [209,
217]. This matrix is applied similarly to all sensor readings and should be known by
the sink in order to be able to effectively reconstruct all the data. We denote the
matrix containing all the temporally compressed vectors by Yj ∈ Rm×Nj , as Yj =
[yj1yj2 · · · yjn]T .

148

6.2.1.2 Spatial Compression

The spatial compression (also called spatial pre-coding) consists of randomly selecting the
measurements that are kept for further communication steps. We recall that sensors are
generally geographically close to one another, leading to a high probability of generating
correlated data. As such, every sensor decides on its transmission based on the distributed
probability among all the sensors involved.

The final selected data, denoted by Zj, to be transmitted by every sensor j to the
corresponding cluster head is defined as:

Zj = BjYj, (6.3)

where Bj ∈ Raj×Nj is the pre-coding matrix, and aj is defined based on the transmission
probability pj. Furthermore, we define B ∈ RN×N as the diagonal matrix containing Bj,
j ∈ {1, · · · , N}. As such, Bj are diagonal sub-matrices, expressed as Bj = diag((bji)i⩽Nj

.
According to Feizi et al. [210], the pre-coding is better performed using the simple Bernoulli
distribution if the matrix Φ obeys the RE property. However, we suggest introducing
some modifications based on real network topology requirements and constraints, e.g.,
loss rates. A sensor is allowed to transmit its measurement to its corresponding cluster
head based on the following distribution:

p(bji = 1) = 1 − p(bji = 0) = ϱjiµj
lj − 1
Nj − 1 , (6.4)

where the modifier ϱji gives support to yji in coping with link losses of probability εji, as
follows:

ϱji = 1
1 − εji

. (6.5)

As for µj, it basically depends on Nj and the number of measurements expected to be
received by the cluster head, lj, and its selection is developed in Appendix A. Based on
our measurement campaign reported in the following section, we will fix the convenient
value of µj for our numerical results.

“On the other hand, since the sensor nodes independently decide on their own trans-
missions to the cluster head, the modifier enables CHj of receiving (lj − 1) measurement

149

vectors with a high probability Prx, defined by

P(r ⩾ lj − 1) =
lj−2∑
i=0

(
Nj − 1

i

)
P i

rx(1 − Prx)Nj−1−i, (6.6)

where r denotes the number of received packets (see Appendix A for the detailed
description and parameters selection). We firstly employ a diagonal Bernoulli matrix B
for referring to the sensors [218], defined as follows :

bii =

 1, with probability µj
lj−1
N−1

0, with probability (1 − µj) l−1j

Nj−1 ,
(6.7)

where bii are the diagonal elements and µj is the transmission probability modifier.
µj guarantees that at least lj data vectors – where l is the trace of B, denoted by
tr(B) (1 ⩽ l ⩽ N) – at the cluster head are received with a high probability. Con-
sequently, the resulting spatial compressed sensing matrix B ∈ RN×N is defined as
B = diag((bii)i⩽N)” [8].

Given that the sensors are geographically close, they are also potentially spatially
correlated. Therefore, some of the values in the diagonal sampling matrix B will be
zeros with (1 − µj) probability, meaning that not all of the sensors will be polled for
their readings. This will potentially reduce the computation and transmission costs at
these nodes – which decreases the overall resource requirements in general – and one
will still be able to recover the original data with sufficiently high probability. This step
can be further improved by using a minimal amount of data prediction at the cluster
head. Such information is acquired from the cloud or the sink based on the history of the
collected data, as per [219]. Our suggested framework relies on random selections among
the sensors of a cluster. Therefore, it is possible that we are not getting the minimal
amount of data from the sensors and the compression is not optimized. However, it is
still a non-expensive way of collecting data from geographically close sensors. Finding an
accurate collection technique, which guarantees, amongst other features, the minimization
of the energy consumption, seems to be an NP-hard problem, and an exploration of this
is not in the scope of this dissertation.

The (N −1) sensors, excluding the cluster head CH, communicate their measurements
to CH. This part of the compression is therefore considered as the temporal compression
step, which is also low-complexity and is resolved locally on the sensor device.

150

6.2.1.3 Intra-Cluster Real Network Coding

Since compressed sensing on its own cannot ensure the reliable transmission of the
readings from the m measurements needed at the sink for data recovery, we introduce
a FEC coding scheme, specifically intra-cluster network coding to account for the recovery
and transmission of the missing packets. After the spacial compression step, the cluster
head performs a real network coding operation on the already compressed measurements
as follows:

zi = Ωbiiyi, (6.8)

where zi ∈ Rm, Ω ∈ Rl×N , i ∈ {1, · · · , l}, and Ω is the network coding matrix, and its
coefficient distribution will be further discussed. This in turn translates to:

Z = Ω


b11 0 · · · 0
0 b22 · · · 0
... 0 . . . 0
0 · · · 0 bNN


[
y1 y2 . . . yN

]T
= ΩBYT . (6.9)

6.2.1.4 Inter-Cluster Real Network Coding

Once all cluster heads are done with the intra-cluster network coding stage, they start
communicating their resulting data with one another following the random link connec-
tions depicted in Figure 6.2. When an intermediate cluster head collects the expected
packets from other cluster heads, it recombines (recodes) all incoming and own packets,
using a set of randomly generated coefficients belonging to the corresponding matrix
Ωr. Therefore, the entire network coding operations intra and inter-clusters can be
captured by ΩΩr. They are supposed to be designed such that they are jointly capable of
conserving the stringent RE property. It is also worth mentioning that these real-valued
random matrices have the full-rank property with a high probability for a sufficiently
large ai. Additionally, the network coding operations at the cluster heads are expected
to reduce the total number of redundant transmissions as well as compensating for the
lost ones thanks to its effectiveness as an FEC. Consequently, we propose to convey an
extra number of coded transmissions by the cluster heads to cope with the predefined
packet loss probability.

Let U ∈ Rl×m be the matrix that represents all coded and compressed data transmitted
by the cluster head to the sink. We express the overall aforementioned procedure as:

151

U = ΩrΩBY. (6.10)

6.2.2 Reconstruction at the Sink

We recall that the temporal and spatial compression, as well as the network coding steps,
can be summarized as follows:

z1

z2
...
zl

 = ΩB


Φ 0 · · · 0
0 Φ · · · 0
... 0 . . . 0
0 · · · 0 Φ




ΨT 0 · · · 0
0 ΨT · · · 0
... 0 . . . 0
0 · · · 0 ΨT


︸ ︷︷ ︸

Γ

[
θ1 θ2 . . . θN

]T
, (6.11)

where Γ is the matrix that combines all coding steps performed before the cluster
head transmits the resulting packets. Assuming that r packets (r ⩽ l) are received
by the sink, our goal is the reconstruction of the original data with high accuracy
using the aforementioned coding matrices. The joint decoding is ensured using the
common compressed sensing reconstruction algorithms. Note that for the reduction on
the constraints in our design, we assume that the sink is aware of the sparsifying matrix,
the measurement matrix, as well as the network coding matrix coefficients by the means
of a shared seed or through the encoding vectors of the received packets.

6.3 Matrices Distributions and Reconstruction Algorithms

In this section, we first introduce and take a closer look at the joint sensing matrices and
the available reconstruction algorithms. The main questions that we propose to answer
in the remaining of this chapter are:

i) What are the properties of the matrices for both techniques, and which should be
satisfied to enable the seamless combination of network coding and compressed
sensing, while preserving the maximum number of features?

ii) Which kind of recovery algorithms are applicable for such an approach, and which
are the most relevant ones?

152

6.3.1 Joint Sensing and Coding Matrices

According to compressed sensing literature, producing adequate matrices that ensure a
high reconstruction accuracy is an intriguing and complicated endeavor. The construction
of such matrices in a way that they are optimal for compressed sensing remains an open
problem. Nevertheless, a breakthrough is achieved when using random matrices. The
most popular distributions are the Gaussian, Bernoulli, Rademacher and subgaussian
distributions. They could allow the reconstruction from Eq. 2.12 with a sufficiently high
probability using a variety of algorithms, which we will discuss later on. As for network
coding matrices, we are no longer bound by the requirement of finding a non-singular
matrix, however, one needs to acquire a matrix that is as close to a non-singular one
as possible, while retaining the characteristics of a compressed sensing matrix. This is
proved by the Cascading lemma in [209].

Bernoulli Distribution “The interesting feature of the discrete probability distribu-
tions – mainly the Bernoulli distribution – is that the sensing (coding) coefficients need
only 2 bits of storage. They are easy to implement in the sense that the packets are
either added or subtracted randomly. Additionally, by the efficient storage of coefficients,
the explosion of encoding vectors is avoided. Nevertheless, it gets problematic to have
two or more matrices drawn i.i.d. from the Bernoulli distribution during multi-hop
transmissions, where the recoding feature of network coding is crucial as the resulting
distribution is not Bernoulli, but rather subgaussian” [10].

Gaussian Distribution “The multiplication of several Gaussian matrices will result in
a Gaussian matrix, thus the RE property is preserved and the reconstruction is possible.
Additionally, in order to avoid the problem of header explosion – which is obvious in
the multi-hop scenario –, we propose a normalization of the coefficients. Nonetheless,
Gaussian matrices are more power-consuming for the sensors compared to the Bernoulli
matrices, which do not require much storage space. Moreover, their coefficients could be
translated into boolean values, thus having less computational complexity during the
compressed sensing step [220]” [10].

6.3.2 Reconstruction Algorithms

It is important to recognize that the decoding algorithms of standard network coding
do not hold anymore, as we cannot fulfill the all-or-nothing requirement. In general,

153

when dealing with under-determined linear systems of equations, the matrix inversion
procedure of the Gaussian Elimination is not possible under these settings. For this
reason, the common optimization algorithms adopted by compressed sensing can be fully
exploited. To reduce the task of implementing these already available algorithms, we
use a large set of reconstruction algorithms from the KL1p [14] library. Table 6.2 lists
the algorithms that we propose to use along with their complexities and the order of the
number of measurements they require for accurate reconstructions.

Table 6.2: Comparison of computational complexities for reconstruction algorithms in
the KL1p library [9, 14].

Algorithms Complexity Measurements
BP O(n3) O(k log(n))

OMP O(k m n) O(k log(n))
ROMP O(k m n) O(k log2(n))

CoSaMP O(m n) O(k log(n))
SP O(k m n) O(k log(n/k))

EMBP O(n log2(n)) O(k log(n))

6.3.3 Theoretical Compression Gain

The standard compressed sensing gain (temporal compression in our case) is basically
defined by the ratio of the number of measurements m over the original data size n. This
means that the gain in the payload for a packet yji is defined by εT as

εT = 1 − m

n
, (6.12)

which is quite high since m << n. This is expected to considerably reduce the payload
size, thus the probability of erasures, which is desired in WSNs known to have high loss
rates especially when placed in harsh environmental conditions, e.g., forests.

We define the overall compression gain by εSεT , where εS is the gain in the number
of total transmissions in the network due to spatial compression and εT is the gain in
payload size of packets due to temporal compression. Let us consider the single cluster
case first. With only spatial compression, the compression gain is N−1+l

2N−1 , where l is the
number of packets sent from the cluster head to the sink for the reconstruction. The
value of l is selected to ensure that the required RSNR is achieved with high probability.
The compression gain achieved by joint CS and NC scheme is:

154

g
(1)
JoComCo = N − 1 + l

2N − 1
m

n
. (6.13)

6.4 Implementation Results
In this section we evaluate the performance of the network topology in Figure 6.2 using
the NS3 simulator [187], along with the KL1p [14] library. We are interested in investigat-
ing the topology parameters that guarantee high compression gains, e.g., RSNR, average
time for reconstruction, reconstruction probability, etc. Furthermore, we determine based
on our simulation results the most convenient reconstruction algorithms, as well as the
most efficient measurement and coding matrices.

6.4.1 Evaluation Setup

In the following, we define our performance metrics to determine the efficiency of the
JoComCo scheme, as well as the right modifier µ introduced to improve the pre-coding
procedure, which should be the first step in our measurements campaign.

6.4.1.1 Performance Metrics

The sparse data model considered for our simulation campaign is artificially created due
to the lack of available large data sets at the time we conducted these measurements.
This enabled us to smoothly tune the number of sensors, the number of readings, as well
as the degree of sparsity k. We assumed that the sensory data xi, i ∈ {1, · · · , N} can be
sparse in the DCT domain in such a way that ΨT is equal to the matrix of an inverse
of the DCT. We note that all the sensors have the same temporal frequencies, since we
adopt the JSM-2 model. For every sensor node i and each cluster head j, the coefficient
αij is given by

αij = Aj cos
[
πFj

(
i + 1

2

)]
, Fj ∈ [0, 1], Aj > 0, (6.14)

where Fj is an arbitrary discrete frequency. The amplitudes Aj are chosen randomly and
are in turn normalized such that

∥X∥2
2 = 1 thus, ∥xi∥2

2 ≈ 1, ∀i = 1, 2, · · · . (6.15)

“In order to measure the performance of the decoded data, we propose the calculation

155

of the ratio between ∥xi∥2 and the absolute error with the estimate ∥xi − x̂i∥2. Therefore,
we define the Reconstruction SNR in dB for a sensor node i by, RSNRi as:

RSNRi = 20 log2

(∥x̂i∥2

∥xi − x̂i∥2

)
. (6.16)

Additionally, we compare to the non-noisy vector, as compressed sensing techniques are
even capable of canceling noise due to the sparse selection. Analogous to Eq. 6.16, we
define the recovery performance of the spatial decoder as:

RSNRS = 20 log2

(
∥Y∥2

∥Y − Ŷ∥2

)
dB. (6.17)

However, we only have the ability to compare to the noisy Y, since the simulation does
not yield a noiseless version of it. Bearing in mind that in a real life scenario a processing
application requires a minimum SNR, we define that the data for a source node was
decoded properly if

RSNRi ⩾ RSNRmin, (6.18)

where RSNRmin is a configurable lower bound. Finally, for Smeas measurement sequences
we can calculate the decoding probability as:

P (RSNRi > RSNRmin) = 1
SmeasN

Smeas∑
t=1

N∑
i=1

[RSNRi,t > RSNRmin] . (6.19)

We denote successful decoding when this probability is approximately equal to one” [10].

6.4.1.2 Selection of the Modifier µ

Figure 6.3 illustrates the optimal values for the modifier µj , for cluster sizes Nj = {64, 256},
and the number of measurements created lj = {16, 32, 128}. It is naturally expected
that the more measurements generated, the better the reconstruction is at the sink.
For example, µj reaches approximately 1.2 when the network topology considered has
Nj = 256 sensors per cluster and is capable of generating in total lj = 128 measurements,
and µj ≈ 1.4 if we only consider lj = 32, which is not optimal. The value of µj is
important to ensure an overall compression gain for the JoComCo scheme. In the
remaining of this chapter, we fix µj = 1.2

In the following, we evaluate the parameters for our proposed scheme and network
topology and discuss our considerations. Then, we show the performance of the KL1p
algorithms from the point of view of time and reconstruction accuracy. Finally, we

156

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

µj

P
(r

≥
l j
−

1)

lj = 32, Nj = 256
lj = 128, Nj = 256
lj = 16, Nj = 64
lj = 32, Nj = 64

Figure 6.3: Probability to receive more than (lj − 1) measurement vectors at the CHj,
j = 1, · · · , 4 [8].

evaluate our choices of the matrix distributions for a joint combination of compressed
sensing and network coding.

6.4.2 Parameter Selection in a Single-Cluster Topology

Figure 6.4: A single cluster topology with N sensors including the cluster head CH1,
which is a more powerful sensor compared to the rest of the cluster sensors, and a
sink [9, 10].

To ease the constraints on our previously defined four-cluster topology, we opt for a
simplified version consisting of one-cluster only as depicted in Figure 6.4. We believe
that it is helpful in determining the right parameter selection for a generalized topology,

157

and provides a good understanding of the behavior of compressed sensing and coding
matrices.

First of all, we need to fix and validate the parameters m, for temporal compression,
and l for spatial compression. We initially set the number of sensors involved in the
simulations to N = 256 nodes. Also in order to show clear results, we only consider
error-free links in our simulations and we disable spatial precoding, i.e., the transmission
probability ptx of the common sensor nodes is one. For these settings, the l number of
packets needed at the sink for spatial reconstruction corresponds to the r number of
packets that the receiver actually sees.

0 20 40 60 80 100
r

0.0

0.2

0.4

0.6

0.8

1.0

p(
R
S
N
R
i
>

10
0
d
B

)

m = 32 m = 64 m = 128 m = 256

Figure 6.5: CDF of the reconstructed data after receiving l packets at the sink for
different m using the OMP reconstruction algorithm, with Smeas = 103, k = 5, N = 256
and n = 512 [9, 10].

Figure 6.5 depicts the CDF based on the probability of having at least RSNRi >

100dB for the number of coded packets r required by the sink for an accurate recon-
struction using the OMP algorithm. We observe that for r < 25, almost none of the
original sensory data could be reconstructed for any of the measurement sizes m chosen.
However, as the number of received packets increases, the reconstruction probability
improves almost similarly for m ∈ {64, 128, 256}. Complete reconstruction is, therefore
guaranteed, at r ≈ 90 with a high RSNR. Unfortunately, with smaller measurement sizes
(e.g., m = 32), the probability converges to approximately 0.8 regardless of the number of
packets received. Based on these simulation results, we fix the number of measurements
after the temporal compression to m = 64 for the remaining of our simulations campaign,
as it can ensure overall improved system performance and optimized decoding complexity.

“Figure 6.6 illustrates the CDF of different cluster sizes N (number of sensor nodes),

158

0.2 0.4 0.6 0.8 1.0
ptx

0.0

0.2

0.4

0.6

0.8

1.0

p(
R
S
N
R
i
>

10
0
d
B

)

N = 32 N = 64 N = 128 N = 256

Figure 6.6: Decoding probability as a function of the transmission probability ptx with
N ∈ {32, 64, 128, 256}, Smeas = 100/∆ptx [9, 10].

when RSNRi > 100dB as a function of the transmission probability ptx of the sensor
nodes. We show that for all values of N , the decoding probability reaches one after a
certain transmission probability ptx. Consequently, it is possible to recover the data from
all the nodes even if a subsection of them is transmitting. We noticed also an inverse
proportional relationship between N and the transmission probability, meaning, one
needs a higher N and a lower probability to have P (RSNRi > RSNRmin) = 1. This
is due to the fact that the number of data vectors l needed at the sink for the spatial
reconstruction scales logarithmically with N for the OMP algorithm. Therefore, the
transmission probability scales with ptx ∼ log(N)/N . Another factor is the underlying
binomial distribution of r, where the probability to receive more than l data vectors
depends on N as well” [10].

As for determining the appropriate network coding coefficient distributions that
satisfy the RIP with a sufficiently high probability, we propose the evaluation of the
one-cluster topology using coefficients drawn from the common compressed sensing
distributions, namely the Bernoulli and Gaussian distributions, along with the basic
Random subselection case, where the cluster head selects l = r packets at random to
relay to the sink, instead of recombining them with the data coming from the other
sensors. Figure 6.7 depicts the CDF of the number of coded packets r needed at the sink
to reconstruct the original data that was combined with intra-cluster network coding
coefficients from the aforementioned distributions. As the theory of compressed sensing
stipulates, the performance of both Bernoulli and Gaussian matrices are similar and

159

0 20 40 60 80 100
r

0.0

0.2

0.4

0.6

0.8

1.0

p(
R
S
N
R
i
>

10
0
d
B

)

Gaussian Dist. Bernoulli Dist. Random Subselection

Figure 6.7: Decoding probability over r, the number of packets received at the sink for
different intra-cluster network coding coefficients or random subselection at the cluster
head with the OMP algorithm, where Smeas = 103, k = 5, N = 256, n = 512 and
m = 64 [9, 10].

allow a reconstruction starting from r = 26. Nonetheless, we observe with random
subselection that data reconstruction starts from r = 36 for the same reconstruction
probability. This gap persists until r = 80, where the decoding probabilities converge
to one for all the coding matrix distributions. This result is practically relevant since
the Bernoulli coefficients have a lower storage cost than the Gaussian ones. Additionally,
recombining various source node data provides a better decoding performance for lower
r values than merely selecting data vectors at random. Possible reasons for this include,
that Bernoulli or Gaussian distributed sensing matrices are better conditioned than the
random selection operator, as well as that the sum of multiple data vectors contains
more information than a single one.

6.4.3 Performance of Reconstruction Algorithms

In order to choose the best-suited algorithm for our data model and topology, we evaluate
the KL1p algorithms in terms of their reconstruction SNR and the computation time for
the single-cluster topology.

Figure 6.8a compares the average RSNR, denoted by RSNRS, for the benchmark
reconstruction algorithms after the spatial reconstruction as a function of the number of
packets r received at the sink. We observe that the SP and OMP algorithms achieve
outstanding results compared to the other algorithms, with a respective average of

160

20 30 40 50 60 70 80 90
r

0

50

100

150

200

250

300

R
S
N
R
S

(d
B

)

BP†

AMP

CoSaMP

ROMP

SP

SL0†
EMBP†

OMP

(a) Average RSNRS

20 30 40 50 60 70 80 90
r

100

101

102

103

t/
t O

M
P

BP†

AMP

CoSaMP

ROMP

SP

SL0†
EMBP†

(b) Average time t̄ needed for spatial recovery with respect with the OMP
average time, t̄OMP

Figure 6.8: Comparison of the reconstruction algorithms for Smeas = 1000/Smeas = 100(†),
k = 5, N = 256, n = 512, m = 64, l = 96 and µ = 1.4 [9, 10].

RSNRS = 280 dB and RSNRS = 260 dB with r = 90. The remaining benchmark
algorithms’ performance does not exceed an average RSNRS of 120.

Additionally, it is crucial to determine the fastest algorithm in completing the
reconstruction in order to draw our conclusions on the best available options, and their
trade-offs (if there are any). In order to be able to plot the results altogether, we needed
to scale the BP and the EMBP algorithms by showing the results for Smeas = 102 not

161

Smeas = 103 as it is the case for the other algorithms. Moreover, the OMP algorithm
completion time was by far the shortest, which has led us to think of comparing the
benchmark algorithms to the OMP completion time, denoted by t̄OMP .

Figure 6.8b shows the average computation time needed for reconstruction compared
to the OMP algorithm’s computation time. We observe that the SP algorithm, which
has a similar performance to the OMP based on Figure 6.8a, takes around twice as long
compared to OMP. Therefore, we conclude that the OMP is best suited in single-cluster
scenarios, as it cuts down the simulation time, while slightly compromising the average
SNR performance compared to the SP algorithm.

20 30 40 50 60 70 80 90
r

0

50

100

150

200

250

R
S
N
R
S

(d
B

)

BP†

AMP

CoSaMP

ROMP

SP

SL0†
EMBP†

OMP

Figure 6.9: Average RSNRS after spatial recovery over number of packets received at the
sink with inter cluster recombinations, different algorithms, Smeas = 1000/Smeas = 100(†),
k = 5, N = 256, n = 512, m = 64, l = 96 and µ = 1.4 [9, 10].

“On the other hand, to simulate the inter-cluster network coding, we let the CH form
l recombinations of the spatially compressed inner cluster data. As shown in Figure 6.9,
this massively influences the performance of most algorithms. Usually, more packets are
needed at the sink to achieve the same RSNRS as without recombinations. The reason
for the decreased performance may be attributed to perturbations in the data vectors
and in the sensing matrix. These initially occur during recombinations at CH1, as well
as the additional matrix multiplication at the decoder. Those errors arise in consequence
of rounding during the calculations, since we represent coefficients of an infinite field
with a fixed size double standard. We also note that only the BP algorithm seems to be
unaffected and it performs best with r. However, since its complexity scales with N3 and
n3, it appears not to be practical for a real-life scenario. Since the SP algorithm shows

162

the best performance considering the absolute RSNRS, we rely on it when analyzing
scenarios where recombinations are taking place” [10].

6.4.4 Performance Evaluation of the Four-Cluster Topology

30 40 50 60 70 80 90
r

0.0

0.2

0.4

0.6

0.8

1.0

p(
R
S
N
R
>

20
d
B

)
Normalized Non-normalized

Figure 6.10: Decoding probability over number of packets r received at the sink with
(non-)normalized coefficients, two recombinations, SP, Smeas = 1000, k = 5, n = 512,
m = 64, µj = 1.4 ∀j = 1, 2, · · · and RSNR = 150 dB [9,10].

We propose to determine the correct random coefficients to allow efficient recombi-
nations using real network coding. Namely, we investigate the impact of normalized
Gaussian coefficients on the overall reconstruction SNR of the four-cluster topology.
Furthermore, we determine the JoComCo scheme gains based on the sparsity level of the
original sensory data considered compared to a set of benchmark approaches.

It is crucial to determine the correct normalization of the network coding coefficients
when applying several recombination (recoding) steps on top of the compressed sensing
operations previously performed on the original sensory data. These coefficients are
either drawn properly normalized or simply chosen from N (0, 1) without normalization.

Figure 6.10 illustrates the impact of Gaussian coefficient normalization on the RSNR
of the overall topology. We observe that non-normalized coefficients perform extremely
badly, with a probability of achieving a reconstruction SNR larger than 20dB not exceeding
0.13 when considering a large number of recombined packets r = 96. Figure 6.11(a)
confirms this result and shows that the new coefficient distribution cannot be fitted
properly in a Gaussian distribution. However, when the coefficient is properly normalized,
it is guaranteed that r ≈ 90 is sufficient to finish decoding using the SP algorithm

163

−20 −10 0 10 20
0.00

0.05

0.10

0.15

0.20

0.25 Fitting to N (0, σ2)

Distr. of Ωr

(a) Without normalization
−4 −3 −2 −1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4

(b) With normalization

Figure 6.11: Distribution of network coding matrix elements of a single measurement
sequence with two recombinations fitted to a Gaussian distribution, with and without
normalization, with r = 96, k = 5, n = 512, m = 64 and RSNR = 150dB, and the SP
reconstruction algorithm used [9, 10].

with a RSNR > 20 dB, with a very high probability. This can be well described by
Figure 6.11(b), where the distribution of the normalized coefficients is fitted in the
Gaussian distribution function.

Figure 6.12: Received normalized data by the sink for the four-cluster topology setting
based on the original readings sparsity factor, when Nj = 128, µj = 1.2, ∀j ∈ C, n = 512,
and SNR= 150dB [8].

Figure 6.12 illustrates the normalized data reduction gain as a function of the
normalized sparsity of the data considered, for the set of different schemes in the four-

164

cluster topology of Figure 6.2. This data is approximately reconstructed at the receiver
with a sufficiently high SNR around 150 dB. We observe that the different levels of
sparsity do not impact the number of coded packets transmitted when using network
coding. This proves our assumption that network coding is an agnostic coding technique,
in which performance does not depend on the data type. Nevertheless, discarding a
fraction of around 0.2 from the total transmission thanks to its FEC nature and its
ability to discard redundant packets are considered to be beneficial especially in scenarios
where compressed sensing cannot be performed by very low-battery sensors. Furthermore,
the scheme where only compressed sensing is applied shows a great data reduction
that is linearly dependent on the sparsity. On average, around half of the data in this
four-cluster network could be removed for a normalized sparsity of 9.1 thanks to the
efficient exploitation of the temporal and spatial correlations by compressed sensing. As
for the scenario where compressed sensing and network coding are combined, a slight
improvement could be noticed when the data are very sparse, but the gap increases if the
data are less sparse, leaving around 0.4 of the data only. Finally, our proposed scheme
JoComCo, referred to as “Joint CS+NC”, outperforms the agnostic approach, keeping
around 0.3 of the data with an original normalized sparsity of 0.1, and around 0.1 when
the normalized sparsity is around 0.05. Our scheme design not only allows for reduced
data communication but also faster reconstruction thanks to the one-step decoding we
previously explained.

6.5 Conclusions

In this chapter, we proposed an in-network computing approach by designing combined
compressed sensing and network coding scheme. We unveiled the most important settings
for an advantageous combination compared to other state-of-the-art agnostic approaches.
We mainly focused on choosing the most efficient coding and sensing matrices, as well as
the fastest reconstruction algorithms that guarantee higher reconstruction SNRs. For
instance, the network coding matrix should obey all the compressed sensing properties,
e.g., the RIP or NSP, despite the fact that it is unaware of the characteristics of the
data to be coded. Nevertheless, it is crucial to meticulously choose the network coding
matrix coefficients. For example, normalized Gaussian coefficients resolve the problem of
the packet header explosion with a high probability. Our implementation results using
a set of reconstruction algorithms prove that the SP guarantees the best performance,
especially for a large networks. Whereas, it is more convenient to employ OMP for simple

165

topologies such as our single-cluster topology since it is the fastest algorithm and its
performance is closer to the one by SP.

JoComCo allows the efficient in-network exploitation the temporal and spatial corre-
lations (also seen as inter and intra correlations) in a WSN. To the best of our knowledge,
this is the only scheme that explicitly provides an overall improved gain compared to the
agnostic state-of-the-art approaches. We showed an over 90 % decrease in the payload and
the number of packets specifically for data that follow the Joint Sparsity Model (JSM-2),
such as temperature and humidity readings, while maintaining a low computational
complexity thanks to the joint decoding mechanism, and a very high reconstruction
SNR [8,10].

Nevertheless, our scheme cannot cope with extremely repetitive recoding in larger
networks with a large number of clusters due to the inevitable multiplication precision
loss in the real field. Therefore, it is interesting to improve the scalability of the recoding
feature of this approach or design an efficient joint scheme in the finite field.

166

Chapter 7 |
Conclusions and Future Directions

The fifth generation of mobile communication systems is rapidly expanding the tasks
of both wired and wireless networks. These novel solutions are expected to play crucial
roles for both private and corporate uses. This new era, which will connect everyone
and everything, is more engaged in the data deluge continuum, since, presently, there
are around 50 billion sensors deployed throughout all IoT equipment. Such devices
continuously transmit their readings, be it Industry 4.0-enabled robots, self-driving cars,
drones, etc. Additionally, we are witnessing a huge volume of video broadcasts and
exchanges. We can just look at how video conferencing has evolved due to the COVID-19
pandemic, which dramatically increased its proportional claim on the overall bandwidth
in order to carry on with connecting both people and businesses [221]. Keeping up with
the management of this new wave of big data should start from the very communications
systems that are handling the brunt of these massive transmissions. Studying and
understanding the various features of this overwhelming new wave of data has led us to
realize that the data packets are actually quite heterogeneous. When looking at such
messages, even just the packet size distributions are seemingly quite random. On the
other hand, the information carried within such messages could exhibit significant levels
of correlations, especially in the omnipresent wireless sensor networks.

Network coding advocates for a new concept of the communication paradigm that
heavily relies on a point-to-point type of linear coding. Instead, network coding allows
the intermediate nodes to perform recoding without resorting to decoding, which resulted
in tremendous improvements in the network robustness, resilience, and throughput,
to name a few. On the other hand, the compressed sensing technique exploits the
correlations of signals to allow for the exact or approximate recovery of a high-dimensional
sparse signal from low-dimensional measurements, thus breaking with the Shannon-
Nyquist theory and the standard rules of linear algebra. From a communication point

167

of view, compressed sensing could serve as a means to reducing data transmissions
and storage. Both techniques are of significant importance for the new generation of
communications. Plugging them in the appropriate 5G use-cases guarantees substantial
network performance gains. Our contributions in this dissertation are twofold: the first
significantly reduces the padding overhead resulting from performing RLNC on real-life
data, known to have unequal sizes, and the second exploits the correlations of the sensory
data to reduce the payload and the number of transmissions.

The first contribution consists of exploiting the heterogeneity of the data to transmit,
i.e., the randomness in packet size distributions, by proposing novel mechanisms that
reduce the resulting padding overhead when employing FEC codes, namely RLNC,
since it is the unique code that enables recoding at intermediate nodes. Therefore, we
proposed a set of schemes that operate on macro-symbols, which represent subsets of
the packets instead of the entire packets. The following approaches represent significant
improvements:

• progressive shortening

• deterministic shifting

• Random Shift and XOR (RaSOR)

Specifically, progressive shortening is a unique RLNC-based code that generates
unequal-sized coded packets with sizes almost matching that of the original packets’,
since it operates on individual macro-symbols that involve minimal padding overhead [4].
Interestingly, it is also capable of healing a generation from a padding overhead resulting
from the redundancy in the transmissions during recoding. Consequently, it creates
unequal-length recoded packets as well, which linearly increases with the number of
hops using RLNC [6]. However, despite our efforts in reducing its expensive decoding
complexity with sub-decoders, which consist of smaller decoding matrices compared to
the ones used in MS RLNC, its throughput remains low compared to conventional RLNC.
Furthermore, a robust policy is needed to raise awareness about when to reduce the sizes
of the following coded packets, instead of resorting to sending full-length ones, especially
when lacking feedback.

The macro-symbol shifting idea provides more flexibility when combining the in-
dividual macro-symbols, thus favoring the creation of less coded packets compared to
the original generation size [4, 5]. This idea is inspired by the chain and fragmenta-
tion scheme [169], but we proposed instead the employment of macro-symbols. The

168

lower bound of the required coded packets under this setting is defined by ∆det
max as⌈

N∑
i=1

Λi

/
Λmax

⌉
, which could be significantly lower if the potential RLNC padding over-

head is high. Moreover, the idea of actively shifting the packets before creating a new
coded packet has added an extra computational complexity for decoding, since the pattern
of the coefficients in the decoding matrix is constantly updated. Moreover, the average
performance was similar to the random shifting approach introduced in Chapter 5. This
has led us to discard the idea of drawing random coefficients from a finite field, instead,
we perform XORing operations on the shifted macro-symbols in order to reduce the
overall complexity.

The related approach is called Random Shift and XOR (RaSOR), which is based
on shifting the unequal-sized packets then XORing before the creation of every coded
packet [30]. RaSOR also has a linear encoding/decoding complexity, which makes it best
suited for power-constrained devices, like sensors. Moreover, this scheme comes with
some varieties that exclusively depend on the coding generation in question. As far as we
know, the only drawback of the RaSOR scheme is its lack of recoding support, since the
coded packets have equal sizes that suppress the creation of sufficiently innovative packets
with shifted-XORing. Random shifting achieves, on average, the same performance as
the deterministic scheme. Despite its relatively low performance, it constitutes a free
and easy to apply code to protect the data transmissions, as well as its storage [222].

Although my Ph.D. journey must come to an end, this does not mean that all
my (our) research ideas have been fully exploited and published. On the contrary,
we have consistent material related to the topics of the dissertation that has not yet
been submitted for review. For instance, we are actively working on the first RLNC
technique survey that could serve as a guide for students in communication networks,
as well as researchers from academia and industry. Parts of this work were introduced
in Chapter 2. Moreover, we investigated the performance of the progressive shortening
scheme under different coefficient sparsity levels and compared it to conventional RLNC.
Furthermore, we proposed an overlapping-generation mechanism to overcome the issue
of the macro-symbols that are quickly discarded from the encoding process of the
progressive shortening. Since the progressive shortening approach has a higher decoding
computational complexity, we decided to target the optimization of decoding via higher
parallelization.

There are also various interesting directions for future works that could employ an
online sliding window to improve the encoding and decoding complexities at a granularity
of individual packets, leading to reduced network latencies [223,224]. Additionally, for

169

further gains, it is important to examine the padding overhead reduction by proposing
intra-coding of the macro-symbols inside the space that is usually occupied by zero-
padding in conventional RLNC. As an example, enhancing the robustness of the data
by incorporating coded versions of the macro-symbols within a specific original packet
before performing RLNC. Furthermore, we would like to include our macro-symbol-based
code in the Kodo library of Steinwurf, and give free access to students to manipulate the
code, in order for them to be able to build upon it for their personal projects.

Our second contribution was mainly to the design and implementation of an efficient
joint compressed sensing and real network coding approach called JoComCo. JoComCo
surpasses the overall performance of the state-of-the-art approaches, especially in terms
of compression gain. Investigating the characteristics needed for a fruitful design enabled
us to exploit the recoding feature of network coding in the real field to further extend its
adoption in slightly larger networks. However, it remains a challenging task to provide a
scalable design for large-scale recoding, as the operations on floating points in the real
field may lead to a deviation from the original values, thus blocking potential gains.

This is the reason why we were interested in 1-bit compressed sensing, which inherits
the compressed sensing model but only retains the signs of the measurements [225]. We
believe that such a variant could enable a smoother joint design with RLNC, instead of
the approaches discussed in Chapter 6. Our results show a high SNR for Gaussian and
Rademacher matrices, as well as a faster convergence time for the Binary Iterative Hard
Thresholding (BIHT) [226] algorithm when Rademacher matrices are used. As its name
suggests, 1-bit compressed sensing reduces the data sets into mere few bits, which could
be an interesting approach for applications where quick decisions have to be made before
the data becomes outdated and discarded. Moreover, investigating opportunities for
deep learning [227] to alleviate core compressed sensing challenges, including the search
for adequate and more effective sparsifying basis, as well as measurement matrices, will
definitely lead to significantly higher compression gains. This is expected to favor the
low-latency and low-complexity reconstruction process while maintaining the accuracy of
the data. Such a combination has the potential of enabling distributed partial decoding
as a further step. On the other hand, it is of tremendous interest to investigate the
possibility of a joint design of RaSOR with compressed sensing. By relying on tunable-size
sensing matrices, which could bring a broader interest in applying it in heterogeneous
IoT-based networks (such as road monitoring), it could have a high potential application
interest for unequal but correlated data transmissions.

Eventually, it is crucial to continue the research of post-Shannon communications

170

in order to obtain more efficient transmissions and data management. The ultimate
goal would be to enable the recreation of data on-demand, given that we hold the key
to functional compression. Could this be a reasonable goal compared to holographic
teleportation set as a goal for the advent of 6G [228, 229]? We will hopefully see how
such avenues of research turn out in the future...

171

172

Appendix A|
Proofs for Section 6.4

A.1 Proof of Proposition 1

Proof. We use a simple iteration in order to calculate the rank evolution of the C different
combinations/equations before we obtain the maximum rank for a generation with equal-
size packets, i.e. G = {P1, · · · , PN}, where Pi = {sik, k ∈ {1, · · · , Lmax}}. To do so,
we choose and fix the (N − 1) elements from different packet sets, for simplicity sj1,
j ∈ Fi = {1, · · · , N}\{i}, and we vary the remaining set Pi within each iteration to count
the rank evolution accordingly. The resulting value of the linear equation obtained by
XORing these elements is Vik:

Vik =
⊕
j∈Fi

sj1 ⊕ sik, ∀k ∈ {1, · · · , Lmax}.

Therefore, rk{V11, · · · , V1Lmax} = Lmax for i = 1. It is trivial that the rank of a linear
system of equations obtained using XOR operations increases if we add a new equation
that can be written as z + y where y represents unknowns that have not appeared in
other early equations. As a result, the rank increases by 1 iff a new unknown is brought
with a new equation. To continue the counting process for i ∈ {2, · · · , N}, we iterate
through k ∈ {2, · · · , Lmax} since Vi1 = ⊕

j∈Fi

sj1 ⊕ si1 = V11. Consequently,

rk(C) = rk
{

V11, · · · , V1Lmax︸ ︷︷ ︸
Lmax

,✟✟✟V21, · · · , V2Lmax︸ ︷︷ ︸
(Lmax−1)

, · · · ,

✟✟✟VN1, · · · , VNLmax︸ ︷︷ ︸
(Lmax−1)

}
= Lmax + (Lmax − 1) · (N − 1)

Hence rk(C) = NLmax − N + 1. This completes the proof of Proposition 1.

173

A.2 Proof of Proposition 2

Proof. This follows the same reasoning except that the packets do not have the same
sizes. Let Pi = {sij, j ∈ {1, · · · , Li}} and |K| = n. However, in this case, a non-full size
packet has the possibility of not appearing in these iterations. As such,

Vik =
⊕
j∈Fi

sj1 ⊕ sik, ∀k ∈ {1, · · · , Li}.

For ease of notations let the first n packets be full size, then:

rk(C) = rk
{

V11, ..., V1Lmax︸ ︷︷ ︸
Lmax

,✟✟✟V21, ..., V2Lmax︸ ︷︷ ︸
(Lmax−1)

, ...,

✟✟✟Vn1, ..., VnLmax︸ ︷︷ ︸
Lmax−1

, V(n+1)1, ..., V(n+1)L(n+1)︸ ︷︷ ︸
L(n+1)

..., VN1, ..., VNLN︸ ︷︷ ︸
LN

}

= Lmax +
n∑

l=2
(Lmax − 1) +

N∑
t=n+1

Ll =
N∑

l=1
Ll − (n − 1),

which concludes the proof of Proposition 2.

A.3 Selecting the Modifier µj via a Fixed Deviation

The transmission probability of the common source nodes in cluster j can be denoted as

ptx = µj(lj − 1)/(Nj − 1),

and is equally to the reception probability at the CH in case of no link errors, so prx = ptx.
The probability to receive at least lj data vectors at the CH is given by a binomial
distribution:

p (r ≥ lj − 1) = 1 −
lj−2∑
i=0

(
Nj − 1

i

)
pi

rx(1 − prx)Nj−1−i.

We want to fix the transmission by changing µj , so that the CH does not receive less than
lj − 1 data vectors with a fixed deviation from the mean of this binomial distribution
(with lj − 1 = a, Nj − 1 = b):

a
!= µja − κσ → µj − 1 != κσ

a
, κ ∈ R.

174

The deviation of the binomial distribution is given by:

σ2 = µja
(

1 − µj
a

b

)
.

Then by joining both equations via the deviation σ it follows that:

0 = µ2
j

(
1 + κ2

b

)
− µj

(
2 + κ2

a

)
+ 1.

This leads to a the solution of µj > 1:

µj =

(
2 + κ2

a

)
+
√(

2 + κ2

a

)2
− 4

(
1 + κ2

b

)
2
(
1 + κ2

b

) .

The desired deviation can be, for example, chosen by approximating the binomial with a
Gaussian distribution. For κ = 2 then it is given with the Gaussian confidence intervals:

p (r ≥ lj − 1) ≈ 1 − 0.022 = 0.978.

175

176

Appendix B|
Network Emulation with Comp-
ressed Sensing

The Communication Networks Emulator (ComNetsEmu) was built for the sake of a
collaborative research book that was prepared by most of the researchers at the Deutsche
Telekom Chair of Communication Networks [1]. It encloses our latest results in a vast
range of research fields. We implemented a simple compressed sensing framework for
the ComNetsEmu emulator [11]. In order to remain consistent and harmonized with the
book’s content, we considered each sensor node to be used as an independent Docker
container that has powerful computational capabilities to perform compressed sensing
independently. In the following, we present the example of a single-cluster topology,
where the sensory data can undergo either a DCT transform for obtaining a sparse
representation, or an over-complete trained dictionary. We note that the content of the
appendix has appeared entirely in [11].

B.1 Implementation in ComNets Emulator

We note that the python-sklearn and python-numpy dependencies are required for running
the application in the emulator. The considered example can be found in the compressed-
sensing directory of the ComNetsEmu. We employ the dataset from 54 sensors provided
by Intel lab [230]. The dataset contains environmental data, e.g., temperature, light, and
humidity values, which are sampled every 31 seconds. Without loss of generality to other
types of sensed data, we propose to use the temperature readings. We also note that
this is the most reliable library that we could find for our implementation, despite the
missing or truncated values as it is mentioned in the Intel Lab Data webpage.

The scenario we are proposing is depicted in Figure B.1 and consists of six sensors

177

in one cluster where each communicates its compressed readings to the sink that is
responsible for the reconstruction procedure.

Sink
S3

S2 S1

S4 S5 S6

Figure B.1: An example of single cluster scenario where one sensor transmits its com-
pressed readings to a sink [11].

Specifically, every sensor sparsifies and compresses every set of samples S = 100,
containing each n = 80 readings, seen as an S × n matrix of original readings, into
m = 40 measurements per sample, i.e., the data is reduced by half. The sink is aware
of the sparsification and the compression details, and performs the OMP algorithm to
approximate the original sensory data. We propose the evaluation the reconstruction
using Mean Squared Error (MSE) scores, which is known to give an efficient approximation
of the reconstructed data error.

B.2 Using DCT for Data Sparsification

The command in the listing below is required to be able to run the scenario:

$ sudo python3 topo.py 6 --dct 1

Listing B.1: Setup of the compressed sensing scenario using overcomplete dictionary
learning.

Furthermore, Listing B.2 shows the connections established between the sensors (con-
tainers) and the sink [11]:

Head: Setup socket on (’10.0.0.21 ’ , 8003)

178

Head: Now connected to: (’10.0.0.1 ’ , 51770)

Head: Now connected to: (’10.0.0.2 ’ , 38404)

Head: Now connected to: (’10.0.0.3 ’ , 35576)

Head: Now connected to: (’10.0.0.4 ’ , 33658)

Head: Now connected to: (’10.0.0.5 ’ , 60990)

Head: Now connected to: (’10.0.0.6 ’ , 40766)

Listing B.2: Detail of the output from Listing B.1

The extended output of Listing B.1 is displayed in Listing B.3, where the MSE of the
reconstructed data received from all six sensors is displayed.

Head: Shape received data buffer : (6, 20, 1)

Head: Decompression with DCT

Head: Shape reconstructed data buffer : (6, 100 , 1)

Head: MSE for Sensor1 : 2.4971498629114364

Head: MSE for Sensor2 : 3.205683707754018

Head: MSE for Sensor3 : 1.4509731095228484

Head: MSE for Sensor4 : 2.5766685412602643

Head: MSE for Sensor5 : 3.3931169852261265

Head: MSE for Sensor6 : 2.497400591976876

*** Head has finished

*** Node1 logs

Node1 : Connected to: (’10.0.0.21 ’ , 8003)

Node1 : Compression with dct

Node1 : Shape original data: (100 ,)

Node1 : Shape compressed data: (40 ,)

Node1 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node2 logs

Node2 : Connected to: (’10.0.0.21 ’ , 8003)

Node2 : Compression with dct

Node2 : Shape original data: (100 ,)

Node2 : Shape compressed data: (40 ,)

Node2 : closed connection to: (’10.0.0.21 ’ , 8003)

179

*** Node3 logs

Node3 : Connected to: (’10.0.0.21 ’ , 8003)

Node3 : Compression with dct

Node3 : Shape original data: (100 ,)

Node3 : Shape compressed data: (40 ,)

Node3 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node4 logs

Node4 : Connected to: (’10.0.0.21 ’ , 8003)

Node4 : Compression with dct

Node4 : Shape original data: (100 ,)

Node4 : Shape compressed data: (40 ,)

Node4 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node5 logs

Node5 : Connected to: (’10.0.0.21 ’ , 8003)

Node5 : Compression with dct

Node5 : Shape original data: (100 ,)

Node5 : Shape compressed data: (40 ,)

Node5 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node6 logs

Node6 : Connected to: (’10.0.0.21 ’ , 8003)

Node6 : Compression with dct

Node6 : Shape original data: (100 ,)

Node6 : Shape compressed data: (40 ,)

Node6 : closed connection to: (’10.0.0.21 ’ , 8003)

Listing B.3: Detail of the output from Listing B.1

We observe that despite the close geographical placement of the sensors, and the similar
temperature readings during the sensing times, the reconstruction gives a different value
of the MSE per sensor, which is due to the several potential errors within the data itself.

180

B.3 Using a Trained Dictionary for Data Sparsification

In this scenario, we rely on the training of an over-complete dictionary to use instead
of the pre-defined DCT sparsification. The dictionary is obtained using the K-SVD
algorithm and a larger set of sensor readings compared to the sets used for compressed
sensing. We developed our K-SVD algorithm using the OMP algorithm of the Scikit-
learn Application Programming Interface (API). To run this example, the following
command needs to be executed:

$ sudo python3 topo.py 6

Listing B.4: Setup of the compressed sensing scenario using overcomplete dictionary
learning.

As the connections establishment between the containers and the sink is similar to the
previous DCT scenario, Listing B.4 displays the MSE of the reconstructed data for each
of the six sensors [11]:

Head: Shape received data buffer : (6, 100, 40)

Head: Decompression with dictionary

Head: Shape reconstructed data buffer : (6, 100 , 80)

Head: MSE for Sensor1 : 0.18296451461710317

Head: MSE for Sensor2 : 0.5187587073441643

Head: MSE for Sensor3 : 0.17176943538612072

Head: MSE for Sensor4 : 0.18735776249882208

Head: MSE for Sensor5 : 0.3512422779473302

Head: MSE for Sensor6 : 0.16979520531023373

*** Head has finished

*** Node1 logs

Node1 : Connected to: (’10.0.0.21 ’ , 8003)

Node1 : Compression with dictionary

Node1 : Shape original data: (100 , 80)

Node1 : Shape sparse data: (200 , 100)

Node1 : Shape compressed data: (100 , 40)

181

Node1 : MSE: 0.1829645146171032

Node1 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node2 logs

Node2 : Connected to: (’10.0.0.21 ’ , 8003)

Node2 : Compression with dictionary

Node2 : Shape original data: (100 , 80)

Node2 : Shape sparse data: (200 , 100)

Node2 : Shape compressed data: (100 , 40)

Node2 : MSE: 0.5187587073441643

Node2 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node3 logs

Node3 : Connected to: (’10.0.0.21 ’ , 8003)

Node3 : Compression with dictionary

Node3 : Shape original data: (100 , 80)

Node3 : Shape sparse data: (200 , 100)

Node3 : Shape compressed data: (100 , 40)

Node3 : MSE: 0.17176943538612072

Node3 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node4 logs

Node4 : Connected to: (’10.0.0.21 ’ , 8003)

Node4 : Compression with dictionary

Node4 : Shape original data: (100 , 80)

Node4 : Shape sparse data: (200 , 100)

Node4 : Shape compressed data: (100 , 40)

Node4 : MSE: 0.18735776249882208

Node4 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node5 logs

Node5 : Connected to: (’10.0.0.21 ’ , 8003)

Node5 : Compression with dictionary

Node5 : Shape original data: (100 , 80)

Node5 : Shape sparse data: (200 , 100)

Node5 : Shape compressed data: (100 , 40)

Node5 : MSE: 0.3512422779473302

182

Node5 : closed connection to: (’10.0.0.21 ’ , 8003)

*** Node6 logs

Node6 : Connected to: (’10.0.0.21 ’ , 8003)

Node6 : Compression with dictionary

Node6 : Shape original data: (100 , 80)

Node6 : Shape sparse data: (200 , 100)

Node6 : Shape compressed data: (100 , 40)

Node6 : MSE: 0.1697952053102337

Node6 : closed connection to: (’10.0.0.21 ’ , 8003)

Listing B.5: Detail of the output from Listing B.4

We observe an average MSE varying from 0.169 for Node1 to 0.518 for Node2, which was
noticed in the previous example as well. Nevertheless, using a trained dictionary shows
remarkable reconstruction improvements of the original data.

B.4 Overcomplete Dictionary Robustness

In order to investigate the robustness of the previously trained dictionary, we propose to
train an over-complete dictionary for the data set of each sensor in the network. Then we
apply compressed sensing using the same conditions and assumptions previously adopted.

Head: Shape received data buffer : (6, 100, 40)

Head: Decompression with dictionary

Head: Shape reconstructed data buffer : (6, 100 , 80)

Head: MSE for Sensor1 : 0.18296451461710317

Head: MSE for Sensor2 : 0.3831813907447271

Head: MSE for Sensor3 : 0.17085131674783086

Head: MSE for Sensor4 : 0.18582421022630732

Head: MSE for Sensor5 : 0.2531560266775236

Head: MSE for Sensor6 : 0.16862887303364887

Listing B.6: Detail of the output from Listing B.4, with a specific trained dictionary for
each sensor

183

Listing B.6 [11] displays the average MSE for each of the sensors in the single-cluster
topology. The obtained values are almost identical to the results previously obtained
with one trained dictionary in Listing B.5 for all the sensors except for sensor2, where
the MSE dropped by around 0.13, and 0.1 for sensor5. This is explained by the fact that
the data set employed is not entirely correct, and we needed to clean it from errors and
compensate for missing values. Despite this anomaly, using one single dictionary remains
a robust and sufficient option as it reduces the dictionary processing and storage at the
devices.

Despite the challenging task of finding an efficient sparsification approach for a certain
data type, training an over-complete dictionary seems to be the most efficient and robust
approach in the presence of a sufficiently large data set. However, the DCT or other
pre-defined transformations could lead to closer benefits if the devices performing the
compression do not have good computational capabilities and/or large data sets.

184

Bibliography

[1] Fitzek, F. H., F. Granelli, and P. Seeling (2020) Computing in Communi-
cation Networks: From Theory to Practice, Academic Press.

[2] Taghouti, M. (2020) Compressed Sensing, vol. 1 of 1, chap. 10, 1 ed., Elsevier,
https://cn.ifn.et.tu-dresden.de/compcombook/.

[3] Taghouti, M., D. E. Lucani, M. V. Pedersen, and A. Bouallègue (2016)
“On the Impact of Zero-Padding in Network Coding Efficiency with Internet Traffic
and Video Traces,” in IEEE 22nd European Wireless Conference, (EW2016), pp.
72–77.

[4] Taghouti, M., D. E. Lucani, J. A. Cabrera, M. Reisslein, M. V. Peder-
sen, and F. H. Fitzek (2019) “Reduction of padding overhead for RLNC media
distribution with variable size packets,” IEEE Transactions on Broadcasting, 65(3),
pp. 558–576.

[5] Taghouti, M., D. E. Lucani, M. V. Pedersen, and A. Bouallègue (2016)
“Random Linear Network Coding for Streams with Unequally Sized Packets: Over-
head Reduction without Zero-Padded Schemes,” in 23rd Int. Conference on Telecom-
munications, (ICT).

[6] Taghouti, M., M. Tömösközi, M. Howeler, D. E. Lucani, F. H. Fitzek,
A. Bouallegue, and P. Ekler (2019) “Implementation of network coding with
recoding for unequal-sized and header compressed traffic,” in 2019 IEEE Wireless
Communications and Networking Conference (WCNC), IEEE, pp. 1–7.

[7] Pedersen, M. V., J. Heide, F. H. Fitzek, and T. Larsen (2009)
“Pictureviewer-a mobile application using network coding,” in 2009 European
Wireless Conference, IEEE, pp. 151–156.

[8] Taghouti, M., A. K. Chorppath, T. Waurick, and F. H. P. Fitzek (2018)
“Practical Compressed Sensing and Network Coding for Intelligent Distributed
Communication Networks,” 14th IEEE International Wireless Communications
and Mobile Computing Conference (IWCMC), Limassol, Cyprus.

[9] ——— (2018) “On the Design of a Joint Compressed Sensing and Network Coding
Framework,” European Wireless Conference, Catania, Italy.

185

[10] Taghouti, M., M. Tömösközi, T. Waurick, A. K. Chorppath, and F. H. P.
Fitzek (2019) “On the Joint Design of Compressed Sensing and Network Coding
for Wireless Communications,” Transactions on Emerging Telecommunications
Technologies.

[11] Taghouti, M. and M. Höweler (2020) In-network Compressed Sensing, vol. 1
of 1, chap. 22, 1 ed., Elsevier.

[12] Seeling, P. and M. Reisslein (2012) “Video Transport Evaluation With H.264
Video Traces,” IEEE Communications Surveys & Tutorials, 14(4), pp. 1142–1165.

[13] “Arizona State University’s video traces library,” .
URL http://trace.eas.asu.edu/tracemain.html

[14] KL1p (2012), “KL1p - a portable C++ library for compressed sensing,” .
URL http://kl1p.sourceforge.net/home.html

[15] Miorandi, D., S. Sicari, F. De Pellegrini, and I. Chlamtac (2012) “Internet
of things: Vision, applications and research challenges,” Ad hoc networks, 10(7),
pp. 1497–1516.

[16] Du, R., P. Santi, M. Xiao, A. V. Vasilakos, and C. Fischione (2018)
“The sensable city: A survey on the deployment and management for smart city
monitoring,” IEEE Communications Surveys & Tutorials, 21(2), pp. 1533–1560.

[17] Mainwaring, A., D. Culler, J. Polastre, R. Szewczyk, and J. Anderson
(2002) “Wireless sensor networks for habitat monitoring,” in Proceedings of the 1st
ACM international workshop on Wireless sensor networks and applications, pp.
88–97.

[18] Zhang, Z., Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis,
and P. Fan (2019) “6G wireless networks: Vision, requirements, architecture, and
key technologies,” IEEE Vehicular Technology Magazine, 14(3), pp. 28–41.

[19] Giordani, M., M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi
(2020) “Toward 6g networks: Use cases and technologies,” IEEE Communications
Magazine, 58(3), pp. 55–61.

[20] (2020), “Cisco Annual Internet Report (2018–2023) White Paper,” .
URL https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/
white-paper-c11-741490.html

[21] (2017), “The Zettabyte Era—Trends and Analysis,” .
URL http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/
vni-hyperconnectivity-wp.html

186

[22] Osseiran, A., F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Mater-
nia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, et al. (2014)
“Scenarios for 5G mobile and wireless communications: the vision of the METIS
project,” IEEE communications magazine, 52(5), pp. 26–35.

[23] Ahlswede, R., N. Cai, S.-Y. R. Li, , and R. W. Yeung (2000) “Network
Information Flow,” IEEE Trans. on Info. Theory, 46(4).

[24] Ho, T., R. Koetter, M. Médard, D. R. Karger, and M. Effros (2004)
“The Benefits of Coding over Routing in a Randomized Setting,” in Proc. of the
IEEE International Symposium on Information Theory (ISIT’04).

[25] Ho, T., M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong (2006) “A random linear network coding approach to multicast,” IEEE
Trans. on Info. Theory, 52(10), pp. 4413 –4430.

[26] Candès, E. J. et al. (2006) “Compressive sampling,” in Proceedings of the
international congress of mathematicians, vol. 3, Madrid, Spain, pp. 1433–1452.

[27] Candès, E. J., J. Romberg, and T. Tao (2006) “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on information theory, 52(2), pp. 489–509.

[28] Candes, E. J. and T. Tao (2005) “Decoding by linear programming,” IEEE
transactions on information theory, 51(12), pp. 4203–4215.

[29] Aharon, M., M. Elad, and A. Bruckstein (2006) “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE Transactions
on signal processing, 54(11), pp. 4311–4322.

[30] Taghouti, M., D. E. Lucani, and F. H. Fitzek (2017) “Random shift and
XOR of unequal-sized packets (RaSOR) to shave off transmission overhead,” in
Information Sciences and Systems (CISS), 2017 51st Annual Conference on, IEEE,
pp. 1–6.

[31] Taghouti, M., D. Lucani, F. H. Fitzek, and A. Bouallegue (2017) “Random
Linear Network Coding Schemes for Reduced Zero-Padding Overhead: Complexity
and Overhead Analysis,” in European Wireless 2017; 23th European Wireless
Conference; Proceedings of, VDE, pp. 1–7.

[32] Ludwig, S., M. Karrenbauer, A. Fellan, H. D. Schotten, H. Buhr,
S. Seetaraman, N. Niebert, A. Bernardy, V. Seelmann, V. Stich,
A. Hoell, C. Stimming, H. Wu, S. Wunderlich, M. Taghouti, F. Fitzek,
C. Pallasch, N. Hoffmann, W. Herfs, E. Eberhardt, and T. Schild-
knecht “A 5G Architecture for the Factory of the Future,” pp. 1409–1416.

187

[33] Wu, H., I. A. Tsokalo, M. Taghouti, H. Salah, and F. H. P. Fitzek (2019)
“Compressible Source Separation in Industrial IoT Broadband Communication,” in
2019 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 619–624.

[34] Karrenbauer, M., S. Ludwig, H. Buhr, H. Klessig, A. Bernardy, H. Wu,
C. Pallasch, A. Fellan, N. Hoffmann, V. Seelmann, M. Taghouti, et al.
(2019) “Future industrial networking: from use cases to wireless technologies to a
flexible system architecture,” at-Automatisierungstechnik, 67(7), pp. 526–544.

[35] et al., M. K. (2018) “Towards a Flexible Architecture for Industrial Network-
ing,” in 23th VDE/ITG Conference on Mobile Communication (23. VDE/ITG
Fachtagung Mobilkommunikation), VDE.

[36] Klessing, H., S. Ludwig, M. Karrenbauer, H. Schotten, H. Wu,
M. Taghouti, F. H. P. Fitzek, and P. T. Lozano (2021) “A Factory of
the Future Reference Network Architecture,” submitted to IEEE Communications
Magazine.

[37] Taghouti, M. (2021) “PhD Forum: Padding Overhead Reduction in Random
Linear Coded Variable Size Media Streams,” in 22nd IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), IEEE.

[38] Ahlswede, R., N. Cai, S.-Y. R. Li, and R. W. Yeung (2000) “Network
Information Flow,” IEEE Transactions on Information Theory, 46(4).

[39] Bassoli, R., H. Marques, J. Rodriguez, K. W. Shum, and R. Tafazolli
(2013) “Network coding theory: A survey,” IEEE Communications Surveys &
Tutorials, 15(4), pp. 1950–1978.

[40] Douik, A., S. Sorour, T. Y. Al-Naffouri, and M.-S. Alouini (2017)
“Instantly decodable network coding: From centralized to device-to-device commu-
nications,” IEEE Communications Surveys & Tutorials, 19(2), pp. 1201–1224.

[41] Li, S.-Y., R. W. Yeung, and N. Cai (2003) “Linear network coding,” IEEE
transactions on information theory, 49(2), pp. 371–381.

[42] Koetter, R. and M. Médard (2003) “An algebraic approach to network coding,”
in IEEE/ACM Transactions on Networking, vol. 11, pp. 782 – 795.

[43] Krigslund, J., J. Hansen, M. Hundeboll, D. E. Lucani, and F. H. Fitzek
(2013) “CORE: COPE with MORE in wireless meshed networks,” in 2013 IEEE
77th vehicular technology conference (VTC Spring), IEEE, pp. 1–6.

[44] Hansen, J., J. Krigslund, D. E. Lucani, P. Pahlevani, and F. H. Fitzek
(2018) “Bridging inter-flow and intra-flow network coding in wireless mesh networks:
From theory to implementation,” Computer Networks, 145, pp. 1–12.

188

[45] Chen, W., K. B. Letaief, and Z. Cao (2007) “Opportunistic network coding
for wireless networks,” in Communications, 2007. ICC’07. IEEE International
Conference on, IEEE, pp. 4634–4639.

[46] Kafaie, S., Y. Chen, M. H. Ahmed, and O. A. Dobre (2017) “FlexONC:
Joint cooperative forwarding and network coding with precise encoding conditions,”
IEEE Transactions on Vehicular Technology, 66(8), pp. 7262–7277.

[47] Shen, H., G. Bai, L. Zhao, and Z. Tang (2012) “An adaptive opportunistic
network coding mechanism in wireless multimedia sensor networks,” International
Journal of Distributed Sensor Networks, 8(12), p. 565604.

[48] Traskov, D., M. Médard, P. Sadeghi, and R. Koetter (2009) “Joint schedul-
ing and instantaneously decodable network coding,” in Global Telecommunications
Conference, 2009. GLOBECOM 2009. IEEE, IEEE, pp. 1–6.

[49] Sadeghi, P., D. Traskov, and R. Koetter (2009) “Adaptive network coding
for broadcast channels,” in 2009 Workshop on Network Coding, Theory, and
Applications, IEEE, pp. 80–85.

[50] Sorour, S. and S. Valaee (2010) “Minimum broadcast decoding delay for general-
ized instantly decodable network coding,” in 2010 IEEE Global Telecommunications
Conference GLOBECOM 2010, IEEE, pp. 1–5.

[51] Li, X., C.-C. Wang, and X. Lin (2011) “On the capacity of immediately-
decodable coding schemes for wireless stored-video broadcast with hard deadline
constraints,” IEEE Journal on Selected Areas in Communications, 29(5), pp.
1094–1105.

[52] ——— (2010) “Throughput and delay analysis on uncoded and coded wireless
broadcast with hard deadline constraints,” in 2010 Proceedings IEEE INFOCOM,
IEEE, pp. 1–5.

[53] Ho, T., R. Koetter, M. Medard, D. R. Karger, and M. Effros (2003)
“The benefits of coding over routing in a randomized setting,” .

[54] Dougherty, R., C. Freiling, and K. Zeger (2005) “Insufficiency of linear
coding in network information flow,” IEEE transactions on information theory,
51(8), pp. 2745–2759.

[55] Li, L., K. Fan, and D. Long (2008) “Nonlinear network coding: a case study,”
in Proceedings of the International MultiConference of Engineers and Computer
Scientists, vol. 2, Citeseer.

[56] Kosut, O., L. Tong, and D. Tse (2009) “Nonlinear network coding is necessary
to combat general byzantine attacks,” in Communication, Control, and Computing,
2009. Allerton 2009. 47th Annual Allerton Conference on, IEEE, pp. 593–599.

189

[57] Chou, P. A., Y. Wu, and K. Jain (2003) “Practical network coding,” in Proceed-
ings of the annual Allerton conference on communication control and computing,
vol. 41, The University; 1998, pp. 40–49.

[58] Heidarzadeh, A. and A. H. Banihashemi (2010) “Overlapped chunked network
coding,” in 2010 IEEE Information Theory Workshop on Information Theory (ITW
2010, Cairo), IEEE, pp. 1–5.

[59] Silva, D. and F. R. Kschischang (2009) “On metrics for error correction in
network coding,” IEEE Transactions on Information Theory, 55(12), pp. 5479–
5490.

[60] Yang, S. and R. W. Yeung (2014) “Batched sparse codes,” IEEE Transactions
on Information Theory, 60(9), pp. 5322–5346.

[61] Pedersen, M. V., J. Heide, and F. Fitzek (2011) “Kodo: An Open and
Research Oriented Network Coding Library,” Lecture Notes in Computer Science,
6827, pp. 145–152.

[62] Bioglio, V., M. Grangetto, R. Gaeta, and M. Sereno (2009) “On the fly
Gaussian elimination for LT codes,” Communications Letters, IEEE, 13(12), pp.
953–955.

[63] Drinea, E., C. Fragouli, and L. Keller (2009) “Delay with network coding
and feedback,” in 2009 IEEE International Symposium on Information Theory,
IEEE, pp. 844–848.

[64] Steinwurf, “Fifi git repository on github,” .
URL https://github.com/steinwurf/fifi-python

[65] Heide, J. and D. Lucani (2015) “Composite extension finite fields for low
overhead network coding: Telescopic codes,” in Communications (ICC), 2015
IEEE International Conference on, IEEE, pp. 4505–4510.

[66] Heide, J. (2016) “Composite extension finite fields for distributed storage erasure
coding,” in Communications (ICC), 2016 IEEE International Conference on, IEEE,
pp. 1–5.

[67] Geil, O. and D. E. Lucani (2017) “Random Network Coding over Compos-
ite Fields,” in International Castle Meeting on Coding Theory and Applications,
Springer, pp. 118–127.

[68] Maymounkov, P., N. J. Harvey, D. S. Lun, et al. (2006) “Methods for
efficient network coding,” in Proc. 44th Annual Allerton Conference on Communi-
cation, Control, and Computing, pp. 482–491.

190

[69] Li, Y., E. Soljanin, and P. Spasojevic (2010) “Collecting coded coupons over
overlapping generations,” in Network Coding (NetCod), 2010 IEEE International
Symposium on, IEEE, pp. 1–6.

[70] Silva, D., W. Zeng, and F. R. Kschischang (2009) “Sparse network coding
with overlapping classes,” in Network Coding, Theory, and Applications, 2009.
NetCod’09. Workshop on, IEEE, pp. 74–79.

[71] Li, Y., W.-Y. Chan, and S. D. Blostein (2012) “Network coding with unequal
size overlapping generations,” in 2012 International Symposium on Network Coding
(NetCod), IEEE, pp. 161–166.

[72] Sorensen, C. W., D. E. Lucani, F. H. Fitzek, and M. Médard (2014)
“On-the-fly overlapping of sparse generations: A tunable sparse network coding
perspective,” in Vehicular Technology Conference (VTC Fall), 2014 IEEE 80th,
IEEE, pp. 1–5.

[73] Wunderlich, S., F. Gabriel, S. Pandi, and F. H. Fitzek (2017) “We don’t
need no generation-a practical approach to sliding window RLNC,” in Wireless
Days, 2017, IEEE, pp. 218–223.

[74] Thomos, N. and P. Frossard (2012) “Toward one symbol network coding
vectors,” IEEE Communications letters, 16(11), pp. 1860–1863.

[75] Gligoroski, D., K. Kralevska, and H. Øverby (2015) “Minimal header
overhead for random linear network coding,” in 2015 IEEE International Conference
on Communication Workshop (ICCW), IEEE, pp. 680–685.

[76] Chao, C.-C., C.-C. Chou, and H.-Y. Wei (2010) “Pseudo random network
coding design for IEEE 802.16 m enhanced multicast and broadcast service,” in
2010 IEEE 71st Vehicular Technology Conference, IEEE, pp. 1–5.

[77] Khirallah, C., D. Vukobratovic, and J. Thompson (2012) “Performance
analysis and energy efficiency of random network coding in LTE-advanced,” IEEE
Transactions on Wireless Communications, 11(12), pp. 4275–4285.

[78] Tassi, A., C. Khirallah, D. Vukobratović, F. Chiti, J. S. Thompson, and
R. Fantacci (2014) “Resource allocation strategies for network-coded video broad-
casting services over LTE-advanced,” IEEE Transactions on Vehicular Technology,
64(5), pp. 2186–2192.

[79] Cooper, C. (2000) “On the distribution of rank of a random matrix over a finite
field,” Random Structures & Algorithms, 17(3-4), pp. 197–212.

[80] Boneh, A. and M. Hofri (1997) “The coupon-collector problem revisited—a
survey of engineering problems and computational methods,” Stochastic Models,
13(1), pp. 39–66.

191

[81] Li, Y., E. Soljanin, and P. Spasojevic (2011) “Effects of the generation size
and overlap on throughput and complexity in randomized linear network coding,”
IEEE Transactions on Information Theory, 57(2), pp. 1111–1123.

[82] Trullols-Cruces, O., J. M. Barcelo-Ordinas, and M. Fiore (2011) “Exact
decoding probability under random linear network coding,” IEEE communications
letters, 15(1), pp. 67–69.

[83] Zhao, X. (2012) “Notes on" exact decoding probability under random linear
network coding",” IEEE communications letters, 16(5), pp. 720–721.

[84] Claridge, J. and I. Chatzigeorgiou (2017) “Probability of partially decoding
network-coded messages,” IEEE Communications Letters, 21(9), pp. 1945–1948.

[85] Lucani, D. E., M. V. Pedersen, D. Ruano, C. W. Sørensen, F. H. Fitzek,
J. Heide, and O. Geil (2014) “Fulcrum network codes: A code for fluid allocation
of complexity,” arXiv preprint arXiv:1404.6620.

[86] Shrader, B. and N. M. Jones (2009) “Systematic wireless network coding,” in
MILCOM 2009-2009 IEEE Military Communications Conference, IEEE, pp. 1–7.

[87] Lucani, D. E., M. Médard, and M. Stojanovic (2010) “Systematic network
coding for time-division duplexing,” in Information Theory Proceedings (ISIT),
2010 IEEE International Symposium on, IEEE, pp. 2403–2407.

[88] Jones, A. L., I. Chatzigeorgiou, and A. Tassi (2015) “Binary systematic
network coding for progressive packet decoding,” in 2015 IEEE International
Conference on Communications (ICC), IEEE, pp. 4499–4504.

[89] Heide, J., M. V. Pedersen, F. H. Fitzek, and T. Larsen (2009) “Network
coding for mobile devices-systematic binary random rateless codes,” in 2009 IEEE
International Conference on Communications Workshops, IEEE, pp. 1–6.

[90] Chatzigeorgiou, I. and A. Tassi (2017) “Decoding delay performance of random
linear network coding for broadcast,” IEEE Transactions on Vehicular Technology,
66(8), pp. 7050–7060.

[91] Zarei, A., P. Pahlevani, and M. Davoodi (2018) “On the Partial Decoding
Delay of Sparse Network Coding,” IEEE Communications Letters.

[92] Heide, J., M. V. Pedersen, F. H. Fitzek, and M. Médard (2011) “On code
parameters and coding vector representation for practical RLNC,” in Communica-
tions (ICC), 2011 IEEE International Conference on, IEEE, pp. 1–5.

[93] Sørensen, C. W., A. Paramanathan, J. A. Cabrera, M. V. Pedersen,
D. E. Lucani, and F. H. Fitzek (2016) “Leaner and meaner: Network coding
in SIMD enabled commercial devices,” in 2016 IEEE Wireless Communications
and Networking Conference, IEEE, pp. 1–6.

192

[94] Garrido, P., D. E. Lucani, and R. Agüero (2017) “Markov chain model
for the decoding probability of sparse network coding,” IEEE Transactions on
Communications, 65(4), pp. 1675–1685.

[95] Charlap, L. S., H. D. Rees, and D. P. Robbins (1990) “The asymptotic
probability that a random biased matrix is invertible,” Discrete Mathematics, 82(2),
pp. 153–163.

[96] Kahn, J. and J. Komlós (2001) “Singularity probabilities for random matrices
over finite fields,” Combinatorics, Probability & Computing, 10(2), p. 137.

[97] Feizi, S., D. E. Lucani, C. W. Sørensen, A. Makhdoumi, and M. Médard
(2014) “Tunable sparse network coding for multicast networks,” in Network Coding
(NetCod), 2014 International Symposium on, IEEE, pp. 1–6.

[98] Feizi, S., D. E. Lucani, and M. Médard (2012) “Tunable Sparse Network
Coding,” in Proc. of the Int. Zurich Seminar on Comm., pp. 107–110.

[99] Sorensen, C. W., A. S. Badr, J. A. Cabrera, D. E. Lucani, J. Heide,
and F. H. Fitzek (2015) “A practical view on tunable sparse network coding,” in
Proceedings of European Wireless 2015; 21th European Wireless Conference, VDE,
pp. 1–6.

[100] Fiandrotti, A., V. Bioglio, M. Grangetto, R. Gaeta, and E. Magli
(2014) “Band codes for energy-efficient network coding with application to P2P
mobile streaming,” IEEE Transactions on Multimedia, 16(2), pp. 521–532.

[101] Li, W., F. Bassi, and M. Kieffer (2016) “Sparse random linear network
coding for data compression in WSNs,” in 2016 IEEE International Symposium on
Information Theory (ISIT), IEEE, pp. 2729–2733.

[102] Heide, J., M. V. Pedersen, F. H. Fitzek, and M. Médard (2014) “A
perpetual code for network coding,” in Vehicular Technology Conference (VTC
Spring), 2014 IEEE 79th, IEEE, pp. 1–6.

[103] Maymounkov, P. (2011) “Perpetual codes: cache-friendly coding,” Unpublished
draft, retieved 2nd of September.

[104] Pahlevani, P., S. Crisóstomo, and D. E. Lucani (2016) “An analytical model
for perpetual network codes in packet erasure channels,” in International Workshop
on Multiple Access Communications, Springer, pp. 126–135.

[105] Birk, Y. and T. Kol (2006) “Coding on demand by an informed source (ISCOD)
for efficient broadcast of different supplemental data to caching clients,” IEEE
Transactions on Information Theory, 52(6), pp. 2825–2830.

193

[106] El Rouayheb, S., A. Sprintson, and C. Georghiades (2010) “On the index
coding problem and its relation to network coding and matroid theory,” IEEE
Transactions on Information Theory, 56(7), pp. 3187–3195.

[107] Qureshi, J., C. H. Foh, and J. Cai (2012) “Optimal solution for the index
coding problem using network coding over GF (2),” in 2012 9th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), IEEE, pp. 209–217.

[108] Effros, M., S. El Rouayheb, and M. Langberg (2015) “An equivalence
between network coding and index coding,” IEEE Transactions on Information
Theory, 61(5), pp. 2478–2487.

[109] Marcano, N. J. H., J. Heide, D. E. Lucani, and F. H. Fitzek (2015) “On
the Overhead of Telescopic Codes in Network Coded Cooperation,” in Vehicular
Technology Conference (VTC Fall), 2015 IEEE 82nd, IEEE, pp. 1–6.

[110] Yang, S. and R. W. Yeung (2011) “Coding for a network coded fountain,” in
Information Theory Proceedings (ISIT), 2011 IEEE International Symposium on,
IEEE, pp. 2647–2651.

[111] Mahdaviani, K., M. Ardakani, H. Bagheri, and C. Tellambura (2012)
“Gamma codes: A low-overhead linear-complexity network coding solution,” in
Network Coding (NetCod), 2012 International Symposium on, IEEE, pp. 125–130.

[112] Baraniuk, R. G. (2007) “Compressive sensing [lecture notes],” IEEE signal
processing magazine, 24(4), pp. 118–121.

[113] Donoho, D. L. (2006) “Compressed sensing,” IEEE Transactions on information
theory, 52(4), pp. 1289–1306.

[114] Choi, J. W., B. Shim, Y. Ding, B. Rao, and D. I. Kim (2017) “Compressed
sensing for wireless communications: Useful tips and tricks,” IEEE Communications
Surveys & Tutorials, 19(3), pp. 1527–1550.

[115] Strohmer, T. and R. W. Heath Jr (2003) “Grassmannian frames with ap-
plications to coding and communication,” Applied and computational harmonic
analysis, 14(3), pp. 257–275.

[116] Donoho, D. L. and X. Huo (2001) “Uncertainty principles and ideal atomic
decomposition,” IEEE transactions on information theory, 47(7), pp. 2845–2862.

[117] Obermeier, R. and J. A. Martinez-Lorenzo (2017) “Sensing matrix de-
sign via mutual coherence minimization for electromagnetic compressive imaging
applications,” IEEE Transactions on Computational Imaging, 3(2), pp. 217–229.

194

[118] Cohen, A., W. Dahmen, and R. DeVore (2009) “Compressed sensing and best
k-term approximation,” Journal of the American mathematical society, 22(1), pp.
211–231.

[119] Candes, E. J. and T. Tao (2006) “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE transactions on information
theory, 52(12), pp. 5406–5425.

[120] Cahill, J., X. Chen, and R. Wang (2016) “The gap between the null space
property and the restricted isometry property,” Linear Algebra and its Applications,
501, pp. 363–375.

[121] Candes, E. and J. Romberg (2007) “Sparsity and incoherence in compressive
sampling,” Inverse problems, 23(3), p. 969.

[122] Zhang, X. and S. Li (2013) “Compressed Sensing via Dual Frame Based ℓ1-
Analysis With Weibull Matrices,” IEEE Signal Processing Letters, 20(3), pp.
265–268.

[123] Applebaum, L., S. D. Howard, S. Searle, and R. Calderbank (2009)
“Chirp sensing codes: Deterministic compressed sensing measurements for fast
recovery,” Applied and Computational Harmonic Analysis, 26(2), pp. 283–290.

[124] Zhang, Z., Y. Xu, J. Yang, X. Li, and D. Zhang (2015) “A survey of sparse
representation: algorithms and applications,” IEEE access, 3, pp. 490–530.

[125] Candes, E. and J. Romberg (2005) “l1-magic: Recovery of sparse signals via
convex programming,” URL: www. acm. caltech. edu/l1magic/downloads/l1magic.
pdf, 4, p. 14.

[126] Figueiredo, M. A., R. D. Nowak, and S. J. Wright (2007) “Gradient
projection for sparse reconstruction: Application to compressed sensing and other
inverse problems,” IEEE Journal of selected topics in signal processing, 1(4), pp.
586–597.

[127] Tibshirani, R. (1996) “Regression shrinkage and selection via the lasso,” Journal
of the Royal Statistical Society: Series B (Methodological), 58(1), pp. 267–288.

[128] Chen, S. S., D. L. Donoho, and M. A. Saunders (2001) “Atomic decomposition
by basis pursuit,” SIAM review, 43(1), pp. 129–159.

[129] Donoho, D. L., A. Maleki, and A. Montanari (2009) “Message-passing algo-
rithms for compressed sensing,” Proceedings of the National Academy of Sciences,
106(45), pp. 18914–18919.

[130] Tropp, J. A. and A. C. Gilbert (2007) “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Transactions on information
theory, 53(12), pp. 4655–4666.

195

[131] Needell, D. and R. Vershynin (2010) “Signal recovery from incomplete and
inaccurate measurements via regularized orthogonal matching pursuit,” IEEE
Journal of selected topics in signal processing, 4(2), pp. 310–316.

[132] Needell, D. and J. A. Tropp (2009) “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Harmonic Analysis,
26(3), pp. 301–321.

[133] Dai, W. and O. Milenkovic (2009) “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Transactions on Information Theory, 55(5), pp.
2230–2249.

[134] Bredies, K. and D. A. Lorenz (2008) “Linear convergence of iterative soft-
thresholding,” Journal of Fourier Analysis and Applications, 14(5-6), pp. 813–837.

[135] Blumensath, T. and M. E. Davies (2009) “Iterative hard thresholding for
compressed sensing,” Applied and computational harmonic analysis, 27(3), pp.
265–274.

[136] Krzakala, F., M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová (2012)
“Statistical-physics-based reconstruction in compressed sensing,” Physical Review
X, 2(2), p. 021005.

[137] Mohimani, H., M. Babaie-Zadeh, and C. Jutten (2009) “A Fast Approach
for Overcomplete Sparse Decomposition Based on Smoothed l0 Norm,” IEEE
Transactions on Signal Processing, 57(1), pp. 289–301.

[138] Torre, R., T. Doan, and H. Salah (2021) “Mobile edge cloud,” in Computing
in Communication Networks, Elsevier, pp. 77–91.

[139] Kutyniok, G. and W.-Q. Lim (2011) “Compactly supported shearlets are
optimally sparse,” Journal of Approximation Theory, 163(11), pp. 1564–1589.

[140] Qin, Z., J. Fan, Y. Liu, Y. Gao, and G. Y. Li (2018) “Sparse representation for
wireless communications: A compressive sensing approach,” IEEE Signal Processing
Magazine, 35(3), pp. 40–58.

[141] Marcellin, M. W., M. J. Gormish, A. Bilgin, and M. P. Boliek (2000) “An
overview of JPEG-2000,” in Proceedings DCC 2000. Data Compression Conference,
IEEE, pp. 523–541.

[142] Engan, K., S. O. Aase, and J. H. Husoy (1999) “Method of optimal directions
for frame design,” in 1999 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), vol. 5, IEEE,
pp. 2443–2446.

196

[143] Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay (2011) “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, 12, pp. 2825–2830.

[144] Sarvotham, S., D. Baron, M. Wakin, M. F. Duarte, and R. G. Baraniuk
(2005) “Distributed compressed sensing of jointly sparse signals,” in Asilomar
conference on signals, systems, and computers, pp. 1537–1541.

[145] Qiao, W., B. Liu, and C. W. Chen (2012) “JSM-2 based joint ECG compressed
sensing with partially known support establishment,” in 2012 IEEE 14th Interna-
tional Conference on e-Health Networking, Applications and Services (Healthcom),
IEEE, pp. 435–438.

[146] Wang, B., Y. Ge, C. He, Y. Wu, and Z. Zhu (2019) “Study on communication
channel estimation by improved SOMP based on distributed compressed sensing,”
EURASIP Journal on Wireless Communications and Networking, 2019(1), p. 121.

[147] Tropp, J. A., A. C. Gilbert, and M. J. Strauss (2005) “Simultaneous
sparse approximation via greedy pursuit,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP).

[148] Baron, D., M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Bara-
niuk (2009) “Distributed compressive sensing,” arXiv preprint arXiv:0901.3403.

[149] Comon, P. and C. Jutten (2010) Handbook of Blind Source Separation: Inde-
pendent component analysis and applications, Academic press.

[150] Wu, H., Y. Shen, J. Zhang, I. A. Tsokalo, H. Salah, and H. P. Frank
Fitzek (2020) “Component-Dependent Independent Component Analysis for Time-
Sensitive Applications,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), pp. 1–6.

[151] Gemmeke, J. F., D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence,
R. C. Moore, M. Plakal, and M. Ritter (2017) “Audio Set: An ontology and
human-labeled dataset for audio events,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780.

[152] CAIDA, “Packet size distribution comparison between internet links in 1998 and
2008,” .
URL http://www.caida.org/research/traffic-analysis/pkt_size_
distribution/graphs.xml

[153] “The CAIDA Anonymized Internet Traces 2015 Dataset,” .
URL http://www.caida.org/data/passive/passive_2015_dataset.xml

197

[154] Seeling, P. and M. Reisslein (2012) “Video Transport Evaluation With H.264
Video Traces,” Communications Surveys Tutorials, IEEE, 14(4), pp. 1142–1165.

[155] Sinha, R., C. Papadopoulos, and J. Heidemann (2007) “Internet packet size
distributions: Some observations,” USC/Information Sciences Institute, Tech. Rep.
ISI-TR-2007-643.

[156] CAIDA, “Packet size distribution comparison between Internet links in 1998
and 2008,” https://www.caida.org/research/traffic-analysis/pkt_size_
distribution/graphs.xml, current: June 2018.

[157] (2015), “Cisco visual networking index: Forecast and methodology, 2014-2019
White Paper,” .
URL http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/white_paper_
c11-520862.html

[158] Kishore, M. and Y. Liang (2006) “An empirical study on renegotiated CBR for
VBR video services based on network testbed,” IEEE Transactions on Broadcasting,
52(3), pp. 362–367.

[159] Lakshman, T., A. Ortega, and A. R. Reibman (1998) “VBR video: Tradeoffs
and potentials,” Proceedings of the IEEE, 86(5), pp. 952–973.

[160] Rerabek, M. and T. Ebrahimi (2014) “Comparison of compression efficiency
between HEVC/H.265 and VP9 based on subjective assessments,” in Proc. SPIE
Appl. of Dig. Image Proc., vol. 9217, pp. 1–13.

[161] Seeling, P. and M. Reisslein (2014) “Video traffic characteristics of modern
encoding standards: H.264/AVC with SVC and MVC extensions and H.265/HEVC,”
The Scientific World J., 2014(189481), pp. 1–16.

[162] Tanwir, S. and H. Perros (2013) “A survey of VBR video traffic models,” IEEE
Commun. Surv. & Tut., 15(4), pp. 1778–1802.

[163] Yoo, S.-J. (2002) “Efficient traffic prediction scheme for real-time VBR MPEG
video transmission over high-speed networks,” IEEE Transactions on Broadcasting,
48(1), pp. 10–18.

[164] Pulipaka, A., P. Seeling, M. Reisslein, and L. J. Karam (2013) “Traffic
and statistical multiplexing characterization of 3-D video representation formats,”
Broadcasting, IEEE Transactions on, 59(2), pp. 382–389.

[165] der Auwera, G. V., P. T. David, and M. Reisslein (2008) “Traffic and Quality
Characterization of Single-Layer Video Streams Encoded with the H.264/MPEG-4
Advanced Video Coding Standard and Scalable Video Coding Extension,” IEEE
Transactions on Broadcasting, 54(3), pp. 698–718.

198

[166] der Auwera, G. V. and M. Reisslein (2009) “Implications of Smoothing on Sta-
tistical Multiplexing of H.264/AVC and SVC Video Streams,” IEEE Transactions
on Broadcasting, 55(3), pp. 541–558.

[167] Heide, J., M. Pedersen, F. Fitzek, and M. Médard (2011) “On Code
Parameters and Coding Vector Representation for Practical RLNC,” in Proc. of
the IEEE International Conference on Communications (ICC’11), pp. 1 –5.

[168] Li, Y., E. Soljanin, and P. Spasojevic (2011) “Effects of the Generation
Size and Overlap on Throughput and Complexity in Randomized Linear Network
Coding,” IEEE Trans. on Info. Theory, 57(2), pp. 1111–1123.

[169] Compta, P. T., F. H. P. Fitzek, and D. E. Lucani (2015) “Network coding is
the 5G Key Enabling Technology: effects and strategies to manage heterogeneous
packet lengths,” Trans. Emerging Telecommunications Technologies, 26(1), pp.
46–55.

[170] Johnson, D. S. (1973) Near-optimal bin packing algorithms, Ph.D. thesis, Mas-
sachusetts Institute of Technology.

[171] Pedersen, M. V., J. Heide, and F. H. Fitzek (2011) “Kodo: An open and
research oriented network coding library,” in International Conference on Research
in Networking, Springer, pp. 145–152.

[172] Sinha, R., C. Papadopoulos, and J. Heidemann (2007) Internet Packet Size
Distributions: Some Observations, Tech. Rep. ISI-TR-2007-643, USC/Information
Sciences Institute.

[173] Heide, J., M. V. Pedersen, and F. H. Fitzek (2011) “Decoding algorithms
for random linear network codes,” in Proc. Int. Conf. on Research in Networking,
Springer, Heidelberg, Germany, pp. 129–136.

[174] Karzand, M., D. J. Leith, J. Cloud, and M. Medard (2017) “Design of
FEC for low delay in 5G,” IEEE Journal on Selected Areas in Communications,
35(8), pp. 1783–1793.

[175] Chatzigeorgiou, I. and A. Tassi (2017) “Decoding delay performance of random
linear network coding for broadcast,” IEEE Transactions on Vehicular Technology,
66(8), pp. 7050–7060.

[176] Heide, J., M. V. Pedersen, and F. H. Fitzek (2011) “Decoding algorithms
for random linear network codes,” in International Conference on Research in
Networking, Springer, pp. 129–136.

[177] Acevedo, J., R. Scheffel, S. Wunderlich, M. Hasler, S. Pandi, J. Cabr-
era, F. Fitzek, G. Fettweis, and M. Reisslein (2018) “Hardware Accelera-
tion for RLNC: A Case Study Based on the Xtensa Processor with the Tensilica
Instruction-Set Extension,” Electronics, 7(9), pp. 180.1–180.22.

199

[178] Shin, H. and J.-S. Park (2017) “Optimizing random network coding for multi-
media content distribution over smartphones,” Multimedia Tools and Applications,
76, pp. 19379–19395.

[179] Wunderlich, S., J. Cabrera, F. H. Fitzek, and M. Reisslein (2017)
“Network Coding in Heterogeneous Multicore IoT Nodes with DAG Scheduling of
Parallel Matrix Block Operations,” IEEE Internet of Things Journal, 4(4), pp.
917–933.

[180] Pelletier, G. and K. Sandlund (1997) “RObust Header Compression Version 2
(ROHCv2): Profiles for RTP, UDP, IP, ESP and UDP-Lite,” Request for Comments
5225.

[181] Tomoskozi, M., P. Seeling, P. Ekler, and F. H. Fitzek (21-25 May 2017)
“Robust Header Compression version 2 power consumption on Android devices via
tunnelling,” 2017 IEEE International Conference on Communications Workshops.

[182] Tömösközi, M., P. Seeling, P. Ekler, and F. H. P. Fitzek (2016) “Perfor-
mance Evaluation of Network Header Compression Schemes for UDP, RTP and
TCP,” Periodica Polytechnica Electrical Engineering and Computer Science, p.
Online First paper 8958.

[183] Tömösközi, M., P. Seeling, P. Ekler, and F. H. P. Fitzek (2016) “Efficiency
Gain for RoHC Compressor Implementations with Dynamic Configuration,” in
VTC2016-Fall Workshop on Cellular Internet of Things - Emerging Trends and
Enabling Technologies.

[184] Tomoskozi, M., P. Seeling, P. Ekler, and F. H. P. Fitzek (2016) “Regres-
sion Model Building and Efficiency Prediction of RoHCv2 Compressor Implementa-
tions for VoIP,” in 2016 IEEE Global Communications Conference (GLOBECOM),
pp. 1–6.

[185] Barros, J., R. A. Costa, D. Munaretto, and J. Widmer (2009) “Effective
delay control in online network coding,” in INFOCOM 2009, IEEE, IEEE, pp.
208–216.

[186] Lucani, D. E., M. Médard, and M. Stojanovic (2010) “Systematic network
coding for time-division duplexing,” .

[187] ns 3 (2012), “ns-3 a discrete-event network simulator for internet systems,” .
URL https://www.nsnam.org/

[188] Pedersen, M., J. Heide, F.H.P.Fitzek, and T. Larsen (2009) “PictureViewer
- A Mobile Application using Network Coding,” in European Wireless 2009, Aalborg,
Denmark.

[189] Baron, D., M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Bara-
niuk (2005) “Distributed compressed sensing,” .

200

[190] Katti, S., S. Shintre, S. Jaggi, D. Katabi, and M. Medard (2007) “Real
network codes,” in Proc. Forty-Fifth Annual Allerton Conference, pp. 389–395.

[191] Dey, B., S. Katti, S. Jaggi, D. Katabi, M. Médard, and S. Shintre (2008)
“Real and complex network codes: Promises and challenges,” in Network Coding,
Theory and Applications, 2008. NetCod 2008. Fourth Workshop on, IEEE, pp. 1–6.

[192] Draper, S. C. and S. Malekpour (2009) “Compressed sensing over finite fields,”
in Information Theory, 2009. ISIT 2009. IEEE International Symposium on, IEEE,
pp. 669–673.

[193] Seong, J.-T. and H.-N. Lee (2013) “Necessary and sufficient conditions for
recovery of sparse signals over finite fields,” IEEE Communications Letters, 17(10),
pp. 1976–1979.

[194] ——— (2012) “On the compressed measurements over finite fields: Sparse or dense
sampling,” arXiv preprint arXiv:1211.5207.

[195] Bioglio, V., T. Bianchi, and E. Magli (2014) “Secure compressed sensing over
finite fields,” in 2014 IEEE International Workshop on Information Forensics and
Security (WIFS), IEEE, pp. 191–196.

[196] Bioglio, V., G. Coluccia, and E. Magli (2014) “Sparse image recovery using
compressed sensing over finite alphabets,” in 2014 IEEE International Conference
on Image Processing (ICIP), IEEE, pp. 1287–1291.

[197] Xie, D., H. Peng, L. Li, and Y. Yang (2017) “An efficient privacy-preserving
scheme for secure network coding based on compressed sensing,” AEU-International
Journal of Electronics and Communications, 79, pp. 33–42.

[198] Dehghan, H., I. Lambadaris, and C.-H. Lung (2012) “Network coding based
wideband compressed spectrum sensing,” in 2012 IEEE International Conference
on Communications (ICC), IEEE, pp. 1405–1409.

[199] Yang, X., X. Tao, E. Dutkiewicz, X. Huang, Y. J. Guo, and Q. Cui
(2013) “Energy-efficient distributed data storage for wireless sensor networks based
on compressed sensing and network coding,” IEEE Transactions on Wireless
Communications, 12(10), pp. 5087–5099.

[200] Nabaee, M. and F. Labeau (2012) “Quantized network coding for sparse mes-
sages,” in 2012 IEEE Statistical Signal Processing Workshop (SSP), IEEE, pp.
828–831.

[201] ——— (2014) “Quantized network coding for correlated sources,” EURASIP
Journal on Wireless Communications and Networking, 2014(1), pp. 1–17.

201

[202] Katti, S., S. Gollakota, and D. Katabi (2007) “Embracing wireless inter-
ference: Analog network coding,” ACM SIGCOMM Computer Communication
Review, 37(4), pp. 397–408.

[203] Fan, N., Y. Liu, and L. Zhang (2013) “Combination of analog network coding and
compressed sensing in clustered chain-type topology,” in Communication Technology
(ICCT), 2013 15th IEEE International Conference on, IEEE, pp. 797–801.

[204] Chen, S., M. Wu, K. Wang, and Z. Sun (2014) “Compressive network coding for
error control in wireless sensor networks,” Wireless networks, 20(8), pp. 2605–2615.

[205] Ebrahimi, D. and C. Assi (2015) “On the benefits of network coding to com-
pressive data gathering in wireless sensor networks,” in Sensing, Communication,
and Networking (SECON), 2015 12th Annual IEEE International Conference on,
IEEE, pp. 55–63.

[206] Liu, X., K. Cao, F. Han, and P. Cull (2017) “A Practical Joint Network-
Compressed Coding Scheme for Energy-Efficient Data Gathering in Cooperative
Wireless Sensor Networks,” in Computational Science and Engineering (CSE) and
Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference
on, vol. 2, IEEE, pp. 70–76.

[207] Nguyen, N., D. L. Jones, and S. Krishnamurthy (2010) “Netcompress:
Coupling network coding and compressed sensing for efficient data communication
in wireless sensor networks,” in 2010 IEEE Workshop On Signal Processing Systems,
pp. 356–361.

[208] Chou, P. A., Y. Wu, and K. Jain (2003) “Practical network coding,” in Allerton
Conference on Communication, Control, and Computing, pp. 40–49, invited paper.

[209] Feizi, S., M. Médard, and M. Effros (2010) “Compressive sensing over
networks,” in Communication, Control, and Computing (Allerton), 2010 48th
Annual Allerton Conference on, IEEE, pp. 1129–1136.

[210] Feizi, S. and M. Médard (2011) “A power efficient sensing/communication
scheme: Joint source-channel-network coding by using compressive sensing,” in
2011 49th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), IEEE, pp. 1048–1054.

[211] Luo, C., J. Sun, and F. Wu (2011) “Compressive network coding for approximate
sensor data gathering,” in 2011 IEEE Global Telecommunications Conference-
GLOBECOM 2011, IEEE, pp. 1–6.

[212] Das, A. K. and S. Vishwanath (2013) “On finite alphabet compressive sensing,”
in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, IEEE, pp. 5890–5894.

202

[213] Kwon, M., H. Park, and P. Frossard (2014) “Compressed network cod-
ing: Overcome all-or-nothing problem in finite fields,” in 2014 IEEE Wireless
Communications and Networking Conference (WCNC), IEEE, pp. 2851–2856.

[214] Gankhuyag, G., E. Hong, and Y. Choe (2017) “Sparse recovery using sparse
sensing matrix based finite field optimization in network coding,” IEICE TRANS-
ACTIONS on Information and Systems, 100(2), pp. 375–378.

[215] Li, W., F. Bassi, and M. Kieffer (2014) “Robust Bayesian compressed
sensing over finite fields: asymptotic performance analysis,” arXiv preprint
arXiv:1401.4313.

[216] Li, Y., J. Li, Z. Lin, Y. Li, and B. Vucetic (2014) “Compressive soft forwarding
in network-coded multiple-access relay channels,” IEEE Transactions on Vehicular
Technology, 64(5), pp. 2138–2144.

[217] Raskutti, G., M. J. Wainwright, and B. Yu (2010) “Restricted eigenvalue
properties for correlated Gaussian designs,” The Journal of Machine Learning
Research, 11, pp. 2241–2259.

[218] Gilbert, A. and P. Indyk (2010) “Sparse recovery using sparse matrices,”
Proceedings of the IEEE, 98(6), pp. 937–947.

[219] Shen, W., G. Han, L. Shu, J. J. Rodrigues, and N. Chilamkurti (2011) “A
new energy prediction approach for intrusion detection in cluster-based wireless
sensor networks,” in International Conference on Green Communications and
Networking, Springer, pp. 1–12.

[220] Cao, D.-Y., K. Yu, S.-G. Zhuo, Y.-H. Hu, and Z. Wang (2016) “On the
implementation of compressive sensing on wireless sensor network,” in Internet-
of-Things Design and Implementation (IoTDI), 2016 IEEE First International
Conference on, IEEE, pp. 229–234.

[221] Wiederhold, B. K. (2020), “Connecting through technology during the coron-
avirus disease 2019 pandemic: Avoiding “Zoom Fatigue”,” .

[222] Fu, X., S. Yang, and Z. Xiao (2020) “Decoding and Repair Schemes for Shift-
XOR Regenerating Codes,” IEEE Transactions on Information Theory, 66(12),
pp. 7371–7386.

[223] Wunderlich, S., F. Gabriel, S. Pandi, F. H. Fitzek, and M. Reisslein
(2017) “Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window RLNC
Approach,” IEEE Access, 5, pp. 20183–20197.

[224] Sundararajan, J. K., D. Shah, M. Medard, and P. Sadeghi (2017)
“Feedback-Based Online Network Coding,” IEEE Trans. on Information Theory,
63(10), pp. 6628–6649.

203

[225] Boufounos, P. T. and R. G. Baraniuk (2008) “1-bit compressive sensing,” in
2008 42nd Annual Conference on Information Sciences and Systems, IEEE, pp.
16–21.

[226] Koep, N. and R. Mathar (2017) “Binary iterative hard thresholding for frequency-
sparse signal recovery,” in WSA 2017; 21th International ITG Workshop on Smart
Antennas, VDE, pp. 1–7.

[227] LeCun, Y., Y. Bengio, and G. Hinton (2015) “Deep learning,” nature,
521(7553), pp. 436–444.

[228] Khan, L. U., I. Yaqoob, M. Imran, Z. Han, and C. S. Hong (2020) “6G
wireless systems: A vision, architectural elements, and future directions,” IEEE
Access, 8, pp. 147029–147044.

[229] Tariq, F., M. R. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and
M. Debbah (2020) “A speculative study on 6G,” IEEE Wireless Communications,
27(4), pp. 118–125.

[230] Madden, S., “Intel lab data,” .
URL http://db.csail.mit.edu/labdata/labdata.html

204

