3,661 research outputs found

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)

    Multiple image view synthesis for free viewpoint video applications

    Get PDF
    Interactive audio-visual (AV) applications such as free viewpoint video (FVV) aim to enable unrestricted spatio-temporal navigation within multiple camera environments. Current virtual viewpoint view synthesis solutions for FVV are either purely image-based implying large information redundancy; or involve reconstructing complex 3D models of the scene. In this paper we present a new multiple image view synthesis algorithm that only requires camera parameters and disparity maps. The multi-view synthesis (MVS) approach can be used in any multi-camera environment and is scalable as virtual views can be created given 1 to N of the available video inputs, providing a means to gracefully handle scenarios where camera inputs decrease or increase over time. The algorithm identifies and selects only the best quality surface areas from available reference images, thereby reducing perceptual errors in virtual view reconstruction. Experimental results are presented and verified using both objective (PSNR) and subjective comparisons

    HEVC Enhancement using Content-based Local QP Selection

    Get PDF

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure
    corecore