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ABSTRACT

Inspired by recent advances in objective video quality assessment, this paper proposes a novel, local quantisation
parameter (QP) determination approach for perceptual video compression, based on the experimental results
of a QP selection test. This method has been fully integrated into the High Efficiency Video Coding (HEVC)
reference codec for intra coding, which predicts coding tree unit (CTU) level QPs to achieve optimised rate
quality performance. The proposed approach consistently shows bitrate savings based on perceptual quality
metrics and Bjontegaard delta measurements, with minimal complexity increase over the original codec.
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1. INTRODUCTION

The greater demand for higher quality, more immersive video content is currently the primary driver for the
development of internet, broadcasting and surveillance technologies. This significantly increases the required
bandwidth, and challenges compression technologies.

For most applications, the objective of video compression is, under certain bitrate constraints, to provide
optimum perceptual quality rather than to minimise the absolute distortion between compressed frames and
the originals. The most recent standardised video codec, HEVC [1], represents an evolution of the conventional
waveform coding framework, which is based on enhanced transformation, quantisation, and rate-distortion opti-
misation (RDO). In contrast, perceptual video compression algorithms are typically based on advanced computer
vision and signal processing techniques, including texture analysis, warping and synthesis [2–5], and image in-
painting [6].

One of the most important components of a perceptual video codec, is the quality assessment model. The
last two decades have seen the development of numerous perception-based image and video quality assessment
methods, which exploit different characteristics of the human visual system (HVS), including: just noticeable
distortion (JND) [7, 8] methods [9], contrast sensitivity [10] based quality metrics [11], similarity measures [12, 13],
assessment methods based on spatial/temporal information [14], and quality metrics inspired by the near/supra
threshold perceptual strategy [11, 15, 16]. These have driven the improvement of various video coding tools,
for example: luminance JND-based transformation [17] and quantisation [18, 19], and rate quality optimisation
with SSIM [20].

Recently, Zhang and Bull proposed a perceptual video quality metric (PVM) [21, 22], which simulates the HVS
perception process by adaptively combining texture masking based noticeable distortion and blurring artefacts,
showing superior correlation performance with subjective opinions on a wide range of test video databases. In
this work, spatial and temporal texture masking was shown to dominate in video quality perception, especially
at low distortion levels (also known as the near threshold range) [22].

Inspired by PVM, this paper investigates the rate quality performance of HEVC intra coding (All Intra
configuration) on sequences with mixed video content, and identifies the benefit of using dynamic local QP values.
The results show a consistent correlation between spatio-temporal texture masks in PVM and optimum local
QP values. This has been integrated into HEVC for intra coding with little additional complexity, determining
the best QP value for every CTU. The integrated codec was evaluated on HEVC test sequences, and provides
consistent bitrate savings, assessed by perceptual video quality metrics PVM and VQM [23], over video clips
with various content and resolutions.

The rest of this paper is organised as follows: Section 2 describes the experiment on local QP selection, and
presents the results and respective analysis. Based on this, Section 3 proposes a content-based QP selection



method. The compression results of the proposed approach are then given in Section 4. Finally, Section 5
provides conclusions.

2. A LOCAL QP SELECTION EXPERIMENT

Quantisation parameters (QPs) are employed in HEVC and H.264/AVC encoders (ranging between 0 and 51), to
control the quantisation process of transform coefficients [24]. HEVC not only supports constant QP values for
one sequence or frame, but also allows dynamic local QP variation within the range (±7) for CTUs and Coding
Units (CUs). The latter feature is mainly used in conjunction with rate control applications.

If a perceptual metric is used to measure video quality, then the resulting rate-quality characteristics of the
codec will, in most cases, differ to when MSE or PSNR is used. This is primarily due to the influence of masking
effects associated with the HVS. We therefore hypothesise that, if local QP values are selected according to
content type, then this could result in improved rate-quality performance.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

Figure 1: Test sequences used in the local QP selection experiment.

To prove this conjecture, a local QP selection experiment was conducted using the HEVC reference codec
(HM 16.4) in the All Intra configuration (main profile). In order to simplify the experiment, fifteen artificial
test sequences (YUV 4:2:0, 256×256, 100 frames) were generated by vertically combining two different types
of material. The raw video clips are originally from the DynTex [25] and BVI Texture [26] databases, or are
standard test sequences. All these sequences are shown and indexed in Fig. 1.

In this experiment, the rate quality performance using constant QP values are compared to the performance
when different local QPs are used. Fifteen ∆QP test values are used, where ∆QP indicates the difference
in QP between the top or bottom subframes (QPsub) and the whole frame (QPfrm). Frame level QPfrm =
{22, 27, 32, 37 and 42} are tested here.

∆QP = QPsub −QPfrm, (1)



∆QP ∈ {0,±1,±2,±3, ... ,±7}. (2)

All CTUs in the test region (either the top or bottom half of each frame) use QPsub values for the whole sequence,
while the other half uses QPfrm. This generates thirty groups of rate quality results for each sequence at each
test frame level QP, - fifteen for testing the top half, and fifteen for the bottom half.

The optimum QP differences ∆QPopt are identified for all test sequences (for both top and bottom sub
content) and frame level QPs. This is based on the corresponding overall rate distortion performance for all
frames using both PSNR and PVM measurements, benchmarked against that using constant frame level QP
values for all CTUs. Fig. 2 shows the comparison between ∆QPopt and the corresponding frame level QPs.
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Figure 2: Experimental results of the local QP selection test. (a,b) The ∆QPopt values versus QPs for HEVC All Intra
configuration based on PSNR and PVM respectively. (c,d) Bitrate savings with corresponding ∆QPopt values compared
to HEVC using constant QPs, based on PSNR and PVM. The position of each number represents the ∆QPopt value
or bit rate saving for that sequence at a certain QP. Blue numbers indicate that the bottom half of frames is tested,
while red numbers are used when the top half is tested. Negative values for bitrate savings represent better compression
performance.

It can be observed that ∆QPopt = 0 for all test sequences if PSNR is used as the quality metric, which



leads to no bitrate savings for all cases. This indicates that frame level QPs are the optimum selection for all
CTUs in terms of rate-PSNR performance. However when the perceptual quality metric, PVM, is employed,
∆QPopt values vary according to the nature of the test content. Positive numbers occur when test content is
more textured (spatial or temporal) than the other half, while negative values correspond to regions with lower
texture content. The respective bitrate savings are significant, up to -15%, but are content dependent.

In order to predict optimum local QPs, we employ the spatial and temporal combined masks in PVM [22].
These have been effectively utilised for video quality assessment, and have contributed in feature analysis for
characterising video content in [26, 27].

A spatial mask, SM(x, y), is defined as the maximum of six high frequency DT-CWT [28] subband coefficient
magnitudes,

∣∣Bj
o(x, y)

∣∣, at the first level of decomposition of a original video frame (luminance only):

SM(x, y) = max
{∣∣Bj

o(x, y)
∣∣ , j = 1, 2, ... , 6

}
. (3)

A temporal mask is designed to characterise dynamic textures, and is based on approximated second derivatives
of motion vectors:

TM(xb, yb) = max
p=±1,±2

{ 1

|p|
· SDp(xb, yb)}. (4)

To ensure consistency, motion estimation is applied between the current frame and its neighbouring frames (four
neighbouring frames are used in this case - two in front of the current frame and two behind). The subscript ‘p’
indicates the displacement of the reference frame used, which can assume values of ±1 or ±2 from the current
position. The combined second derivative SD(xb, yb) is defined as follows:

SDp(xb, yb) = ‖SDXp(xb, yb)‖2 + ‖SDYp(xb, yb)‖2 . (5)

SDX(xb, yb) = MV(xb − 1, yb) + MV(xb + 1, yb)− 2MV(xb, yb), (6)

SDY(xb, yb) = MV(xb, yb − 1) + MV(xb, yb + 1)− 2MV(xb, yb). (7)

Here, motion vectors MV(xb, yb) are obtained by applying an 8 × 8 block motion estimation on original
frames, and the block level mask TM is further interpolated to the same size as SM.

Spatial and temporal masks are finally merged using (8):

M(x, y) = max{ρsm · SM(x, y), ρtm · TM(x, y)}. (8)

where ρsm and ρtm are empirically obtained from the LIVE video database [29], with constant values 2.2 and
0.25 respectively∗. More details about spatial and temporal masks could be found in [22].

In this experiment, average values (sequence level) of combined masks for the whole frame and test regions
are calculated as Mfrm and Msub, and their difference ∆M is then obtained to predict optimum local QPs.

∆M = Msub −Mfrm. (9)

Fig. 3 shows the relationship between ∆M and ∆QPopt for all test sequences and QPs. It can be seen that
∆M is directly proportional to ∆QPopt for all five test QPs, and that their ratio follows a piecewise function in
terms of the frame level QP, as illustrated in the last subfigure of Fig. 3. This relationship can be summarised
as follows.

∆QPopt =

{
(−0.066QP + 2.531)∆M, QP < 38

0, QP ≥ 38
. (10)

∗It is noted that the parameter values used here are different from those in [22]. This is because the training database
[30] we have used in [22] contains interlaced content. In this paper, for progressive videos, we have trained the model
using the same method in [22] based on the LIVE video database.



3. PROPOSED ALGORITHM

Based on the experimental results presented above, a content-based CTU level QP selection method has been
developed, which predicts optimum local QPs using the local and global statistics of texture masks of PVM.
Considering the high complexity of motion estimation, we omit the temporal mask in (8), and only use the
spatial mask for prediction. This simplification has been validated in [21].

Before encoding a frame, Fi, with frame level quantisation parameter QPi, the texture mask is calculated
from the luminance channel of the original frame following (3) and (11).

M(x, y) = ρsm ·Ms(x, y). (11)

The average value of the mask for the given frame is denoted as Mi. When a coding tree unit CTUn,i in frame
Fi is about to be encoded, the mean of mask values for this CTU, Mn,i, is obtained and compared to Mi. The
difference between them, ∆Mn,i = Mn,i −Mi, is utilised to estimate the best QP, QPn,i, for this CTU.

QPn,i = QPi +

{
(−0.066QP + 2.531)∆Mn,i, QP < 38

0, QP ≥ 38
. (12)

Here QPi is the pre-determined frame level QP value. It should be also noted that due to the configuration of
HEVC, the difference between QPn,i and QPi has been constrained within the range [−7, +7].

4. RESULTS AND DISCUSSION

The proposed content-based local QP selection method has been integrated into the HEVC reference codec (HM
16.4), and was fully tested for All Intra configuration (main profile) over twenty one 8-bit JCT-VC recommended
test sequences [31]. We follow the same test conditions as in [31], which employ frame level QPs from 22 to 37
with an interval of 5.

The compression performance of this approach is compared with the original HEVC codec, assessed by two
perceptual video quality metrics - VQM and PVM [23]. The former is a commonly used video quality metric,
standardised by ANSI and included in two ITU Recommendations. PVM [22], as described in Section 1, offers
superior correlations with subjective quality scores compared to many existing video quality metrics. The rate
quality results over all frames are based on the Bjontegaard delta approach [32]. Table 1 summaries the BD-
savings using both quality metrics for all test sequences†.

It can be observed that the proposed local QP selection method always performs better than the anchor
codec, with BD-rate savings up to 3.5% and 3.8% for PVM and VQM respectively. The extent of this improve-
ment depends on content type - sequences with homogeneous content achieve less improvement than those with
spatially different content.

Finally, the computational complexity of the proposed method has been evaluated. In the context of HEVC,
the extra time consumed using our approach was, on average, 4%. This figure was obtained using an Intel Core
i7-2600 CPU @3.40GHz PC platform. The increased complexity is mainly due to the computation of the spatial
masks.

5. CONCLUSIONS

In this paper, a novel content-based local QP determination approach has been presented for HEVC to improve
rate quality performance. Inspired by the experimental results of a QP selection test, the texture mask model
in PVM is employed to estimate optimum CTU QP values. This method has been integrated into HEVC
reference codec for intra coding, and offers consistent bitrate savings over all the HEVC test sequences assessed
by perceptual quality metrics. Future work will focus on the extension of this work to Low Delay and Random
Access configurations.

†It is noted that standard VQM implementation [33] is not able to support 2560×1600 resolution video input, so we
have not provided results for these two sequences.



Table 1: Summary of the compression results. Negative numbers indicate better compression efficiency.

Class Sequence
BD-Rate BD-Rate
(PVM) (VQM)

A (2560×1600)
PeopleOnStreet -0.4% n/a
Traffic -0.8% n/a

Overall -0.6% n/a

B (1920×1080)

BQTerrace -3.5% -1.8%
BasketballDrive -0.8% -0.8%
Cactus -1.9% -3.3%
Kimono1 -0.1% -0.4%
ParkScene -0.6% -0.9%

Overall -1.4% -1.5%

C (832×480)

BQMall -1.8% -2.8%
BasketballDrill -3.4% -2.2%
PartyScene -2.2% -2.0%
RaceHorses -1.9% -3.7%

Overall -2.3% -2.7%

D (416×240)

BQSquare -1.3% -1.1%
BasketballPass -1.5% -2.1%
BlowingBubbles -1.0% -1.4%
RaceHorses -1.1% -2.5%

Overall -1.2% -1.8%

E (1280×720)

FourPeople -1.1% -1.1%
Johnny -0.9% -0.1%
KristenAndSara -2.2% -2.7%
vidyo1 -0.8% -1.6%
vidyo3 -1.8% -3.8%
vidyo4 -1.8% -2.8%

Overall -1.5% -2.0%
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Figure 3: Predicting optimum local QPs with texture masks. (a,b) The optimum local ∆QPopt values versus the combined
texture masks M of corresponding sequences for HEVC All Intra configuration at QP 22 and 27 respectively. (c,d) ∆QPopt

versus, M , for QP 32 and 37. (e) ∆QPopt versus M for QP 42. (f) ∆QP/M versus frame level QPs. The position of each
number represents the ∆QPopt value for that sequence with certain ∆M value. Blue indicates that the bottom half of
frames is tested, while red indicates the top half.
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