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Panorama view with spatio-temporal occlusion
compensation for 3D video coding

Muhammad Shahid Farid, Student Member, IEEE, Maurizio Lucenteforte, Member, IEEE,
and Marco Grangetto, Senior Member, IEEE

Abstract—The future of novel 3D display technologies largely
depends on the design of efficient techniques for 3D video
representation and coding. Recently, multiple view plus depth
video formats have attracted many research efforts since they
enable intermediate view estimation and permit to efficiently
represent and compress 3D video sequences. In this paper we
present Spatio-Temporal Occlusion compensation with Panorama
view (STOP), a novel 3D video coding technique based on the
creation of a panorama view and occlusion coding in terms of
spatio-temporal offsets. The panorama picture represents most
of the visual information acquired from multiple views using
a single virtual view, characterized by a larger field of view.
Encoding the panorama video with state of the art HECV and
representing occlusions with simple spatio-temporal ancillary
information STOP achieves high compression ratio and good
visual quality with competitive results with respect to competing
techniques. Moreover, STOP enables free view point 3D TV
applications whilst allowing legacy display to get a bi-dimensional
service by using a standard video codec and simple cropping
operations.

Index Terms—3D-TV, 3D video coding, HEVC, AVC, Depth
image based rendering

I. INTRODUCTION

UMAN visual perception of depth is achieved in 3D
display devices by rendering two or more scene views
simultaneously. There has been much innovation in 3D dis-
plays in the last few years achieving promising levels of
visual immersivity. Popular stereoscopic displays in the market
show two images of the same scene from slightly different
viewing angles that are discriminated through active or passive
glasses. The more recent autostereoscopic technology removes
the hurdle of glasses by exploiting the principles of parallax
barrier or lenticular arrays that allow the user to discriminate a
pair of stereoscopic pictures depending on the relative position
between the display and the viewer. These autostereoscopic
displays use several views, usually up to 50, to generate the
perception of depth and to enable the so called free viewpoint
TV, where the viewer can roam around these views changing
his view-point.
The technological evolution of 3D displays clearly needs
to be accompanied by the design of efficient 3D video rep-
resentations and coding formats able to achieve high level of
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compression, given the huge amount of data that need to be
managed. This is of paramount importance in the context of
broadcasting, where the precious radio spectrum must be used
as parsimoniously as possible. Moreover, the broadcasting sce-
nario involves other strict constraints represented by presence
of legacy devices and backward compatibility issues [1].

Recently, many pilot commercial 3D television (3DTV)
services have been launched, following the requirements of
the first phase of the 3DTV specified by the DVB [2].
Current technical solutions are based on the so called frame
compatible formats [3] that are used to feed stereoscopic
display sacrificing the resolution of the individual views.

Up to date the most successful 3D video coding format
is represented by the multiview extension (MVC) of the
widespread AVC standard [4]; MVC exploits the spatial re-
dundancy among several views adopting the usual block based
compensation mechanism and it is backward compatible with
any AVC decoder. One of the shortcomings of MVC is the
fact that the compression bitrate increases linearly with the
number of views [5], making it unfit in the context of free-
viewpoint TV. In response to the new requirements novel
3D video formats have emerged, e.g. Depth Enhanced Stereo
(DES) [6], Layered Depth Video [7], [8] and Multiview video
plus depth (MVD) [9], where pictures are coupled with a per
pixel depth map that represents the distance of every pixel
from the imaging plane. Such formats enable depth image-
based rendering (DIBR) for generation of intermediate views
and are catalysing many research efforts in the area of 3D
video compression [10].

In this paper we proposed a Spatio-Temporal Occlusion
compensation with Panorama view (STOP) technique to ef-
ficiently represent and encode MVD formats. The major
contributions of the paper are in the following.

o A panorama picture of the scene is created as a mean to
capture most of the 3D redundancy of the scene. To this
end multiple views are fused in a single panorama picture
characterized by a larger viewing angle embracing all the
available multiple views.

o DIBR is exploited to extract any desired intermediate
view starting from a single panorama view plus depth
picture.

o The panorama video undergoes standard video encoding
allowing legacy 2D devices to obtain the corresponding
2D pictures by standard decoding and simple cropping.

o The image quality guaranteed by STOP on the decoder
side is improved by adding an ancillary compressed
bit-stream representing spatio-temporal offsets that are
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exploited to recover dis-occluded details after DIBR. An
accurate and automatic mechanism for the selection of
the dis-occluded areas that will be visually relevant on the
decoder side is proposed, achieving excellent rate/quality
trade-offs.

The proposed STOP 3D video representation approach
jointly achieves many goals that are of paramount importance
in the 3D video broadcasting framework, namely:

e 2D compatibility: the proposed STOP codec supports
stereoscopy and autostereoscopy while allowing standard
2D service for existing legacy displays. In particular,
STOP exploits simple pre/post processing and can be
used along with any existing standard video codec. By
signaling the coordinates of the 2D image to the decoder,
legacy devices can enjoy 2D service by simply cropping
the panorama picture. As an example, the cropping area
can be signaled in the compressed bitstream by extending
the syntax of supplemental enhancement information
messages defined in AVC/HEVC [10].

e Efficient compression: by using HEVC STOP is capable
to encode three views plus depths at a bitrate that is only
1.5 times that of a standard 2D video.

o Low complexity: The computational cost of STOP ap-
proaches that of single view video plus depth coding.
Our experiments show that the panorama picture is usu-
ally less than 10% larger than the original picture; this
characteristic significantly reduces the coding time com-
pared to simulcast coding and competing MVD coding
approaches.

o Promising visual quality: High visual quality of coded
and synthesized videos is guaranteed with values of SSIM
that are almost the same as those guaranteed by simulcast
of multiple views plus depths.

o FTV application: Free-view point TV applications can be
easily implemented on the receiver side. To achieve stere-
oscopy one additional view can be obtained by projecting
the central view to the left (or right) viewpoint through
DIBR plus occlusion filling using spatio-temporal offsets.
For large field of view autostereoscopy, additional inter-
mediate views can be estimated using DIBR.

The rest of the paper is organized as follows. In Sect. II
related work is briefly discussed. In Sect. III the construction
of the proposed panorama view is presented, followed by
Sect. IV that describes the overall STOP technique based on
panorama view representation of the scene and spatio-temporal
occlusion/dis-occlusion estimation and coding. Sect. V shows
the experimental results obtained on a standard dataset to
evaluate the performance of the proposed coding tool. In
Sect. VI our conclusions are drawn.

II. RELATED WORK

In this section we briefly recall some related works that help
in contextualizing our contributions. In particular, we mention
current research efforts in the fields of 3D video coding and
DIBR algorithms related to our proposal.

As already mentioned in Sect. I pilot 3D TV services are
based on simple frame compatible solution: the most well-
known are the top-bottom and side by side approaches that

simply place two views of a stereoscopic video into a single
picture by stacking them vertically or horizontally [3]. Another
frame compatible approach [11] reduces the overall pixel
resolution in each dimension but provides some advantages
such as potential compatibility with 2D display. The frame
compatible formats allow one to use a standard high definition
video to carry a stereoscopic pair by clearly sacrificing the
spatial resolution of the individual views.

Various video coding formats have been proposed to effi-
ciently encode multiple views required for 3DTV. The MVC
extension of AVC must be recalled as the first efficient mean to
encode multiple views. MVC shows much better compression
ratio as compared to its standard ancestors. However, there are
a couple of limitations: MVC bitrate increases linearly with
the number of views [5] and produces blur effect when it is
used to encode depth [12].

Recently, video plus depth formats have attracted much
attention. Using the depth of the scene one can generate
intermediate viewpoints using DIBR techniques [13]-[16].
Consequently, many works have been devoted to the compres-
sion of depth and its exploitation for view prediction [17]-[19].
Since 2011 MPEG has issued a call for proposal on 3D video
coding technology [20] and in 2012 an ISO/ITU collaborative
effort [21] has been started to cope with novel evolutions of the
3D video. The Joint Collaborative Team on 3D Video Coding
Extensions (JCT-3V) is pursuing the standardization of 3D
extensions of both AVC (3D-AVC) [22] and the novel High Ef-
ficiency Video Coding (3D-HEVC) [10]. The first achievement
is represented by Multiview High Efficiency Video Coding
(MV-HEVC), where the same approach used by MVC on top
of AVC has been adopted to encode multiple views. Inter-view
prediction has been implemented by including the inter-view
pictures in the reference lists used for prediction. The average
compression gain of MV-HEVC over HEVC Simulcast and
MVC is reported upto 30% and 50%, respectively. The design
of novel and efficient 3D coding tool exploiting MVD formats
is the main focus of the current efforts in JCT-3V [23]-[25].
3D-HEVC is expected to exploit new tools and coding mode
capable to improve significantly the compression performance.
The base view and corresponding depth map are encoded by
unmodified HEVC; the dependent views and depths exploit
additional tools e.g. disparity compensated prediction, inter-
view prediction of motion parameters, inter-view prediction of
residual data, etc. The 3D-HEVC is emerging as the state of
the art 3D coding tool and provides 50% and 20% bit rate sav-
ings over HEVC Simulcast and MV-HEVC respectively [23].

In [26] a new multiview video representation is introduced,
where foreground objects are extracted from the scene and
represented as discrete surfaces using a Monte-Carlo method.
The obtained surfaces can be easily reconstructed and warped
to any virtual camera position. One limitation of [26] is the
intrinsic assumption of a static background. Finally, a 3D
coding technique sharing some idea with STOP is the one
proposed in [27]; this latter has been used in our experiments
as a reference.

In STOP we propose a spatio-temporal approach to conceal
dis-occlusions produced by DIBR. Many techniques have been
proposed in the past to handle the dis-occlusions.
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The most popular methods to recover occlusion are based
on inpainting techniques. These latter can be categorized into
four major classes: i) texture-based inpainting, ii) patch-based
inpainting, iii) depth guided inpainting, and iv) spatio-temporal
methods. In first class methods, the missing region is filled
using the color and texture information of the surrounding
pixels [28]-[31]. In patch-based inpainting the missing region
is filled with similar patches that can be generally found in
the neighboring area in the same image. A patch around the
hole is selected and searched for in the rest of the image; then
the best match is used to recover the occlusion [32]-[34]. In
depth based inpainting either the depth map is inpainted first
and then used to find (by 3D warping) the pixels that can cover
the holes or the recovered depth map is used in conjunction
with texture-based or patch-based inpainting [35]-[38].

Finally, other techniques in literature aim at filling the DIBR
holes by maintaining a background sprite. If the background
is static or changing slowly it can be estimated and exploited
to fill the disocclusions [39]-[43]. Few other techniques that
used spatial and temporal information to fill the large holes
may be found in [44]-[46].

III. PANORAMA REPRESENTATION

Let us consider a horizontal set-up where the scene is
captured by n cameras with co-planar and parallel camera
vectors and using the same focal length f. We denote as V;,
i =1,...,n the ¢-th view image (moving from left to right),
where V;(u,v) represents a pixel with row v = 1,...,H
and column v = 1,..., W, being W x H the image reso-
lution. In the following we always assume horizontal camera
arrangement and rectified images. We further consider the
availability, thanks to stereo matching algorithms or physical
measurements, of dense depth maps. We denote as D, the
depth map associated to the view V;, with D, (u,v) the depth
of the pixel (u,v) of the i-th view.

Fig. 1 shows an example of multiview camera setup com-
prising 3 cameras with horizontal shifts. The distance between
the viewpoints b; of the different cameras, termed as baseline,
is usually limited to guarantee a smooth 3D experience,
e.g. when using an autostereoscopic display. As graphically
represented in Fig. 1, this yields a high overlap among the
field of views of the different cameras, that in turn can be
recognized in terms of redundancy in the collected images.

At very high level one may imagine to summarize all the
collected information using a single virtual camera with focal
point in an intermediate reference position and a field of view
larger than the ones of the single cameras. Unfortunately,
because of occlusions and dis-occlusions, e.g. background
pixels that appear behind foreground objects, it is not possible
to compact all the information acquired by several cameras
into a single image plane of the virtual intermediate camera.
Nonetheless, in practical settings with limited baseline, the
creation of the virtual intermediate view, that we termed
panorama view, represents a viable approach for representing
a set of multiview images, compactly. Finally, using DIBR
techniques one shall be able to estimate the required interme-
diate views.

Scene

Horizontal Camera axis

S

Camera
disparity

Fig. 1. A multiview camera setup with horizontal arrangement.

A. Background on Depth Based Image Rendering

DIBR process consists in reprojecting the pixels of a set
of acquired images (typically 2) into the image plane of an
intermediate virtual view, exploiting the depth information and
the knowledge of the camera intrinsic and extrinsic matrices.

Let V, be the source view with corresponding depth D
and viewpoint bs. Let b; the position of a target view V
with disparity b = b; — b, from the source view. Assuming
the horizontal camera setup, V; can be obtained applying
horizontal shifts! to the pixels of Vi. Given V;(u,v) this latter
can be mapped to the corresponding V;(u, v + d5 ¢(u, v)) with

_bf
D (u,v)

being the shift required to map pixel (u,v) in the coordinate
system of the image plane of the target camera. Clearly, the
shift depends on the depth of each pixel and generally requires
sub-pixel precision. DIBR techniques compete in designing
the best solutions to overcome a series of issues that arise
when shifting pixels, e.g. recovering from occlusion and dis-
occlusion, high quality virtual image re-sampling, robustness
to depth estimation errors, etc.

Finally, we recall that in practical cases the depth is mapped
onto its inverse 1/D; represented over 255 levels, usually
termed as quantized disparity. Denoting as d the 255 levels
image used to represent the quantized disparity, one can
compute the depth map as:

6S,t(u7v) = (])

1
ds(u,v) (1 1 1
w (z; —z) Tz
where Z,, and Z; are the minimum and maximum depth,
respectively.

Dy (u,v) =

2

B. Panorama View Generation

Without loss of generality we assume that the number
of camera n is odd. Let V,, be the intermediate view,

'In the general case with arbitrary camera positions both horizontal and
vertical shifts must be taken into account determining the so called image
warping process
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Vi,-++,Vimu—1 the views on its left side and V41, -V,
the views on the right side. As discussed earlier, the camera
views share a large portion of their field of view due to their
limited disparity. When moving from V,, towards V,,_; a
new part of the scene shows up on the left side of V,,_
because of camera translation, whereas another part disappears
to the right. Moreover, some occlusions and dis-occlusions
will occur, especially around the edges of foreground objects.
For the sake of the panorama view construction we make the
assumption that no occlusions and dis-occlusions are to be
taken into account. We will remove this limiting assumption
later in Sect. IV.

Under this simplifying assumption any view V; can be
obtained from the intermediate V,, with the exception of a
band of pixels (appearing on the right or on the left side),
that in the following we refer to as the slit s;. It is worth
noting that the slits get larger while moving farther away from
the intermediate position. Fig. 1 shows a multi views setup
with 3 cameras where one can select the central view V5 as
a reference. As an example, it can be noted that V3 shares
a large portion of image plane except for a small slit s3 on
the right side. It is worth pointing out that other views on the
right side, e.g. V4, Vs, ... would yield larger slits sy, S5, .. .,
including s3. In general, we can state that:

if 1 <i<m;
if m<i<n;.

s; © Si—1
Si+1 € 84

Hence, a panorama view V., with size W’ x H can be
generated concatenating s1, V,,, and s,, so as the create a single
picture collecting most of the information in the scene. The
same approach can be followed to create a single panoramic
depth D, that carries the information required to synthesize
any desired intermediate view.

The panorama width W’ > W clearly depends on the
size of the left and right slits, that in turns depends on the
maximum shift that a pixel can undergo when moving from the
leftmost/rightmost view to the reference view. The maximum
shift varies with the scene depth and possibly changes as a
function of time within the video sequence. Nonetheless, we
can easily assume that the minimum depth z,, of the considered
scene is known; since the maximum shift is produced by the
scene point that is closest to camera one can upperbound all

shifts by

As a consequence, we set the panorama width to be W' =
W +2A, i.e. the panorama view contains the pixels Vpq,, (u, v)
withu=1,...,H,andv=1,..., W + 2A.

Two alternative strategies can be used to create Vj,, and
Dpan images, respectively. In the following we focus on the
construction of the panorama view; the same process can be
followed to build the corresponding depth map, as well.

1) Panorama construction via Inward Projection: In inward
projection approach the left view V; and the right view V,, are
warped to the central view V,,; the pixels of V; and V,, that
are warped outside image plane of the central view are those
that forms the slits s; and s,,.

Vi coe Vin

w_} -
1m

Area of V; not visible in V,— |

=~

warp

Area of V; visible in 1},

Vom
$1 7 S
Vpun

Fig. 2. Panorama construction process using inward projection approach.

The panorama view can be constructed as follows:

Vim(u,v—A) ifo<A
Vopan(u,0) =< Vip(u,v —A)  ifA<o<W4+A
Vn,7rl(u,v — A) ifo>W+ A

“)
being V; ., (u,v), i = 1,n the pixel synthesized by warping
V; according to the point of view of V,,. In particular,
the panorama will collect the warped pixels Vi ., (u,v) with
v < 1, ie. falling outside the field of view of V,, and
those of V,, ., (u,v) with v > W. For this reason in previous
equation we assume that VLm(u7 v) is defined also for column
coordinates that are O or negative and V,, ,,,(u, v) takes values
also when v > W. Clearly, during the warping process more
than one pixel of V; (or V) may be shifted to the same
coordinate (u,v); in such case only the pixel closest to the
camera is copied in the panorama view. Moreover, shifts are
not guaranteed to map on integer coordinates and proper
interpolation is required as in common DIBR algorithms. This
process is schematically shown in Fig. 2.

2) Panorama construction via Outward Projection: The
slits’ pixels can be identified with a process that is the dual
of the previous one; indeed, one can warp the reference view
V. according to the viewpoint of V7 and record the pixel
coordinates of V; that cannot be covered shifting pixels of V,,.
Under our assumption of absence of occlusions/disocclusions
this process permits to identify the pixel in slit s;. The same
result is obtained for s,, by warping V,,, towards V,.

Let H;(u,v) be a binary map representing the coordinates
of view V; that cannot be obtained warping V,,,. In this case
we can form a panorama picture by setting:

Vi(u,v") if v <A, Hy(u,v') =1,
vV =v—A+4rt(Hi(u,-))
Vopan(w,0) =< Vip(u,v—A) ifA<o<W4+A
Vi (u,v") ifv>W4+A Hy(u,v') =

vV=v—A—=1t(H,(u,-))
(5

where rt(Hq(u,-)) returns the rightmost column of the u-
th row where H; is equal to 1 and 1t(H,(u,-)) returns the
leftmost column of the u-th row where H,, is equal to 1.
According to previous equation the pixels V; (u, v") that cannot
be warped from V,, to V; are copied on the left side of
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Fig. 3. Panorama construction process using outward projection approach.

Vipan tow by row. Analogously, pixels V,,(u,v’) that cannot
be warped from V,, to V,, are appended to the right side of
the panorama row by row.

The process is graphically show in Fig. 3. In the following
we termed this panorama construction process as the outward
projection approach. It can be noted that in this case the right
edge of s; is not guaranteed to be straight; for simplicity the
panorama image is constructed aligning each row of s; on the
right so as to place s; and V,,, side by side. The same process
is adopted for s,, aligning each row on the left.

3) Comparison of inward projection and outward projection
approach: Both inward projection and outward projection
approaches can be used to build the panorama view. The two
approaches have the same computational complexity as both
of them require to carry out two image re-projections, i.e. from
Vi and V,, to V,, in one case and from V,,, to V; and V,, in
the other case.

It is important to recall that using the inward projection
method the slits pixels are taken from the synthesized views
Vim and V,, ,,, whereas in the outward projection approach
those pixels are copied from the original views V7 and V. On
the receiver side, the panoramic view V4, can be re-projected
on any given intermediate view. As an example, the pixels of
Vpan can be warped according to the projection vector of V;
to estimate the leftmost view. Since view synthesis requires
resampling and interpolation and may be affected by depth
quantization or depth estimation errors, image warping will
produce a virtual view Vj,,,, 1 that is an estimate of V;. Clearly,
our goal is to get the best possible approximation of Vj. In
this light, the outward projection approach exhibits a slight
advantage in terms of the image quality obtained by warping
the slits of Vj4,,. Indeed, in the outward projection solution the
slits pixels are obtained from the original views and are warped
only once to get a given virtual view. On the contrary, in the
inward projection approach slit pixels are warped twice, first
for the construction of the panorama and then for rendering
virtual views. Since warping potentially impairs the image
quality it is clearly better to limit its usage. Nonetheless, this
observation applies only to the slits pixels (a very limited area
of the panorama in presence of limited camera baseline) and
does not represents a major issue on the whole image quality.
In the following of the paper we always assume to use the
outward projection approach.

Vi, D
Vi ot pt
t pt —‘ Panorama pan | Voan Dpan . Compressed
Vin» Din Video Codec > .
J Generator Dt bitstream
pan
Vi, Dy
Panorama Vrt"
Splitt > Buffer B*
Vi, Dt plitter
W, D 1955 |
t t wt.
N Occlusion Oi.j Occlusion Wij Occlusion Wij_ Compressed
Estimation Matching Coding bitstream
Fig. 4. STOP Encoder

IV. THE STOP VIDEO CODING METHOD

In the following a method is proposed to represent (at the
encoder side) and recover (at the decoder side) the occlusion
and dis-occlusion areas® that have been neglected during the
creation of the panoramic view. This approach will allow us
to design STOP, based on standard coding of the panorama
view and depth, followed by a novel mechanism for handling
occlusions.

The proposed solution aims at representing every occluded
patch by encoding its spatio-temporal offset pointing to the
best approximation of the missing area that can be found
in pictures that are already available on both encoder and
decoder. This goal can be achieved by exploiting the fact
that occluded pixels of a given frame are likely to be visible
in the subsequent or preceding frames, thanks to camera
and/or objects movements; alternatively, missing areas can be
concealed by means of similar areas that can be found in the
same frame.

A. Panorama Encoder and Decoder

Before presenting the details of the procedure used to cope
with occlusions we need to provide a high level description
of the whole encoding and decoding process.

In Fig. 4 the block diagram of the encoder is shown. The
first stage consists in the creation of the panorama view and
depth, taking the original views and depths as input. Without
loss of generality, in the following, a camera setup with 3
views and 3 depth will be considered as it is assumed in Fig. 4.

Then, the panorama view and depth are encoded with any
existing technique, e.g. AVC or HEVC. In the following,
we need to enrich previous notation by adding the temporal
index of a frame of a video sequence, e.g. Vgan refers to
the ¢-th panorama view of the video sequence. The output
of the first stage are the corresponding compressed bitstream

and the decoded panorama view and depth, V', and ﬁ;an,
t =1,2,.... The reconstructed views and depths can be used

to compute on the encoder side the occlusions that will be
experienced by the decoder when generating a given view.
The reconstructed central view V! and corresponding depth
D;, are trivially extracted from V), and D!, removing
the slits as described in Sect. III. In the proposed encoder

DIBR is used to compute the occlusions that show up when

2In the following, for conciseness, we use the term occlusion to identify
both occlusion and dis-occlusion
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Fig. 5. STOP Decoder

estimating the leftmost and rightmost views, respectively. The
best approximation of each occlusion is then searched in the
decoded frames Vt and the corresponding spatio-temporal
offset is encoded and sent as ancillary data as detailed in
Sect. IV-B.

On the receiver side, the various components of the com-
pressed bitstream are parsed and decoded. Backward com-
patibility towards legacy 2D devices can be easily obtained
by letting them decode the standard panorama video that can
be simply displayed after cropping the central view. On the
contrary 3D receivers use the panorama view and depth to
estimate Vf7 D1 using DIBR. Thanks to the presence of the
slits the area of the view appearing on the left hand side is
obtained. The remaining occlusions are filled using the spatio-
temporal offset information provided by the encoder. Those
areas are simply copied from frames that have already been
decoded; indeed, we observed that in the proposed spatio-
temporal hole filling no post-processing such as boundary
matting is useful because the patches are very small in size
and they usually belong to nearby frames. Therefore additional
processing would increase the complexity of the technique
without carrying significant quality improvements. Finally, the
rightmost view and depth can be estimated with the same
process. Given Vl,Vt and Vt (and corresponding depth)
DIBR can be used to estimate any desired intermediate view.
Fig. 5 shows the block diagram of proposed decoder.

B. Occlusion matching and coding

As already anticipated, the occlusions that are not taken
into account during the construction of the panorama image
are coded separately, by sending a reference to a patch of a
picture (that is already available at the decoder) that can be
used to approximate the missing area. The occlusion coding
process can be divided into 3 steps:

1) occlusion patches selection and segmentation
2) occlusion offset estimation
3) occlusion offset coding

On the decoder side, the same occlusion selection and seg-
mentation algorithm used by the encoder is run to identify the
same set of parches that can be recovered copying pixels from
the areas of the picture referenced by the decoded occlusion
offsets.

1) Occlusion selection: The encoder aims at selecting and
encoding only the occlusions that potentially have a sensible
impact on the rendered visual quality. The most significant
occlusions are clearly obtained when using thamD;an
render V; and V\.

By means of a standard DIBR algorithm the encoder is
able to identify the area of the target images Vi i=1,n
that cannot be recovered with pixels of V, pan (usually referred
to as holes). The occlusions of the ¢-th view at time ¢ are
organized into a list of connected components, e.g. by using
the flood-fill algorithm to label all the pixels of the binary
image representing the holes left by DIBR. Let Of ; refers the
j-th connected component, i.e. patch of occluded pixels, of the
i-th rendered view at time ¢ of the video sequence and |O} ;|
its size measured in number of pixels.

To limit the coding overhead the occlusions with size
|0} ;| < 75 are simply discarded. On the decoder side such
occlusions can be recovered by standard inpainting [31], [47].

It is worth pointing out that, because of the horizontal
camera setup, some very tiny vertical cracks will show up.
These holes are generally only few pixels wide and can be
recovered efficiently by inpainting. As a consequence, we add
a criterion to drop occlusion patches that have a very skewed
aspect ratio. In particular, we define the following ratio
05,1
04 41"
between the patch size and its vertical length |O; ;|V; this
latter can be simply computed as |O; ;|” = max, o O;j —
Min.oqy O;j + 1, where max,.,, and min,,, evaluates the
maximum and minimum row indexes in a patch, respectively.
Then, patches with r(OfJ) < 1R are discarded for further
processing.

The size of the occlusions generated by an object depends
on its size and depth. If a large object is close to the camera,
then an occlusion of large size, especially in the vertical
direction, is to be expected. To easy the following task of
occlusion matching it is preferred to segment large occlusions
into smaller patches. Indeed, smaller patches are likely to
represent more homogeneous areas that in turn are matched
more easily in the surrounding images (both temporally and
spatially). Moreover small patches are more robust to distor-
tions introduced by camera and/or object movements. As a
consequence, if |O; ;| > 71, the corresponding occlusion is
segmented into smaller chunks (with height less or equal to
Tr,) cutting it horizontally.

To avoid cluttering the notation we keep using the symbol
O75 to identify the occlusions surviving the pruning process
descrlbed above.

2) Occlusion matching: The next step consists in the search
for the best match of every occlusion Ot ; given the views that
have already been decoded at the recelver This task is very
similar to motion estimation techniques adopted in standard
video codecs, based on block matching. Nonetheless, in our
encoder we avoid using blocks and we aim at estimating
the best match of every occlusion patch Oﬁ’j by keeping
its original shape. As for motion estimation we use the
Sum of Absolute Differences (SAD) as a computationally

r(0f ;) = (6)
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effective metric of similarity. Clearly, our method can be easily
extended to the case of more complex metrics that take into
account other image features such edges, orientations and
color [48]-[51]. It is worth pointing out that the occlusions
can be matched also in the depth domain; this possibility
is not exploited by our encoder from one hand to limit the
computational cost, and from the other hand because depth
images offer less details and are usually error prone due to
disparity estimation errors.

The occlusion matching consists in the following minimiza-
tion:

i argmin

x,y,k: By eB?t u,vGOé‘j

(N
where B! is a buffer of decoded images selected for the
search at time ¢, (x,y) represents the spatial offset and &
references a particular decoded image By € Bt. The vector
wi ; = (z,y,k) represents the spatio-temporal offset to the
best occlusion match and will be encoded as described in the
following section.

Clearly, the search range must be optimized so as to trade-
off accuracy of the matching and the computational cost. In
our implementation we include in B! the central view V,J of
the decoded panorama pictures, with j = ¢t — 6,...,t + 0,
i.e. we consider a symmetrical time window around the target
view at time ¢. The larger 6, the higher the chance to cover
an occlusion exploiting camera and/or object motion. Further-
more 6 must be selected taking into account the video encoder
settings, e.g. the GOP structure, and the delay constraint of the
application.

Clearly, the above selected set of reference pictures is not
enough to recover occlusions generated by stationary objects in
a sequence without camera motion (in the following we terms
them static occlusions). To overcome this issue we can include
in B! some virtual views where all occlusions are inpainted.
These virtual views can be generated by both encoder and
decoder warping the decoded panorama view and depth. As
an alternative, a set of key frames of the leftmost and rightmost
views can be encoded’, e.g. with the same intra period used
to encode Vjan, Dpen Or just when a scene-cut [52]-[54] is
detected. The second option incurs some bitrate overhead but
generally yields higher image quality. In general, we let B
include w supplementary reference pictures that serve to match
static occlusions. In conclusion, B¢ contains 26 + 1 temporal
references and w spatial references.

As far as the search in the spatial domain (x,y) one
can optimize that range depending on the time offset of
the reference frame with respect to ¢ and the depth of the
considered occlusion. Clearly, if two frames are far apart in
time it is likely that a given occlusion is recovered using larger
spatial offset because of the effect of motion. Moreover, a
larger search space must be used for occlusion patches that are
closer to the camera. As a consequence the spatial search has
been constrained to —x < z,y < X, where x = v - w, being
1 the temporal offset between the current and the reference

3This supplementary option has been neglected in Fig. 4 and Fig. 5 to make
them more simple and readable.

S Vi u,v)=Bi(u—z, v—y)|

TABLE I
TEST VIDEO SEQUENCES.

ID Name Frames  Resolution Hz Views
S1 Poznan_Hall2 200 1920 x 1088 25 17.,6,5
S2 Poznan_Street 250 1920 x 1088 25 54,3
S3 Kendo 300 1024 x 768 30 1,3,5
S4 Balloons 300 1024 x 768 30 1,3,5
S5 Undo_Dancer 250 1920 x 1088 25 1,59
S6 GT_Fly 250 1920 x 1088 25 53,1

image, and w the average disparity of the occlusion under
consideration computed according to (1) as follows:

1
w:m Z [0m,i (u, V)|

i
J u,vEO:J

3) Occlusion coding: The last step is the lossless encoding
of the offset vectors w;j. This can be done embedding
ancillary data in the bitstream corresponding to every coded
panorama frame thm, e.g. by exploiting the supplemen-
tal enhancement information (SEI) message standardized in
AVC/H.264 or other standard means for providing an ancillary
compressed bitstream. Since we assume that occlusion patches
O;j are selected and ordered with the same rules by both
the encoder and the decoder the pair (¢, j) can be recovered
implicitly by the decoder and does not require to be coded.
Therefore, occlusions can be encoded as a list of signed integer
offsets (z,y, k) accompanying every encoded frame than.

Clearly, the video spatial and temporal correlation can be
exploited for entropy coding of the offset, e.g. by using
exp-Golomb followed by context based arithmetic coding.
Nonetheless, since the number of occlusion patches that need
to be coded can be very limited, entropy coding can be
omitted without a significant impact on the overall bitrate.
As a consequence we let the optimization of offset coding
out of the scope of the present paper. In turn, we run all
the following experiments using the natural binary repre-
sentation of the offsets, thus getting an upper-bound on the
bitrate. Clearly, the cost of such representation turns to be
2[log,(2x +1)] + [log, (20 + 1 +w)] bits per each occlusion.

V. EXPERIMENTAL EVALUATION

In this section the performance of the proposed STOP codec
will be analyzed and compared with both standard simulcast
coding and competing solutions based on coding of occlusions.

The coding tests have been run on a standard set of multiple
view plus depth video sequences [55]. The selected sequences
include both synthetic and real videos with either static or
moving background, and with or without camera motion and
zooming. In Tab. I the details of each sequence (sequence
name, total number of frames, resolution, frame rate and
index of coded views) are summarized; in the following each
sequence will be referenced using the label reported in the
first column of the table.
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Fig. 6.
warping view 4 to 5 (top) and S3 when warping view 3 to 1 (bottom).

A. STOP Settings.

In Sect. IV we presented the spatio-temporal estimation and
compensation employed in the STOP codec. Such process
depends on a number of parameters that can be tuned to
achieve different quality/bit-rate trade-offs.

The most important parameter is certainly represented by
the threshold 7g that allows one to select the most significant
occlusions for the following matching and compensation. On
the other hand the dropped (smaller) occlusions will be recov-
ered by inpainting. Clearly, this choice has a direct impact on
visual quality and bit-rate overhead for occlusion coding.

Usually, the warping process generates a very large number
of small occlusions and a limited number of large occlusions;
these latter are likely to be related to foreground objects and
depend on their position in depth and on the baseline of the
cameras. Furthermore, complex or highly textured scenes, e.g.
tree leaves, crowd of people, etc, can easily yield a large
number of very small occlusions. Moreover, other occlusions
can be caused by depth estimation errors.

In Fig. 6 we show some experimental data obtained when
warping S2 and S3 sequences, respectively. In particular
S2 refers to a sequence with highly textured background
(buildings and trees) whereas S3 is characterized by a simpler
background. Both sequences have few foreground moving
characters.

Fig. 6a shows that warping S2 from view 4 to view 5 one
gets a large number of occlusions, on average 5639 occlusions
per frame. These are mainly due to the complex nature of the
background in S2. Fig. 6b shows the size of each occlusion

il ﬂ Ll 1 |

Disocclusion No.
(e)

Number of occlusions per frame (a)(d), occlusion sizes in the frame 100 (b)(e) and number of occlusions selected for coding (c)(f) in S2 when

No. of Disocclusions

150 200 250
Frame No.

®

100 300

patch in frame 100 of the sequence; it clearly turns out that
most occlusions are very small ones, with only 1.38% of the
total covering more than 100 pixels. In Fig. 6d, 6e the same
results are shown when warping S3 from view 3 to view 1. In
this case, 1127 occlusions per frame were found on average,
i.e. 5 times less than S2; looking at frame 100 we note that
only 15 occlusions contain more than 100 pixels.

If we fix 7 = 36 to select only large occlusions and we
omit cracks by setting Tr = 2 as defined in Sect. IV-B we got
the results shown in Fig. 6¢ and Fig. 6f. It can be noted that
only 121 and 65 occlusions per frame are selected in S2 and
S3, respectively.

Previous thresholds have been selected as reasonable trade-
off between image quality and occlusion coding overhead and
will be employed in all the following experiments.

The remaining STOP coding parameters are reported in
Tab. II. In particular we fixed 7, 20 to split vertical
occlusions as described in Sect. IV-B and HEVC is used
to encode the panorama texture and depth videos. The most
significant HEVC settings are shown in Tab. II, as well.

B. Coding Experiments and Comparisons

In this section the compression efficiency provided by STOP
codec is evaluated experimentally and compared with other
coding approaches based on standard coding tools, i.e. video
plus depth simulcast using the widespread diffused AVC and
the novel HEVC coding standard*. When using simulcast 3

4The experimental results have been obtained with JIMVC-8.3 for AVC and
HM-11.0 for HEVC coding, respectively.
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TABLE II
STOP CODEC SETTINGS. TABLE IV
AVC AND HEVC SIMULCAST CODING RESULTS: OVERALL BITRATE
Occlusion Settings HEVC Configuration [KBPS] AND AVERAGE LUMA PSNR [DB] (AVERAGED ON 3 VIEWS).
Parameter value Parameter value Seq or AVC HEVC
TS 36 MaxCUWidth 64 ' . ;
N Bitrate  PSNR Bitrate PSNR
TR 2 MaxCUHeight 64
L 20 MaxPartitionDepth 4 26 3040.18 41.44 2044.17 4194
0 S IntraPeriod 3 g 30 178067 4041 107200 4116
. 34 1145.03 39.07 617.19 40.08
Q 2 GOPSize 8 38 77292 3741 38090 3878
26 6500.99 38.72 5804.78 39.44
TABLE I gy 30 356756 3708 275469 3780
AVC CODEC SETTINGS. 34 208257 3551  1491.99  36.17
38 1249.60 33.61 868.53 34.50
Parameter value 26 313327 4248 249579  43.15
IntraPeriod 32 g3 30 224683 4068 148527  41.36
. 34 1483.15 38.63 906.83 39.35
ggfep i‘lfceeFrames 2 38 99711 3628 58374 3730
CABAC enabled 26 3339.07 41.90 2374.16 42.69
S4 30 2140.09 39.97 1429.03 40.96
34 1391.17 37.70 877.31 38.87
38 912.62 35.11 568.85 36.66
views plus the corresponding depth maps are separately coded 26 1549854 3750 11986.28  38.21
using AVC or HEVC, respectively. The HEVC settings are g5 30 888288 3530 622471 3591
h th lected di to Tab.II for the STOP 34 5204.67 33.25 3359.61 33.84
t Zsamehas ose Sf; ected accor lﬁg Ob ab. (c)lr ) eh 38 308228 3124 187643 3195
codec, whereas similar parameters have been used in the case
. p . . 26 14952.01 39.17 10825.77 39.70
of AVC as shown in Tab. III. In all the followmg experi- S6 30 8902.69 37.28 5679.31 37.78
ments, the sequences are encoded at four quality levels by 34 544137 3535  3076.60  35.99

selecting the values for quantization parameter (QP), namely 38 340205 3329 173422 3427

QP = 26,30, 34, 38. The compression performance obtained
by simulcast is shown in Tab. IV and will be used as a
reference for the following results; the total bitrate in kbps TABLE V

and the average PSNR obtained on the luma component of MDR-HEVC COMPRESSION RESULTS: BITRATE [KBPS] AND AVERAGE
the 3 views are reported Luma PSNR [DB] OF THE MIDDLE VIEW (V;,), BITRATE FOR THE

. DEPTH MAP D,,,, OCCLUSION BITRATE (LEFT AND RIGHT OCCLUSION
Furthermore, a backward HEVC compatible implementation FRAMES PLUS DEPTH), AND OVERALL MDR BITRATE.

of [27] is used as a benchmark closer to our proposal. In

[27] the middle view and depth are encoded with HEVC Seq. QP Vin Dy, Occl. Total
and the disoccluded regions for the left and the right views Bitrate PSNR  Bitrate  Bitrate  Bitrate
are estlmateq using DIBR on the encoder side. As in STOP, 26 61802 4194 7958 63033 132794
small occlusions are dropped; finally one left occlusion frame S1 30 32316 41.13 4258 34479  710.54
(plus corresponding depth) and one right occlusion frame (plus 34 }?2-92 40.03 ﬁ-? ?27-22 ‘2‘32-4513
depth) are constructed so as that every 16 x 16 block that 38 o7 3870 13 6345 92.6
includes at least an occluded pixel is encoded using a modified 26 177070 3947 13032 814.64  2715.67
HEVC der. Fie. 7 sh le of lusion S2 30 830.35 37.85 67.21 468.66  1366.23
encoder. Fig. 7 shows an example of an occlusion frame 34 45197 3623 3444 27782 716405
(sequence S3) created according to [27], where only a subset 38 26539 3458 1885  172.10  456.36
of blocks carry occlusions that needs to be coded. For the sake 26 59655 43.18 18341  607.96 1387.93
of comparison with our approach, a slight variation of [27] has S3 30 363.16 4140 10223 39580  861.21
been implemented, where a standard HEVC encoder is used to 34227773939 5808 27217 558.04
. . . 38 150.90 37.35 34.12 190.62 375.65
compress the left and the right occlusion frames, respectively.

: : : 26 605.97 4271 150.13  1059.86  1815.97

In. the following we term such coding a.ppro.ach as Middle plus o 30 37743 4101 7933 64061 109738
Disoccluded Regions (MDR). The major differences between 34 23902 3895  42.80 41558  697.40
MDR and STOP are that this latter creates a panoramic picture 38 159.81 3674 2409 27726  461.16
and does not use video coding on occlusions (that are encoded 26 372394 3821 269.09 2199.75 619277
as Spatio_temporal Offsets)_ S5 30 1902.76 3591 172.18 1388.81 3463.76
. . . 34 1011.78 33.84  108.69 884.79  2005.27

. The compression performance ylelded by MDR 1s.sh0wn 38 55457 3195 7125 60245 122827
in Tab. V, where th.e amount of bltrate.taken by the different 6 300514 3970 58039 188579 549432
components is detailed, namely the bitrate spent to encode <6 30 156291 3778 33072 1177.12 307075
the middle view V,,, the corresponding depth map D,, and 34 84013 3599 185.65  718.03 1743.81

38 470.72  34.27 109.26 449.14  1029.12

the left and the right occlusion frames (texture and depth).
The overall bitrate and the PSNR of the middle view are
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TABLE VI
STOP COMPRESSION RESULTS (HEVC BASED): BITRATE AND AVERAGE
LuMA PSNR [DB] OF PANORAMIC VIEW (Vpan), BITRATE FOR THE
DEPTH MAP Dpgn, OCCLUSION BITRATE (SPATIO-TEMPORAL OFFSETS),
AND OVERALL STOP BITRATE.

Seq. QP Vpan Dpan Occl. Total
Bitratetr  PSNR  Bitrate  Bitrate Bitrate

26 687.24  42.24 93.74 52.33 833.32

st 30 365.60  41.40 52.44 48.67 466.72
34 217.27 40.28 30.44 43.44 291.16

38 138.28 38.92 19.29 39.37 196.95

26 1945.53 39.67 156.26 62.08 2163.87

S 30 946.79 38.04 83.23 55.56  1085.60
34 529.81 36.38 43.68 45.17 618.67

38 319.92 34.69 24.05 40.72 384.70

26 687.85 43.61 22477 37.19 949.82

$3 30 428.58 41.81  131.04 33.19 592.82
34 275.70 39.75 77.62 30.10 383.42

38 187.53 37.63 47.34 26.87 261.75

26 758.81 43.05 21049 49.23  1018.54

S4 30 482.83 4126 11941 46.08 648.33
34 312.63 39.09 69.08 42.08 423.80

38 212.79 36.82 40.72 38.19 291.71

26  3918.58 38.32 287.72 102.08 4308.39

S5 30 2010.77 36.02  189.17 9595  2295.89
34 1069.84 33.94  123.48 98.57 1291.89

38 585.88 32.05 84.14 98.86 768.88

26 3149.16 3991  635.01 59.39  3843.56

s6 30 1641.79 37.97 37232 57.51 2071.61
34 895.06 36.16  216.77 5292 1164.74

38 504.73 3441 13032 46.14 681.18

(b)

Fig. 7. MDR coding approach: warped image with dis-occlusions (a) and
corresponding occlusions frame (b).

shown as well, to compare the results with simulcast (Tab.
IV). In MDR and STOP the quality of the side views depends
on both compression and DIBR performance and will be
thoroughly discussed in Sect. V-C. The results in Tab. V show
that using MDR one significantly reduces the total bitrate
by more than 30% over simulcast. However it turns out that
almost one half of the MDR bitrate is due to the occlusion
coding, that in turn represents a limited amount of visual
data (in terms of their spatial occupation of the frame). This
is clearly due to the fact that the occlusion frames are not
efficiently compressed by a standard video codec; indeed, it is
likely that both intra (spatial) and inter (temporal) predictions
are dramatically impaired in the presence of blocky pictures
carrying only occlusion regions.

The proposed STOP codec clearly aims at overcoming the
above issue: in fact, occlusion regions on the frame side (that

we termed slits) are merged along the central view to form the
panorama view, whereas the remaining occlusions are coded
and concealed exploiting the spatio-temporal redundancy. The
coding performance achieved by STOP is shown in Tab. VI,
where bitrate contributions are partitioned following the same
principle of Tab. V so as to make it easy to compare the
results; in particular, we provide bitrate and PSNR spent on
the panorama view V)4, the bitrate allocated to the panorama
depth D, and that spent on occlusions. Representing the
occlusions in terms of spatio-temporal offset for each con-
nected component turns out to be very efficient with dramatic
bitrate savings in the order of 80% for occlusion coding. As an
example of the overall coding efficiency STOP takes 833 kpbs
at QP = 26, whereas AVC simulcast, HEVC simulcast and
MDR achieves 3 Mbps, 2 Mpbs and 1.3 Mbps, respectively.
Fig. 8 shows the average bit rate saving (in percentage)
experienced on our dataset. The average bit rate saving of
STOP turns out to be 72.85% versus AVC simulcast, 58.34%
versus HEVC simulcast and 31.88% versus MDR.

00vs. AVC Simulcast10vs. HEVC Simulcast [ 0vs. MDR

80% |- s a
o0 = - ] R b
g -
E 60% - — = ] .
w0
9 . [ ] -
=
o~
= 40% | N
28]
- | i
A
= 20% | H g
0% T T T T T T I
S1 52 S3 S4 S5 S6
Test Sequence
Fig. 8. Average percentage bit rate saving per test sequence.

To better analyze the bitrate distribution of STOP in Fig.
9 the average percentage bitrate allocated to texture, depth
and occlusion offsets are reported as a function of QP. It can
be noted that texture takes from 75% to 82% of the bitrate,
depth from 13% to 14% and occlusion offsets from 12% to
4% as a function of QP. In particular, it is worth noticing that
occlusion bitrates does depend on QP; in fact, in the current
implementation of STOP we kept fixed the parameters for the
selection of the occlusions to be coded as discussed in Sect.
V-A, independently on the QP value.

A widespread tool for comparing the compression per-
formance is the Bjgntegaard metric [56]. Tab. VII shows
the STOP results in terms of Bjgntegaard APSNR and AR
(PSNR’ and bitrate differences) when compared to the ref-
erence codecs used in this paper. The table shows that the
proposed coding tool saves 78% bitrate compared to AVC

5As already mentioned in this section the PSNR of the encoded view
(middle view in MDR and panorama view in STOP ) is used to represent
the rate/distortion curve of the codec.



IEEE TRANSACTIONS ON IMAGE PROCESSING, SUBMITTED DEC. 2013, ACCEPTED NOV. 2014. 11

38 | \

34 | \
[
c

30 l \

26 [ \

| | | |
0% 20% 40% 60% 80% 100%
‘ [T %Texture[ [ ]%Depth[ | |%Disocc. ‘

Fig. 9. Average bit rate consumption of texture, depth and occlusions in

STOP versus QP.

simulcast, 58% compared to HEVC simulcast and 32% com-
pared to MDR.

TABLE VII
BI@NTEGAARD DELTAS (APSNR [DB] AND ABITRATE R [%]) OF STOP
VERSUS AVC SIMULCAST, HEVC SIMULCAST AND MDR.

Seq vs. AVC simulcast vs. HEVC simulcast vs. MDR
APSNR AR APSNR AR APSNR AR

S1 4.38 -81.37 1.63 -53.91 0.89 -33.94
S2  4.13 -75.77 2.44 -59.47 0.60 -19.30
S3 7.10 -77.59 3.79 -58.73 1.68 -31.15
S4  7.01 -75.54 3.40 -52.92 2.37  -40.02
S5 5.71 -78.39 3.40 -62.37 1.57 -34.50
S6 594 -81.00 3.00 -62.84 1.25 -32.58

Avg. 5.71 -78.28 2.95 -58.38 140 -31.92

Finally, it is useful to compare the STOP bitrate with that
of a single video channel; in the broadcasting scenario, such
metric represents an estimate of the bandwidth overhead with
respect to the standard 2D service required to enable 3D TV
applications. Previous results show that STOP can be used to
grant a 3D video service with a bandwidth overhead below
50%.

C. 3D Video Quality

In STOP (and similarly in MDR) only the panoramic picture
is encoded whereas all the remaining points of views can be
synthesized by DIBR technique. In the following we propose
to use the well-known Structural SIMilarity (SSIM) index
[57] metric as a measure of the obtained image quality. In
fact, SSIM has been designed to better match the human
visual perception and yields better visual quality assessment
with respect to PSNR [57]-[59]. Moreover, PSNR generally
estimates values that are not correlated to the visual perception
in presence of DIBR: indeed DIBR, can achieve excellent per-
ceived image quality even without guaranteeing a bit faithful
reconstruction of the original picture due to resampling issues,
color and illumination correction, rectification errors, etc.

In order to rank the overall 3D video quality guaranteed by
STOP a set of virtual views has been generated. In particular,
a pair of intermediate views is computed in between leftmost
and central and central and rightmost views, respectively. Then
a supplementary virtual view is created in between in a second
iteration, getting a total of 9 views spaced by one quarter of
the original baseline. View Synthesis with Inverse Mapping
(VSIM) [47] is used for DIBR, employing the Telea fast
marching algorithm [31] for inpainting uncoded occlusions.

Fig. 10 shows the visual quality of the decoded views and
intermediate virtual views for frame 13 of sequence S2. From
top left to bottom right we report the views at position 5
(leftmost), 4.5, 4 and 3.5. Fig. 10c is the central view in the
panorama and its quality depends only on HEVC compression
efficiency, whereas other images are obtained by warping the
central view and by filling the disocclusions with the proposed
spatio-temporal approach. While there is a significant drop in
PSNR between the coded view 4 and the interpolated views,
the visual quality of all images is high as predicted by the
reported values of the SSIM.

Fig. 11 shows the average SSIM provided by STOP com-
pared with HEVC simulcast and MDR as a function of the
view position. The quality of the virtual views created from
MDR and the proposed coding tool is almost the same since
in both techniques the left and the right views are obtained by
warping the middle view. As expected both MDR and STOP
exhibit a slight penalty on the quality of the extreme views; in
fact, those views are directly coded by HEVC with simulcast
whereas in the other cases they are estimated by DIBR plus
occlusion compensation. Nonetheless the quality impairment
turns out to be negligible, e.g. 0.02, if compared to the bitrate
savings discussed in Sect. V-B. Moreover, Fig. 11-(e),(f)
show that the quality gap turns to be significantly reduced
for synthetic video sequences (S5,5S6) where ground truth
depth maps are available; the greater depth accuracy in turn
improves both STOP coding efficiency (better construction
of the panorama picture, occlusion estimation and matching)
and quality of the view synthesis on the decoder side. This
observation also highlight that STOP performance is expected
to improve further exploiting future research and advances in
depth acquisition/estimation and DIBR algorithms.

D. Complexity Analysis of STOP

In this section the computational cost of STOP is analyzed
and compared against those of standard 2D video codecs, and
their forthcoming 3D extensions.

Compared to a standard HEVC encoder, STOP comprises
two extra modules: panorama construction, and occlusion
matching. Panorama construction involves two warping oper-
ations to estimate the slits; either reference view is warped to
the outermost views using DIBR or vice versa. The asymptotic
cost of DIBR operation is linear in the number of pixels in
the image.

Occlusion matching in STOP is a two levels operation.
First, their sizes are computed and the smaller occlusions are
dropped from further processing as they do not contribute
significantly to the decoded image quality; indeed, those can
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Fig. 10. Examples of decode views of S2: leftmost view 5, SSIM=0.975, PSNR=32.93 dB (a), intermediate views 4.5, SSIM=0.989, PSNR=36.79 dB (b),
4, SSIM=0.992 PSNR=39.46 dB (c) and 3.5, SSIM=0.986, PSNR=35.26 dB (d).

be successfully inpainted on the decoder side. Computing the
size of the occlusions is again a linear time operation that
is carried out by component labeling algorithm. Second, the
occlusion offsets must be estimated using a spatiotemporal
search. The best match is found using Sum of Absolute
Difference (SAD) in a time window of size ©. Since a
full search would be computationally inefficient, an offset
optimization mechanism has been designed to limit the search
space. The search space optimization mechanism exploits the
average occlusion disparity and the temporal distance (offset)
of the target frame as described in details in Sect. IV-B2.

In conclusion, in STOP , the additional computational cost
with respect to standard 2D encoding is kept limited by
exploiting the pre-processing represented by the panorama
construction that is effective in capturing most interview
redundancies. Then, a single coding mode is added to process
a limited set of occlusions that cannot be handled efficiently
in the panorama picture. On the receiver side, the bit stream
is decoded with the standard 2D decoder. The base view is
obtained by simple cropping of the panorama picture and the
occlusions offsets are used to directly copy the target patches
for filling the occlusions that show up during DIBR.

The 3D extensions of the most recent HEVC standard
follow a different approach based on the design of addi-
tional coding modes capable of capturing the inter-view re-
dundancy at the coding unit (CU) level. In 3D-HEVC the
dependent views are coded using many additional coding
tools: for instance disparity-compensated prediction (DCP)
which exploits already coded images of other views, inter-

view motion prediction and interview residual prediction. For
efficient compression of depth videos 3D-HEVC employs
additional coding tools, e.g. depth intra-coding exploiting new
depth modeling modes, disparity-compensated prediction and
inter-view motion parameter prediction which significantly
increases the computational complexity of 3D-HEVC [60],
[61]. The new coding modes allows one to reduce significantly
the bitrate required to encode multiple views and depths while
guaranteeing the same image quality of independent view
coding (simulcast). On the other hand, with STOP we exploit
DIBR to avoid coding the picture parts that can be estimated
by DIBR and we keep additional coding cost as limited as
possible. Clearly, as shown in Fig. 11 the STOP picture quality
slightly degrades as moving away from the central coded view;
nonetheless, if one can tolerate such slight drop (less than
about 0.03 in terms of SSIM measured in our experiments)
STOP can represent a viable solution for 3D video coding.

VI. CONCLUSIONS

In this paper the novel STOP 3D video codec has been
designed building around two main ideas, namely the con-
struction of a panorama view and the exploitation of spatio-
temporal correlation for filling occlusions caused by DIBR.
By exploiting the mentioned concepts STOP efficiently com-
presses 3D video while using a standard video codec such as
AVC and HEVC to encode most of the data. In this paper
we showed promising results in terms of bitrate reduction and
visual quality. Beside coding efficiency, STOP enables free
viewpoint 3D TV while guaranteeing a simple mechanism to



IEEE TRANSACTIONS ON IMAGE PROCESSING, SUBMITTED DEC. 2013, ACCEPTED NOV. 2014. 13

0.99 |- i
0.98 - B
— 097 B
=
n
9 0.96 |- i
0.95 |- i
—e— HEVC Simulcast
0.94 1] —=— MDR -
—e— STOP
L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1
5 525 5.5 575 [§ 6.25 6.5 6.75 7
View
(@
1 : : : : : : : : :
0.99 - = B
0.98 |- i
— 097 i
=]
@n
L 0.96 i
0.95 - B
—e— HEVC Simulcast
0.94 - —a— MDR N
—eo— STOP
Il L Il L Il L Il L Il L Il L Il L Il L Il L
1 1.5 2 2.5 3 3.5 4 4.5 5
View
©
1 T T T T T T T T T
0.99 - B
0.98 |- i
E
@n
N
0.97 - B
0.96 |- —eo— HEVC Simulcast
—=— MDR
—eo— STOP
1 | 1 1 1 1 | L 1 1
0-95 1 2 3 4 5 6 7 8 9
View
(e
Fig. 11.

0.99 - / < 7
0.98 |- // |
— 097 |
=
n
< 0.96 - |
0.95 - |
—e— HEVC Simulcast
0.94 - —=— MDR |
—o— STOP
! | ! | ! | ! | ! | ! | ! | ! | ! |
3 325 35 3.7 4 425 4.5 475 5
View
(b)
1 T T T T T T T T T T T T T T T T T T
0.99 - = e s
0.98 - |
— 097 -
=]
n
9 0.96 -
0.95 - s
—e— HEVC Simulcast
0.94 - —=— MDR B
—eo— STOP
Il L Il L Il L Il L Il L Il L Il L Il L Il L
1 1.5 2 2.5 3 3.5 4 4.5 5
View
()
1 T T T T T T T T T
0.99 |- m |
0.98 - il
=
n
n
0.97 - s
0.96 |- —e— HEVC Simulcast
—=— MDR
—eo— STOP
095 | | | | | | | ! | |
5 4.5 4 3.5 3 2.5 2 1.5 1
View
()

Average SSIM versus view position coded by STOP with QP = 26. Sequence: Poznan_Hall2, views = {6.75, 6.5, 6.25, 5.75, 5.5, 5.25}

(a); Sequence: Poznan_Street, views = {4.75, 4.5, 4.25, 3.75, 3.5, 3.25} (b); Sequence: Kendo, views = {1.5, 2, 2.5, 3.5, 4, 4.5} (c); Sequence: Balloons,
views = {1.5, 2, 2.5, 3.5, 4, 4.5} (d); Sequence: Undo_Dancer, views = {2, 3, 4, 6, 7, 8} (e); Sequence: GT_Fly, views = {4.5, 4, 3.5, 2.5, 2, 1.5} ().

allow legacy 2D displays to extract the standard 2D video.
Future works include the rate/distortion optimization of the
occlusion matching criteria, the design of entropy coding tools
for occlusion offsets and the exploitation of the coding ideas
proposed in this paper as possible novel coding modes for the
future 3D extensions of AVC and HEVC under investigation
by the MPEG.
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