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ABSTRACT

Interactive audio-visual (AV) applications such as Free Viewpoint
Video (FVV) aim to enable unrestricted spatio-temporal naviga-
tion within multiple camera environments. Current virtual view-
point view synthesis solutions for FVV are either purely image-
based implying large information redundancy; or involve recon-
structing complex 3D models of the scene. In this paper we present
a new multiple image view synthesis algorithm that only requires
camera parameters and disparity maps. The Multi-View Synthe-
sis (MVS) approach can be used in any multi-camera environment
and is scalable as virtual views can be created given 1 to N of
the available video inputs, providing a means to gracefully han-
dle scenarios where camera inputs decrease or increase over time.
The algorithm identifies and selects only the best quality surface
areas from available reference images, thereby reducing percep-
tual errors in virtual view reconstruction. Experimental results are
presented and verified using both objective (PSNR) and subjective
comparisons.

1. INTRODUCTION

Increasingly audio-visual (AV) applications are being designed to
enable dynamic viewing of a captured event or scene [10]. Such
applications allow users to freely navigate within the AV scenes
by specifying arbitrary viewpoints and orientations. To this end,
the Moving Picture Experts Group (MPEG) of ISO/IEC recently
formed the 3DAV work group to investigate the requirement for
standardization in this area [11]. Of the AV application scenar-
ios being investigated they identified Free Viewpoint Video (FVV)
as being the most challenging. FVV enables unrestricted spatio-
temporal navigation within a scene captured using a multiple cam-
era setup such as that depicted in Fig. 1.

Fig. 1. Free viewpoint video image capturing environment.

All visual information associated with a scene in 3-space can
be described by the plenoptic function [1]. This 7D structure may
be interpreted as a scene representation method and therefore en-
ables the accurate reconstruction of any arbitrary viewpoint in the
3D world. However, due to the enormous amounts of informa-
tion involved, it is not possible to capture and store a scene’s en-
tire plenoptic function. Chai et. al. [2] attempt to resolve this

by examining the relationship between the number of samples of
the plenoptic function and the amount of geometrical information
required to generate a continuous representation of the function.
They determined that plenoptic sampling could be used to design
an optimized multi-camera setup for image-based rendering (IBR)
systems.

Currently available IBR virtual viewpoint view synthesis so-
lutions tend to be either navigationally restrictive and setup de-
pendent [3] or take such a general approach that all the perceptual
errors across the available reference views are incorporated into
the final virtual view [7]. In this paper we present a new view
synthesis algorithm that identifies and selects only the best qual-
ity surface areas from available reference images for virtual view
reconstruction. The approach can be used in any multi-camera en-
vironment and is scalable as virtual views can be created given 1
to N of the available video inputs.

This paper is organised as follows: In Section 2 we discuss
virtual viewpoint synthesis and current FVV synthesis solutions.
Multi-View Synthesis (MVS) a new multiple image view synthesis
algorithm is described in Section 3. In Section 4 experimental re-
sults are presented and verified by comparison with ground truths.
Finally, in Section 5 conclusions and future work are described.

2. VIRTUAL VIEWPOINT SYNTHESIS

IBR systems generate novel views via reference images and cor-
responding scene geometry information [8]. The virtual view ren-
dered at the desired viewpoint is created using an associated view
synthesis process. Virtual view synthesis algorithms are designed
for environments where the scene interaction area is well defined
and can be captured using an N camera setup. In immersive sce-
narios where the cameras are calibrated and each reference image
has a corresponding disparity map there are a number of avail-
able view synthesis approaches [6]. These are mainly restricted to
combining scene information from a stereo camera setup. Restrict-
ing novel view creation to a fixed number of images simplifies the
view synthesis process. However, it implies that during scene nav-
igation the best reference image view of the surfaces required for
the current virtual viewpoint may be ignored. In contrast, existing
multiple image view synthesis approaches combine all available
surface information, usually via view orientation weighting, in or-
der to create virtual views [7]. This implies that although more
original information is available, errors due to occlusions, depth
mismatches etc; are incorporated into the final virtual view. Cur-
rent FVV view synthesis solutions are based on using either im-
ages with no scene geometry information that are obtained via a
dense sampling of the scene, implying large information redun-
dancy [12], or reconstructing complex 3D models of the scene
from a sparse camera setup [9].
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Fig. 2. (a)-(d) Reference images A, B, C and D. (e) Ground truth. (f)-(i) 3D visualisation of SDM after warping (a)-(d) respectively.

3. MULTIPLE IMAGE VIEW SYNTHESIS

A restrictive version of the MVS algorithm that used only im-
age pairs was developed for immersive teleconferencing environ-
ments [4]. Here we describe a new algorithm that provides a scal-
able and flexible approach to multiple image view synthesis for
FVV [5]. The approach is scalable since it can process an arbitrary
number of reference images making it suitable for both sparse and
dense camera sampling. At the core of MVS is a flexible defini-
tion of what constitutes a 3D scene surface. This flexibility en-
sures that the best quality virtual view reconstruction is produced
from the available views. A common problem with objective eval-
uation of view synthesis approaches is that there are no original
views to compare with the virtual viewpoint results. For this rea-
son Fig. 2(a)-(d) presents four different camera views taken within
a test environment that will be used to illustrate the MVS approach.
Fig. 2(e) is taken from a camera placed at the position of the final
virtual view and will be used as a ground truth to indicate the cor-
rectness of the approach. The algorithm consists of four phases
which are now described in detail:

3.1. Identification

The surface identification process determines surface areas within
reference images after they have been warped to the virtual view-
point. This process is based on the following observations:

• Corresponding 3D scene points visible across the reference
images are warped to the same position in the virtual view.

• These matching virtual view areas/surfaces have varying
2D sampling densities within the warped images.

We now describe how the sampling of the 3D surfaces at the virtual
viewpoint is used as a criterion for virtual view surface quality
identification. Fig. 3(a) presents a reference image containing two
distinct surfaces in 3-space: π1 (vertical lines) and π2 (horizontal
lines). Sample q along with its neighbouring samples q1−q4 and
q6 − q8 belong to surface π1, while sample q5 lies on π2. This
3× 3 block is the reference image local surface. Fig. 3 (b) and (c)
illustrate these surface samples after a warp to two distinct virtual
viewpoints, where point qi is warped to q′

i.
The displacement between a sample q′ = [x′, y′]T and any

of its warped reference image neighbours q′
i = [x′

i, y
′
i]

T is deter-
mined via Eq. (1):

ρq′(q′
i) =

√
(x′

i − x′)2 + (y′
i − y′)2 (1)

(a) (b) (c)

Fig. 3. (a) Two distinct surfaces in 3-space. (b)&(c) The warped
surface’s sampling density indicates virtual view surface quality.

A measure of the extent of the displacement of q′ with respect to
the warped reference local surface, referred to as its sampling den-
sity value, δ(q′), is computed using the sampling density function
Eq. (2):

δ(q′) =

∑N
i=1 ρq′(q′

i)

N
(2)

Where N is the number of sample neighbours of q. A sampling
density value is computed for every pixel sample in the warped
reference image and stored in a corresponding Sampling Density
Map (SDM). The higher the value at a sample the larger the dis-
placement of its original reference image surface neighbours in
the warped view. High values in the SDM imply the surface is
either undersampled in the reference image or that it lies on dif-
ferent sides of a depth discontinuity visible from the virtual view-
point. The SDM enables each warped reference image to define
its own representation of the 3D surfaces required at the virtual
view position. Returning to the example, Fig. 3(b) depicts the sce-
nario where the local surface q1 − q8 around q is sparsely sam-
pled in the warped reference image. Hence, the SDM contains a
high sampling density value at q′ for this virtual view, reflecting
its sparse sampling. In contrast, Fig. 3(c) presents a virtual view
where after warping the local surface displacements are relatively
constant irrespective of the actual 3D surface represented, π1 or
π2. Therefore, the SDM for this virtual viewpoint contains a low
sampling density value at q′, reflecting its dense sampling. This
surface identification approach dynamically groups reference im-
age warped samples into surfaces of similar sampling densities.

Fig. 2(f)-(i) illustrates a 3D visualisation of the SDM of ref-
erence images A, B, C and D after they have been warped to the
virtual viewpoint. Each sampling density value is presented as a
height allowing easy identification of surface areas with extremely
sparse sampling, the colour-bar indicates the actual sampling den-
sity value at a point.



3.2. Selection

The surface selection process determines the surface areas across
the available surface representations to be used for view synthesis.
The selection process is based on a sampling density weighting
scheme. This weight, αδ , is computed from the sampling density
values contained in the SDM of the reference image virtual view
surface representations. Examining the SDM of the two reference
images A and B the surface sample at position δA

(i,j) in SDM A

and position δB
(i,j) in SDM B detail the respective reference im-

age’s sampling density for the same virtual view position. Hence,
a sampling density weighting function for the surface sample Q in
the SDM of image A, α̂δA

Q , can be computed via Eq. (3):

α̂δA

Q = 1−
δA

Q∑N
i=1 δi

Q

(3)

where N is the number of reference images. Normalising the sur-
face weight across the N SDMs to sum to unity via:

αδA

Q =
α̂δA

Q∑N
i=1 α̂δi

Q

(4)

The approach to surface selection is to loop through the N avail-
able SDM selecting a non-processed surface area with the highest
αδ weight on each pass Eq. (5):

ΛQ = Φ(αδi

Q ) (5)

Where ΛQ represents the final virtual view surface sample at Q,
the αδi

Q weight is a measure of the sampling density at surface sam-
ple Q based on reference view i, where i ranges from [1, N ], and Φ
is a function which selects the surface sample associated with the
maximum weight. This ensures a virtual view related surface se-
lection as opposed to a strict depth or texture surface identification.
The approach dynamically groups local sample neighbourhoods
into surfaces of similar sampling densities at the virtual viewpoint.

(a) (b)

(c) (d)

Fig. 4. (a)-(c) Incrementally improved virtual view SDM. (d) Sur-
face Map for surface selection of (c).

Returning to our example Fig. 4(a)-(c) illustrates the virtual
view MVS surface selection as reference images are incrementally

added to the process. Fig. 4(a) presents the surface sampling selec-
tion when only images A and B are used. The SDM is smoother
than either Fig. 2(f) or (g), those of images A and B respectively,
indicating that the surface sampling is denser and therefore the vir-
tual view surface quality has improved. Fig. 4(b) and (c) illustrate
the added improvement in surface quality as images C and D, re-
spectively, are included in the surface selection process.

3.3. Boundary Blending

Integrating the best view of each required surface implies that
neighbouring view synthesis surfaces may be supplied from dif-
ferent images. When this occurs, specularity and other photomet-
ric differences across the reference images can cause perceptual
seams to appear in the virtual view. A Surface Map is designed
to indicate from which reference view the chosen virtual view
surfaces originate. Fig. 4(d) indicates the chosen surface sam-
ples from images A, B, C and D for the virtual view defined in
Fig. 4(c). Here, the colour red represents surfaces from image A,
blue from image B, green from image C and yellow from D. In
order to lessen the perceptual seams a weighted blending is imple-
mented on an extended boundary region (e.g. five pixels) around
the connected surfaces. This blending is designed to ensure that
the following conditions are met:

• Non-boundary regions are taken exclusively from the best
surface representation as dictated by the surface selection.

• Boundary regions are generated by blending surface sample
values from bordering surfaces.

A fixed linear ramp blending is used in these overlapping areas to
compute texture values for the final virtual view.

(a) (b)

(c) (d)

Fig. 5. MVS results corresponding to Fig. 2(f) & Fig. 4(a)-(c).

3.4. Reconstruction

The MVS view synthesis approach creates virtual views using an
arbitrary number of reference images. Therefore, the surface re-
construction process must resolve issues of surface visibility and
hole filling across multiple images. Surface Visibility: when re-
constructing the 3D scene captured by an individual reference im-
age occlusion errors due to background surfaces overwriting fore-
ground may arise. These are resolved by implementing a back-to-
front surface warping order [3]. Surface visibility issues arising
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Fig. 6. (a)-(d) Images A,B,C and D. (e) Ground truth. (f)-(i) View synthesis results as A, B, C and D are incrementally added to MVS.

from multiple views of the same surface across the reconstructed
reference images are resolved via the surface selection weighting
scheme. Hole Filling: involves identifying areas within warped
surfaces where virtual view required surface information is miss-
ing. Holes arising due to sampling gaps in continuous surfaces are
filled using interpolation. While surface disclosures, which arise
due to the movement of a foreground object with respect to the
background, are filled using the MVS surface selection approach.
This approach ensures that all the surfaces across the reference
images are considered for hole filling and therefore reduces per-
ceptual errors during surface reconstruction.

4. EXPERIMENTAL RESULTS

In order to demonstrate that the MVS algorithm provides both a
scalable and flexible approach to view synthesis we now present
results from two test sequences with ground truths. Reference
images are incrementally added to the view synthesis process to
illustrate that the approach can be used in arbitrary multi-camera
FVV setups and to indicate that perceptual errors decrease as more
reference images are available.

(a) (b)

Fig. 7. Improvements in PSNR as images added to MVS.

Fig. 7(a) presents the PSNR measures between the MVS con-
structed virtual view and the ground-truth over the 60 frame test
sequence of Fig. 2. The graph details how the PSNR improves
as reference images are added to the MVS process; from an av-
erage of 29dB when just one image is used to 32dB when using
all four. A subjective result is provided in Fig. 5(a)-(d). Fig. 6(a)-
(d) presents a frame from the four camera inputs of the second test
sequence; Fig. 6(e) is the associated ground truth. Again the corre-
sponding PSNR Fig. 7(b) details an improvement from an average
of 25dB when just one image is used to an average of 33dB using
all four. A subjective result is provided in Fig. 6(f)-(i).

5. CONCLUSIONS & FUTURE WORK

Current view synthesis solutions for FVV are either purely image-
based, implying a large amount of information redundancy, or in-

volve reconstructing complex 3D models of the scene. The pre-
sented multiple image view synthesis MVS algorithm provides a
scalable and flexible approach that only requires camera calibra-
tion and disparity maps. Unlike other view synthesis solutions
MVS identifies and selects only the best quality surface areas from
the set of available reference images, thereby reducing perceptual
errors in virtual view reconstruction. The approach is camera setup
independent and scalable as virtual views can be created given 1
to N of the available video inputs. Thus, MVS provides interactive
FVV applications with a means to handle scenarios where camera
inputs increase or decrease over time. Experimental results were
presented and verified using both objective (PSNR) and subjective
comparisons. Future work includes a pre-processing step to iden-
tify from a very large number of available video input streams only
those input streams that contain surfaces required for the current
virtual viewpoint.
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