509 research outputs found

    Architecture and Applications of IoT Devices in Socially Relevant Fields

    Full text link
    Number of IoT enabled devices are being tried and introduced every year and there is a healthy competition among researched and businesses to capitalize the space created by IoT, as these devices have a great market potential. Depending on the type of task involved and sensitive nature of data that the device handles, various IoT architectures, communication protocols and components are chosen and their performance is evaluated. This paper reviews such IoT enabled devices based on their architecture, communication protocols and functions in few key socially relevant fields like health care, farming, firefighting, women/individual safety/call for help/harm alert, home surveillance and mapping as these fields involve majority of the general public. It can be seen, to one's amazement, that already significant number of devices are being reported on these fields and their performance is promising. This paper also outlines the challenges involved in each of these fields that require solutions to make these devices reliableComment: 1

    Single-channel speech enhancement using implicit Wiener filter for high-quality speech communication

    Get PDF
    Speech enables easy human-to-human communication as well as human-to-machine interaction. However, the quality of speech degrades due to background noise in the environment, such as drone noise embedded in speech during search and rescue operations. Similarly, helicopter noise, airplane noise, and station noise reduce the quality of speech. Speech enhancement algorithms reduce background noise, resulting in a crystal clear and noise-free conversation. For many applications, it is also necessary to process these noisy speech signals at the edge node level. Thus, we propose implicit Wiener filter-based algorithm for speech enhancement using edge computing system. In the proposed algorithm, a first order recursive equation is used to estimate the noise. The performance of the proposed algorithm is evaluated for two speech utterances, one uttered by a male speaker and the other by a female speaker. Both utterances are degraded by different types of non-stationary noises such as exhibition, station, drone, helicopter, airplane, and white Gaussian stationary noise with different signal-to-noise ratios. Further, we compare the performance of the proposed speech enhancement algorithm with the conventional spectral subtraction algorithm. Performance evaluations using objective speech quality measures demonstrate that the proposed speech enhancement algorithm outperforms the spectral subtraction algorithm in estimating the clean speech from the noisy speech. Finally, we implement the proposed speech enhancement algorithm, in addition to the spectral subtraction algorithm, on the Raspberry Pi 4 Model B, which is a low power edge computing device.publishedVersio

    Mining Technologies Innovative Development

    Get PDF
    The present book covers the main challenges, important for future prospects of subsoils extraction as a public effective and profitable business, as well as technologically advanced industry. In the near future, the mining industry must overcome the problems of structural changes in raw materials demand and raise the productivity up to the level of high-tech industries to maintain the profits. This means the formation of a comprehensive and integral response to such challenges as the need for innovative modernization of mining equipment and an increase in its reliability, the widespread introduction of Industry 4.0 technologies in the activities of mining enterprises, the transition to "green mining" and the improvement of labor safety and avoidance of man-made accidents. The answer to these challenges is impossible without involving a wide range of scientific community in the publication of research results and exchange of views and ideas. To solve the problem, this book combines the works of researchers from the world's leading centers of mining science on the development of mining machines and mechanical systems, surface and underground geotechnology, mineral processing, digital systems in mining, mine ventilation and labor protection, and geo-ecology. A special place among them is given to post-mining technologies research

    Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue

    Get PDF
    Unmanned aerial vehicles (UAVs) play an important role in numerous technical and scientific fields, especially in wilderness rescue. This paper carries out work on real-time UAV human detection and recognition of body and hand rescue gestures. We use body-featuring solutions to establish biometric communications, like yolo3-tiny for human detection. When the presence of a person is detected, the system will enter the gesture recognition phase, where the user and the drone can communicate briefly and effectively, avoiding the drawbacks of speech communication. A data-set of ten body rescue gestures (i.e., Kick, Punch, Squat, Stand, Attention, Cancel, Walk, Sit, Direction, and PhoneCall) has been created by a UAV on-board camera. The two most important gestures are the novel dynamic Attention and Cancel which represent the set and reset functions respectively. When the rescue gesture of the human body is recognized as Attention, the drone will gradually approach the user with a larger resolution for hand gesture recognition. The system achieves 99.80% accuracy on testing data in body gesture data-set and 94.71% accuracy on testing data in hand gesture data-set by using the deep learning method. Experiments conducted on real-time UAV cameras confirm our solution can achieve our expected UAV rescue purpose

    Command and Control Systems for Search and Rescue Robots

    Get PDF
    The novel application of unmanned systems in the domain of humanitarian Search and Rescue (SAR) operations has created a need to develop specific multi-Robot Command and Control (RC2) systems. This societal application of robotics requires human-robot interfaces for controlling a large fleet of heterogeneous robots deployed in multiple domains of operation (ground, aerial and marine). This chapter provides an overview of the Command, Control and Intelligence (C2I) system developed within the scope of Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). The life cycle of the system begins with a description of use cases and the deployment scenarios in collaboration with SAR teams as end-users. This is followed by an illustration of the system design and architecture, core technologies used in implementing the C2I, iterative integration phases with field deployments for evaluating and improving the system. The main subcomponents consist of a central Mission Planning and Coordination System (MPCS), field Robot Command and Control (RC2) subsystems with a portable force-feedback exoskeleton interface for robot arm tele-manipulation and field mobile devices. The distribution of these C2I subsystems with their communication links for unmanned SAR operations is described in detail. Field demonstrations of the C2I system with SAR personnel assisted by unmanned systems provide an outlook for implementing such systems into mainstream SAR operations in the future

    Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved
    corecore