
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Automated mission-specific configuration for a multi-drone emergency response
system

Van Speybroeck, Maxime

Award date:
2020

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. Dec. 2021

https://researchportal.unamur.be/en/studentthesis/automated-missionspecific-configuration-for-a-multidrone-emergency-response-system(20588624-a8de-492a-93e8-1c925eab5316).html

	 1	

UNIVERSITE	DE	NAMUR	

Faculté	d’informatique	
Année	académique	2019–2020	

	

Automated	mission-specific	configuration		

for	a	multi-drone	emergency	response	system	

	

Van	Speybroeck	Maxime	

	

	

	

	

	

	
Mémoire	présenté	en	vue	de	l’obtention	du	grade	de	

	
Master	en	Sciences	Informatiques.	

	
	

Maître	de	stage	:	Cleland-Huang	Jane	

Promoteur	 Heymans	Patrick	(Signature	pour	approbation	du	dépôt	-	REE	art.	40)	

	 	

	 2	

Acknowledgements	
	

I	would	like	to	thank	each	person	who	has	been	involved	in	realizing	this	thesis.			

	

First	of	all,	I	want	to	thank	Jane	Cleland-Huang,	professor	at	the	department	of	computer	and	

science	engineering	in	Notre	Dame,	who	accepted	me	in	her	research	team	and	supervised	all	

of	my	work	there.	I	have	learned	many	things	from	Jane	and	became	a	better	student	in	Notre	

Dame.	

	

The	research	team	has	been	part	of	all	 the	work	 I	have	been	doing	 in	Notre	Dame,	 I	want	

therefore	to	thank	Nafee	Md.	Al	Islam,	Ankit	Agrawal	and	Eric	Tsai	with	whom	I	have	been	

working	every	day	toward	my	goal.	

	

I	also	would	like	to	thank	my	referent	teacher	in	University	of	Namur,	Mister	Patrick	Heymans	

for	all	the	advices	I	received	from	him	during	my	thesis	writing.	

	

I	also	want	to	thank	every	single	person	I	met	in	Notre	Dame	that	welcomed	me	for	my	first	

experience	abroad.	

	

Finally,	I	want	to	thank	my	family	for	its	support	during	these	6	months	of	hard	work.		 	

	 3	

	

Table	of	contents	

PART	I.	 Introduction	..	4	

PART	II.	 Background	...	5	

Chapter	1.	 The	DroneResponse	Project	..	5	

Chapter	2.	 Software	Product	Lines	...	8	

Chapter	3.	 Related	work	..	12	

PART	III.	 Contributions	..	15	

Chapter	4.	 Verbal	mission	statement	approach	..	15	

4.1.	 Use-cases	elicitation	and	tagging	process	...	16	

4.2.	 Using	a	classifier	to	label	use-cases	steps	automatically	...	17	

4.3.	 Feature	model	creation	and	tags	mapping	..	19	

4.4.	 Approach	evaluation	...	21	

Chapter	5.	 Configurator	tool	..	23	

5.1.	 Requirements-driven	approach	to	software	product	line	creation	23	

5.2.	 Configuration	process	..	31	

5.3.	 Implementation	of	DroneResponse	configurator	tool	...	34	

5.4.	 User	study	and	approach	evaluation	...	47	

PART	IV.	 Conclusions	and	perspectives	..	50	

Chapter	6.	 Work	summary	...	50	

Chapter	7.	 Future	work	..	51	

Chapter	8.	 Conclusion	..	52	

PART	V.	 Bibliography	..	53	

PART	VI.	 Appendices	..	55	

	

	

	 	

	 4	

PART	I. Introduction	
These	days,	Unmanned	Aerial	Vehicles	(UAVs)	or	Drones	are	increasingly	used	for	everyday	

tasks.	They	dispose	of	both	hardware	and	software	capabilities	that	allow	them	to	be	used	in	

various	 application	 domains.	 Current	 examples	 of	 using	 drones	 include	 flying	 drones	 for	

hobbies,	video	streaming	 for	 sport	events,	 carrying	supplies	and	deliver	 them	to	a	specific	

spot,	human	tracking	many	others.		

	

Emergency	responders	are	called	every	day	for	time-critical	tasks	and	sometimes	in	hard	to	

reach	spots.	UAVs	are	already	used	by	emergency	responders	to	support	them	in	various	tasks	

of	their	work.	However,	drone	uses	are	typically	limited	to	a	single	drone	managed	remotely	

by	a	human.	University	of	Notre	Dame	is	currently	working	on	a	project	that	aims	to	increase	

the	use	of	drones	in	emergency	missions.	They	envision	using	a	cohort	of	drones	acting	semi-

autonomously	 in	order	 to	support	emergency	responders.	This	however	addresses	a	 lot	of	

safety	concerns	as	well	as	many	traditional	software	challenges.	

	

This	thesis	has	been	written	based	on	a	four	months	internship	at	Notre	Dame.	During	this	

time,	the	author	of	this	thesis	has	worked	on	two	main	approaches	to	quickly	eliciting	and	

modeling	requirements	as	well	as	configuring	drones	to	achieve	a	particular	mission.	The	first	

approach	 aims	 to	 configure	 a	 drone-based	 response	 system	 using	 verbal	 descriptions	 of	

missions	while	the	second	one	comes	with	a	configurator	tool	for	a	user	to	select	an	existing	

mission	type	or	create	a	custom	mission.		

	

Work	 done	 in	Notre	Dame	 includes	 requirements	 engineering,	 programming,	 visualization	

tool	use	as	well	as	academic	research.		

	 	

	 5	

PART	II. Background	

Chapter	1. The	DroneResponse	Project	

Every	day,	emergency	responders	are	facing	sensitive	and	complex	situations	in	which	human	

lives	 may	 be	 in	 danger.	 Firefighters	 are	 called	 for	 various	 tasks	 from	 rescuing	 someone	

drowning	in	a	lake	to	securing	an	accident	location	or	fighting	a	structural	fire.	Their	response	

time	 is	 critical	 and	 therefore	 planning	 and	 acting	 efficiently	 is	 a	 must	 for	 them.	 Today’s	

evolving	technologies	enable	small	unmanned	aerial	vehicles	(named	UAV’s	or	drones)	to	be	

deployed	alongside	with	emergency	responders	to	support	them	in	these	time-critical	tasks.	

However,	their	use	is	typically	limited	to	a	single	UAV	controlled	manually	by	a	human.	Our	

goal	is	to	create	a	system	that	manages	not	only	one	drone	but	a	cohort	of	drones	acting	semi-

autonomously	as	members	of	the	rescuing	team.	This	would	free	emergency	responders	of	

time-consuming	 tasks	 and	would	 let	 them	 focus	 on	 high-level	mission	 goals	while	 drones	

would	 contribute	 toward	 the	 success	 of	 the	 missions	 executing	 lower-level	 tasks.	 Drone	

mobility	is	extremely	useful	to	gather	information	about	the	environment	in	which	emergency	

responders	operate.	Since	emergency	 responders	are	often	put	at	 risk,	 this	will	help	 them	

achieve	missions	more	 efficiently	 but	 also	more	 safely.	 UAV’s	 and	 emergency	 responders	

might	then	be	working	collaboratively	in	order	to	improve	the	quality	of	response	for	missions.	

Indeed,	information	gathered	by	the	drones	will	allow	emergency	responders	to	act	in	better	

conditions,	 knowing	 a	 lot	 more	 about	 the	 working	 environment,	 thus	 making	 the	 right	

decisions	at	the	right	time,	picking	the	right	equipment	in	advance	and	so	much	more.	

	

Drones	can	be	envisioned	as	supporting	emergency	responders	for	missions	of	different	types.	

For	example,	they	might	be	helpful	to	fully	cover	an	assigned	area	of	a	lake	where	a	victim	is	

missing	in	order	to	locate	it.	They	would	provide	visual	information	and	accelerate	the	search.	

They	may	also	be	used	to	quickly	create	a	3D	heat	map	of	a	building	on	fire,	generate	thermal	

imagery	of	the	rooms	and	look	for	people	trapped	inside	the	building.	Medical	deliveries	like	

transporting	a	defibrillator	in	the	mountains	where	a	person	is	stuck	is	also	a	potential	use	of	

the	system.	Other	researches	are	already	investigating	the	use	of	drones	in	many	scenarios.	

One	of	them	is	using	UAVs	to	search	for	victims	and	perform	basic	measurements	on	them	

(heart	and	respiratory	rate)	through	a	contactless	method	(Arias,	et	al.,	2019).		

	 	

	 6	

Another	one	is	using	UAVs	as	a	survey	tool	for	topographic	mapping	and	measurement	in	the	

coastal	zone	(Turner,	et	al.,	2016).	A	researcher	also	use	drones	to	deliver	supplies	to	hard-to-

reach	 locations	 like	 a	 defibrillator	 delivery	 to	 treat	 people	 suffering	 from	 a	 cardiac	 arrest	

(Fleck,	2016).	

	

To	enable	all	of	these	mission	cases,	there	is	a	need	for	new	conceptual	models.	Drones	need	

way	 more	 autonomy	 than	 current	 practices	 in	 order	 to	 achieve	 such	 tasks.	 The	 level	 of	

autonomy	of	each	drone	should	be	adapted,	for	example	in	a	search-and-rescue	mission,	if	

the	drone	may	have	found	a	victim,	it	might	ask	for	the	victim’s	confirmation	while	in	some	

cases	 a	 drone	 with	 greater	 autonomy	 might	 take	 the	 decision	 itself	 without	 human	

intervention.	 Different	 challenges	 have	 to	 be	 addressed	 like	 runtime-adaptation,	 image	

recognition,	goal	modeling,	situation	awareness	but	also	safety	concerns.	

	

The	computer	science	and	engineering	department	of	University	of	Notre	Dame1,	Indiana	has	

developed	an	Open-Source	project	named	Dronology2.	It	is	a	long-term	project	that	has	for	

goal	to	address	several	challenges	in	safety-critical	software	systems.	Dronology	provides	a	

research	 incubator	 based	 upon	 a	 platform	 for	 managing	 and	 coordinating	 the	 flights	 of	

multiple	 physical	 /	 simulated	UAVs	 (Cleland-Huang,	 et	 al.,	 2018).	 Leveraging	Dronology,	 a	

research	team	of	the	computer	science	and	engineering	department	of	University	of	Notre	

Dame	has	launched	the	DroneResponse	project.	The	purpose	of	this	project	is	to	develop	a	

system	 for	deploying	 several	 semi-autonomous	UAV’s	 alongside	human	 responders	during	

emergency	missions.	The	system	is	built	in	order	to	address	the	challenges	mentioned	in	the	

previous	paragraph.	It	is	designed	in	close	collaboration	with	Notre	Dame	fire	department	to	

better	 understand	 emergency	 responders’	 needs,	 the	 application	 domain	 and	 to	 address	

situational	awareness	(Agrawal,	et	al.,	2020).	The	author	of	this	thesis	has	been	involved	in	a	

4	months	collaboration	with	the	research	team	on	the	DroneResponse	project.	

	 	

																																																								
1	https://www.nd.edu/	
2	https://dronology.info/	
	

	 7	

Because	of	the	potential	high	number	of	mission	types	that	we	want	to	support,	the	main	goal	

of	 this	 thesis	 is	 to	come	with	a	way	 to	configure	a	mission	efficiently	prior	 to	 launch.	This	

includes	defining	the	mission	and	configure	drones	accordingly.	Figure	1	illustrates	a	simple	

view	of	DroneResponse	architecture.	Yellow	components	will	be	configured	according	to	the	

mission.	Drones	are	imbued	with	a	certain	level	of	autonomy,	various	hardware	and	software	

capabilities	 as	well	 as	mission	 goals	 that	 has	 to	 be	 achieved.	 They	 communicate	with	 the	

ground	 control	 station	 to	 exchange	 information	 about	 their	 environment	 or	 other	 UAVs.	

However,	 this	 thesis	 aims	 to	 configure	 the	mission	 and	 drones	 at	 a	 pretty	 high-level.	We	

therefore	will	not	discuss	how	the	system	will	then	handle	the	configuration	neither	run-time	

adaptation	but	focus	on	launch-time	configurations.		

	

	

We	need	to	provide	a	way	to	configure	acceptable	missions	(some	tasks	of	a	mission	might	be	

exclusive).	In	order	to	address	this,	we	need	a	way	to	represent	the	different	missions	as	a	

data	structure	including	all	the	features	of	DroneResponse.	The	next	chapter	discuss	Software	

Product	Lines	which	is	the	way	we	build	our	system	for	our	two	approaches.	

	 	

Figure	1:	DroneResponse	high-level	architecture	

	 8	

Chapter	2. Software	Product	Lines	

Software	engineering	requires	proper	architectures	and	development	processes	in	order	to	

achieve	the	desired	goals.	We	aim	to	build	our	DroneResponse	as	a	product	line	which	needs	

proper	introduction.	

	

In	 the	 past,	 in	 software	 engineering	 as	well	 as	 is	manufactures,	 companies	were	 building	

products	 on	 clients’	 demand.	 However,	 as	 time	 passed,	 the	 number	 of	 clients	 to	 fulfill	

continuously	increased.	Facing	this	high	demand,	companies	were	spending	too	much	time	

and	money	on	building	one	product	per	customer.	To	address	this	problem,	car	manufacturers	

came	with	a	way	of	producing	goods	in	large	quantities,	called	mass	production.	This	way	of	

producing	allowed	companies	to	create	the	same	product	several	times	easily	but	products	

could	not	be	as	diverse	as	before.	At	 this	point,	 companies	needed	a	new	way	of	building	

products	that	would	combine	the	two	previously	described	ideas	which	are	building	in	large	

quantities	and	customize	products	according	to	the	customers’	wishes.		

	

Companies	started	to	use	what	is	called	common	platforms,	which	means	planning	in	advance	

which	parts	will	be	common	to	several	products	(Pohl,	et	al.,	2005).	A	platform	here	can	be	

seen	as	all	the	technological	means	used	to	build	a	product.	The	goal	was	to	have	as	much	of	

these	technological	capabilities	in	common	to	every	product	as	possible.	The	artefacts	built	

should	be	reusable,	 technologies	and	development	processes	be	 the	same.	Therefore,	 this	

allowed	 companies	 to	 reuse	 a	 common	 base	 of	 technology	 while	 still	 fulfilling	 individual	

customers’	wishes	without	spending	too	much	money	on	building	products.	Based	on	this	we	

can	 now	 define	 the	 notion	 of	 product	 line	 which	 basically	 is	 building	 products	 using	 the	

platform-based	way	while	doing	mass	customization.	This	way	of	building	product	also	applies	

to	software	engineering	which	we	call	software	product	 lines.	Creating	the	platform	is	the	

most	difficult	part.	Developers	should	focus	first	on	commonalities	then	differences	between	

the	products.	Flexibility	is	the	key	in	software	product	lines,	it	is	important	in	the	development	

process	to	identify	where	products	will	differ	so	that	artefacts	can	be	built	flexible	enough.	

This	kind	of	flexibility	is	named	as	variability	in	software	engineering.	

	 	

	 9	

Basically,	software	product	line	engineering	has	many	advantages	for	organizations	that	are	

building	products	with	a	common	base	for	a	 lot	of	clients	that	still	need	some	parts	of	the	

product	customized.	The	 first	advantage	 is	 the	reduction	of	development	costs	because	of	

using	reusable	artefacts	that	provide	less	work	building	basics	of	each	products.	However,	it	

requires	 an	 upfront	 investment	 for	 designing	 and	 building	 the	 artefacts	 the	 right	 way.	

Secondly,	the	overall	quality	of	the	products	is	improved	through	reusing	components.	The	

development	 cycles	 are	 shorter	 using	 software	 product	 lines.	 There	 are	 less	 important	

advantages	 like	 decrease	 of	 maintenance	 efforts,	 easier	 evolution	 and	 complexity	

management	but	the	most	important	is	a	better	quality	at	lower	prices	for	the	customers.	

	

(Pohl,	 et	 al.,	 2005)	 describe	 a	 framework	 for	 software	 product	 line	 engineering.	 The	

framework	 is	 made	 of	 two	 main	 processes	 which	 are	 (1)	 domain	 engineering	 and	 (2)	

application	engineering.	Domain	engineering	refers	to	the	process	for	creating	commonalities	

and	 variabilities	 of	 the	 product	 line	 through	 producing	 the	 platform	 while	 application	

engineering	 relates	 to	 using	 the	 commonalities	 and	 variabilities	 defined	 in	 (1)	 to	 build	

applications	 of	 the	 product	 line.	 Figure	 2	 summarizes	 the	 two	 processes	 of	 the	 software	

product	lines	engineering	framework	according	to	Pohl.	

	 	

	 10	

	

	
Figure	2:	Software	product	lines	engineering	framework,	extract	from	(Pohl,	et	al.,	2005).	

When	 creating	 a	 software	 product	 line,	 defining	 variability	 is	 a	 key	 concept.	 In	 this	 case,	

defining	 means	 identifying	 and	 documenting	 variability.	 This	 is	 done	 in	 the	 domain	

engineering	process	described	previously.	This	thesis	comes	with	two	approaches	for	quickly	

configuring	our	DroneReponse	 system	to	achieve	a	desired	mission.	These	two	approaches	

have	different	requirement	engineering	processes	to	build	DroneResponse	as	a	product	line.	

Therefore,	we	need	a	way	to	document	variability	in	the	requirement	processes.		

	

In	this	thesis,	we	use	use-case	diagrams	and	features	models	to	describe	variability.	Features	

models	 have	 been	 introduced	 by	 (Kang,	 et	 al.,	 1990).	 A	 features	 model	 is	 a	 model	 that	

represent	all	the	features	of	a	system.	Instantiating	a	product	of	the	features	model	is	done	

by	 combining	 mandatory,	 optional	 and	 alternative	 features	 while	 respecting	 constraints	

existing	between	the	features.	These	diagrams	are	used	to	model	software	product	lines	and	

products	 one	 can	 create.	 This	 is	 therefore	 a	 good	 way	 to	manage	 variability	 of	 software	

product	lines	through	inclusion	or	exclusion	of	features.		 	

	 11	

Use-case	diagrams	written	 in	this	thesis	have	been	written	based	on	(Cockburn,	2000)	and	

(Jacobson,	2004)	work.	The	use	cases	in	the	two	approaches	are	individual	textual	use	cases	

representing	mission	scenarios.	They	contain	a	name,	the	actors	part	of	the	scenario,	pre/post	

conditions	as	well	as	steps	describing	the	scenario.	Use	cases	from	the	first	approach	do	not	

include	exception	cases.	Use	cases	 from	the	second	approach	tend	to	have	common	tasks	

shared	 across	 several	 scenarios,	 therefore,	 we	 also	 employ	 supporting	 use	 cases.	 These	

supporting	use	cases	are	used	as	references	in	the	steps	of	the	main	use	cases.	This	allows	us	

to	read	use	cases	easier	and	keep	consistency	between	common	tasks	of	scenarios.	

	

Use-case	 diagrams	 and	 features	 model	 are	 used	 in	 the	 two	 approaches	 to	 build	 the	

DroneResponse	system	as	a	product	line	which	we	tend	configure	in	two	different	ways.	The	

second	approach	also	use	activity	diagrams	in	the	requirement	engineering	process	as	well	as	

to	explicit	missions	to	the	user	configuring	it.	Activity	diagrams	are	useful	to	describe	dynamic	

aspect	 of	 the	 system	 (Baresi,	 2009).	 It	 represents	 the	 different	 activities	 happening	 in	 a	

scenario	as	well	as	the	condition	to	move	from	one	activity	to	another.	The	diagrams	used	are	

simple	UML	activity	diagram.		

	 	

	 12	

Chapter	3. Related	work	

This	chapter	discuss	the	related	work	for	our	two	approaches.	Both	approaches	we	introduce	

in	the	next	chapters	have	for	main	goal	to	quickly	configure	our	drone	emergency	system	the	

right	way	for	an	emergency	mission.	However,	the	work	put	in	place	to	achieve	this	starts	in	

the	way	we	build	 the	 system	 itself	 and	 so	 in	 the	 requirements	 engineering	 part	 of	 it.	We	

therefore	come	with	two	different	approaches	to	engineer	the	requirements	and	build	our	

system	as	a	product	line.	

	

The	first	approach	aims	to	configure	the	feature	model	of	the	product	line	based	on	verbal	

descriptions.	The	mission	descriptions	we	use	are	use-case	diagrams	giving	details	about	the	

flow	of	events	happening	in	a	mission	that	is	to	happen.	We	are	therefore	discussing	the	ability	

to	link	the	requirements	of	a	system	to	some	other	models	in	order	to	manage	and	configure	

the	system	 in	 the	best	way	possible.	A	 lot	of	work	has	been	done	 in	 this	domain	which	 is	

transforming	textual	use	cases	into	various	form	of	models.	(Guttierez,	et	al.,	2008)	and	(Yue,	

et	al.,	2010)	have	been	proposing	a	way	to	improve	the	visualization	of	textual	requirements	

with	approaches	to	transform	use	cases	into	activity	diagrams.	(Pudlitz,	et	al.,	2019)	shows	

how	complicated	it	is	to	compare	states	of	a	system	simulation	to	the	requirements	in	order	

to	verify	that	the	system	is	compliant.	Mapping	the	system	states	in	natural	language	to	the	

simulation	 states	 requires	 a	 deep	 understanding	 of	 the	 semantics	 of	 these	 states.	 They	

therefore	propose	a	way	 to	extract	 the	different	 states	of	a	 system	 from	 its	 requirements	

specifications.	

	

All	 of	 these	works	 show	great	 potential	 but	 our	 first	 approach	 is	 not	 related	 to	 the	 same	

concepts.	Indeed,	they	come	with	ways	to	derive	requirements	into	all	kind	of	models	(Activity	

diagrams,	State	machines	and	so	on)	but	our	first	approach	aims	to	map	automatically	the	

requirements	described	as	use-cases	steps	to	an	existing	feature	model	related	to	the	system	

using	a	classifier.	We	therefore	don’t	need	techniques	to	understand	the	semantics	behind	

the	requirements	of	the	system	in	order	to	build	these	other	models.	

(Bragança,	et	al.,	2007)	 ‘s	work	might	have	been	of	great	 interest	for	this	work.	They	have	

been	proposing	an	approach	that	attempts	to	map	use	case	diagrams	to	feature	models	in	

software	product	lines.		

	 	

	 13	

However,	 their	 method	 maps	 complete	 use	 case	 diagrams	 to	 a	 set	 of	 feature	 while	 our	

approach	aims	to	map	the	different	steps	of	each	use-case	diagrams	to	a	set	of	features	and	

not	the	entire	use	case	itself.	Moreover,	their	work	is	done	by	working	on	the	models	(use	

cases	and	features	models)	and	adapting	them	while	we	use	a	classifier	to	do	the	mapping.	

	

The	second	approach	has	a	much	larger	scope	both	in	term	of	requirement	engineering	and	

concepts	used	 in	the	configuration	part.	Different	topics	are	discussed	along	this	approach	

including:	

a) Use	cases	and	variability	

b) Feature	model	mapping	

c) Product	derivation	and	configuration	

d) Multi-agent	task	specification	

The	last	one	relates	the	use	of	multi-agent	robots	which	linked	to	the	underlying	mechanisms	

of	DroneResponse	and	therefore	not	in	the	scope	of	the	thesis	author’s	work.	This	part	will	

therefore	focus	on	the	related	work	on	the	three	other	ones.	

	

The	first	topic	discussed	in	the	second	approach	(a)	relates	to	use	cases	and	their	variability.	

(Pohl,	et	al.,	2005)’s	work,	discussed	in	the	background	part,	comes	with	a	way	of	describing	

variability	 into	 their	 requirements-driven	 approach.	 (Bühne,	 et	 al.,	 2006)	 came	 with	 a	

scenario-based	 approach	 to	 describe	 variability.	 However,	 they	 used	 use-case	 diagrams	 in	

their	requirement	engineering	process	while	we	use	textual	use	cases	to	describe	our	mission	

scenarios.	We	then	use	them	to	create	appropriate	models	and	merge	them	into	a	software	

product	line.	We	could	have	used	(Bertolino,	et	al.,	2006)’s	way	of	specifying	use	cases.	This	

work	presents	an	extension	to	the	standard	use	case	notation	allowing	to	specify	product	line	

use	cases.	However,	 this	did	not	match	our	approach	of	avoiding	 to	 think	 the	system	as	a	

product	line	too	early	in	the	requirement	engineering	process.	

	

Features	model	mapping	(b)	has	been	quite	investigated	by	several	authors.	Just	like	in	the	

first	approach,	we	can	cite	(Bragança,	et	al.,	2007)	that	proposed	an	automated	mapping	from	

use-case	diagrams	to	features	model.	(Favaro,	et	al.,	1998)	integrated	feature	modeling	in	a	

Reuse-Driven	Software	Engineering	approach	which	is	a	use-case	driven	reuse	process.	They	

provide	a	way	for	creating	a	feature	model	to	support	domain	engineering.		 	

	 14	

These	concepts	are	common	to	our	approach	but	we	provide	a	configurator	tool	for	deriving	

products	from	our	product	line.		

	

Finally,	 related	 work	 for	 (c)	 is	 also	 different	 than	 the	 approach	 we	 used	 for	 creating	 a	

configurator	 tool	 in	 order	 to	 configure	 our	DroneResponse	 system	built	 as	 a	 product	 line.	

(Briand,	 et	 al.,	 2016)	 created	 a	 tool	 that	 guide	 the	user	 through	 a	 process	 for	 configuring	

products	from	product	line	models.	However,	it	is	only	built	to	work	with	variability	modeling	

for	artefacts	that	are	common	to	product	lines	like	use	case	diagrams.	This	approach	has	great	

potential	but	the	authors	use	an	opposite	process	to	our	approach.	 Indeed,	while	we	start	

from	use	 cases	and	build	 intermediary	models	 to	end	up	with	a	product	 line,	 they	aim	 to	

generate	product	specific	use	cases	based	on	the	product	created	with	their	tool.	Our	tool,	in	

contrast,	generate	mission-specific	configuration	and	activity	diagram	related	to	the	mission.	

A	few	other	researches	have	been	investigating	product	derivation	in	software	product	lines	

but	our	approach	provides	a	configurator	tool	based	on	specific	use	cases	scenario	built	with	

stakeholders	in	order	for	them	to	configure	the	associated	product	line.	

	 	

	 15	

PART	III. Contributions	
This	chapter	explains	the	two	approaches	we	came	up	with	to	quickly	elicit	requirement	and	

configure	our	DroneResponse	system	for	a	specific	mission.	The	two	approaches	differ	both	in	

the	requirement	engineering	process	and	the	way	we	attempt	to	configure	drones	and	the	

system	 to	achieve	a	particular	mission.	We	ended	up	writing	one	 research	paper	 for	each	

approach.	While	the	paper	related	to	the	first	approach	is	to	be	submitted,	the	second	one	

has	been	published	and	accepted	for	the	Software	Product	Line	Conference	2020.	The	author	

of	this	thesis	has	been	working	mostly	on	the	configurator	tool	of	the	second	approach,	as	

well	 as	 the	 entire	 process	 of	 the	 first	 approach.	 Therefore,	 the	 requirement	 engineering	

process	described	in	the	second	approach	is	based	on	the	paper	written	by	the	research	team	

(Cleland-Huang,	et	al.,	2020).	

Chapter	4. Verbal	mission	statement	approach	

In	 this	approach,	we	model	our	system	as	a	product	 line	composed	of	both	hardware	and	

software	features.	The	goal	is	then	to	configure	drones	prior	to	launch	in	order	to	perform	the	

right	actions	corresponding	to	the	mission	and	to	equip	them	in	advance	with	appropriate	

hardware	materials.	Indeed,	some	mission	types	require	specific	physical	hardware	that	not	

all	 drones	 have	 on	 board.	 For	 example,	 environmental	 sampling	missions	would	 probably	

need	some	sampling	sensors	on	the	drones	performing	the	mission.	Since	the	main	goal	of	

this	paper	 is	to	quickly	elicit	requirements	for	a	mission,	this	approach	has	for	objective	to	

configure	 the	 product	 line	 based	 on	 verbal	 statements	 of	 the	 mission	 described	 by	 an	

emergency	responder.	

	

The	 following	 sections	 detail	 the	 specific	 requirement	 engineering	 process	 used	 in	 this	

approach.	We	collect	a	set	of	20	use-cases	in	which	we	tag	every	step.	The	tagged	use-cases	

are	then	used	to	train	a	classifier.	Each	of	the	tags	used	in	the	process	are	then	matched	to	

features	of	 the	product	 line.	The	goal	here	 is,	 for	a	previously	unknown	use-case,	 that	 the	

classifier	automatically	tags	all	of	its	steps	in	order	to	select	the	corresponding	features	on	the	

product	line	feature	model.	

	 	

	 16	

4.1.	 Use-cases	elicitation	and	tagging	process	

The	information	on	which	the	20	use-cases	are	built	come	from	publicly	available	scenarios,	

conversations	with	lead	inventors	of	a	UAV	medical	delivery	start-up	company,	brainstorming	

sessions	 with	 the	 South-Bend	 fire	 department	 and	 external	 resources.	 The	 use-cases	 are	

summarized	in	Figure	3.	The	complete	set	of	use	cases	can	be	found	in	the		Appendices	part.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	3:	Table	of	the	twenty	use	cases	built	in	the	requirement	engineering	process	

Each	use-case	 includes	a	name,	 list	of	 actors,	 pre-conditions	and	a	 set	of	 sequential	 steps	

describing	the	main	scenario	of	the	mission.	

	

Four	different	use-cases	are	tagged	using	an	inductive	approach.	One	tag	is	assigned	to	each	

step	of	each	use-case.	Because	of	this	“one	step	one	tag”	approach,	some	steps	describing	

more	than	one	actions	have	to	be	split	in	several	steps.	This	process	leads	us	to	50	candidate	

tags.	The	research	team	discusses	these	tags	altogether	in	order	to	refine	names	or	the	level	

of	abstraction	of	each	tag.	The	main	difficulty	for	this	particular	process	is	to	achieve	the	same	

level	of	abstraction	for	each	tag.	Indeed,	some	steps	are	very	specific	while	other	ones	were	

pretty	high-level	and	common	to	a	lot	of	use-cases.	Once	we	agree	on	this	set	of	tags,	we	use	

them	to	tag	the	remaining	use-cases.	We	notice	that	6	steps	of	 these	remaining	use-cases	

don’t	match	any	of	the	agreed	tags.	Therefore,	three	additional	tags	are	added	to	the	set	of	

tags.		

	

	 17	

	
	

	

	

	

Figure	4	shows	the	final	set	of	tags	used	for	the	20	use-cases.		

The	“tag”	column	shows	the	name	of	the	tag	while	the	“Cnt”	column	shows	how	many	time	a	

tag	appeared	 in	 the	20	use-cases	 steps.	An	example	of	a	 tagged	use-case	 for	creating	and	

updating	 a	 heat	 map	 of	 an	 on-fire	 building	 can	 be	 found	 in	 the	 appendices	 part	 of	 this	

document	(see	Appendice	1).	

	

	

	

	

	

	

	

	

Figure	4:	Final	set	of	tags	used	in	the	tagging	process	and	number	of	time	each	tag	appeared.	

	

4.2. Using	a	classifier	to	label	use-cases	steps	automatically	

We	use	python	library	SKLearn3	to	train	a	classifier.	Three	different	algorithms	are	used	during	

the	process:	

• Random	Forest	(RF)	

• Stochastic	Gradient	Descent	(SGD)	

• Logistic-regression	(LR)	

We	feed	the	classifier	with	19	tagged	use-cases	and	test	 it	on	the	last	one	then	repeat	the	

process	so	that	every	use-case	is	used	as	test	case.		

	 	

																																																								
3	https://scikit-learn.org/stable/	
	

	 18	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 5	 presents	 the	 accuracy	 obtained	 by	 tag	 with	 the	 three	 algorithms.	 SGD	 and	 LR	

algorithms	 have	 a	 better	 total	 accuracy	 than	 RF.	 Accuracy	 seems	 to	 increase	 when	 the	

frequency	of	a	tag	goes	up	but	the	most	frequent	tag	which	is	“Search	And	Survey”,	appearing	

23	times	has	a	low	accuracy	(0.35)	therefore	breaking	the	rule.	This	probably	comes	from	the	

level	of	abstraction	of	the	tag.	Indeed,	“Search	And	Survey”	applies	to	a	lot	of	different	search	

functionalities.	 Discussing	 again	 the	 set	 of	 tag	 and	 adding	 lower-level	 tags	might	 help	 the	

results	getting	better.		

	 	

Figure	5:	Accuracy	by	tag	for	each	of	the	three	algorithms	

	 19	

We	then	calculate	the	harmonic	mean	of	recall	and	precision	(also	called	F1	Score	in	statistics)	

for	classifying	each	step	of	all	use-cases	with	the	three	different	algorithms.	Again,	SGD	and	

LR	outperformed	the	Random	Forest	algorithm.	We	thus	decide	to	go	on	with	the	Stochastic	

Gradient	Descent	algorithm	for	the	experimentations	since	it	has	the	best	results	with	Logistic-

regression	but	it	got	better	results	on	previously	unseen	data.	Figure	6	presents	the	F1	Score	

achieved	by	the	classifier	on	our	twenty	use-cases	using	SGD	algorithm.	The	last	two	points	

on	the	right	are	results	for	the	experimentation	we	discuss	in	section	4.4	of	this	document.	

	
Figure	6:	F1	score	of	the	classifier	for	tagging	20	use	cases	and	2	test	cases	using	SGD	algorithm.	

4.3. Feature	model	creation	and	tags	mapping	

This	 approach	 is	 based	 on	 existing	 and	 currently	 in	 development	 models	 and	 systems.	

DroneResponse	product	line	includes	a	feature	model,	mission-related	goal-model,	a	product	

line	architecture	supporting	all	valid	configurations	and	so	on.	However,	since	the	main	goal	

of	this	document	is	focusing	on	quickly	eliciting	requirements	to	specify	a	mission	and	identify	

the	corresponding	features	of	the	product	line,	we	focus	on	the	features	part	of	the	system.	

	

Based	on	the	set	of	tags	from	the	previous	steps,	the	search	team	creates	a	high-level	feature	

model	supporting	all	20	use-case	scenarios.	We	then	verify	that	the	concept	transported	by	

each	tag	can	be	found	in	one	or	more	features	of	the	feature	model.	In	some	cases,	several	

tags	 are	 referring	 to	 the	 same	 feature	while	 in	 other	 cases,	 a	 single	 tag	 refers	 to	 several	

features.		 	

	 20	

The	model	configured	for	the	burning	building	heatmap	use-case	is	depicted	in	Figure	7.	Gray	

boxes	represent	mandatory	features,	also	called	commonalities	to	all	products.	White	boxes	

represent	optional	 features	that	might	be	selected	or	not	 for	a	specific	product.	Note	that	

orange	boxes	on	this	graph	are	also	optional	features	but	that	have	been	activated	to	fit	this	

particular	mission.		

	
Figure	 7:	 Features	 model	 built	 in	 the	 requirement	 engineering	 process	 and	 configured	 for	 a	 burning	 building	 heat	 map	

scenario.	

Since	a	product	line	is	composed	of	shared	artefacts	as	well	as	artefacts	specific	to	concrete	

products,	 these	 are	 directly	 connected	 to	 the	 feature	 model	 of	 the	 product	 line	 which	

represents	the	different	mandatory	and	optional	feature	as	well	as	constraints.	It	is	important	

to	understand	that	this	document	aims	to	select	adequate	features	for	a	mission	and	configure	

drones	prior	to	launch.	Indeed,	drones	will	probably	have	to	adapt	their	behavior	during	the	

mission.	This	is	why,	our	DroneResponse	system	is	built	a	way	that	each	drone	will	be	able	to	

understand	changes	in	the	current	environment	and	therefore	modify	its	behavior	to	fit	the	

new	mission	state.	This	requires	proper	run-time	adaptation	models	 in	the	DroneResponse	

architecture	but	our	work	is	not	affected	by	all	of	these	mechanisms	since	we	focus	on	initial	

pre-launch	configurations	of	the	drones.	

	

Using	the	generic	features	model	just	built,	we	manually	create	a	mapping	from	every	tag	to	

its	associates	features.	As	an	example,	we	map	the	tag	“Route	Planning”	to	the	feature	“Route	

Planning”	and	the	tag	“Image	Streaming”	to	“Video	Stream	Capability”	feature.	This	will	allow	

us,	 from	 a	 new	 tagged	 use-case,	 to	 automatically	 select	 the	 right	 features	 on	 the	 feature	

model.	

	 	

	 21	

4.4. Approach	evaluation	

We	 evaluate	 our	 approach	 for	 (1)	 appropriately	 selecting	 the	 right	 features	 to	 configure	

drones	 and	 (2)	 quickly	 eliciting	 requirements	 for	 an	 emergency	 mission.	 The	 first	 one	 is	

evaluated	 by	 demonstrating	 the	mapping	 of	 an	 example	 use-case	 and	 the	 second	 one	 by	

assessing	the	ability	of	our	classifier	to	tag	steps	from	two	verbal	mission	descriptions.	

	

1. Figure	7	shows	the	configuration	for	the	use-case	scenario	of	creating	and	updating	

thermal	map	of	 a	 burning	building.	Grey	 features	 are	 common	 to	 all	 products	 and	

orange	 ones	 are	 the	 optional	 features	 that	 have	 been	 activated	 for	 that	 particular	

mission	using	the	mapping	from	the	tags	of	the	use-case	steps	to	the	features.		

2. This	 second	 study	 of	 this	 chapter	 which	 was	 quickly	 eliciting	 requirements	 for	 an	

emergency	 mission	 is	 done	 in	 collaboration	 with	 a	 researcher	 who	 had	 prior	

experience	 working	 with	 UAV’s	 for	 emergency	 response	 missions.	 We	 show	 the	

researcher	one	of	our	use-cases	which	is	“River-search	and	rescue”	as	a	model.	He	is	

then	asked	to	verbally	describe	two	missions	that	are	

a. Border	surveillance	

b. Searching	hikers	lost	in	the	mountains	

	

	

	

	

	 	

Figure	8:	Verbal	description	of	the	"Seaching	hikers	lost	in	the	mountains"	scenario.	

	 22	

The	researcher	 is	constrained	to	 less	 than	three	minutes	 for	each	description.	The	mission	

description	provided	for	(b)	is	depicted	at	Figure	8.	

	

To	analyze	the	results,	we	separate	the	text	verbally	described	into	sentence-like	chunks.	The	

research	team	then	discuss	the	chunks	and	manually	tag	each	of	them	with	one	to	three	tags.	

Following	 this,	we	 run	 the	 SGD	 classifier	 to	 automatically	 tag	 the	 chunks	 identified.	 If	 the	

classifier	matches	one	of	the	tags	from	the	research	team,	we	count	the	prediction	as	correct.	

Green	tags	on	Figure	8	shows	correct	prediction	for	that	particular	test	case.	The	results	can	

be	found	on	the	two	points	to	the	right	of	the	graph	showing	the	F1	scores	of	the	classifier	

(see	Figure	6).	We	see	on	the	graph	that	the	classifier	achieved	an	F1	score	of	0.36	and	0.40	

for	the	two	verbally	described	mission	descriptions.	

	

As	a	conclusion,	we	recognize	some	strengths	in	our	first	approach	but	improvements	might	

get	the	results	even	better.	First	of	all,	the	two	verbal	statements	were	grouping	several	ideas	

in	one	sentence	while	our	20	written	use-cases	INSERT	20	DS	ANNEXES	were	split	 in	a	way	

that	each	 sentence	was	 related	 to	one	action	of	 the	mission.	We	might	 then	 improve	our	

approach	by	using	a	classifier	allowing	several	tags	per	sentence.	We	would	also	need	way	

more	use-case	scenarios	to	train	the	classifier	with	way	more	data	in	order	to	improve	the	

accuracy	of	the	automatic	tagging	process.	Finally,	the	definition	of	the	set	of	tags	should	also	

be	revised.	Indeed,	the	level	of	abstraction	of	the	tags	has	sometimes	been	an	issue.	Trying	to	

get	the	same	level	for	each	of	the	tag	is	difficult	since	some	steps	of	the	scenarios	are	more	

specific	than	other	one.	Also,	although	results	for	activating	the	right	features	of	the	features	

model	 based	 on	 the	 mapping	 of	 a	 new	 use-case	 are	 encouraging,	 this	 is	 just	 a	 part	 of	

configuring	a	product.	We	therefore	need	more	in	order	to	configure	drones	and	components	

of	DroneResponse	 architecture.	 The	 second	 approach	 discussed	 in	 next	 sections	 links	 our	

requirements	to	concrete	components,	thus	helping	to	configure	the	system	properly.	 	

	 23	

Chapter	5. Configurator	tool	

Based	on	 the	 lessons	 learned	 from	 the	 first	 approach	 and	on	previous	 experiences	of	 the	

research	team,	we	decided	on	moving	to	another	approach	to	both	mission	configuration	and	

underlying	 requirements	 engineering.	 In	 this	 approach,	 we	 use	 both	 use-case	 diagrams,	

features	models	but	also	activity	diagrams	to	explicit	the	different	steps	of	each	mission.	Our	

main	goal	in	this	approach	is	to	build	DroneResponse	system	as	an	easily	configurable	product	

line.	However,	this	one	comes	with	a	stronger	requirements	engineering	approach	that	will	

link	 the	 requirements	 for	 a	 mission	 to	 a	 configurator	 tool	 in	 order	 for	 the	 emergency	

responders	to	easily	configure	a	mission	that	is	to	happen.	

5.1. Requirements-driven	approach	to	software	product	line	creation	

As	introduced	in	Chapter	2,	product	lines	are	based	on	commonalities	and	variabilities,	which	

are	represented	by	mandatory,	optional	and	alternative	features.	Creating	a	product	of	the	

product	 line	 means	 combining	 a	 set	 of	 these	 features.	 Since	 we	 are	 focused	 on	 the	

requirements	elicitation	part	of	 the	product	 line,	 the	 following	 text	 illustrates	 the	way	we	

created	the	system-wide	feature	model	and	the	activity	diagram	for	our	product	line.	These	

two	diagrams	provide	useful	and	concrete	information	to	understand	the	different	tasks	of	

each	possible	mission	scenarios	as	well	as	constraints	between	features.		

	

As	a	reminder,	we	aim	to	create	a	configurator	tool	that	will	allow	emergency	responders	to	

configure	different	types	of	missions.	Two	types	of	configurations	should	be	configurable	by	

responders:	

• Known	mission.	This	means	that	the	scenario	of	the	mission	is	common	and	already	

known.	Only	specific	configuration	points	are	 left	to	configure.	Configuration	points	

are	 introduced	 in	 section	 5.2.	 Examples	 of	 configuration	 points	 include	 defining	 a	

vision	model	for	a	mission,	define	a	specific	area	for	drones	to	search	and	so	on.	

• Creation	and	configuration	of	new	mission.	Emergency	responders	should	be	able	to	

create	new	types	of	missions	by	associating	different	features	of	the	product	line	and	

configure	them	to	start	the	resulting	mission.	

	

The	requirements	engineering	process	of	 this	approach	 is	depicted	at	Figure	9.	 It	 starts	by	

eliciting	and	modeling	a	family	of	related	use	cases.	Based	on	these	use	cases,	we	construct	

individual	feature	models	and	activity	diagrams	for	each	of	them	and	later	merge	them	into	a	

product	line.	 	

	 24	

	

	
Figure	9:	Requirements	engineering	process	used	to	build	system-wide	feature	model	and	activity	diagram	

During	this	approach,	we	use	different	sources	of	information	to	discover	the	most	precise	

requirements	of	missions.	First	of	all,	we	use	the	existing	Dronology	platform	(Cleland-Huang,	

et	al.,	2018)	which	is	the	main	building	block	of	DroneResponse	system.	Dronology	helped	with	

existing	 architecture	 in	 which	 features	 and	 requirements	 from	 previous	 requirements	

engineering	work	are	already	part	of.	We	also	use	literature	(both	academic	research	papers	

and	 grey	 literature)	 relative	 to	 “Drones”	 and	 “Emergency	 Response”	 to	 find	 existing	

descriptions	of	emergency	responders	using	drones.	We	used	this	 latter	source	not	to	find	

already	existing	use	cases	of	emergency	missions	but	to	get	various	descriptions	of	several	

mission	types	and	gather	detailed	steps	about	these	mission	scenarios.	Sources	are	listed	in	

Figure	 10	 The	 following	 subsections	 of	 this	 chapter	 detail	 our	 requirements	 modeling	

processes.	

5.1.1. Use-case	elicitation	

We	build	7	community-inspired	use	cases	that	will	be	used	in	the	next	steps	for	creating	the	

product	line.	We	aim	to	have	some	diversity	in	the	use	cases	by	defining	different	types	of	

missions	needing	different	types	of	software	features,	hardware	capabilities,	UAV	autonomy	

levels	 and	 in	 which	 sequences	 of	 tasks	 will	 diverge.	 Each	 use	 case	 contains	 actors	 and	

stakeholders	 involved,	pre/post	conditions,	 the	main	success	scenario	describing	tasks	 in	a	

sequenced	way	as	well	as	a	set	of	exceptions.	The	use	cases	are	built	in	an	iterative	way.	First	

of	all,	we	start	with	the	“River	search-and-rescue”	scenario	using	our	existing	specifications	

(Agrawal,	et	al.,	2020).	Then,	we	clone	 this	 first	use	case	and	adapt	 it	 to	 the	next	mission	

scenario	that	is	“Ice	rescue”.	Adaptations	include	adding,	deleting	and	modifying	steps	of	the	

use	case.	We	follow	the	same	approach	to	complete	all	7	use-cases,	cloning	each	time	the	

most	similar	use	case	to	the	next	one	that	is	to	build.		 	

	 25	

At	 this	 point,	 we	 only	 focus	 on	 gathering	 requirements,	 common	 tasks	 and	 practices	 of	

individual	emergency	mission	scenarios.	This	allows	us	not	to	think	with	a	system	view	at	this	

point	of	the	process.	

	

Figure	10	shows	the	7	use	cases	built	in	this	process	as	well	as	the	sources	and	stakeholders	

used	to	create	them.	These	7	mission	scenarios	are	the	known	missions	discussed	in	section	

5.1.	which	means	that	 they	are	common	and	will	be	ready	to	pick	 in	 the	configurator	 tool	

(although	configuration	points	still	might	be	configured).	

	

Use-case	ID	 Use-case	name	 Sources	 Stakeholders		involved	

UC1	 River	search	&	rescue	 (Silvagni,	et	al.,	2016)	 South	Bend	Firefighters	

UC2	 Ice	rescue	 (Rios,	2019)	 /	

UC3	 Defibrillator	Delivery	 (Fleck,	 2016),	 (Mesar,	 et	

al.,	2018)	

DeLive,	Cardiac	Science	

UC4	 Traffic	Accident	 (Molino,	 et	 al.,	 2016),	

(Padua,	et	al.,	2020)	

South	Bend	Firefighters	

UC5	 Structural	Fire	 (Griffith,	et	al.)	 South	Bend	Firefighters	

UC6	 Water	Sampling	 (Koparan,	 et	 al.,	 2018),	

(Lally,	et	al.,	2019)	

Environmental	Scientists	

UC7	 Air	Sampling		 (Alvear,	 et	 al.,	 2015),	

(Chang,	et	al.,	2016)	

Environmental	Scientists	

Figure	10:	7	Use	cases	built	representing	typical	missions	for	our	DroneResponse	system	

	 	

	 26	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	11	shows	UC2	use	case	which	is	an	ice	search-and-rescue	scenario.		

As	described	 in	 the	background	section	of	 this	 thesis	 (see	Chapter	2),	we	used	textual	use	

cases	to	describe	mission	scenarios.	 	We	use	supporting	use	cases	to	group	common	tasks	

while	specific	tasks	are	written	in	the	main	success	scenario,	therefore	improving	visibility	for	

each	use	case.	The	remaining	use	cases	can	be	found	at	4.	

	 	

																																																								
4	https://tinyurl.com/ybqq4ut2		

Figure	11	UC2	use	case	created	for	an	ice	search-and-rescue	scenario	

	 27	

5.1.2. Mission-specific	feature	models	construction	

For	 each	 mission	 scenario	 created	 in	 the	 previous	 subsection	 (7	 use	 cases),	 we	 create	

individual	feature	models.	Instead	of	creating	a	system-wide	feature	model	that	supports	each	

of	the	mission	scenarios,	we	use	a	bottom-up	approach	starting	with	individual	feature	models	

of	each	scenario.	Features	needed	for	each	of	the	mission	scenarios	are	identified	manually	

then	composed	 into	a	hierarchy	of	mandatory,	optional	and	alternative	 features.	We	start	

with	the	“River	search-and-rescue”	scenario	(use	case	1).	We	then	follow	the	same	cloning	

approach	as	the	one	used	with	the	use	cases,	for	the	next	feature	model	to	build,	we	clone	

the	most	similar	one	and	adapt	it	to	fit	the	mission	scenario.	

	

	

	

	

	

	

	

	

	

	
Figure	12	Individual	feature	model	for	the	mission	scenario	"Ice	rescue"	(UC2)	

Figure	12	shows	the	individual	feature	model	created	for	the	mission	scenario	“Ice	rescue”	

(use	case	2).	

5.1.3. Semi-automated	merge	of	individual	feature	models	

The	next	process	of	the	requirements	modeling	part	is	a	semi-automatic	merge	of	individual	

feature	models	into	a	product-line	level	feature	model.	We	use	an	incremental	technique	to	

limit	the	complexity	of	this	part	of	the	work.	Indeed,	merging	seven	diverging	feature	models	

into	one	without	encountering	any	constraints	would	not	be	possible.	We	thus	start	with	the	

“River	search-and-rescue”	 feature	model	as	a	baseline	and	use	a	simple	automated	name-	

matching	 algorithm	 to	merge	 the	 next	 mission	 scenario	 feature	model	 into	 the	 baseline.	

Because	of	 the	clone-driven	approach	used	 in	 the	creation	of	both	use-case	diagrams	and	

feature	models,	the	name	of	the	features	matched	in	most	of	the	merges.	However,	we	have	

to	inspect	and	refine	the	resulting	model	after	each	merge	to	ensure	integrity	of	the	model.		

	 	

	 28	

In	a	few	cases,	names	did	not	tend	to	match	because	some	words	differed	from	other	feature	

models.		

	

The	technique	for	selecting	the	next	feature	model	to	merge	is	opposite	to	the	one	used	for	

use	cases	and	individual	feature	models	cloning.	Here,	we	select	the	less	similar	feature	model	

to	merge	into	the	main	feature	model	in	order	to	address	major	structural	differences	very	

early	 in	 the	creation	of	 the	product	 line.	The	resulting	product-line	 level	 features	model	 is	

depicted	at	Figure	13.	We	color	the	features	that	belong	to	a	specific	mission	type	in	order	to	

improve	visibility	of	the	graph.	Green	features	are	used	in	environmental	sampling	scenarios	

(UC6,	UC7),	blue	features	in	rescue	scenarios	(UC1,	UC2),	yellow	features	in	delivery	scenarios	

(UC3).	The	rest	of	the	features	(grey	ones)	are	used	in	multiple	scenarios.	

	 	
Figure	13	Merged	feature	model	of	the	second	approach.	

	

5.1.4. Mission-specific	activity	diagrams	construction	

Each	mission	scenario	is	represented	by	a	set	of	tasks,	occurring	in	a	specific	order,	sometimes	

according	to	conditions.	Activity	diagrams	are	used	to	document	the	 flow	of	activities	of	a	

system,	in	order	to	understand	the	sequential	part	of	it.	Activity	diagrams	are	pretty	useful	

because	they	are	high-level	and	therefore	easy	to	understand	by	the	stakeholders.	We	intend	

to	use	activity	diagrams	for	two	purposes	that	are	(1)	communicating	the	mission	emerging	

from	the	configuration	using	the	configurator	tool	discussed	in	the	next	chapter.	This	allows	

emergency	 responders	 to	have	a	 summary	of	 the	mission	 they	pick	or	 configure.	We	also	

intend	to	use	activity	diagrams	for	(2)	visualize	the	state	of	the	mission	and	display	what	tasks	

are	performed	by	each	drone	during	the	mission.	The	second	use	is	however	not	discussed	

further	in	this	document	but	is	future	work	for	this	project.		

	 	

	 29	

We	 constructed	 each	 mission-specific	 activity	 diagram	 manually	 using	 the	 same	 cloning	

approach	as	the	feature	model	process	(cloning	the	most	similar	one	each	time).		

	

	

	

	

	

	

	

	

	

	

	

	

Figure	14	Individual	activity	diagram	for	an	"Ice-rescue"	scenario	(UC2)	

	

An	 example	 of	 the	 activity	 diagram	 created	 for	 the	 “Ice	 rescue”	 scenario	 (use	 case	 2)	 is	

depicted	 at	 Figure	 14.	 The	 difficulty	 of	 this	 part	 of	 the	 work	 is	 to	 find	 the	 right	 level	 of	

abstraction	 for	 the	 activity	 diagrams.	 Too	 high-level	 activity	 diagrams	 don’t	 show	 specific	

configuration	points	of	the	missions.	Examples	of	these	are	defining	an	area	versus	precise	

coordinates	for	the	drones	to	perform	a	search	or	which	analyzer	to	use	in	a	sample	mission.	

Too	low-level	activity	diagrams	can	get	emergency	responders	lost	into	visualizing	too	many	

information	about	the	mission.	

	 	

	 30	

5.1.5. Semi-automated	merge	of	activity	diagrams	

The	same	approach	as	the	semi-automated	merge	of	feature	models	is	used	to	merge	activity	

diagrams	(incremental	approach	using	a	simple	name-matching	approach	with	the	less	similar	

activity	diagram	available).	Again,	a	few	nodes	for	which	the	name-matching	algorithm	did	not	

work	were	refined.	The	resulting	model	is	shown	at	Figure	15.	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	15	Merged	activity	diagram	of	the	second	approach	

	 	

	 31	

5.1.6. Reconciling	models	and	mapping	tasks	to	features	

This	last	step	of	the	process	might	be	the	most	important	one.	As	a	matter	of	fact,	in	order	to	

configure	missions,	we	need	to	link	all	of	these	models	to	components	of	the	DroneReponse	

architecture.	The	research	team	performs	a	manual	mapping	from	each	feature	of	the	merged	

feature	 model	 to	 concrete	 components	 of	 the	 DroneResponse	 implementation.	 Some	

components	already	exist	while	some	still	are	to	be	built.	Then,	the	team	performs	a	mapping	

from	the	merged	activity	diagram	nodes	to	the	features	of	the	system-wide	features	model.	

Therefore,	concrete	component	of	the	DroneReponse	architecture	can	be	mapped	to	nodes	

of	the	merged	activity	diagrams.	Each	node	of	Figure	15	shows	the	component	it	is	related	to	

in	the	lower	part	of	the	node	with	the	notation	“:ComponentName”.	This	step	is	really	crucial	

because	it	is	the	building	block	on	which	the	configurator	work	lays.	Indeed,	the	primary	goal	

of	the	paper	is	to	quickly	and	easily	configure	mission	scenarios	for	emergency	responders.	

Thus,	the	use	of	models	like	activity	diagrams	and	feature	models	eases	the	configuration	for	

the	responders	because	they	are	really	simple	to	understand	and	manipulate.	However,	we	

needed	a	strong	relation	from	these	models	to	concrete	components	in	order	to	configure	the	

system	properly.	

5.2. Configuration	process	

We	engineered	our	DroneResponse	system	as	a	product	line	to	get	the	configuration	process	

as	 efficient	 as	 possible	 for	 the	 emergency	 teams	 that	 will	 use	 it.	 Indeed,	 emergency	

responders	act	most	of	 the	 time	under	pressure	 in	 time-critical	 scenarios.	 Therefore,	 they	

need	to	be	able	to	configure	missions	pretty	fast,	without	too	much	effort	and	avoiding	to	

check	whether	mistakes	were	made	or	changing	the	configuration	of	the	missions.	While	the	

first	approach	aimed	to	configure	drones	using	verbal	statements	to	describe	a	mission	that	

is	to	happen,	this	one,	thanks	to	the	various	models	we	built	in	the	requirement	process,	aims	

to	provide	a	useful	configurator	tool.	It	is	using	merged	activity	diagram	and	features	model	

that	we	present	our	DroneResponse	configurator	tool.	We	first	of	all	detail	the	configuration	

process	that	emergency	responders	will	go	through	then	discuss	the	concrete	implementation	

of	the	tool,	discussing	technological	choices	and	the	code.	Finally,	we	realize	a	user	study	using	

the	tool	in	order	to	evaluate	our	approach	and	draw	conclusions.	

	 	

	 32	

Our	configuration	process	consists	of	four	steps	that	follow	each	other.	At	the	end	of	these	

steps,	the	configuration	tool	outputs	a	mission	specification	in	JSON	format	and	generates	an	

activity	 diagram	 that	 represents	 the	mission	 configured.	 This	 allows	 responders	 to	 have	 a	

summary	of	the	configuration	and	send	the	mission	specification	to	the	back-end	service	to	

execute	the	mission.	

	

i. First	of	all,	the	user	is	asked	to	either	select	an	existing	mission	or	to	configure	a	new	

mission	 type.	 This	 is	what	we	 named	 as	 “known	mission”	 versus	 “new	mission”	 in	

section	2.1.	Existing	missions	are	common	missions	that	emergency	responders	will	

have	access	to	without	needing	further	configurations.	However,	although	the	mission	

tasks	 and	 sequences	 are	 already	 defined,	 it	 is	 still	 possible	 to	 configure	 low-level	

components	 that	we	call	 configuration	points.	These	are	discussed	 in	 the	 following	

paragraph.	For	now,	the	existing	missions	are	the	ones	listed	in	section	5.3.3.	

ii. Second,	 according	 to	 the	 previous	 choice,	 the	 user	 either	 (1)	 visualizes	 an	 activity	

diagram	representing	the	mission	if	they	picked	an	existing	mission	or	(2)	is	asked	a	

series	 of	 questions	 if	 they	 chose	 to	 create	 a	 new	mission.	 In	 this	 latter	 case,	 the	

question	answers	are	linked	to	requirements	and	the	corresponding	activity	diagram	

of	 the	new	mission	 is	gradually	built	after	each	user	answer.	For	each	new	mission	

scenario,	there	is	a	maximum	of	5	questions	asked	to	the	user.	These	questions	are	

shown	in	the	implementation	part	of	this	chapter,	section	5.3.1.	The	user	ends	up	in	

both	scenarios	with	a	complete	activity	diagram	detailing	the	flow	of	the	mission.		

iii. The	third	step	of	the	configuration	process	is	the	configuration	of	specific	component	

of	 DroneResponse	 system	 (see	 section	 5.3.3).	 We	 decide	 on	 decorating	 activity	

diagram	 graph	 nodes	 that	 require	 configuration	with	 icons.	 Each	 node	 of	 the	 built	

graph	that	 is	 linked	to	a	concrete	component	in	DroneResponse	architecture	has	an	

icon	to	the	right	of	the	node.	The	user	can	click	on	an	icon	to	open	a	modal	window	in	

order	 to	 configure	 that	particular	 component.	All	 configuration	points	have	default	

values	hence	users	can	directly	rush	to	the	next	step	if	needed.	Examples	and	details	

about	configuration	points	are	detailed	in	the	next	subsections	of	this	paper.	

	 	

	 33	

iv. Finally,	some	runtime	configurations	are	proposed	to	the	user.	Some	are	asked	to	the	

users	while	others	are	configured	in	the	back,	independently	of	the	user.	An	example	

of	runtime	configuration	including	the	user	is	defining	the	autonomy	level	of	drones	

for	that	particular	mission.	Hence,	according	to	the	autonomy	level,	drones	with	higher	

autonomy	level	might	decide	themselves	on	tracking	a	potential	victim	while	drones	

with	 lower	 autonomy	 level	would	 ask	 for	 human	 confirmation	 before	 switching	 to	

tracking.	 This	 step	 of	 the	 configuration	 process	 is	 part	 of	 the	main	DroneResponse	

system	 implementation	 and	 not	 further	 discussed	 in	 the	 implementation	 of	 the	

configuration	tool.		

As	 a	 result	of	 these	 four	 steps,	 the	user	has	a	 complete	activity	diagram	summarizing	 the	

configured	mission.	All	the	configurations	are	nested	in	a	JSON	format	object	that	is	ready	to	

be	sent	to	the	main	DroneResponse	system	in	order	to	launch	and	execute	the	mission.		

Figure	16	summarizes	the	process	the	user	go	through	in	order	to	execute	a	mission	
	
	
	

	

	

	

	

	

	

	

	

Figure	16:	Steps	of	the	configuration	process	using	the	configurator	tool	

The	next	subsection	discusses	implementation	of	the	actual	configurator.	

	 	

	 34	

5.3. Implementation	of	DroneResponse	configurator	tool	

We	use	 the	Angular5	 framework	 to	 build	 the	 configurator	 tool.	We	 decide	 to	 choose	 this	

framework	 because	 components	 of	 the	 main	 DroneResponse	 system	 are	 built	 using	 it,	

therefore	easing	communication	with	these	components.	Angular	is	a	front-end	framework	

to	 develop	 web	 applications	 using	 Typescript	 (javascript-based	 language	 including	 strong	

typing).	

	

The	configurator	tool	 implementation	is	done	using	both	merge	feature	model	and	activity	

diagram	built	in	section	5.1	as	well	as	their	mapping	to	concrete	component	of	DroneResponse	

architecture.	It	is	important	to	note	that	although	feature	models	offer	a	way	of	dealing	with	

variability	by	combining	various	features	into	different	products,	we	only	allow	configuration	

of	missions	 that	 are	 compliant	with	 the	merged	 activity	 diagram	 (see	 5.1.5)	 for	 now.	 This	

ensures	safety	in	the	definition	of	missions	by	preventing	unsafe	and	untested	interaction	of	

some	features.	However,	we	consider	to	soften	this	constraint	in	the	future.	

	

We	 aim	 at	 designing	 an	 iPad-friendly	 application.	 Emergency	 responders	 have	 to	 quickly	

configure	 DroneResponse,	 maybe	 on	 the	 field.	 They	 therefore	 won’t	 use	 a	 mouse	 and	

keyboard	to	input	data,	answer	questions	and	so	on.	We	start	designing	the	configurator	tool	

with	a	pretty	simple	landing	page	(see	Appendices)	which	prints	existing	missions	as	well	as	a	

button	to	start	a	new	configuration.	

5.3.1. Data	structure	and	questions	rendering	

Since	we	have	a	complete	activity	diagram	that	brings	together	all	possible	steps	that	might	

be	used	to	configure	a	new	missions,	we	have	to	identify	places	on	the	graph	where	choices	

are	made.	Then,	we	can	define	questions	that	explicit	this	choice	points.	These	questions	will	

be	the	ones	asked	to	the	user	in	order	to	draw	the	right	path	on	the	main	activity	diagram	that	

represents	their	custom	mission.	

	 	

																																																								
5	https://angular.io/	

	 35	

We	identify	a	set	of	11	questions	that	covers	the	entire	system-wide	activity	diagram.	These	

questions	are	depicted	in	Figure	17.		

ID	 Question	 Answers	

Q1	 What	type	of	mission?	 Fire	 fighting	 support,	 environmental	 sampling,	

Search,	Delivery,	Surveillance	

Q2	 How	will	you	define	flight	paths?		 Region,	Waypoints	

Q3	 Are	you	fighting	a	structural	fire		

or	a	ground	fire? 	

Structural,	Ground	

Q4	 What	type	of	environment	are	you		

working	in? 	

Water,	Land,	Ice,	Snow	

Q5	 What	are	you	surveying?	 Flood,	Traffic,	Other	

Q6	 Are	there	independent	rescue	teams?		 Yes,	No	

Q7	 Should	drones	track	the	victim?	 Yes,	No	

Q8	 Will	your	mission	deliver	rescue		

equipment	to	the	victim? 	

Yes,	No	

Q9	 Do	drones	have	on-board	sample		

analysis	capabilities?		

Yes,	No	

Q10	 What	are	you	sampling	?	 Water,	Air,	Radio	

Q11	 Are	you	searchin	for	a	victim	or	a	suspect	?	 Victim,	Suspect	

Figure	17:	Set	of	questions	that	covers	all	kind	of	missions	that	can	be	built	

We	notice	that	an	answer	to	a	question	implies	a	series	of	sub-questions,	therefore	we	decide	

on	organizing	the	questions	into	a	tree	hierarchy.	Because	of	the	tree	data	structure,	we	can	

easily	nest	the	questions	and	have	proper	organization	of	the	data.	We	will	then	be	able	to	

iterate	over	the	tree	in	order	to	ask	the	questions	to	the	user.	Figure	18	explains	the	hierarchy	

of	questions.	Q1	 is	asked	to	the	user,	according	to	the	user’s	answer	that	might	be	“Fire”,	

“Surveillance”,	“Sampling”,	“Search”	or	“Delivery”,	the	questions	located	in	the	corresponding	

nodes	are	asked.	For	example,	if	the	user	inputs	“Sampling”	when	asked	Q1,	he	will	then	be	

asked	Q2,	Q10	and	Q9.	Because	an	answer	to	a	question	might	bring	several	sub-questions	

(just	like	“Sampling”	as	in	the	previous	example),	we	had	to	create	intermediary	nodes	in	our	

data	structure	that	select	all	of	the	children.	These	 intermediary	nodes	are	drawn	as	black	

dots	on	Figure	18.		

	 	

	 36	

	

	
Figure	18:	Data	structure	of	the	questions	stored	as	a	tree	hierarchy	

	

Our	Angular	project	contains	multiple	components	that	interact	together	in	order	to	achieve	

the	desired	goal.	The	main	component	of	our	architecture	is	the	“Configurator	Component”.	

This	component	handles	the	main	logic	for	the	configuration	process.		

	

	

	

	

	

	

	

	

	

	

	

Figure	19	shows	our	tool	high-level	architecture	and	relations	between	the	main	components.	

	 	

	 37	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	19:	Configurator	tool	main	components	and	services	

	

It	first	retrieves	the	questions	data	structure	stored	in	an	Angular	service	and	extracts	the	first	

node	of	the	tree	which	is	the	parent	node	of	all	other	nodes.	The	corresponding	question	(Q1)	

and	answers	of	the	node	are	then	printed	to	the	user.	Angular	then	waits	for	the	user	to	input	

an	answer	 into	the	system.	According	to	the	answer	the	user	picks,	 the	code	retrieves	the	

corresponding	child	nodes	and	asks	the	next	question	on	the	user	interface.		Since	Angular	is	

a	reactive	framework,	it	updates	the	components	itself	every	time	a	change	is	detected.	We	

therefore	only	need	to	update	the	variables	storing	the	current	question	and	answers,	and	let	

Angular	update	them	on	the	UI	for	the	user.	We	use	a	simple	breadth-first	search	algorithm	

to	visit	the	question	tree	and	retrieve	the	new	nodes,	therefore	consuming	the	nodes	closest	

to	the	root	first.	We	choose	this	algorithm	instead	of	a	depth-first	search	algorithm	because	

questions	at	a	higher	place	in	the	hierarchy	are	more	general	than	questions	located	lower	in	

the	hierarchy.	Therefore,	higher-located	questions	most	of	the	time	relate	to	core	nodes	of	

the	graph	while	lower-located	questions	relate	to	less	important	or	secondary	nodes	on	the	

activity	diagram.		 	

	 38	

This	way,	we	have	information	about	main	nodes	first	which	allows	us	the	dynamically	render	

the	graph	after	each	answer	of	the	user.	For	example,	we	can	see	that	Q2	and	Q4	are	the	first	

questions	asked	if	the	user	picks	“Sampling”,	“Delivery”	or	“Surveillance”	mission.	These	two	

questions	are	respectively	related	to	area	and	terrain	definitions	for	the	mission	which	are	

involved	 in	the	first	nodes	of	the	activity	diagram	while	questions	 like	Q5,	Q8	or	Q9	which	

respectively	relate	to	survey	type,	extra	delivery	and	on-board	capabilities,	are	more	specific	

to	some	mission	type	so	they	should	be	asked	later.		

	

We	now	need	a	way	to	transmit	the	user’s	answers	to	another	component	of	our	app	that	will	

dynamically	 render	 the	 corresponding	activity	diagram.	To	do	 this,	we	create	a	TypeScript	

object	that	we	name	“MissionConfiguration”.	This	object	holds	11	variables	referring	to	our	

11	questions.	A	code	snippet	representing	the	object	is	depicted	below.		

export class MissionConfiguration {
 mission: string
 terrain: string
 fireType?: boolean
 surveyType?: string
 sampleType?: string
 waypoints?: boolean
 isSuspect?: boolean
 extraDelivery?: boolean
 onboardAnalysis?: boolean
 independentRescueTeams?: boolean
 tracking?: boolean
}
	

	

An	interrogation	point	in	TypeScript	means	an	optional	variable.	Therefore,	we	can	see	that	

only	the	mission	and	terrain	types	are	mandatory	to	all	missions.	Our	Angular	code	checks	

when	getting	the	user	answer	to	which	variable	of	this	object	it	refers	to	and	stores	the	answer	

into	it.	The	object’s	content	is	updated	every	time	the	user	answers	a	question.	When	no	more	

questions	 remain,	 this	 process	 of	 visiting	 the	 question	 tree	 and	 building	 the	

“MissionConfiguration”	object	stops.	

	 	

	 39	

5.3.2. Rendering	a	graph	based	on	user	inputs	

We	decide	on	using	Graphviz6,	an	open	source	graph	visualization	software	to	build	activity	

diagrams	of	the	mission.	Graphviz	graphs	are	created	using	the	DOT	language.	We	used	d3-

graphviz7,	a	JavaScript	library	to	integrate	Graphviz	in	Angular.	We	write	two	components	that	

are	relative	to	Graphviz,	the	“Graphviz-renderer	Component”	to	render	the	graph	in	our	app	

and	 the	 “Graphviz	 Service”	 to	 handle	 the	 logic	 for	 building	 the	 graph.	 The	

“MissionConfiguration”	object	 is	 sent	 to	 the	 “Graphviz	 Service”	 after	 each	user	 input.	 The	

service	uses	a	set	of	if-else	statements	to	check	the	defined	variables	in	the	object	then	build	

the	DOT	string	of	 the	graph.	An	example	of	 the	graph	string	built	 for	a	“River	 search-and-

rescue”	 scenario	 is	 depicted	 at	 Figure	 20.	 A	 graph	 is	 always	 created	 using	 a	 “digraph”	

statement.	Then,	information	about	the	graph	like	color	of	the	nodes,	spacing,	font	family	and	

so	on	are	provided.	Finally,	nodes	and	transitions	are	declared.	Nodes	are	basically	declared	

using	a	name	then	square	brackets	in	which	we	provide	information	about	the	node	like	the	

label,	the	shape	or	an	image.	Images	are	the	icons	we	refer	to	in	sub-section	5.3.3.	Therefore,	

nodes	containing	an	icon	are	nodes	linked	to	a	concrete	component	of	the	DroneResponse	

architecture.	These	are	configuration	points	that	the	user	may	configure	by	clicking	on	the	

icon	on	the	graph.	Transitions	are	declared	using	an	arrow	inside	two	node	names.	We	also	

provide	information	about	the	transition	in	square	brackets.	

																																																								
6	http://www.graphviz.org/	
7	https://github.com/magjac/d3-graphviz	

	 40	

digraph G {
 graph [ranksep="0.4", pad=".5", nodesep="0.3"]
 edge [fontsize=12,fontname="times:italic"]
 node
[fontsize=16,fontname="times"shape=box,style=filled,imagepos="mr",margin="0.
4,0",fillcolor = grey94]//"/pastel18/2"]

 START_MISSION [label=" Start search mission",shape=ellipse]
 REGION [label="Define Area and Generate flight routes",
image="../../assets/icons/route.png", color=red]
 FLY_TO_LOCATION [label="Fly to defined area"]

 START_MISSION -> REGION [label=""]

 LAUNCH [label="Connect and launch drones",
image="../../assets/icons/drone.png", color=red]

 REGION -> LAUNCH [label=""]
 LAUNCH -> FLY_TO_LOCATION [label=""]

 SCENE_RECONSTRUCTION [label="Scene Reconstruction activated for snow"]

 FLY_TO_LOCATION -> SCENE_RECONSTRUCTION [label=""]

 SEARCH [label="Search"]
 TARGET_FOUND [label="Victim found"]

 SCENE_RECONSTRUCTION -> SEARCH [label=""]
 SEARCH -> TARGET_FOUND [label=""]

 VICTIM_RESCUED [label="Victim rescued by human responders"]
 TRACK_TARGET [label="Track victim"]

 TARGET_FOUND -> TRACK_TARGET [label=""]
 TRACK_TARGET -> VICTIM_RESCUED [label=""]

 DRONES_RECALLED [label="Drones recalled by Incident commander"]

 VICTIM_RESCUED -> DRONES_RECALLED [label=""]
 DRONES_RECALLED -> RETURN_HOME [label=""]

 RETURN_HOME [label="Return Home"]
 END_MISSION [label=" End mission",shape=ellipse]

 !RETURN_HOME -> END_MISSION [label=""]
}
	 	
Figure	20:	Graph	string	built	for	a	river	search-and-rescue	scenario	

	 	

	 41	

Once	 the	graph	 string	 is	 built,	 it	 is	 sent	 to	 the	other	Graphviz	 component.	 The	 “Graphviz-

renderer	Component”	sets	options	for	the	rendering.	We	use	the	following	options	for	the	

rendering	of	our	graphs:	

• Transition:	This	option	defines	the	transition	use	when	new	nodes	are	added	to	the	

current	instance	of	the	graph.	We	use	an	“easeLinear”	transition.	

• AddImage(path:	String):	d3-graphviz	requires	declaring	images	that	are	to	be	used	in	

the	graph	into	the	renderer.	We	therefore	add	this	option	multiple	times	to	add	every	

icon	we	use.	

• Width	/	Height:	Sets	the	SVG	graphs	width	and	height.	

• Fit:	Boolean	used	to	cause	the	graph	size	to	fit	to	the	SVG	size	previously	defined.	We	

set	it	to	True	for	our	graphs.	

• Zoom:	Boolean,	when	set	to	True,	it	allows	the	user	to	zoom	in	and	out	on	the	graph.	

We	set	it	to	False	to	avoid	rescaling	the	graph	which	causes	a	bad	rendering.		

The	component	then	just	renders	the	graph	on	the	UI.	An	example	of	the	graph	built	for	a	

“River	Search-and-rescue”	scenario	is	depicted	at	Figure	21.	

	 	

	 42	

	
Figure	21:	Screenshot	taken	during	the	configuration	process	for	a	river	search-and-rescue	scenario	

	 43	

5.3.3. Configuration	points	implementation	

As	discussed	 in	section	5.2,	configuration	points	are	also	part	of	the	configuration	process.	

Some	concrete	components	of	DroneResponse	 system	can	be	configured	directly	 from	the	

rendered	graph.	These	configurations	are	as	previously	described,	at	a	lower-level	than	the	

questions	answering/graph	building	processes	that	assemble	the	mission	at	a	high-level.		

	

We	previously	linked	concrete	component	of	the	architecture	to	nodes	of	the	activity	diagram	

in	the	requirements	section	of	this	paper	(see	5.1.6).	We	will	now	use	icons	on	the	graph	to	

configure	these	components.	We	create	a	“ConfigurationPoints	Service”	in	our	Angular	app	

that	stores	the	data	about	the	configurations	points.		

The	data	structure	at	this	point	looks	like	the	following	code	snippet.	

export class ConfigurationPoint {
 name: string;
 icon: string;
 questions: Question[];
 configured: boolean;
}

export class Question {
 question: string;
 answers: string[];
}
	

	

Data	about	configuration	points	are	stored	by	declaring	a	variable	whose	type	is	an	array	of	

“ConfigurationPoint”.	Configuration	points	contain:	

1. A	name	as	an	identifier.	

2. An	icon	that	will	be	displayed	on	the	node	corresponding	to	the	concrete	component	

it	configures.	Icons	are	unique,	this	means	that	an	icon	only	refers	to	one	configuration	

point.	

3. A	set	of	questions	and	answers	to	configure	the	component.	

4. A	Boolean	storing	the	state	of	the	configuration	point.	This	variable	is	set	to	True	if	

the	user	configured	the	configuration	point	and	False	if	not.	

	 	

	 44	

In	order	for	users	to	click	on	the	graph	icons,	we	add	event	listeners	to	each	icon	on	the	graph.	

Each	time	a	user	clicks	an	 icon,	an	event	 is	emitted,	containing	the	 icon	name.	The	parent	

component	which	is	the	“Configurator	Component”	will	handle	the	event	and	send	the	icon	

name	to	a	new	component,	the	“Configurable-Item	Component”.	This	new	component	opens	

to	the	right	of	the	screen,	next	to	the	graph.	Using	the	name	of	the	icon	it	received	from	the	

parent	 component,	 this	 component	 calls	 the	 “ConfigurationPoints	 Service”	 to	 retrieve	 the	

configuration	point	 data	 linked	 to	 that	 icon.	 It	 then	 just	 prints	 the	questions	 and	possible	

answers.	When	the	user	submits	his	choices,	the	“Configurable-Item	Component”	closes.	We	

use	a	colored	border	on	the	graph	nodes	that	contain	icons.	An	icon	that	has	already	been	

configured	has	a	green	border	while	an	 icon	not	configured	 is	 red.	Figure	22	shows	a	user	

configuring	a	mission	in	which	two	concrete	components	can	be	configured	on	the	graph.	The	

first	one	has	already	been	configured,	therefore	colored	green	and	the	second	one	has	been	

clicked	thus	about	to	get	configured.		

	

	
Figure	22:	Screenshot	taken	during	the	configuration	process	in	which	the	user	configure	a	configuration	point.	

5.3.4. Creating	a	JSON	format	mission	specification	

As	explained	in	the	configuration	process	part	(see	5.2),	the	output	of	all	these	configurations	

are	of	two	types,	(1)	a	visualization	through	an	activity	diagram	of	the	mission	configured	and	

(2)	a	JSON	format	object	holding	the	resulting	configurations.	

	 	

	 45	

Just	like	the	graph	building,	such	an	object	can	be	created	in	advance	and	updated	after	every	

user’s	input.	We	decide	on	creating	an	object	that	stores:	

a. Metadata	about	the	mission	which	are	the	type	(“Search”,	“Sampling”,	“Surveillance”,	

“Delivery”	or	“Fire”)	and	the	terrain	type	(“Land”,	“Water”,	“Ice”	or	“Snow”).	

b. Activities	of	the	mission	which	basically	are	the	nodes	of	the	activity	graph.	Just	like	in	

our	Graphviz	string	building	process,	nodes	have	a	name	and	a	label.	We	store	both	in	

our	object.	

c. Transitions,	these	are	composed	of	a	starting,	an	end	node	and	optionally	a	condition.	

	

All	 of	 this	 information	 is	 actually	 available	 in	 the	 “Graphviz	 Service”	which	 is	 in	 charge	 of	

building	 the	 graph	 string.	We	 therefore	 add	 a	 few	methods	 that	 push	 each	 new	 node	 or	

transition	into	the	JSON	formatted	object.	We	also	set	the	mission	and	terrain	types	in	the	

object	as	soon	as	the	user	answers	these	questions.		An	example	of	the	JSON	object	output	at	

the	end	of	the	configuration	of	a	delivery	scenario	is	depicted	in	the	following	code	snippet.	

 {"mission": [
 {
 "metadata": {
 "MissionType": "Delivery",
 "SubType": "LAND"
 },
 "activities": [
 {
 "nodeName": "START_MISSION",
 "Label": "Start delivery"
 },
 {
 "nodeName": "REGION",
 "Label": "Define target waypoints"
 },
 {
 "nodeName": "LAUNCH",
 "Label": "Connect and launch drones"
 },
 {
 "nodeName": "FLY_TO_WAYPOINT",
 "Label": "Fly to target waypoint"
 },
 {
 "nodeName": "FIND_DROPLOCATION",
 "Label": "Identify a safe drop spot"
 },
 {
 "nodeName": "DROP_SUPPLIES",
 "Label": "Deliver supplies"
 },

	 46	

 {
 "nodeName": "FIND_RTL_LOCATION",
 "Label": "Identify a home-based within flying range"
 },
 {
 "nodeName": "RETURN_HOME",
 "Label": "Return Home"
 },
 {
 "nodeName": "END_MISSION",
 "Label": "End mission"
 }
],
 "transitions": [
 {
 "from": "START_MISSION",
 "to": "REGION"
 },
 {
 "from": "REGION",
 "to": "LAUNCH"
 },
 {
 "from": "LAUNCH",
 "to": "FLY_TO_WAYPOINT"
 },
 {
 "from": "FLY_TO_WAYPOINT",
 "to": "FIND_DROPLOCATION"
 },
 {
 "from": "FIND_DROPLOCATION",
 "to": "DROP_SUPPLIES"
 },
 {
 "from": "DROP_SUPPLIES",
 "to": "FIND_RTL_LOCATION",
 "condition": "Confirmed"
 },
 {
 "from": "FIND_DROPLOCATION",
 "to": "FIND_RTL_LOCATION",
 "condition": "Cancelled"
 },
 {
 "from": "FIND_RTL_LOCATION",
 "to": "RETURN_HOME"
 },
 {
 "from": "RETURN_HOME",
 "to": "END_MISSION",
 }
]

	 47	

 }
]
}

The	JSON	object	is	then	sent	to	the	core	DroneResponse	system.	It	will	impact	the	system	in	

several	ways	 including	central	 control	mechanisms,	onboard	autonomy,	mobile	units,	user	

interface	and	so	on.	However,	the	way	the	system	will	interpret	this	configuration	object	in	

order	to	configure	all	the	related	components	is	way	out	of	the	scope	of	this	document.	We	

therefore	limit	our	work	to	what	has	been	described	in	this	approach	which	was	to	create	an	

object	 holding	 data	 about	 configuration	 of	 a	 mission	 and	 a	 visualization	 of	 the	 mission	

customized	based	on	user	inputs.	

	

5.4. User	study	and	approach	evaluation	

The	configurator	tool	discussed	in	the	previous	section	(see	5.3)	 is	at	this	point	working	as	

specified.	In	this	section,	we	evaluate	our	approach	and	organize	a	small	user	study.	

	

Our	approach	is	evaluated	with	two	sets	of	questions	that	this	section	should	answer:	

a) Is	the	configurator	tool	able	to	generate	valid	mission	specifications	for	the	7	initial	use	

cases	from	Figure	10?	Also	for	new	additional	use	cases?	

b) Can	external	users	use	our	configurator	tool	to	generate	valid	mission	specifications	of	

emergency	response	scenarios?	What	are	the	main	challenges	they	encountered?	

	

Question	a:	We	first	of	all	start	by	doing	a	set	of	validation	tests	using	the	configurator.	We	

configure	mission	specifications	for	each	of	the	initial	7	use	cases	used	in	the	requirements	

engineering	process	of	this	approach	(Figure	10).	Although	some	nodes	were	placed	at	the	

wrong	place	or	transitions	were	missing	from	a	node	to	another,	most	of	the	graphs	built	were	

as	expected.	We	corrected	a	few	mistakes	in	the	code	to	fix	these	minor	issues.	

	

Since	all	 the	 initial	scenarios	were	built	successfully	using	the	configurator,	we	now	aim	to	

generate	previously	unknown	mission	scenarios	of	emergency	response	using	drones	in	order	

to	assess	our	configurator’s	ability	to	create	custom	missions.	In	order	to	do	that,	we	wrote	

13	more	use	cases	based	on	resources	found	on	the	internet.	These	new	use	cases	are	detailed	

in	Figure	23.	

	 	

	 48	

	

Use-case	ID	 Use-case	name	 Use-case	ID	 Use-case	name	

UC8	 Chemical	spill	 UC15	 Flood	support	

UC9	 Avalanche	rescue	 UC16	 Earthquake	damage	

UC10	 Suspect	tracking	 UC17	 Rip	current	rescue	

UC11	 School	shooting	 UC18	 Lost	kayaker	

UC12	 Radiation	detection	 UC19	 Volcanic	eruption	

UC13	 Man	overboard	 UC20	 Utility	inspection	

UC14	 Crowd	control	 	 	

Figure	23:	Additional	use	cases	of	mission	scenario	that	DroneResponse	should	handle	

We	repeat	the	test	of	configuring	each	of	the	scenarios	using	the	configurator	tool.	The	results	

are	a	bit	 less	 satisfying	 than	 the	ones	 for	our	7	 initial	use	cases.	Most	of	 the	mistakes	we	

identified	are	syntax	and	vocabulary	 issues.	For	example,	our	“victim	tracking”	node	 is	not	

adapted	 for	 UC11	 which	 is	 a	 school	 shooting.	 “Suspect	 tracking”	 would	 be	 a	 better	

terminology	for	this	particular	mission.	However,	since	the	core	tasks	of	missions	are	shared	

across	the	scenarios,	graphs	generated	are	not	that	bad	if	we	correct	terminology	issues.	This	

might	be	done	asking	a	few	more	specific	questions.		

	

Question	b:	We	then	switch	to	the	second	set	of	question	to	evaluate	this	approach.	For	this	

evaluation,	we	need	some	external	users	that	have	never	experienced	our	configurator	tool	

but	 that	 have	 previous	 experience	 with	 UAVs.	 We	 therefore	 recruit	 5	 participants	 to	

participate	to	our	short	user	story.	This	one	is	done	during	an	online	video	call	and	lasts	in	

average	30	minutes	per	participant.	

	

Each	of	the	participant	is	introduced	to	our	DroneResponse	project	with	an	online	short	video	

that	explains	how	we	envision	using	drones	to	support	emergency	responders	in	time-critical	

tasks.	We	then	introduce	them	our	configurator	tool	and	use	it	to	configure	UC1	“River	search-

and-rescue”	for	them	to	understand	the	process	of	configuring	missions.	Each	participant	is	

assigned	2	mission	scenarios	to	configure	plus	one	they	can	choose	themselves	in	our	list	of	

use	cases	depicted	at	Figure	23.	Participants	are	asked	to	describe	in	a	verbose	way	what	is	

on	their	mind	during	the	entire	configuration	process	so	that	we	can	really	get	a	lot	of	details	

about	the	configuration	process.	

	 	

	 49	

Once	 they	 are	 done	 configuring	 their	 3	missions,	 each	 user	 is	 asked	 if	 he	 could	 correctly	

configure	the	assigned	missions.	Two	out	of	the	five	participants	find	the	questions	accurate	

and	 correct	while	 the	 three	 others	would	 have	 liked	more	 questions	 to	 get	more	 precise	

graphs	of	the	missions.	As	an	example,	we	ask	if	emergency	responders	require	a	delivery	in	

case	of	river	search-and-rescue	but	we	might	provide	various	supplies	and	therefore	add	a	

question	asking	this	to	the	user	configuring	the	mission.	

	

Then,	every	participant	agreed	on	the	usefulness	of	the	visualization	part	of	the	configurator	

tool.	 They	 all	 said	 it	 allows	 them	 to	 fully	 understand	 the	 mission	 they	 just	 configured.	

Participants	 were	 finally	 asked	 about	 suggestions	 to	 improve	 our	 app.	 A	 few	 participants	

pointed	out	that	terminologies	used	in	the	questions	and	nodes	of	the	graph	are	not	enough	

context-specific.	They	said	it	might	be	better	to	involve	emergency	responders	directly	in	the	

creation	of	questions	and	vocabulary	for	the	missions.	As	a	conclusion,	this	approach	has	a	lot	

of	potential,	especially	because	of	the	visualization	side	of	showing	missions.		 	

	 50	

PART	IV. Conclusions	and	perspectives	
	

Chapter	6. Work	summary	

In	 the	 contribution	 part	 of	 this	 thesis,	 we	 came	 with	 two	 approaches	 to	 quickly	 eliciting	

requirement	 for	 mission	 scenarios	 in	 order	 to	 configure	 our	 DroneResponse	 system	

accordingly.	Both	approaches	use	traditional	requirement	engineering	processes	in	order	to	

build	the	system	as	a	product	line.	Product	lines	are	useful	to	describe	variability	in	products	

that	have	commonalities	and	specificities.	Variability	has	been	documented	using	textual	use	

cases,	 activity	 diagrams	 and	 feature	 models.	 Even	 though	 the	 processes	 for	 creating	 the	

product	 line	have	been	different	 for	our	 two	approaches,	both	 started	 from	a	 set	of	well-

defined	use	cases	and	have	been	merged	into	a	product	line.			

		

Approaches	also	differs	in	the	way	of	deriving	a	new	product	when	the	product	line	has	been	

created.	 The	 first	 approach	 created	 a	 static	 mapping	 from	 a	 set	 of	 tags	 defined	 in	 the	

requirement	 engineering	 process	 to	 features	 of	 the	 system-wide	 feature	 model	 of	

DroneResponse.	A	classifier	has	been	trained	in	order	to	map	a	previously	unknown	use	case	

scenario	to	the	feature	model,	therefore	ending	up	with	a	configuration	of	the	system.	The	

test	use	case	 is	a	verbal	description	of	a	mission	scenario,	allowing	emergency	responders	

to	quickly	elicit	requirements	for	a	new	mission.	This	can	also	be	useful	to	pretty	fast	update	

the	 mission	 goals	 during	 a	 mission	 if	 events	 changing	 the	 mission	 occur.	 Emergency	

responders	would	then	just	describe	changes	and	let	the	system	treat	the	new	request.		

		

The	second	approach	provided	a	tool	to	configure	new	missions	through	a	basic	user	interface.	

The	user	 interface	asks	a	series	of	question	to	the	user	that	relates	to	our	underlying	data	

structure.	An	activity	diagram	representing	the	user’s	choice	is	then	rendered	after	each	user’s	

input.	This	approach	gives	a	high-level	view	of	what	the	mission	that	is	to	happen	looks.	Users	

can	 also	 configure	 lower-level	 settings	 related	 to	 concrete	 components	 of	DroneResponse	

architecture.	When	the	user	ends	up	the	configuration	process,	a	JSON	format	object	holding	

all	the	configurations	is	sent	to	the	main	system.		

		

	 	

	 51	

Our	work	has	several	threats	to	validity.	First	of	all,	the	configurations	with	output	at	the	end	

of	our	processes	are	pretty	high-level,	we	therefore	do	not	discuss	how	these	configurations	

will	be	used	in	the	main	DroneResponse	system.	Secondly,	we	should	have	included	domain	

expert	in	our	user	studies.	Indeed,	users	that	configured	the	system	for	the	studies	are	drone	

flyers	but	not	emergency	 responders	working	 in	 time-critical	mission	scenarios.	Therefore,	

including	 more	 related	 expert	 would	 allow	 us	 to	 improve	 our	 understanding	 of	 the	

requirement	on	how	to	build	our	DroneResponse	system.		

		

Chapter	7. Future	work	

	One	of	the	main	downside	of	the	first	approach	is	that	we	trained	our	classifier	to	tag	pretty	

short	sentences	that	only	carry	one	meaning	or	“concept”.	However,	the	verbal	description	of	

missions	come	as	a	full	block	of	text.	We	therefore	needed	to	split	the	full	text	into	sentence-

like	chunks.	This	problem	should	be	addressed	as	future	work	by	training	a	multi-classifier	that	

would	handle	several	tags	for	one	use-case	step.	The	classifier	could	then	tag	a	full	block	of	

text	without	needing	to	split	it	into	small	steps.		

		

For	our	second	approach,	we	aim	in	future	work	to	also	use	the	activity	diagram	generated	

during	the	configuration	process	to	show	the	situation	of	each	drones	during	a	mission.	This	

would	allow	emergency	responders	to	know	what	tasks	are	performed	by	which	UAVs	during	

a	mission.	An	important	challenge	that	still	has	to	be	address	is	including	the	configuration	

points	into	the	JSON	format	object	output	at	the	end	of	the	configuration	process.	The	current	

version	of	the	code	is	only	storing	metadata	and	activities	about	the	overall	mission	but	does	

not	include	the	configuration	points	yet.	We	also	refine	our	data	structure	in	order	to	have	a	

much	stronger	relation	between	the	graph	creation	and	the	questions.	For	now,	our	algorithm	

visits	a	tree	of	questions,	asks	these	questions	to	the	user	and	build	an	object	storing	the	users	

answer	before	creating	the	graph.	Work	is	progress	in	actually	storing	questions	and	activity	

nodes	 inside	one	Angular	service.	Nodes	are	created	 in	the	graph	if	conditions	attached	to	

them	(which	are	the	questions)	are	fulfilled.	However,	the	timeline	did	not	allow	the	author	

to	include	this	version	of	the	code	in	the	thesis.		

		

Finally,	as	described	in	section	5.4,	the	user	study	is	planned	to	be	improved	by	including	real	

domain	 experts	 and	 have	 a	 better	 feedback	 of	 our	 system	 and	 requirements	 to	 improve	

DroneResponse.		

	 52	

Chapter	8. Conclusion	

Both	 approaches	 show	 great	 potential	 but	 also	 requires	 way	 more	 work	 in	 order	 to	 be	

successful.	This	has	been	described	in	the	future	work	part	of	this	chapter.	The	paper	written	

during	the	first	approach	will	probably	be	submitted	when	changes	are	done.	However,	the	

second	approach	has	been	the	main	part	of	the	internship	work	for	the	author.	We	spent	most	

of	the	four	months	working	on	this	second	approach	which	ended	up	with	a	submitted	an	

accepted	paper	for	the	software	product	line	conference	2020	(Cleland-Huang,	et	al.,	2020).		

	
	 	

	 53	

PART	V. Bibliography	
Agrawal	Ankit	[et	al.]	The	Next	Generation	of	Human-Drone	Partnerships:	Co-Designing	an	

Emergency	Response	System	[Revue]	//	CHI'20.	-	Honolulu,	HI,	USA	:	[s.n.],	25-30	April	2020.	

Arias	 Darwin	 Armando	 Mora	 [et	 al.]	 Unmanned	 Aerial	 Vehicle	 for	 Rescue	 and	 Triage	

[Revue]	//	Botto-Tobar	M.,	Zambrano	Vizuete	M.,	Torres-Carrión	P.,	Montes	León	S.,	Pizarro	

Vásquez	G.,	Durakovic	B.	(eds)	Applied	Technologies.	ICAT.	Communications	in	Computer	and	

Information	Science..	-	Cham	:	Springer,	2019.	-	Vol.	1194.	

Bühne	 Stan	 [et	 al.]	 Scenario-based	 application	 requirements	 engineering	 [Conférence]	 //	

Software	Product	Lines.	-	[s.l.]	:	Springer,	2006.	-	pp.	161-194.	

Baresi	Luciano	Activity	Diagrams	[Section]	//	LIU	L.,	ÖZSU	M.T.	(eds)	Encyclopedia	of	Database	

Systems.	Springer,	Boston,	MA.	-	2009.	

Bragança	Alexandre	et	Machado	Ricardo	Automating	Mappings	between	Use	Case	Diagrams	

and	Feature	Models	for	Software	Product	Lines	[Conférence]	//	11th	International	Software	

Product	Line	Conference	(SPLC).	-	2007.	

Cleland-Huang	 Jane	 [et	 al.]	 Requirements-Driven	 Configuration	 of	 Emergency	 Response	

Missions	with	Small	Aerial	Vehicles	[Conférence]	//	Software	Product	Line	Conference'20.	-	

Montreal,	Canada	:	[s.n.],	2020.	

Cleland-Huang	Jane,	Vierhauser	Michael	et	Bayley	Sean	Dronology:	An	Incubator	for	Cyber-

Physical	 Systems	 Research	 [Conférence]	 //	 IEEE/ACM	 40th	 International	 Conference	 on	

Software	Engineering:	New	Ideas	and	Emerging	Technologies	Results	(ICSE-NIER).	-	2018.	

Cockburn	Alistair	Writing	Effective	Use	Cases	 [Ouvrage].	 -	 [s.l.]	 :	Addison-Wesley	Longman	

Publishing	Co.,	Inc.75	Arlington	Street,	Suite	300	Boston,	MAUnited	States,	2000.	-	p.	304.	

Favaro	John,	Griss	Martin	et	d'Alessandro	Massimo	 Integrating	feature	modeling	with	the	

RSEB	 [Conférence]	 //	 Proceedings.	 Fifth	 International	 Conference	on	 Software	Reuse	 (Cat.	

No.98TB100203),	Victoria,	BC,	Canada.	-	1998.	-	pp.	76-85.	

Fleck	Mathias	Usability	of	Lightweight	Defibrillators	for	UAV	Delivery	[Conférence]	//	CHI	EA	

'16:	 Proceedings	 of	 the	 2016	 CHI	 Conference	 Extended	 Abstracts	 on	 Human	 Factors	 in	

Computing	Systems.	-	2016.	-	pp.	3056-3061.	

Guttierez	Javier	[et	al.]	Visualization	of	Use	Cases	through	Automatically	Generated	Activity	

Diagrams	 [Revue]	 //	Czarnecki	K.,	Ober	 I.,	Bruel	 JM.,	Uhl	A.,	Völter	M.	 (eds)	Model	Driven	

Engineering	Languages	and	Systems.	Lecture	Notes	in	Computer	Science.	-	Berlin	:	Springer-

Verlag,	2008.	-	Vol.	5301.	

	 54	

Jacobson	Ivar	Use	cases	-	Yesterday,	today,	and	tomorrow	[Revue]	//	Software	and	Systems	

Modeling	(SOFTW	SYST	MODEL).	-	2004.	-	pp.	210-220.	

Kang	 Kyo	 [et	 al.]	 Feature-Oriented	 Domain	 Analysis	 (FODA)	 Feasibility	 Study	 [Rapport]	 /	

Softare	Engineering	Institute.	-	1990.	

Pohl	 Klaus,	 Günter	 Böckle	 et	 Van	 der	 Linden	 Frank	 Software	 Product	 Line	 Engineering:	

Foundations,	Principles	and	Techniques	[Ouvrage].	-	Secaucus	:	[s.n.],	2005.	-	pp.	4-18.	

Pudlitz	Florian,	Brokhausen	Florian	et	Vogelsang	Andreas	Extraction	of	System	States	from	

Natural	 Language	 Requirements	 [Conférence]	 //	 International	 Requirements	 Engineering	

Conference	(RE).	-	[s.l.]	:	IEEE,	2019.	-	pp.	211-222.	

Turner	Ian,	Harley	Mitchell	et	Drummond	Christopher	UAVs	for	coastal	surveying	[Revue]	//	

Coastal	Engineering.	-	2016.	-	Vol.	114.	-	pp.	19-24.	

Yue	Tao,	Briand	Lionel	et	Labiche	Yvan	An	Automated	Approach	to	Transform	Use	Cases	into	

Activity	 Diagrams	 [Revue]	 //	 Kühne	 T.,	 Selic	 B.,	 Gervais	 MP.,	 Terrier	 F.	 (eds)	 Modelling	

Foundations	and	Applications.	Lecture	Notes	in	Computer	Science.	-	Berlin	:	Springer,	2010.	-	

Vol.	6138.	

	

	 	

	 55	

PART	VI. Appendices	
Appendice	1:	Manually	tagged	use-case	for	creating	and	updating	a	heatmap	of	an	on-fire	building	

	

	 	

	 56	

Appendice	2:	DroneResponse	landing	page.	Existing	missions	are	on	the	top-right	of	the	screen.	

	
	 	

	 57	

Appendice	3:	20	use	cases	used	in	the	first	approach.	

Use Case: Search and find a victim in area of river
ID: UC-1

Description
Multiple UAVs dispatched to search for victim in river

Primary Actor
Drone Commander

Supporting Actors
Semi-autonomous UAV

Stakeholders and Interests
Fire department engaged in river rescue
FAA concerned with flight regulations
General public

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the yyund and are activated
● Firefighters have marked area of river to be searched
● Search plan has been generated
● DroneResponse is running and UAVs are displayed on map
● A victim is in the search area
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The victim is found by a UAV and actively tracked until a first responder takes over the rescue operation
Failure end condition:
The victim is not found or the victim is found but not actively tracked.

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. DroneResponse continually tracks and displays the location and state of each UAV.
2. The UAVs takeoff.
3. The UAVs commence their individually assigned search patterns.
4. After arriving at the scene, each drone activates its camera.
5. Each UAV processes imagery from its camera using a trained river-victim image detector.
6. One UAV (Finder) flies over the victim and its onboard image recognition software detects the victim

with confidence greater than a predefined threshold.
7. The UAV raises an alert.
8. The UAVs switches to `active_tracking’ mode.
9. DroneResponses raises an alert and asks for human confirmation that the victim found by the drone.
10. The Drone Commander confirms `active tracking’.
11. The Drone Commander notifies the Incident Commander who confirms the sighting and directs human

responders in their boat to rescue the victim.
12. The Drone Commander confirms that the Finder-UAV has sufficient battery to continue active-tracking.
13. He/she recalls all other drones to their home-base.
14. Human responders arrive at the scene.
15. The Drone Commander recalls the Finder-UAV to its home-base.
Exceptions	

1a. In step 1, communication is lost with an individual drone (Human-Drone)
 1a.1 A warning message is displayed depicting the duration of time for which communication has

been lost

2a. In step 2, one of the UAVs fails to takeoff or has to be recalled due to mechanical failure during flight.
 2a.1 If an alternate UAV is prepped for flight, that UAV is dispatched in place of the failed UAV.
 2a.2 If no alternate UAV is prepped for flight:
 2a.2.1 The search paths are re-generated based on the reduced number of available UAVs.
 2a.2.2 The adjusted mission plans are sent to each UAV in flight.
 2a.2.3 Each UAV proceeds to execute its new mission plan.

	 58	

4. In step 4, the UAV detects a possible victim at a confidence level below the predefined limit but above the

lowest `ignore’ level.
 4a.1 The UAV raises an alert
 4a.2 DroneResponse saves the GPS coordinates of the sighting
 4a.3 The UAV continues its currently assigned route.
 4a.4 The Drone Commander reviews the streamed imagery
 4a.5 The Drone Commander confirms that the sighting is not a victim.

 In step 4a.5, the Drone Commander reviews the streamed imagery and is unable to reject the image as a

false-positive sighting.
 4a.5.1 The Drone Commander requests additional imagery from the area around the sighting.

4a.5.2 DroneResponse assigns a UAV to fly to the vicinity of the coordinates and to acquire
additional

 imagery.

5. In step 5, the drone fails to provide victim’s imagery and remains in “active-tracking” mode without
Drone Commander’s assertion. (Drone-Human).
 5a.1 If the drone does not receive any acknowledgement from the Drone Commander within a
specified time, then it tries to route the images through other participating drones.
 5a.2 If (5a.1) also fails, drone flashes a red light indicating that it needs immediate human action to
regain the communication.

5. In step 7, the communication between Drone Commander and incident commander fails.(Human-Human)

Use Case: Deliver defibrillator to a specific location
ID: UC-2

Description
When a victim is at a place that is hard to reach in a short time,UAV(s) dispatched to a specific location to send
urgent resources.

Primary Actor
Receivers/UAV

Supporting Actors
Medic crew

Stakeholders and Interests
Medical professions engaged in first rescue materials

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the ground and are activated
● Drones are able to carry limited weight
● There are enough drones to take care of the delivery process
● DroneResponse is running and UAVs are displayed on map
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The medical package has been successfully collected by the target.
Failure end condition:
The medical package has not been collected by the target.

Trigger
The Drone Commander activates the delivery.
Main	Success	Scenario	

1. A user calls 911 to report a medical emergency.
2. The operator identifies the location and uses Google maps to identify GPS coordinates for the delivery.
3. A ready-to-fly drone with a pre-attached defibrillator is selected.
4. The delivery drone downloads current NOTAMs including no-fly zones.
5. The delivery drone plans its route based on the prohibited areas.
6. The delivery drone takes off to a cruising altitude.

	 59	

7. The delivery drone constantly checks for changes in terrain using the google map service and its own
onboard sensors.

8. The delivery drone navigates the terrain autonomously, changing altitude to avoid hills etc.
9. The delivery drone arrives at the specified location.
10. Drones turn on their on-board cameras
11. The delivery drone uses onboard vision to identify a place to drop the package.
12. The drone requests permission for the drop from the operator.
13. The drone drops the package.
14. The receivers collect the needed package.
15. The drone requests a safe landing site from the operator.
16. The drone flies to the landing site and lands.

Exceptions

2a. Coordinate identification using Google maps failed
 2a.1 Another mapping software is used to identify exact coordinates from the address
7a. The delivery drone fails to take off
 7a.1 DroneResponse assigns the current drone configuration to a new drone that has a pre-attached

defibrillator
 7a.2 The new drone takes off to replace the one that failed
10a. For some reason, the delivery location has changed.
 10a.1 DroneResponse identify the coordinates of the new location using Google maps
 10a.2 DroneResponse transmits the new coordinates to the Drone
 10a.3 The drone adapts its route and flies toward the new location
12a. The Drone Commander denies permission for the drop because the spot is not safe
 12a.1 The Drone Commander uses the images from the drone camera displayed on DroneResponse to

mark a safe spot for the drop on the map
 12a.2 DroneResponse identify the coordinates for the spot marked on the map
 12a.3 DroneResponse transmits the new coordinates to the drone
 12a.4 The drones reaches the new location and drops the package
	

Use Case: Provide surveillance and information about a traffic accident
ID: UC-3

Description
One or more UAVs are dispatched to a traffic accident scene in order to provide information to the emergency
responders.

Primary Actor
UAV’s

Supporting Actors
Firefighters, Police, Medical crews

Stakeholders and Interests
Having specific information about a car accident (how many cars are involved, what is the exact location, traffic
jams, people injured, etc) can help emergency responders having the proper reactions.

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the ground and are activated
● DroneResponse received a approximative target position
● Search plan has been generated
● DroneResponse is running and UAVs are displayed on map
● An accident really is confirmed to be near the approximative target position
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The accident has been precisely located and relevant information has been transmitted to emergency responders.
Failure end condition:
The accident has not been found (“Prank ?”).

Trigger
The incident commander after receiving a 911 call

	 60	

Main	Success	Scenario	

1. A 911 call happens, the operator asks for the location, evaluates the situation and assigns a specific
number of drones for the mission. (like how bad it is and where.)

2. The drones plan their routes to avoid buildings and other obstacles.
3. The drones takeoff.
4. The drones fly to the location of the accident.
5. When either one of the drones reaches the targeted area, it switches to “locate_incident” mode where it

processes images from its camera in order to search for the accident.
6. Once one of the drones detects accident location.
7. It computes the GPS coordinates and sends the information to the operator.
8. The operator confirms that the accident site has been identified.
9. DroneResponse sends accident coordinates to other UAV’s participating in the mission.
10. The UAVs all determine positions from which to observe the accident.
11. When a UAV reaches its targeted position it switches to “information_gathering” mode where the UAV

streams imagery which is displayed on DroneResponse UI.
12. DroneResponse figures out the exact location.
13. The precise address of the accident and the surroundings of the road are sent to the emergency responders.
14. The time since the accident happened is displayed on DroneResponse monitor (time since 911 call?).
15. DroneResponse detects details such as number of cars, presence of fire, victims on the ground, and reports

this in the GUI.
16. Specific information about the environment of the incident is gathered using specific detection algorithms

(Traffic jam, Possible fire, Toxic leak, Available helicopter spot near the location, etc).
17. Specific information gathered by UAV’s is processed and classified into specific emergency categories.
18. DroneResponse sends the information to the related emergency services. (Traffic information sent to the

police, accident structure information sent to the firefighters, human related information sent to medical
staff).

19. DroneResponse provides UAV’s coordinates for a safe landing spot.
20. UAV’s fly to the safe spot and land there.
Exceptions	

3a. One drone fails to take off
 3a.1 DroneResponse transmits the parameters from that specific drone to a new one
 3a.2 The new drone takes off
6a. No drone can locate the accident.
 6a.1 An alert is sent through DroneResponse claiming that the accident can’t be located
 6a.2 DroneResponse displays images from the camera of each drones

 6a.3 The Drone Commander checks for the images and marks the accident as soon as it locates the

accident on one drone’s camera.

	

	

	 61	

Use Case: Detecting radiation on a specific height
ID: UC-13

Description
Multiple UAVs take off to specific areas to detect radiation on a certain height.

Primary Actor
Drone Commander

Supporting Actors
Semi-autonomous UAV

Stakeholders and Interests
Firefighters

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the ground and are activated
● Firefighters have marked specific area and a height to be record
● Recording_ route has been generated
● DroneResponse is running and UAVs are displayed on map
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
Each UAV has successfully returned back the record of radiation to form a radiation map
Failure end condition:
Half of the UAVs are not able to send back records so that the radiation map is not precise enough to provide
radiation information

Trigger
The Drone Commander activates the recording mission.

Main Success Scenario
1. The operator marks the incident area on the screen. [Scene_Annotation]
2. The operator launches DroneResponse and activates the “radiation_detection” mission. [Drone

Activated]
3. The Drone Commander creates recording-routes for each drone and input a height for them to begin

recording. [Scene_Annotation]
4. According to the numbers of routes, DroneResponse assigns each recording route for each drone.
5. Drones take off. [Take-off]
6. Drones follow the assigned routes. [Fly-to-Location]
7. Once each drone arrives at the first assigned coordinates, it switches to recording_mode (activates the

radiation sensor). [Environment Sampling]
8. Each sensor records each coordinate in its route and labels the coordinates to its related zone based on

thresholds using (mSV/Hour) as unit. [Environment Sampling]
 	

	 	

	 62	

Use Case: Creating and updating a heatmap of an on-fire building
ID: UC-7

Description
Several drones are dispatched to examine a building that is on fire and create a heatmap of it that will be updated
every X minutes (X provided by the user).

Primary Actor
Multiple UAVs

Supporting Actors
Firefighters

Stakeholders and Interests

Pre-Conditions
● DroneX system is active
● Multiple UAVs are equipped with cameras and are placed on the ground and are activated
● Drones are set to stay at least fixed distance away from fire
● DroneX is running and UAVs are displayed on map
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The fire heat map and other zone areas are successfully created for the firefighters to plan their heroic action.
Failure end condition:
The heat map is not created or not updated each _updatedFrequency_ seconds.

Trigger
The Drone Commander activates the scan mission.
Main	Success	Scenario	

1. A 911 call is received for a fire at a specific address. [emergency_call]
2. The operator dispatches fire trucks to the scene equipped with drones.[drones_transported_to_site]
3. DroneResponse downloads current NOTAMs including no-fly zones.[flight_prohibition]
4. Upon arrival at the fire site, the drone operator activates the drones.[drones_activated]
5. The drones activate their cameras and start streaming video.[camera_activation]
6. The drones plan coordinated flight routes in order to efficiently cover the building.[routes_planning]
7. The drones take off.[take_off]
8. Each drone uses its onboard imagery to avoid obstacles (walls, chimneys) and to fly around the

building.[collision_avoidance]
9. Each drone sends imagery to a central server.[image_streaming]
10. The DroneResponse central server analyzes the imagery and generates a live heatmap of the building.

[scene_reconstruction]
11. The DroneResponse central server analyzes the imagery and reconstructs a 3D view of the

scene.[scene_reconstruction]
12. Dynamically generated scenes are regenerated every _period_[scene_reconstruction]
13. Whilst mapping out the building, a drone detects a victim in the window.[target_detection]
14. The drone hovers in place by the window in which the victim is found.[target_tracking]
15. The drone sends a notification to the incident commander and streams video of the victim.

[d2h_event_notification]
16. When notified by the drone operator, the drone flies to the landing site and lands.[rtl]

Exceptions	

4.1: A drone is launched from the roof of the truck en-route to the scene. [drones activated]
4.2: The drone flies to the scene of the incident [fly-to location]
6.1: A subset of drones are assigned to map out the roof of the building. [Environment monitoring]
6.2: A subset of drones are assigned to map boundaries of the building [Environment monitoring]

At any time: A drone that is running low on battery returns home for a replacement battery. [battery
replacement]
At any time: DroneResponse staggers battery replacements by bringing some drones in before the battery
becomes repleted. [battery replacement]

	 63	

6.3: An operator requests that a drone fly to a fixed location and stream video. [fly-to
location]
X.1 The drone’s onboard sensor shows that it has flown into a turbulent heat area
[environment monitoring]
X.2, The drone adjusts its altitude and coordinates to avoid turbulent air. [flight adaptation]

	

Use Case: Avalanche
ID: UC-5

Description
Multiple UAVs are dispatched in order to look for people trapped in an avalanche.

Primary Actor
Several UAVs

Supporting Actors
Firefighters

Stakeholders and Interests
Firefighters/Medical Crew

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with thermal cameras and are placed on the ground and are activated
● Firefighters have marked the mountain area of to be searched
● Search plan has been generated
● DroneResponse is running and UAVs are displayed on map
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The entire mountain area has been covered with thermal camera drones.
Failure end condition:
The mountain area defined has not been covered fully.

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. An emergency call is received reporting an avalanche.
2. The operator launches DroneResponse and activates the “mountain_rescue” mission.
3. The Drone Commander specifies center coordinates and the size of a radius in order to fully cover the

avalanche.

4. According to the size of the radius, DroneResponse selects how many drones are required for that mission
and assigns a search plan for each drone. (As shown on the picture, each drone is covering his part
flying as a circle).

5. DroneResponse assigns search areas for each drone for the mission.
6. DroneResponse creates routes to the coordinates for drones to avoid prohibited areas.
7. Drones take off and follow the assigned routes.

	 64	

8. Drones heading to the assigned routes.
9. Each drone arrives at its associated coordinates and switches to “search_mode”.
10. Drones start using their thermal camera to look for trapped people in the snow.

11. One drone detects possible human-like heat sources(by setting a predefined temperature threshold for
example).

12. It sends alerts back to firefighters through DroneResponse.
13. The Drone Commander views the imagery and confirms the existence of humans there.
14. This specific place is marked on DroneResponse.
15. Its coordinates are sent to the medical crew/firefighters.
16. Medical crew/firefighters have been assigned to head to the update coordinates.
17. Medical crew/firefighters arrive at the scene.
18. The drone Commander recalls the Finder-UAV to its home-base.

Exceptions	

4a. The avalanche expands itself
 4a.1 DroneResponse asks the Drone Commander to specify new center coordinates and a radius
 4a.2 DroneResponse checks whether additional drones are required to cover the new surface
 4a.3 DroneResponse assigns search areas for each drone of the mission
7a. One drone fails to take off
 7a.1 DroneResponse assigns the parameters of the drone to a new drone
 7a.2 The new drone takes off
8a. Unable to function properly because of external factors such as strong winds or heavy snow.
9a. The thermal camera lens is blocked by the snow so that it cannot perform well on thermal-detection.
10a. One drone detects heat sources close to, but under the predefined temperature threshold
 10a.1 DroneResponse request additional imagery
15a. Medical Crew/Firefighters are unable to get to the coordinates due to external factors such as rift/valley
or extreme weather
11/12/13/14/16. Bad/Lost connection
	

	

Use Case: Tracking a suspect running away from a shooting
ID: UC-6

Description
Multiple UAV’s are dispatched in order to identify and track a suspect in a shooting

Primary Actor
Drone Commander

Supporting Actors
Police officers

Stakeholders and Interests
Police officers are likely to require help tracking a suspect that tries to run off a crime scene

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the ground and are activated
● Police officer specified the place the shooting happened
● Police officers are able to identify suspect for the drones to track
● DroneResponse is running and UAVs are displayed on map
● A suspect is in the search area

	 65	

● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The suspect has been identified and the drones are able to keep track of him
Failure end condition:
The suspect has not been identified or the drones lost track of the suspect

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. A 911 call is received reporting a shooting incident.
2. Police officers are deployed to the scene of a shooting with a set of drones.
3. Police officers place drones on the ground and activate them.
4. UAVs takeoff.
5. UAVs start surveilling the scene.
6. Drones stream real-time images from their cameras DroneResponse’s UI.
7. An operator identifies the suspect on the screen and marks him.
8. The drone identifies a person matching characteristics of the shooter (e.g., carrying weapons, wearing a

red jacket).
9. The drone switches to “suspect_tracking” mode.
10. Police officers surround the victim.
11. The drone hovers in the air and continues to stream video.
12. The suspect is arrested.
13. The drone flies to the landing site and lands.
Exceptions		(Sorry	numbers	got	messed	up	JCH)

1. The call includes a description of the shooter including his clothing. [Emergency Call]
2. DroneResponse failed to track the position of the police officers (Out of scope for this use case??)

a. The incident commander assigns itself the right coordinates
3. Communication is lost with the drone [lost communication]

a. A second UAV takesoff and replaces the missing drone [drone replacement]
5. The incident commander does not see the suspect [human physical activity]
7. The drone tracking the suspect will run out of battery in x minutes [battery replacement]

a. A second UAV will takeoff to replace the one out of battery [drone replacement]
	

	

Use Case: Chemical accident
ID: UC-4

Description
Multiple UAV’s are dispatched in order to analyse a gas source, observe its dissemination and help evacuating
an area if required.

Primary Actor
Several UAVs

Supporting Actors
Firefighters

Stakeholders and Interests
Firefighters. Civilians.

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the ground and are activated
● Multiple UAVs are equipped with multigas sensors (universal gas sensors)
● Multiplace UAVs are equipped with speficic gas sensors and weather sensors.
● Multiple UAVs are equipped with loudspeakers
● Firefighters have marked the accident area to be searched
● Search plan has been generated
● Critical infrastructures (hospitals, etc) have been identified and marked on DroneResponse
● DroneResponse is running and UAVs are displayed on map

	 66	

● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The gas source has been identified. The dissemination is tracked successfully by the drones.
Failure end condition:
The gas source has not been identified or the dissemination is not tracked by drones.

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. Emergency responders are dispatched to the scene of the accident.
2. Emergency responders release one drone to survey the accident.
3. The drone takes off.
4. The drone streams imagery to the DroneResponse UI.
5. The operator marks the scene of the accident.
6. The drone hovers in the air and continues to stream imagery of the accident.
7. The drone operator equips a small cohort of drones with appropriate gas sensors.
8. The drones coordinate their routes and start monitoring air quality.
9. Drones dynamically map out the region of the gas.
10. DroneResponse analyzes the gas map and visualizes the gas plume.
11. The operator identifies at-risk areas that could be impacted by the gas cloud.
12. The operator prepares a public voice message to warn the public.
13. DroneResponse assign routes to new drones in order to reach a critical infrastructure that has to be

evacuated.
14. Drones equipped with loudspeakers takeoff.
15. Drones equipped with loudspeakers fly toward the assigned area.
16. Drones arrive at destination and use loudspeakers to alert civilians that they have to evacuate as fast as

possible.[]
17. The incident commander recalls drones as deemed necessary.

Exceptions	

3a. Drone fails to take off
 3a.1 Another drone takes off to replace the one that failed
4a. The drone fails to communicate with DroneResponse to stream images
 4a.1 The drone stores the entire video stream in its memory
 4a.2 The drone sends videos stored as soon as the connection gets back
11a. No critical infrastructure nearby
 11a.1 Drones continue observing the dissemination of the gas plume
	

	

Use Case: Fly to targeted location to sample water
ID: UC-8

Description
Multiple UAVs head to a specific area to sample water

Primary Actor
Drone Commander

Supporting Actors
Semi-autonomous UAV, Incident Commaner

Stakeholders and Interests
firefighters, chemical researchers

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras, sampling systems and are placed on the active drones
● Firefighters/researchers have marked specific area to be sampled of the water quality
● Sample route has been generated
● DroneResponse is running and UAVs are displayed on map
● Each drone is able to carry multiple sampled containers
● All UAVs are equipped with collision avoidance technology

	 67	

Post Conditions
Success end condition
The samples are collected successfully by each UAV with its assigned water area.
Failure end condition:
Drones fails to collect samples back to home base

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. DroneResponse is launched with a “water_sampling” mission.
2. Incident Commander marks the water places on the DroneResponse map.
3. DroneResponse calculates appropriate routes toward each area, avoiding prohibited areas.
4. DroneRespone assigns the routes previously calculated to each drone.
5. The UAVs takeoff and fly following their individually assigned routes.
6. After arriving at its targeted location, UAV switches to “sampling_mode“.
7. After finishing its sampling mode, UAVs head to their next specific targeted water area (if there is any).
8. Repeats step 6 to 9 until water sampling for all the designated locations is completed.
9. Each drone returns back to its home-base to wait for researchers to collect the sample.
Exceptions	

5a. One drone fails to take off
 5a.1 DroneResponse assigns the parameters of the drone to a new drone
 5a.2 The new drone takes off
7a. Drone arrives on scene and there is no water place
 7a.1 The Drone Commander is alerted through DroneResponse
 7a.2 The Drone Commander has to define a new place on DroneResponse map
 7a.3 New coordinates are transmitted to the drone
8a. UAV fails to fill the sampling container due to external factors
10a. UAV fails to head to next targeted water area due to battery
 10a.1 Remaining areas are assigned to the other flying drones or new drones takeoff if the battery of the

flying ones is not sufficient to cover all areas

	

Use Case: Record Air quality level
ID: UC-9

Description
Multiple UAVs head to a specific area to sample air

Primary Actor
Drone Commander

Supporting Actors
Semi-autonomous UAV, Incident Commander

Stakeholders and Interests
Central Weather Bureau workers

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the active drones
● Multiple UAVs are equipped with air-quality sensors
● Workers have marked specific area to be recorded of the air quality
● Sample route has been generated
● DroneResponse is running and UAVs are displayed on map
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
The air-quality data is sent successfully by each UAV with its assigned aerial area.
Failure end condition:
Drones fails to send back air-quality data

Trigger
The Drone Commander activates the search.

	 68	

Main	Success	Scenario	

1. DroneResponse is launched and the “air_sampling” mission is loaded by the Incident Commander.
2. The Incident Commander marks an area on DroneResponse map to analyze its air quality.
3. DroneResponse creates routes to reach the area by avoiding areas that are flight prohibited.
4. Each drone gets its route assigned.
5. The UAVs takeoff and head toward their assigned location.
6. Each UAV heads to its aerial area.
7. After arriving at its assigned coordinates, UAV switches to “recording_mode” where each drone records

the air using its on-board air sensor, processes the air then sends the result to DroneResponse.
8. After finishing its recording_mode, UAVs head to their next specific targeted aerial area.
9. Repeat step 6 to 10 until each area to be covered have been done.
10. UAV’s then return to their home-based location.
Exceptions	

5a. One drone fails to take off
 5a.1 DroneResponse assigns the parameters of the drone to a new drone
 5a.2 The new drone takes off
6a. Communication is lost with an UAV
 6a.1 DroneResponse tries to restore communication every X seconds
7a. Drone arrives on scene and there is no water place
 7a.1 The Drone Commander is alerted through DroneResponse
 7a.2 The Drone Commander has to define a new place on DroneResponse map
 7a.3 New coordinates are transmitted to the drone
8a. UAV fails to recording air due to external factors
11a. UAV fails to head to next targeted water area due to battery
 11a.1 Remaining areas are assigned to the other flying drones or new drones takeoff if the battery of the

flying ones is not sufficient to cover all areas

Visual data window

	 	

	 69	

Use Case: 3D restitution of a school
ID: UC-10

Description
Multiple UAV’s are dispatched to build a 3D model of a school in order to identify possible entries and exits
points for police to manage a shooting situation

Primary Actor
Several UAVs

Supporting Actors
Police. Firefighters. Medical crew.

Stakeholders and Interests

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the ground and are activated
● Policemen have marked the accident area to be searched
● Search plan has been generated
● DroneResponse is running and UAVs are displayed on map
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition
A 3D model of the school has been built.
Failure end condition:
A 3D model of the school has not been built.

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. DroneResponse is launched and assigned the mission “building_restitution”.
2. DroneResponse assign routes to the drones.
3. The drones takeoff and fly to the assigned location.
4. Arriving at the scene, one drone identifies the boundaries of the building.
5. Another drone starts looking for entry / exit doors of the building and marks each door found.
6. DroneResponse processes information from both drones and builds a 2D map containing the shape of the

building and the marked entry/exit points.
7. Both drones now start gathering information to upgrade the existing model to a 3D map. They fly around

the building within the boundaries previously identified.
8. DroneResponse synchronizes its 2D model with the new images given by the drones and builds the 3D

model of the building.
9. Both drones switch to “advanced_search” mode and look for parts of the building the shooter might try to

escape from.
10. Drones mark each new place found.
11. DroneResponse synchronizes its 3D model with the new places found.
12. DroneResponse now has access to a fully detailed model of the building and transmits information to

the police.
13. The drone commander instructs the drones to return to launch.

Exceptions	

1a. Failed to gather the coordinate because of a connection problem with Google Maps
 1a.1 DroneResponse uses another software to identify coordinates
3a. One drone fails to take off
 3a.1 DroneResponse assigns the parameters of the drone to a new drone
 3a.2 The new drone takes off
4a. Drones can’t precisely identifie the boundaries of the building (Maybe buildings attached to each other?)
 4a.1 DroneResponse alerts the Drone Commander that drones are struggling to define precise
boundaries of the building
 4a.2 The Drone Commander uses DroneResponse map to draw the boundaries of the building
	 	

	 70	

Use	Case:		Man	overboard

ID:		UC-12	
	

Description	

Seaman	has	fallen	overboard	without	an	active	locator	
	

Primary	Actor	

Drone	 Commander	
	

Supporting	Actors	

Semi-autonomous	UAVs	
	

Stakeholders	and	Interests	

Naval	officers	

	

Pre-Conditions	

● Dronology	system	is	active	
● Multiple	search	drones	ready	for	dispatch	
● Drone	with	flotation	device	on	standby	
● Victim	fallen	overboard	

	

Post	Conditions	

Success	end	condition	

The	victim	is	rescued	

Failure	 end	 condition:	

The	victim	is	not	found	or	the	victim	is	found	but	not	actively	tracked.	
	

Trigger	

A	man-overboard	alert	is	raised	

Main	Success	Scenario	

1. The	search	area	is	computed	based	on	known	currents,	speed	of	the	boat,	and	predicted	time	in	the	
water.	

2. A	cohort	of	3-4	drones	is	dispatched	from	the	deck	of	the	boat.	
3. The	drones	self-organize	to	search	the	area.	
4. DroneResponse	actively	tracks	on	drones	in	flight.	
5. Drones	use	on-board	image	detection	to	identify	a	person	in	the	water.	
6. When	the	person	is	found,	the	GPS	coordinates	are	immediately	sent	to	DroneResponse.	
7. The	drones	coordinate	to	ensure	that	the	victim	is	tracked	using	line	of	sight.	
8. A	larger	drone	with	a	flotation	device	is	immediately	dispatched	to	the	scene.	
9. The	flotation	device	is	dropped	close	to	the	victim.	
10. Human	rescuers	in	a	boat	go	directly	to	the	scene	to	rescue	the	victim.	
11. Once	the	victim	is	retrieved	by	the	rescuers	the	drones	determine	the	location	of	the	ship	deck	using	an	

active	beacon.	
12. The	drones	use	the	beacon	signal	to	return	to	the	location	of	the	ship.	
13. The	drones	use	image	recognition	to	identify	the	landing	pad	and	land	in	the	correct	spot.	
	

	 	

	 71	

Use	Case:		Controlling	crowd	at	sports	event

ID:		UC-13	
	

Description	

Swimmers	must	be	cleared	from	the	water	for	high-speed	boat	races	in	ocean	
	

Primary	Actor	

Drone	 Commander	
	

Supporting	Actors	

Semi-autonomous	UAVs	
	

Stakeholders	and	Interests	

	

	

Pre-Conditions	

● Dronology	system	is	active	
● Drones	are	equipped	with	loud	speakers	
● Race	is	about	to	start	

	

Post	Conditions	

Success	end	condition	

All	swimmers	have	left	the	water	

Failure	 end	 condition:	

Swimmers	remain	in	water	preventing	the	start	of	the	race	
	

Trigger	

Race	is	about	to	start	

Main	Success	Scenario	

1. Drones	are	dispatched	from	the	takeoff	site	to	fly	along	the	shoreline.	
2. The	drones	stream	imagery	back	to	the	operator.	
3. The	drones	use	onboard	vision	capabilities	to	fly	along	the	shoreline.	
4. The	drones	search	for	swimmers	in	the	water.	
5. The	drone	detects	a	swimmer	in	the	water.	
6. The	drone	uses	its	onboard	speaker	system	to	tell	the	swimmer	to	get	out	of	the	water.	
7. The	drone	continues	to	patrol	along	the	beach	in	search	of	more	swimmers.	
8. When	the	drone	has	completed	an	initial	sweep	of	its	designated	area	it	turns	back.	
9. The	drone	again	checks	for	swimmers	in	the	water.	
10. The	drone	detects	a	swimmer	who	is	still	in	the	water.	
11. The	drone	uses	its	onboard	speaker	system	to	tell	the	swimmer	to	get	out	of	the	water	immediately.	
12. When	a	swimmer	refuses	to	get	out	of	the	water,	the	drone	computes	the	GPS	coordinates	of	the	

swimmer.	
13. The	drone	transmits	the	GPS	coordinates	of	the	swimmer	to	the	Beach	Patrol	police.	
14. The	drone	hovers	in	the	vicinity	of	the	swimmer	until	the	swimmer	gets	out	of	the	water.	
15. The	drone	completes	its	sweep	along	the	shoreline.	
16. The	drone	returns	to	base.	
	

	 	

	 72	

Use Case: Underwater ice rescue
ID: UC-14

Description
Child fall through ice and unable to get out

Primary Actor
Drone Commander

Supporting Actors
Semi-autonomous UAVs

Stakeholders and Interests

Pre-Conditions

● Dronology system is active
● Drone with rope and
● Victim trapped under the ice

Post Conditions
Success end condition
The victim is rescued
Failure end condition:
The drone is unable to place rope correctly

Trigger
Person under the ice in a lake

https://www.youtube.com/watch?v=KubDPkfRTIs
Main	Success	Scenario	

1. A single drone is dispatched to search the pond.
2. The human operator marks the region of the lake in which the victim is suspected to have fallen through

the ice on the map.
3. The drone constantly streams video back to the operator.
4. The imagery received by DroneResponse is annotated to show the victim and the rescuer as detected by

the drone.
5. When the drone identifies a victim under the ice, it raises a victim found alert.
6. When the drone identifies a victim, it hovers overhead to provide a beacon for the victim’s location.
7. The human rescuer slides over the ice to the location, cuts through the ice, and rescues the victim as per

normal rescue operations.

	 73	

8. The drone returns to its launch site.

** This one is kind of short.
	

	

Use Case: Supplies delivery during flood to people trapped on roofs of houses.
ID: UC-15

Description
https://www.fhwa.dot.gov/uas/resources/hif19019.pdf

Primary Actor

Supporting Actors
Semi-autonomous UAV

Stakeholders and Interests
Fire department engaged in river rescue
FAA concerned with flight regulations
General public

Pre-Conditions
● Dronology system is active
● Multiple UAVs are placed on the ground and are activated
● Recognition drones are equipped with cameras and loudspeakers
● Delivery drones are equipped with cameras and able to drop items with a parachute
● Firefighters have marked area of river to be searched
● Search plan has been generated
● DroneResponse is running and UAVs are displayed on map
● A victim is in the search area
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition

Failure end condition:

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. DroneResponse is launched with “delivery_supplying” mission.
2. The flooded area to cover is marked on DroneReponse UI.
3. DroneReponse generates a search plan and determines how many drones are required for the house

inspection process.
4. The search drones receive a specific search plan from DroneResponse.
5. The search drones take off.
6. The search drones fly toward the flooded area to be covered.
7. The search drones arrive on site and switch to “inspect_mode”.
8. Each search drone starts by identifying all the houses in its assigned area.
9. Then, each search drone inspects every house identified in order to find people trapped on the roof.
10. When a drone finds people trapped on the roof, it lowers it’s altitude and gets closer to the people.
11. The search drone maintains the safety distance with the people on the roof.
12. The search drone uses its loudspeakers to inform people to stay safe on the roof and that deliveries are

on their way.
13. DroneResponse assigns the coordinates of the house to a delivery drone.
14. The delivery drone takes off.
15. The delivery drone reaches the assigned house.
16. The delivery drone locates the best spot to deliver the package.
17. The delivery drone drops the package.
18. The delivery drone returns to its home-based location.

	 74	

19. The search drone continues its inspection process to find more people.
20. When the entire area has been covered, the search drones request the operator for a landing spot.

	

	

Use Case: Swimmer in rip current
ID: UC-17

Description
A swimmer is caught in a rip current and is being swept out to sea

Primary Actor
Drone Commander

Supporting Actors
Semi-autonomous UAVs

Stakeholders and Interests
Life-Guards
Coast-Guards

Pre-Conditions

● Dronology system is active
● Multiple search drones ready for dispatch

Post Conditions
Success end condition
The victim is rescued
Failure end condition:
The victim is not found or the victim is found but not actively tracked.

Trigger
Swimmer in rip-current alert sounded
Main	Success	Scenario	

1. Swimmers on the beach raise the alarm that somebody is caught in a rip current.
2. Life guards notify the coast guard.
3. Life guards are unable to visually locate the victim.
4. The coast guard dispatches rescue boats to the scene to search the area.
5. The coast guard dispatches multiple drones to the scene.
6. The drones immediately divide up the search area and start searching for the victim.
7. A drone locates the victim with low degree of certainty given the waves.
8. The drone attempts to track the victim.
9. The drone streams video to the DroneResponse UI.
10. A human responder confirms the potential sighting.
11. The coast-guard sends the rescue boat to the coordinates of the drone.
12. DroneResponse dispatches a specialized drone carrying a flotation device to the victim.
13. The drone drops the flotation device near the victim.
14. The drone attempts to position itself as a beacon indirectly above the victim.
15. The operator instructs the drone to continue tracking.
16. The rescuers reach the victim and rescue him.
17. All drones return to launch
	 	

	 75	

Use	Case:		Search	a	long	section	of	a	river	for	a	lost-kayaker

ID:		UC-18	
	

Description	

Two	UAVs	search	each	bank	of	the	river	in	a	downstream	direction	for	the	kayaker	

Primary	Actor	

Drone	 Commander	
	

Supporting	Actors	

Semi-autonomous	UAV,	Incident	Commaner	
	

Stakeholders	and	Interests	

Emer

Pre-Conditions	

● Kayaker	has	been	reported	missing	
● Multiple	UAVs	are	equipped	with	visible	imagery	cameras	
● Area	of	the	river	has	been	marked	
● All	UAVs	are	equipped	with	collision	avoidance	technology	
● Image	detection	trained	to	locate	a	kayak	as	well	as	a	person	

Post	Conditions	

Success	end	condition	

The	kayaker	is	rescued	or	a	body	is	retrieved	from	the	river	

Failure	 end	 condition:	

Neither	the	kayak	nor	the	kayaker	is	not	found	
	

Trigger	

The	Drone	Commander	activates	the	search.	

Main	Success	Scenario	

1. Emergency	responders	go	to	a	starting	point	on	the	river	with	two	drones.	
2. The	drone	operator	identifies	the	next	landing	spot	on	the	map.	
3. The	coordinates	of	the	next	landing	spot	are	uploaded	to	the	drones.	
4. The	drones	are	each	assigned	one	of	the	river	banks.	
5. The	drones	take	off.	
6. The	drones	fly	along	the	river	banks.	
7. The	drones	use	onboard	visible	imagery	cameras	to	search	for	a	kayak	or	person.	
8. The	drones	stream	imagery	to	DroneResponse	
9. Imagery	is	displayed	on	the	UI	
10. When	the	drones	reach	the	vicinity	of	the	next	landing	spot	they	hover	in	place	until	instructed	to	land.	
11. The	drone	operator	instructs	each	drone	to	land	in	turn.	
12. The	drone	operator	changes	the	drone’s	batteries.	
13. Steps	4	to	10	are	repeated	until	either	the	entire	river	section	has	been	searched	or	the	victim	has	been	

found.	
14. The	drone	finds	a	kayak	or	the	victim	caught	in	tree	branches	and		raises	an	alert.	
15. The	drone	hovers	in	place		awaiting	further	instructions.	
16. The	human	operator	checks	the	imagery	and	confirms	that	a	victim	has	been	sighted.	
17. The	GPS	coordinates	are	sent	to	drone	response.	
18. A	rescue	(or	retrieval)	boat	is	sent	to	the	location.	
19. When	the	rescue	boat	arrives,	the	drones	return	to	a	location	marked	by	the	drone	operator.	
	

	 	

	 76	

Use Case: Inspecting inaccessible houses after volcanic eruption
ID: UC-19

Description

Primary Actor

Supporting Actors
Semi-autonomous UAV

Stakeholders and Interests
Fire department engaged in river rescue
FAA concerned with flight regulations
General public

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the yyund and are activated
● Firefighters have marked area of river to be searched
● Search plan has been generated
● DroneResponse is running and UAVs are displayed on map
● A victim is in the search area
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition

Failure end condition:

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. The drone commander assigns “disaster_inspection” mission on DroneResponse.
2. The drone commander inputs coordinates to draw the search area on DroneResponse map.
3. DroneResponse processes the coordinates.
4. DroneResponse calculates a search plan so that the defined area is fully covered and each drone receives

an equivalent workload.
5. DroneResponse decides how many drones are required to search the area efficiently.
6. The mission plan is loaded into each drone.
7. The drones takeoff.
8. The drones fly toward their assigned areas.
9. Each drone activates its camera and starts streaming images live on DroneResponse UI.
10. Each drone starts to identify the houses in their assigned area.
11. Each drone flies around every house of its research area in order to identify the damages.
12. DroneReponse collects video imagery from multiple angles.
13. DroneResponse streams video imagery to a user interface.
14. The operator requests more details for a damaged part of the house.
15. The drone moves to the requested area.
16. The drone streams video imagery.
17. Once each drone has inspected every home in its area, it returns to its launch site.

	 	

	 77	

Use Case: Inspecting utilities after a major storm
ID: UC-20

Description
https://www.precisionhawk.com/blog/drone-imagery-increases-speed-and-safety-of-repairs

Primary Actor

Supporting Actors
Semi-autonomous UAV

Stakeholders and Interests
Fire department engaged in river rescue
FAA concerned with flight regulations
General public

Pre-Conditions
● Dronology system is active
● Multiple UAVs are equipped with cameras and are placed on the yyund and are activated
● Firefighters have marked area of river to be searched
● Search plan has been generated
● DroneResponse is running and UAVs are displayed on map
● A victim is in the search area
● All UAVs are equipped with collision avoidance technology

Post Conditions
Success end condition

Failure end condition:

Trigger
The Drone Commander activates the search.
Main	Success	Scenario	

1. The drone commander assigns “utility_impact_assessment” mission on DroneResponse.
2. The drone commander inputs the location of the mission.
3. DroneResponse assigns parameters to the drone, including flight regulations and collision avoidance.
4. The drone takes off and flies toward the utility location.
5. Arrived on site, the drone has to adequately target the utility, by identifying its boundaries.
6. Then, the drone provides real-time images of the utility state.
7. Following, the drone looks for the best access point for the repair crews to reach the utility by evaluating

the surroundings.
8. The drone finally focuses on the utility itself and the damages so that the repair crews can prepare the

right material before going on site.
9. DroneResponse streams the imagery of the drone camera on its UI.
10. The Drone Commander informs the repair crew about the current situation.
	 	

	 78	

Use Case: Map an area after earthquake
ID: UC-16

Description
An earthquake has hit a major city and drones are used to map the area.
https://blog.dronedeploy.com/after-mexico-city-earthquake-drones-help-make-sense-of-the-damage-
c056ce1d486c

Primary Actor
Drone Commander

Supporting Actors
Semi-autonomous UAVs
Urban Planners

Stakeholders and Interests
Public
Architects
Building inspectors

Pre-Conditions

● Dronology system is active
● Multiple drones

Post Conditions
Success end condition
The area is accurately mapped in a timely fashion

Failure end condition:
Areas with significant damage are missed

Trigger
Urban planners request aerial mapping following an earthquake
Main	Success	Scenario	

1. The urban planners select an area of the city to be mapped.
2. DroneResponse operators prepare drones for the mission.
3. DroneResponse divides the area into segments representing a mapping area.
4. DroneResponse assigns each drone a distinct mapping area.
5. Each drone is equipped with visible camera capabilities.
6. Each drone plans flight routes to provide coverage of its assigned area.
7. Drones take off and fly to their assigned mapping area.
8. When the drone arrives at its assigned mapping area it activates cameras.
9. The drone collects and stores imagery.
10. The GPS coordinates of the drone and configuration of the camera is recorded regularly.
11. The drone returns to its base and lands.
12. After landing, the drone uploads its imagery to a server for processing.
13. DroneResponse reconstructs a single visual map of the area from multiple video streams and geolocates

imagery onto a map.

Exceptions:
Battery replacement
Bad weather

	

