40 research outputs found

    Medical Diagnosis with Multimodal Image Fusion Techniques

    Get PDF
    Image Fusion is an effective approach utilized to draw out all the significant information from the source images, which supports experts in evaluation and quick decision making. Multi modal medical image fusion produces a composite fused image utilizing various sources to improve quality and extract complementary information. It is extremely challenging to gather every piece of information needed using just one imaging method. Therefore, images obtained from different modalities are fused Additional clinical information can be gleaned through the fusion of several types of medical image pairings. This study's main aim is to present a thorough review of medical image fusion techniques which also covers steps in fusion process, levels of fusion, various imaging modalities with their pros and cons, and  the major scientific difficulties encountered in the area of medical image fusion. This paper also summarizes the quality assessments fusion metrics. The various approaches used by image fusion algorithms that are presently available in the literature are classified into four broad categories i) Spatial fusion methods ii) Multiscale Decomposition based methods iii) Neural Network based methods and iv) Fuzzy Logic based methods. the benefits and pitfalls of the existing literature are explored and Future insights are suggested. Moreover, this study is anticipated to create a solid platform for the development of better fusion techniques in medical applications

    Real-time quantitative sonoelastography in an ultrasound research system

    Get PDF
    Quantitative Sono-Elastographie ist eine neue Technologie für die Ultraschall Bildgebung, die Radiologen maligne Tumoren ohne Risiko der strahlungsinduzierten Krebs (d.h. Mammographie) zu erfassen können. Aufgrund gefunden Rechenkomplexität in der aktuellen Algorithmen, Implementierung von Echtzeit-Anwendungen, die Prüfungsverfahren profitieren wurde jedoch noch nicht berichtet. Zusätzlich, aktuelle Schätzer für die Darstellung eine Elastizität Bilder vorhanden Artefakte der hohen Schätzung Varianz, die die Techniker in die Gegenwart steifer Massen irreführen könnten und zwar, falsch-positive Diagnose zu erzeugen. In dieser Arbeit wird eine GPU-basierte Elastographie-System entwickelt und an einem Forschungsultraschallgeräten implementiert. Quantitative Elastizität in Echtzeit bei 2 FPS mit einer Verbesserung Rechenzeitfaktor aus 26 wird gezeigt. Validierung der Systemgenauigkeit Anzeige wurde, auf Gelatinebasis Gewebe Phantome durchgeführt., waren niedrige Vorspannung der Elastizitätswerte berichtet wurde (4,7 %) bei geringe Anregungsfrequenzen nachahmt. Ausserdem wird eine neue Elastizität Schätzer auf quantitative Sono-Elastographie basiert eingeführt. Ein lineares Problem wurde entlang der seitlichen Abmessung modelliert und eine Regularisierung Methode wurde implementieren. Elastizität Bilder mit niedriger Vorspannung wurde darstellen (1,48 %) sowie seine Leistung in einer Brust kalibrierte Phantom mit verbesserter CNR (47,3 dB) im Vergleich mit anderen Schätzer ausgewertet sowie die Verringerung Seiten Artefakte bereits erwähnt in der Literatur (PD: 22,7 dB, 1DH 28,7 dB) gefunden. Diese zwei Beitrag profitieren, die Umsetzung und Entwicklung weiterer Elastographie Techniken, die eine verbesserte Qualität der Elastizität Bilder liefern könnten und somit eine verbesserte Genauigkeit der Diagnose.Quantitative sonoelastography is an alternative technology for ultrasound imaging that helps radiologist to diagnose malignant tumors with no risk of radiation-induced cancer (i.e. mammography). However, due to the high computational complexity found in the current algorithms, implementation of real-time systems that could benefit examination procedures has not been yet reported. Additionally, elasticity maps depicted from current estimators feature artifacts of high estimation variance that could mislead the technician into the presence of stiffer masses, generating false positive diagnosis. In this thesis, a GPU-based elastography system was designed and implemented on a research ultrasound equipment, displaying quantitative elasticity in real-time at 2 FPS with an improvement computational time factor of 26. Validation of the system accuracy was conducted on gelatin-based tissue mimicking phantoms, where low bias of elasticity values were reported (4.7%) at low excitation frequencies. Additionally, a new elasticity estimator based on quantitative sonoelastography was developed. A linear problem was modeled from the acquired sonolastography data along the lateral dimension and a regularization method was implemented. The resulting elasticity images presented low bias (1.48%), enhanced CNR and reduced lateral artifacts when evaluating the algorithm’s performance in a breast calibrated phantom and comparing it with other estimators found in the literature. These two contribution benefit the implementation and development of further elastography techniques that could provide enhanced quality of elasticity images and thus, improved accuracy of diagnosis.Tesi

    L'élastographie ultrasonore dynamique vasculaire : une nouvelle modalité d'imagerie non-invasive pour la caractérisation mécanique de la thrombose veineuse

    Full text link
    L’accident thromboembolique veineux, tel que la thrombose veineuse profonde (TVP) ou thrombophlébite des membres inférieurs, est une pathologie vasculaire caractérisée par la formation d’un caillot sanguin causant une obstruction partielle ou totale de la lumière sanguine. Les embolies pulmonaires sont une complication mortelle des TVP qui surviennent lorsque le caillot se détache, circule dans le sang et produit une obstruction de la ramification artérielle irriguant les poumons. La combinaison d’outils et de techniques d’imagerie cliniques tels que les règles de prédiction cliniques (signes et symptômes) et les tests sanguins (D-dimères) complémentés par un examen ultrasonographique veineux (test de compression, écho-Doppler), permet de diagnostiquer les premiers épisodes de TVP. Cependant, la performance de ces outils diagnostiques reste très faible pour la détection de TVP récurrentes. Afin de diriger le patient vers une thérapie optimale, la problématique n’est plus basée sur la détection de la thrombose mais plutôt sur l’évaluation de la maturité et de l’âge du thrombus, paramètres qui sont directement corrélées à ses propriétés mécaniques (e.g. élasticité, viscosité). L’élastographie dynamique (ED) a récemment été proposée comme une nouvelle modalité d’imagerie non-invasive capable de caractériser quantitativement les propriétés mécaniques de tissus. L’ED est basée sur l’analyse des paramètres acoustiques (i.e. vitesse, atténuation, pattern de distribution) d’ondes de cisaillement basses fréquences (10-7000 Hz) se propageant dans le milieu sondé. Ces ondes de cisaillement générées par vibration externe, ou par source interne à l’aide de la focalisation de faisceaux ultrasonores (force de radiation), sont mesurées par imagerie ultrasonore ultra-rapide ou par résonance magnétique. Une méthode basée sur l’ED adaptée à la caractérisation mécanique de thromboses veineuses permettrait de quantifier la sévérité de cette pathologie à des fins d’amélioration diagnostique. Cette thèse présente un ensemble de travaux reliés au développement et à la validation complète et rigoureuse d’une nouvelle technique d’imagerie non-invasive élastographique pour la mesure quantitative des propriétés mécaniques de thromboses veineuses. L’atteinte de cet objectif principal nécessite une première étape visant à améliorer les connaissances sur le comportement mécanique du caillot sanguin (sang coagulé) soumis à une sollicitation dynamique telle qu’en ED. Les modules de conservation (comportement élastique, G’) et de perte (comportement visqueux, G’’) en cisaillement de caillots sanguins porcins sont mesurés par ED lors de la cascade de coagulation (à 70 Hz), et après coagulation complète (entre 50 Hz et 160 Hz). Ces résultats constituent les toutes premières mesures du comportement dynamique de caillots sanguins dans une gamme fréquentielle aussi étendue. L’étape subséquente consiste à mettre en place un instrument innovant de référence (« gold standard »), appelé RheoSpectris, dédié à la mesure de la viscoélasticité hyper-fréquence (entre 10 Hz et 1000 Hz) des matériaux et biomatériaux. Cet outil est indispensable pour valider et calibrer toute nouvelle technique d’élastographie dynamique. Une étude comparative entre RheoSpectris et la rhéométrie classique est réalisée afin de valider des mesures faites sur différents matériaux (silicone, thermoplastique, biomatériaux, gel). L’excellente concordance entre les deux technologies permet de conclure que RheoSpectris est un instrument fiable pour la mesure mécanique à des fréquences difficilement accessibles par les outils actuels. Les bases théoriques d’une nouvelle modalité d’imagerie élastographique, nommée SWIRE (« shear wave induced resonance dynamic elastography »), sont présentées et validées sur des fantômes vasculaires. Cette approche permet de caractériser les propriétés mécaniques d’une inclusion confinée (e.g. caillot sanguin) à partir de sa résonance (amplification du déplacement) produite par la propagation d’ondes de cisaillement judicieusement orientées. SWIRE a également l’avantage d’amplifier l’amplitude de vibration à l’intérieur de l’hétérogénéité afin de faciliter sa détection et sa segmentation. Finalement, la méthode DVT-SWIRE (« Deep venous thrombosis – SWIRE ») est adaptée à la caractérisation de l’élasticité quantitative de thromboses veineuses pour une utilisation en clinique. Cette méthode exploite la première fréquence de résonance mesurée dans la thrombose lors de la propagation d’ondes de cisaillement planes (vibration d’une plaque externe) ou cylindriques (simulation de la force de radiation par génération supersonique). DVT-SWIRE est appliquée sur des fantômes simulant une TVP et les résultats sont comparés à ceux donnés par l’instrument de référence RheoSpectris. Cette méthode est également utilisée avec succès dans une étude ex vivo pour l’évaluation de l’élasticité de thromboses porcines explantées après avoir été induites in vivo par chirurgie.The venous thromboembolism such as the lower limb deep venous thrombosis (DVT) is a vascular pathology characterized by a blood clot formation that induces partial or total vessel lumen occlusion. Pulmonary embolism is a fatal complication of DVT where the clot detaches from the wall, circulates in the blood flow, and produces an obstruction of pulmonary arterial branches. The combination of clinical prediction rules (signs or symptoms) and blood tests (D-dimer testing) coupled to venous ultrasonography (i.e. compression ultrasonography, color Doppler) allows an accurate diagnosis of first DVT. Nevertheless, such clinical tools present poor results to detect recurrent thrombotic events. Then, in order to guide patients towards optimal therapy, the problem is no more to detect the presence of thrombus, but to evaluate its maturity and its age, which are correlated to their mechanical properties (e.g. elasticity, viscosity). The dynamic elastography (DE) has been recently proposed as a novel non-invasive imaging modality capable to characterize the quantitative mechanical properties of tissues. The DE is based on the analysis of acoustical parameters (i.e. velocity, attenuation, wave pattern) of low frequency (10-7000 Hz) shear waves propagating within the probed medium. Such shear waves generated by external vibration, or remotely using ultrasound beam focalisation (radiation force), were tracked using ultra-fast ultrasound or magnetic resonance imaging. A method based on DE and adapted to mechanical characterization of venous thrombosis may allow the quantification of diseases severity in order to improve the final diagnosis. This thesis presents the works related to the development and complete validation of a novel non-invasive elastography imaging method for the quantitative and reliable estimation of mechanical properties of venous thrombosis. In order to fulfil the main objective, it is first necessary to improve knowledge about mechanical behaviours of blood clot (coagulated blood) subjected to a dynamic solicitation similar to DE. The shear storage (elastic behaviour, G’) and loss (viscous behavior, G’’) moduli of porcine blood clots are measured by DE during the blood coagulation kinetics (at 70 Hz) and after completely coagulation (between 50 Hz and 160 Hz). These results are the first dynamic behaviour measurements of blood clots in such wide frequency range. The subsequent step consists in introducing an innovative reference instrument (« gold standard »), called RheoSpectris, dedicated to measure the hyper-frequency viscoelasticity (between 10 Hz and 1000 Hz) of materials and biomaterials. This tool is indispensable to validate new dynamic elastography techniques. A comparative study between RheoSpectris and classical rheometry is performed to validate the measurements on different materials (silicon, thermoplastic, biomaterials, gel). The excellent agreement between both technologies allows to conclude that RheoSpectris is a reliable instrument for mechanical measurements at high frequencies, which is not always possible with current tools. The theoretical basis of a novel elastographic imaging modality, labelled SWIRE (« shear wave induced resonance dynamic elastography ») is presented and validated on vascular phantoms. Such approach allows the characterization of mechanical properties of a confined inclusion (e.g. blood clot) from its resonance (displacement amplification) due to the propagation of judiciously oriented shear waves. SWIRE has also the advantage to amplify the vibration amplitude within the heterogeneity to help for its detection and segmentation. Finally, the method DVT-SWIRE ((« Deep venous thrombosis – SWIRE ») is adapted to the quantitative elasticity estimation of venous thrombosis in the context of clinical use. DVT-SWIRE exploits the first resonance frequency measured within the thrombosis during the plane (vibration of rigid plate) or cylindrical (simulating supersonic radiation force generation) shear waves propagation. The technique is applied on DVT phantoms and the results are compared to those given by the RheoSpectris reference instrument. This method is also used successfully in an ex vivo study for the elasticity assessment of explanted porcine thrombosis surgically induced in vivo

    Ultrasound stimulated acoustic emission for monitoring thermal surgery

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 88-93).Therapeutic ultrasound describes a non-invasive surgical technique by which high-energy ultrasound is delivered to malignant tissue. This method must be monitored in order to ensure that the correct tissues are treated and that the tissues are treated with the proper dose. Typically, therapeutic ultrasound has relied on MRI techniques to monitor the extent of the thermal surgery. Besides for the great cost and limited availability, MRI monitoring presents limitations for therapeutic equipment design because all other equipment must be compatible with the large magnetic fields created by the MRI system. A new method of monitoring is explored which uses a method coined Ultrasound Stimulated Acoustic Emission, USAE. This relatively new material property measurement method presented by M. Fatemi and J.F. Greenleaf in Science May 1998 relies on the low frequency stimulation of a material by overlapping two slightly differing high frequency ultrasound beams in a pattern which creates a region of low frequency, known as a beat frequency. The resulting low frequency stimulus is highly focused and localized. The low frequency pressure field causes cyclic forces and induces a mechanical displacement in the object being imaged. The low frequency response of the object from the ultrasound stimulus reveals information about the mechanical and ultrasound properties of the object, namely its stiffness and acoustical absorption coefficient. A diagnostic ultrasound system applying the USAE method for imaging biological tissues was designed and constructed for use in this thesis. In a series of experiments presented in this thesis, the USAE method is applied to imaging ex vivo porcine and rabbit tissue. Lesions are created with focused ultrasound and raster scanned in the focal plane by the two intersecting focused ultrasound fields to image the necrosed tissue. This method successfully rendered high-resolution images of the necrosed lesions. In addition, the amplitude of the USAE responses correlate well with temperature measurements in a study of nine samples of porcine fat and nine samples of porcine muscle. Evidence including a broadband response and fluctuating USAE amplitude indicate that the USAE method may also be used to detect cavitation events in tissue. The images and the temperature measurements demonstrate the effectiveness of the USAE method for imaging and monitoring biological tissue in conjunction with thermal therapy.by Jonathan S. Thierman.S.M

    Parallel three-dimensional acoustic and elastic wave simulation methods with applications in nondestructive evaluation

    Get PDF
    In this dissertation, we present two parallelized 3D simulation techniques for three-dimensional acoustic and elastic wave propagation based on the finite integration technique. We demonstrate their usefulness in solving real-world problems with examples in the three very different areas of nondestructive evaluation, medical imaging, and security screening. More precisely, these include concealed weapons detection, periodontal ultrasography, and guided wave inspection of complex piping systems. We have employed these simulation methods to study complex wave phenomena and to develop and test a variety of signal processing and hardware configurations. Simulation results are compared to experimental measurements to confirm the accuracy of the parallel simulation methods

    Evaluation of shear wave speed measurements using crawling waves sonoelastography and single tracking location acoustic radiation force impulse imaging

    Get PDF
    Many pathological conditions are closely related with an increase in tissue sti ness. For many years, experts performed manual palpation in order to measure elasticity changes, however, this method can only be applied on superficial areas of the human body and provides crude sti ness estimation. Elastography is a technique that attempts to characterize the elastic properties of tissue in order to provide additional and useful information for clinical diagnosis. For more than twenty years, di erent research groups have developed various elastography modalities with a strong interest for quantitative images during the last decade. Recently, comparative studies among di erent elastographic techniques have been performed in order to better characterize biomaterials, to cross-validate several shear wave elastographic modalities and to study the factors that influence their precision and accuracy. This comparison works may contribute to achieve standardization in quantitative elastography and their use in commercial equipment for their application in human patients. However, there is still a limited literature in the field of quantitative elastography modalities comparisons. This thesis focuses on the comparison between two elastographic techniques: crawling wave sonoelastography (CWS) and single tracking location-acoustic radiation force impulse (STL-ARFI). The comparison shows the estimation of the shear wave speed (SWS), lateral resolution, contrast and contrast-to-noise ratio (CNR) in homogeneous and inhomogeneous phantoms using both techniques. The SWS values obtained with both modalities are validated with mechanical measurements that are considered as ground truth. The SWS results for the three di erent homogeneous phantoms (10%, 13%, and 16% gelatin concentrations), show good agreement between CWS, STL-ARFI and mechanical measurements as a function of frequency. The maximum accuracy errors obtained with CWS were 2.52%, 1.63% and 2.26%. For STL-ARFI, the maximum errors were 6.22%, 5.63% and 4.08% for the 10%,13% and 16% gelatin phantom respectively. For lateral resolution, contrast and CNR estimated in the inhomogeneous phantoms, it can be seen that for vibration frequencies higher than 340 Hz, CWS presents better results than the obtained with STL-ARFI using distances between the push beams ( x) higher than 4 mm. However, using these vibration frequencies will not be feasible for in vivo tissues due to attenuation problems. It that sense, for lower vibration frequencies than 300 Hz and x among 3 mm and 6 mm, comparable lateral resolution, contrast and CNR was obtained. Finally, the results of this study contribute to the data currently available for comparing elastographic techniques. Moreover, the methodology implemented in this document may be helpful for future standardization for di erent elastographic modalities.Tesi
    corecore