
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2007

Parallel three-dimensional acoustic and elastic wave simulation Parallel three-dimensional acoustic and elastic wave simulation

methods with applications in nondestructive evaluation methods with applications in nondestructive evaluation

Kevin Edward Rudd
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Acoustics, Dynamics, and Controls Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Rudd, Kevin Edward, "Parallel three-dimensional acoustic and elastic wave simulation methods with
applications in nondestructive evaluation" (2007). Dissertations, Theses, and Masters Projects. Paper
1539623332.
https://dx.doi.org/doi:10.21220/s2-4ez7-qc09

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=scholarworks.wm.edu%2Fetd%2F1539623332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623332&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-4ez7-qc09
mailto:scholarworks@wm.edu

Parallel 3D Acoustic and Elastic Wave Simulation Methods with Applications
in Nondestructive Evaluation

Kevin Edward Rudd

Mechanicsville, Virginia

B.S. Physics, Virginia Commonwealth University, 2003
B.S. Computer Science, Virginia Commonwealth University, 2003

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

The Applied Science Department

The College of William and Mary
August, 2007

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Kevin Edward Rudd

Approved by the Committee, June, 2007

Committee Chair
Professor Dr. Mark Hinders, The Applied Science Department

The College of William and Mary

Associate Profi:essorDr. Nikos Chrisochoides, TlThe Computer Science Department
The College of William and Mary

Assistant Professor Dr. Christopher Del iNlegro, The Applied Science Department
The College of William and Mary

Assistant Professor Dr. Leah Shaw, The Applied Science Department
The College of William and Mary

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

ABSTRACT PAGE

In this dissertation, we present two parallelized 3D simulation techniques for three-
dimensional acoustic and elastic wave propagation based on the finite integration
technique. We demonstrate their usefulness in solving real-world problems with examples
in the three very different areas of nondestructive evaluation, medical imaging, and security
screening. More precisely, these include concealed weapons detection, periodontal
ultrasography, and guided wave inspection of complex piping systems. We have
employed these simulation methods to study complex wave phenomena and to develop
and test a variety of signal processing and hardware configurations. Simulation results are
compared to experimental measurements to confirm the accuracy of the parallel simulation
methods.

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Table of Contents

1. Introduction.. 1
1 .1- Introduction... 1
1.2- Acoustic and Elastic Wave Simulation Methods.................................... 3

1.2.1 - The Finite Integration Technique... 3
1.2.2 - Finite Difference M ethod... 5
1.2.3 - Boundary Element M ethod.. 6

1.3 - 2D and 2.5D Simulation Examples... 8
1.3.1 - 2D Elastic Block.. 8
1.3.2-2D Lamb W aves... 12
1.3.3 - Axial-Symmetric (2.5D) Cylindrical Acoustic Simulations 15

1.4 - Need for 3D Computer Simulation Methods .. 18
1 .5- References.. 19

2. Parallel Three-Dimensional Acoustic Finite Integration
Technique (3DPAFIT)... 21
2.1 - Three-Dimensional Acoustic Finite Integration Technique.................. 22

2.1.1- Derivation of the Discrete Simulation Equations....................... 22
2.1.2 - Derivation of the Discrete Continuity Equation........................... 23
2.1.3 - Derivation of the Discrete Equation of Motion 26
2.1.4 - Stability Criteria... 28

2.2 - Simple Scattering Examples and 3D Visualization............................... 29
2.2.1 - Three-Dimensional Visualization.. 29
2.2.2 Acoustic Scattering from Simple-Shape Objects............................. 30

2.3 Parallel Acoustic Finite Integration Technique... 33
2.4 Inhomogeneous Simulation Spaces... 36

2.4.1 Discretization of Material Parameters.. 36
2.4.2 Sample Acoustic Interaction with Objects of Different Materials ... 37
2.4.3 Simulations including Material Layers... 39

2.5 3DPAFIT Conclusions.. 41
2.6 References... 42

3. Experimental Verification of 3DPAFIT.. 43
3.1 - Experimental Apparatus.. 43
3.2 - Acoustic Back Scatter Experiments... 46

3.2.1 - Scattering from two 18” Cylinders.. 47
3.3 - Signal Processing... 50

3.3.1 - The Short Time Fourier Transform (Spectrogram)......................... 50
3.3.2 - Feature Extraction... 53
3.3.3 - Feature Extraction using Pulse Compression.................................. 58

3.4 - Comparison to 3DPAFIT Simulations... 63
3.5 - Conclusions... 67
3.6 - References... 68

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4. Applied 3DPAFIT Simulations:
Nonlinear Acoustic Concealed Weapons Detection...................................... 69

4.1 - Nonlinear Concealed Weapons Detection.. 69
4.2 - KZK Nonlinear Sound Beam Simulations.. 71

4.2.1 - Linear vs. Nonlinear Parametric Simulations.................................. 72
4.2.2 - Comparison of Simulation and Experimental Results.................... 77
4.2.3 - Comparison of Confocal and Parametric Transducer
Configurations.. 79

4.2.3.1 - Parametric Transducer Array Configuration...........................80
4.2.3.2 - Confocal Transducer Configuration.. 83
2.2.3.3 - Comparison of the Two Transducer Configurations.............. 88
4.2.3.4 - Amplitude Modulated Beat Frequency -

Vibro-Acoustography.. 94
4.2.3.5 - Confocal vs. Parametric Array Conclusion.............................95

4.2.4 - Effects of the Initial Sound Pressure Intensity on the
Resulting Sound Beam ..95

4.2.5 - Extended Distance Simulations.. 100
4.2.6 - Nonlinear Sound Beam Discussion.. 103

4.3 - 3DPAFIT Simulations with Incident Nonlinear Sound Beam105
4.3.1 - Nonlinear Sound Beam Input..105
4.3.2 - Inserting and Scattering from a Human M odel.................................. 105
4.3.3 - Inserting CAD M odels.. 110
4.3.4 - Back Scattered Acoustic Energy as a Function of A ngle................ 112

4.4 - Conclusion.. 116
4.5 - References.. 117

5. Applied 3DPAFIT Simulations: Ultrasonic Periodontal P ro b e 118
5 .1 - Introduction..118

5.1.1 - The Ultrasonic Periodontal Probe...119
5.2 - Acoustic Simulations of the Ultrasonic Periodontal Probe.........................123
5.3 - Two-Dimensional Periodontal Tissue and Tip Geometry...........................125

5.3.1 - Adaptable 2D Periodontal Tissue M odel..127
5.3.2 - Adding the Periodontal Pocket... 128
5.3.3 - Two Dimensional Tip Construction and Placement...........................129

5.4 - Three Dimensional Periodontal Pocket and Ultrasonic Tip Geometry 131
5.5 - Example Simulation Output and Visualization... 135
5.6 - Rigid Simulation and Experimental Results..139
5.7 - Periodontal Tissue Material Parameters.. 142
5.8 -10 MHz Ultrasound Beam Study... 143
5.8 - Conclusions...149
5.9 - References...149

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6.3D Parallel Cylindrical Elastic Finite Integration Technique (3DPCEFIT). 153
6.1 - Introduction...153
6.2 - 3D Cylindrical Elastic Finite Integration Technique (3DCEFIT).............. 154
6.3 - Finite Integration Procedure...154
6.4 - Modifications for Pipe Bends...163
6.5 - Stability Criteria..166
6.6 - Boundary Conditions..168
6.7 - Absorbing Boundary Layers.. 169
6.8 - Parallel Implementation..170
6.9 - Conclusions...172
6.10 - References...173

7. Applied 3DPCEFIT Simulations: Guided Waves in Complex Piping Geometries
7.1 - Introduction...174
7.2 - Comparison with Experimental D ata...176
7.3 - Guided Wave Scattering From Flaws.. 178
7.4 - Focusing Techniques.. 180

7.4.1 - Focusing with Hardware: Phased Array Transducer Belts................... 180
7.4.2 - Focusing in Software: The Synthetic Aperture Focusing

Technique (SAFT)... 183
7.5 - Pipe Bend Simulations..186
7.6 - 3DCEFIT Conclusions... 190
7.7 - References...191

8. Conclusions.. 192

A l. Appendix 1 - Determining Parameters of the Nonlinear KZK
Simulation C ode... 196

A2. Appendix 2 - Simulation Source C ode..208

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Acknowledgements

I would like to thank the many people who helped make this research possible and
successful. This includes Kevin Leonard, Jill Bingham, Jonathan Stevens, Wen Gao,
Crystal Bertoncini, Brian Walsh, and Alison Pouch for all there assistance and helpful
discussion. I would also like to thank Tom Crockett and Chris Bording for all their
technical help regarding the SciClone.

Most importantly, I would like to sincerely thank my advisor Dr. Hinders for his all of his
support. I am grateful for all the knowledge I have gained from his teachings, advice,
and example.

Dedication

To my wife Meghan for all her love and support.

iv

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter I

Introduction

1.1 Introduction

This dissertation focuses on three-dimensional parallel computer simulation

methods for simulating acoustic and elastic waves in realistic geometries. We present

two three-dimensional parallel simulation methods and demonstrate their usefulness with

three very different applications in nondestructive evaluation. These applications range

from locating corrosive damage in complex piping systems to detecting concealed

weapons using nonlinear acoustics. We utilize the 3D parallel simulation methods to

develop and test experimental hardware configurations and signal processing algorithms.

Computer or numerical simulations are based on mathematical models of physical

laws. They are used to perform complex numerical experiments to solve problems that

are difficult or impossible to solve using traditional mathematical methods. We will

focus on the finite integration technique (FIT) for simulating acoustic and elastic waves,

but we will also use a finite difference method for simulating nonlinear acoustic waves in

Chapter 4. The different techniques for simulating acoustic and elastic waves will be

presented in the next section. At the end of this introduction, we will present examples of

2D acoustic and elastic wave simulations and then discuss both their usefulness and

limitations.

1

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Today’s desktop computers do not have the computational resources to run full

3D realistic simulations. The simulation methods presented in this dissertation have been

designed to distribute the computational demands across many computers networked

together to form a supercomputer. Each computer works on its own part of the

simulation space and stays in constant communications with the other computers to

perform large 3D simulations. Each computer works in parallel with the others (hence

the term parallel in the names of the simulation method).

In Chapter 2, we present the 3D parallel acoustic finite integration technique

(3DPAFIT) for simulating acoustic waves with large and realistic geometries. We

validate this simulation method with a novel experiment that is presented in Chapter 3.

In this experiment, we use an air-coupled nonlinear sound beam to study the acoustic

back scatter from multiple objects. We then demonstrate the usefulness of this simulation

method with two very-different applied examples. These are the development of a

nonlinear acoustic concealed weapons detector in Chapter 4 and an ultrasonic periodontal

probe in Chapter 5.

A 3D parallel cylindrical finite integration technique (3DPCEFIT) for simulating

elastic waves in complex piping geometries is presented in Chapter 6. This simulation

method introduces a coordinate transform to handle elastic waves in pipe bends. In

Chapter 7, the 3DPCEFIT method is validated by direct comparisons to experimental

data and simulation results from a commercial finite-element package. Several

simulation scenarios are presented including guided elastic wave interaction with

corrosive-like flaws in pipes and hardware and software guided wave focusing

techniques.

2

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.2. Acoustic and Elastic Wave Simulation Methods

There are many simulation methods for modeling acoustic and elastic waves. All

of them begin with a set of partial differential equations that govern the wave mechanics.

Some simulation methods begin with a wave equation while others begin with

conservation laws. The specific details of the discretization and solution methods are

where the simulation methods differ.

1.2.1 The Finite Integration Technique

Since this dissertation mainly focuses on the finite integration technique, we will

review its theory and the relevant work of other researchers in detail. The finite

integration technique has been successfully used to model acoustic, elastic, and

electromagnetic waves [1]. The finite-integration method is similar to the finite-

difference method but has some important distinctions. The finite-difference method

directly approximates the derivatives of a differential equation, where as the finite-

integration technique first integrates the differential equation over a control volume and

then approximates the integrals. In simple cases, both methods can yield the same

discrete versions of a given differential equation. The advantage of the finite integration

method is that it leads directly to a staggered grid formulation that is more stable and

accurate [2, 3]. It also provides a simpler method of handling boundary conditions as

well as the discretization of inhomogeneous and anisotropic materials [3].

The finite integration technique has been used successfully to simulate acoustic

and elastic waves for a variety of applications. Fellinger et al. first introduced the

Elastodynamic Finite Integration Technique (EFIT) for simulating elastic waves in 2D

3

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

and 3D Cartesian coordinates [2]. They start with Cauchy’s equation of motion and the

deformation rate equation and integrate them over a cube (or square for 2D). In 3D, the

discretization leads to a staggered grid of 12 variables: the three components of the

velocity vector, the six components of the stress tensor, and the three material

components (density and the two Lame constants). Fellinger also includes a very detailed

derivation of the stability criteria that is valid for the finite integration techniques

introduced in this dissertation. At the end of this chapter, we show two example

simulations using the 2DEFIT method. The first simulates an impulse on the top of a

steel block, and the second simulates Lamb waves in an aluminum plate.

Peiffer et. al. developed the Cylindrical Acoustic Finite Integration Method

CAFIT for simulating acoustic waves in axial symmetric cylindrical coordinates [4].

This allowed for the simulation of limited 3D scenarios using a 2D simulation space.

They begin with the linear equation of continuity and of motion. These equations are

integrated over a 3D “piece-of-cake” control volume. It is assumed that the acoustic

waves are axial symmetric, so this integration reduces to two dimensions: axial (z) and

radius (r). The discretization leads to a staggered grid of only three variables, which are

the two velocity components and the acoustic pressure. They validate this simulation

method against two well known test cases. The first is a spherical expanding pressure

wave and the second is a piston in an infinite baffle. For both cases, the CAFIT

simulation was very accurate. At the end of this chapter we will show sample CAFIT

simulations that were used to study ultrasound scattering from air and fat bubbles in the

blood stream.

4

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

F. Schubert et al. developed the cylindrical elastodynamics finite integration

technique for simulating elastic waves in axial-symmetric cylindrical coordinates

(CEFIT) [3]. Schubert starts with Hooke’s law and the equation of motion and

discretizes these equations in a similar manner to Fellinger’s and Peiffer’s methods.

Shubert also includes a detailed derivation on handling inhomogeneous materials and

various boundary conditions including a plane-wave boundary condition. In a later

paper, Schubert demonstrates how the EFIT technique can be used to simulate a variety

of applications including inspection of concrete and acoustic emission problems [5].

Also, in this same paper, he uses the EFIT technique to simulate a one-dimensional

nonlinear elastic wave. The EFIT technique has also been shown to model dissipative

and anisotropic materials [6], air-coupled ultrasound [7], and applied to various NDE

techniques [8].

1.2.2 Finite Difference Method

The finite difference method is one of the most common and widely used

simulation methods. It has been used to simulate and model a wide variety of processes

in acoustics, elastodynamics, thermodynamics, electromagnetics, and even used in fields

such as financial modeling. The finite difference method is a relatively simple method.

The derivatives of a differential equation are directly approximated with a finite

difference. This transforms a differential equation into an algebraic “difference”

equation. Given both the initial and boundary conditions, the difference equation is then

solved to yield an approximate solution to the original differential equation. The most

notable cases that are related to the research in this dissertation will be mentioned here.

5

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A majority of the advances in elastic wave propagation methods utilizing the

finite-difference method have come from the geophysics community. Kelly et al.

developed a 2D finite difference simulation method based on second-order elastic

equations [9, 10]. J. Vireux introduced a finite difference method for simulating shear

horizontal (SH) waves [11] and pressure and shear vertical (P-SV) waves [12]. He

begins with the basic elastic equations and uses a staggered grid similar to the one used in

the finite integration method. Since then, many researchers have used the finite-

difference method to study elastic waves including sonic logging [13, 14]. Bohlen

introduced a 3D parallel finite difference method that uses a domain decomposition

scheme similar to the one used in this dissertation [15].

1.2.3 Boundary Element Method

The Boundary Element Method (BEM) is another popular technique for studying

acoustic problems. It was first introduced by Chen and Schweikert [16] in 1963. The

boundary element method directly solves the Helmholtz equation in either a bounded

interior domain or an unbounded exterior domain [17]. One of the main advantages of

the boundary element method is that only the boundary of the domain and interfaces need

to be discretized and not the entire simulation space. This is import important when

realistic 3D volumes were impossible to simulate with even the largest computers. In

many cases, this reduces the complexity and computational time of setting up a

simulation. The BEM may not be the best simulation method when the geometry of the

problem is complicated or when there are many material boundaries.

6

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The boundary element method is typically used to study steady state problems

such as radiation from an arbitrary vibrating source or scattering from an object with a

continuous source. Early research has been carried out for time-dependent problems [18,

19]. In addition, the boundary element has also been successfully used to study

elastodynamics problems [20]. For an overview of the Time-Domain Boundary Element

Method, refer to the chapter 8 of reference [17].

7

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.3 - 2D and 2.5D Simulation Examples

Simulations are very useful tools for exploring and visualizing elastic and

acoustic wave propagation and interaction. Two-dimensional simulations are now

relatively easy to program in a high level numerical software package such as MATLAB.

We here present some examples of two-dimensional simulations and show they are useful

for visualizing and learning about the different types of waves, their propagation,

interaction, and complex mode conversions. First we present a 2D elastic simulation

method and demonstrate its usefulness for exploring and learning about elastic wave

propagation. Then we present an applied example of how we can use the finite

integration technique to characterize air-bubbles in the blood stream.

1.3.1 - 2D Elastic Block

Elastic waves are much more complicated phenomena than acoustic waves.

There are three types of waves that can co-exist in a solid: longitudinal bulk

(compression), transverse bulk (shear), and surface-guided waves. When these waves

interact with an interface, material variation, edge, inclusion, or flaw, a portion of the

wave energy will mode-convert to another type of wave. For example, a longitudinal

wave obliquely incident on a boundary between two solid materials will result in atleast

four outgoing waves: a transmitted and reflected longitudinal wave and a transmitted and

reflected transverse wave.

Figure 1.1 shows four time snapshots of a 2D elastic wave simulation. An

impulse (a half-cycle 800 kHz wave) excites the top of a 7 cm square steel block. The

colors of these plots are proportional to the absolute velocity of the material. Radiating

8

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

from the point of impact are the three different elastic wave types. Just as expected, the

longitudinal wave is the fastest followed by the shear wave and then the surface wave.

As the longitudinal wave reflects from the edges, some of the energy is converted into a

transverse wave.

V ' ■vy

Figure 1.1. 2D elastic wave simulation. An impulse excites the top of a 7-cm
square block. In the bottom left snapshot, the labeled waves are longitudinal
wave (a), transverse wave (b), surface (Rayleigh) wave (c), and a reflected
longitudinal wave (d). The shear wave (e) is the result of a mode-conversion
from the reflected longitudinal wave on the left edge.

9

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Looking at figure 1.1, it is difficult to distinguish between the different wave

types. One of the advantages of simulations is the ability to stop time and to examine

complex phenomena more carefully. Another advantage is the ability to look inside a

material that is often impossible to do experimentally. Instead of a false-color plot of the

absolute velocity, figure 1.2 shows three quiver plots of three areas inside the steel block.

A quiver plot is a set of arrow or vectors indicating the discrete velocity of the material.

The velocity profile of the longitudinal, transverse, and surface wave are all

shown in Figure 1.2. The large black arrow indicates the direction the wave is

propagating. In these plots it is easy to see the difference in the longitudinal and

transverse wave. With a longitudinal or compression wave, the local material velocity

components are parallel to the direction of the propagating wave. With a transverse or

shear wave, the local material velocity component is perpendicular to the direction of the

propagating wave. The surface or Rayleigh wave has an elliptical velocity profile.

10

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

* s \ W \ W
w \ \ \ \ w

. . Vv^swxwwwU^WUv
* x \ \ \ \ n v n w x w X V N X W W x \ \„ \ \ \\\\ \ \ \W\\ \ \ \ \W\\ \ \ \ » wwXnnW^^^UWui . . .

w u u n u i l i u l j U \ \ U V » (u , ,t i i i i i \ i \ \ a j j .\ x 5 5, \ J J j 5 j \ \ \ X V i v v . , ,' ' ' ' ' ' M S 5 > 51 J 12 n 55 i ' " " ' \ > ■ ■ ' ■ ■' ' j j 5 s s s n i 5 n j j i ^ " " ' ' ' < > ' \2 j s s 5 s s n 5 n J ' ' " ' " ' ' > ' ■ ■ • \

/ / / /
^ / / / /
/ / / >,

Figure 1.2. Velocity profiles of a longitudinal (top), shear (middle), and
surface (bottom) waves. The large black arrow indicates the direction of
the wave propagation.

11

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.3.2 - 2D Lamb Waves

Lamb waves axe routinely used to nondestructively evaluate thin solid materials

such as sheet metal, piping, and composites. In chapter 6, we present a 3D cylindrical

simulation method for modeling Lamb waves in complex piping systems. Lamb waves

are guided elastic wave modes that form after multiple reflections and mode conversions

from the top and bottom surface of a thin plate. There are two types of Lamb wave

modes: symmetric and anti-symmetric. The quantity and group velocity of these modes

is dependent on the thickness of the plate and frequency of the initial excitation.

Figure 1.3 shows snapshots of a 2D elastic wave simulation of a 3.2 mm thick

aluminum plate. The color of these snapshots is proportional to the velocity of the plate

in the xi-direction (out of plane). A 1mm transducer excites the top of the plate with a

five cycle 680 kHz tone burst. At first, the lamb wave modes overlap. As they propagate

down the plate, the three Lamb wave modes separate because they have different group

velocities. The bottom snapshot of figure 1.3 identifies the three modes.

iiw °

W iffTB 111—BUB M i

Figure 1.3. 2D elastic wave simulation of Lamb waves in a 3.2 mm thick aluminum
plate. At 680 kHz, three Lamb wave modes form and propagate at different
velocities.

12

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6

Frequency thickness product
of this simulation.

5

4

M
31
E

730
1

2

1

0
Frequency * Plate Thickness

Figure 1.4. A dispersion curve showing the group velocities of the lamb waves
as a function of the frequency plate thickness product. The dotted line indicates
the Lamb wave velocities for the simulation shown in figure X-3.

Figure 1.4 shows the Lamb wave dispersion curve for an aluminum plate. A

dispersion curve provides the group velocity of the Lamb wave modes as a function of

the frequency and plate-thickness product. The dotted line indicates the location along

the dispersion curves where this simulation is carried out. It clearly indicates that there

should be three modes and in order of velocity they are ai, ao, and so. This is exact order

we see the lamb waves in the simulation snapshot.

The snapshots in figure 1.3 are very informative, but we can extract more

detail from the 2D simulations. Figure 1.5 shows the velocity profile of the symmetric So

and anti-symmetric ao modes. From these quiver plots, it is easy to see the differences

between the two mode types.

13

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

t I '
\ ^
\ N
\ ^

I t t 1 f t t .

/ M t 1 \ N _
^ / t \ \ \ -V _

. / I \ \ V _

" \ \ I J S *'
' I J j I J '
' t i n 1 '

M M W 1
/ M M ' . '
/ / i \ \ ̂ 'S / 1 \ \ ■

\ \ f t / s
\ \ \ t t r
t t f f f I

1 t t t t 1 r
f t t \ \ \ \
/ f t \ \ \ ^ .

. / / t \ \

\ I J / ‘
\ \ u / '
i H | I 1

1 I• / /• M /
/

. "v. \

. \ \

. t J

M l / M '
' t | J I 1
1 I I M 1
M U P
1 i n \ "
M \ \ \ ^
‘ M \ \ ̂
‘ M \ \ x
• ' \ \ \ ^

" ‘ v \ \ ^

f I Af f f

t t t
t f f
t f t
/ f t

I I
I *

\
\ ^
\ ^
I ^
I '•
I I
I >
I >•

Figure 1.5. Velocity profiles of a symmetric so (top) and anti­
symmetric ao (bottom) Lamb wave modes.

These two-dimensional simulations are a valuable tool for learning about complex

elastic wave propagation. It is simple to “experiment” with the different simulation

parameters and to observe how they affect the wave propagation. The simulation can be

stopped to closely study the fine details of the wave propagation, interaction, and mode

conversions.

14

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.3.3. Axial-Symmetric (2.5D) Cylindrical Acoustic Simulations

Now we present an applied example of a cylindrical acoustic finite integration

simulation method. In this study, the frequency-domain and time-domain analysis of

ultrasound scattering by fluid spheres is applied to emboli classification. An embolus (pi.

emboli) refers to a microbubble, generally of gas or lipid composition, that flows through

the bloodstream. Presenting a significant health hazard, these emboli may occlude blood

vessels and thereby prevent the flow of blood to surrounding tissue and vital organs [21].

The cylindrical acoustic finite integration technique was used to model the ultrasound

scattering in order to evaluate the inverse problem of determining the size and

composition of individual spherical scatterers.

Figure 1.6 shows several snapshots of an acoustic wave interacting with a small

air bubble in blood. A typical pulse-echo A-line is shown in Figure 1.7. The back

scattered acoustic wave from the simulation is compared directly to a theoretical back

scatter model [22]. Figure 1.8 shows the two signals plotted together showing good

agreement. This example shows that 2D and 2.5D simulations can be useful for solving

problems of simple geometries.

15

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

r-d
iaa

j:e
 j

m
rft

is)

0.002 0.004 0.0GB O.OW 0.01 0.012 0014 0.016 0.019
i-Jiit»nc* (meter*)

08 0.01 0012 OOU 0016 0019
i - d is lV i c a (r n « v rf)

0.009 0 01 0.012 0.014 0.016 0016
Mfutwic* (muter*)

0.002 0.004 0006 Q.UU3 0.01 Q.012 0.014 0.016 0.018 0002 0004 00C6 0.008 001 0.012 0.014 0016 0.018
z-ilrttene* (muter*) i-ifi*tanee (meter*)

Figure 1.6. Snapshots from a CAFIT simulation showing the ultrasound scattering
from air bubble in blood.

16

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

C A F IT S im u la t io n A -line
0.05

0.04 exc ita tion p u lse

0.03

0.02
re flec tion from bu b b le

s e c o n d a ry p u lse
0.01

-0.01

-0.02

-0.03

-0.04

-0.05
100 200 300 400 500 600 700

Figure 1.7. An A-line produced by the CAFIT simulation for a 300pm
air bubble in blood.

Reflection from Air Bubble
CAFIT Simulation an d A nalytical Model

0.06
CAFIT
A nalytical

0.04

0.02

-0.02

-0.04

-0.06
100 110 120 130

Figure 1.8. Time-domain reflection from air in blood. The CAFIT
curve is shown in blue, and the analytical comparison is presented in
black.

17

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.4. Need for 3D Computer Simulation Methods

In the previous section, we demonstrated the pedagogical value of 2D simulations

and also presented a case where they can solve simple real-world problems. In most

situations, the geometries are too complex to generalize into a 2D problem. The ability to

simulate full 3D wave propagation and interaction in realistic geometries is the goal of

this dissertation. The major limitation to solving full 3D simulations it the computational

resources required. For example, to simulate a 330 kHz acoustic wave in a two-

dimensional one meter box will require roughly 32 megabytes of computer memory. To

simulate the same wave in a three-dimensional one meter cube of air will require roughly

40 gigabytes of computer memory. This amount of memory is not available on today’s

desktop PCs.

To solve this problem, we have developed the simulation software to run on a

parallel super computer. In Chapter 2 and Chapter 6, we present two full 3D parallel

simulation methods for simulating acoustic and elastic wave propagation. We present

three applications in nondestructive evaluation with complex geometries that can only be

solved with 3D simulations. We employ these simulation methods to help understand the

complex physics of full 3D wave propagation and scattering. These simulation methods

are also very useful at designing and virtual prototyping hardware configurations and

signal processing algorithms.

18

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.5 References

1. Marklein, R., Chapter 11, in Review o f Radio Science, W.R. Stone, Editor. 2002,
Press and John Wiley and Sons.

2. P. Fellinger, R.M., K.J. Langenberg, and S. Klaholz, Numerical modeling o f
elastic wave propagation and scattering with EFIT - elastodynamic finite
integration technique. Wave Motion, 1995. 21: p. 47-66.

3. F. Schubert, A.P., and B. Kohler, The elastodynamic finite integration technique
for waves o f cylindrical geometries. Journal of the Acoustical Society of America,
1998.104(5): p. 2604-2614.

4. A. Peiffer, B.K., and S. Petzold, The acoustic finite integration technique for
waves o f cylindrical symmetry (CAFIT). Journal of the Acoustical Society of
America, 1997.102(2): p. 697-706.

5. Schubert, F., Numerical time-domain modeling o f linear and nonlinear ultrasonic
wave propagation using finite integration techniques—theory and applications.
Ultrasonics, 2004. 42(42): p. 221-229.

6. R. Marklein, R.B., K.J. Langenberg, The Ultrasonic Modeling Code EFIT as
Applied to Inhomogeneous Dissipative Isotropic and Anisotropic Media. Review
of Progress in Quantitative Nondestructive Evaluation, 1995.14: p. 251-258.

7. M. Rudolph, P.F., K.J. Langenberg, D.E. Chimenti, Numerical Modeling o f Air-
Coupled Ultrasound with EFIT. Review of Progress in Quantitative
Nondestructive Evaluation, 1995.14: p. 1053-1060.

8. R. Marklein, K.J.L., S. Klaholz, J. Kostka, Ultrasonic Modeling Real-Life NDT
Situations: Applications and Further Developments. Review of Progress in
Quantitative Nondestructive Evaluation, 1996.15(57-64).

9. K.R. Kelly, R.W.W., S. Treitel, R.M. Alford, Synthetic Seismograms: a finite
difference approatch. Geophysics, 1976. 41(1): p. 2-27.

10. Kelly, K.R., Numerical study o f Love wave propagation. Geophysics, 1983.
48(7): p. 833-853.

11. Vireux, J., P-SV wave propagation in heterogenous media: Velocity stressfinite-
difference method. Geophysics, 1986. 51: p. 889-901.

12. Vireux, J., SH-wave propagation in heterogenous media: Velocity stressfinite-
difference method. Geophysics, 1984. 49(1933-1957).

13. Q.H. Liu, E.S., F. Daube, C. Randall, H.L. Liu, and P. Lee, Large-scale 3D finite-
dijference simulation o f elastic wave propagation in borehole environments.
Journal of the Acoustical Society of America, 1994. 94: p. 3337.

14. Q.H. Liu, E.S., F. Daube, C. Randall, H. L. Liu, and P. Lee, A three-dimensional
finite difference simulation o f sonic logging. Journal of the Acoustical Society of
America, 1996.100: p. 72-79.

15. H. Dong, A.M.K., C. Madshus, and J. M. Hovem, Sound propagation over
layeredporo-elastic ground using a finite-difference model. Journal of the
Acoustical Society of America, 2000.108: p. 494-502.

16. L.H. Chen, D.G.S., Sound Radiation from and arbitrary body. Journal of
Acoustical Society of America, 1963.35: p. 1626-1632.

17. Wu, T.W., Boundary Element Acoustics: Fundamentals and Computer Codes.
2000: WIT Press.

19

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

18. W.J. Mansur, C.A.B., Formulation o f the boundary element method for transient
problems governed by the scalar wave equation. Appl. Math. Modelling, 1982. 6:
p. 307-311.

19. W.J. Mansur, C.A.B., Numerical Implementation o f the boundary element method
for two-dimensional transient scalar wave propagation ploblems. Appl. Math.
Modelling, 1982. 6: p. 299-306.

20. Mansur, W. J., A Time Stepping Technique to Solve Wave Propagation Problems
Using the Boundary Element Method. 1987, Southhamton University:
Southhampton, England.

21. Lynch, FILL IN TED's EMBOLI SIZING PAPER.
22. V.C. Anderson, Sound Scattering from a Fluid Sphere. Journal of Acoustical

Society of America, 1950. 22: p. 426-431.

20

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter II

Parallel Three-Dimensional Acoustic Finite Integration Technique

Simulating three-dimensional acoustic waves is an important and very

challenging task. Our world is full of complicated shaped objects that are impossible to

describe using two-dimensional models. For example, modeling sonar scattering from a

submarine, medical ultrasound imaging of a fetus, or acoustic emissions from an

automobile engine all require a three-dimensional acoustic computer simulation. In this

chapter, we will describe a three-dimensional parallel acoustic simulation method

(3DPAFIT) based on the finite integration technique. The derivations of the difference

equations will be presented along with the stability criteria.

At the writing this dissertation, the computer power is not yet available to run

useful three-dimensional simulations on a single desktop computer. So, we will present a

parallel version of the three-dimensional acoustic simulation technique. The simulation

method is validated by comparing scattering results to experimental measurements. A

method of visualizing the 3D acoustic waves will also be presented. This simulation

method is validated by comparing directly to experimental results in Chapter 3. We then

use the 3DPAFIT simulations to assist in the development of Nonlinear Acoustic

Concealed Weapons Detector and an Ultrasonic Periodontal Probe in chapters 4 and 5.

21

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.1 Three-Dimensional Acoustic Finite Integration Technique

The finite integration technique has been used successfully to simulate acoustic

and elastic waves in varying coordinate systems [1-3]. We have used the finite

integration method to solve the basic acoustic equations in the three-dimensional

Cartesian coordinate system.

2.1.1 Derivation of the Discrete Simulation Equations

Here, we will describe how to derive the difference equations that are necessary to

simulate three-dimensional acoustic waves. First, we begin with the equation of

continuity (2.1) and the equation of motion (2.2) [4].

The unknown variables are pressure p and the three components of the velocity

vector v . The remaining known variables are time t, density po, speed of sound Co, and

the pressure and velocity source functions M and F . To discretize these equations, we

use the finite-integration technique (FIT). If we were to use the finite-difference

technique, we would approximate the derivatives in (2.1) and (2.2) directly. But, with the

finite integration technique, we integrate the partial differential equations over a control

volume and then approximate the integrals. This leads to a staggered grid in space and

time that is more stable and accurate than a straight forward finite-difference method.

- £ + p 0c02V -v = M
ct (2.1)

(2.2)

22

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4 ► Velocity in the xi -direction

J Velocity in the ^-direction

f Velocity in the X3-direction

Pressure Value

Figure 2.1. Staggered grid used in the 3D Acoustic Finite Integration Technique

Additional steps would be required to introduce this staggered grid in a finite difference

method [2]. Figure 2.1 shows the staggered grid used in the 3D acoustic finite integration

technique.

2.1.2 Derivation of the Discrete Continuity Equation

We begin by integrating both sides of continuity equation (2.1) over a cube

control volume V.

Now, we use the Divergence Theorem (2.4), also called the Gauss's Theorem, which

states that in the absence of the sources, the density within a region of space can only

change when mass flows into or out of the region through its boundary [5].

(2.3)
v V

23

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

JfjV -v rfr = $ f v-da
V 8V

(2.4)

Here a is the surface of volume V. We use the divergence theorem to replace the volume

integrals of the velocity components on the right hand side with surface flux integrals.

Now we approximate all the integrals by multiplying the integrands by the volume or

surface of the integrals. This is easier done by visualizing the control volume with the

variable distribution. The cube control volume and the variable distribution are shown in

figure 2.2. We place the pressure value at the center of the control volume and the

velocity components on the center of the faces. We introduce superscripts that indicate

the position of a given variable relative to the center of the cube. For example, the

superscript (2-) indicates that the variable is in the negative x2 direction from the center

Figure 2.2. Control volume and the variable distribution for the computation of
the Discrete Continuity Equation.

\ \ \p d V = - p Qc02jf f i -d a + JJ\M d V (E2.5)
V V

AX1AX3

AX3AX3

24

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

o f the cube.

When approximating the surface-flux integral only the velocity components that

are perpendicular to a given surface contribute to that term. So, we approximate the

surface-flux integral in the following way.

v-da « (V[l+ - v11“)Ax2Ax3 + (v2+ - v2~)AX[Ax3 + (v3+ - v| “)Ax1Ax2 (2.6)
SV

We simplify our cube by setting all three sides equal (Ax= Axi= A x 2 = AX3). The volume

integrals are more straight-forward to approximate leading us to the following equation.

P A*3 = - A>co2[(vi+ - v11‘)Ax2 + (v2+ - v2~)Ax2 + (v3+ - v3“)Ax2]+MAx3 (2.7)

p = - ^ [(v , ' * - v ; -) + (v f - v ’ -) + (v r - v f)] + M <2 -8)
Ax

Now we use a standard central difference to replace the time derivative on the left hand

side. The standard central-difference is given by the flowing equation.

/ f + A f / Z t - M Z \

p * < £ Z £ > (2.9)
At

Where At is the time step that will be defined in the following section. Using this, we

arrive at our final discrete equation.

25

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

t+At/2 t - A t l 2

This equation tells us what the pressure value at time (t + At / 2) is based on the

surrounding velocity values and the pressure value at the past time step.

2.1.3 Derivation of the Discrete Equation of Motion

The Equation of Motion will tell us how to update our velocity values as our

simulation marches in time. The equation of motion can be split to individually look at

the three components of the velocity vector. Here, we will find the discrete equation of

motion in the x, direction.

We integrate both sides over the cube control volume.

Again, we use the Divergence Theorem to transform the volume integral of the pressure

value on the right hand side to a surface-flux integral.

(2 .12)

26

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

(|Ja ,A dV = • da + \\\F xdV
V SV V

(2.13)

Next, we approximate the integrals and let Ax = Axj = Ax2 = Ax3

p 0vx Ax3 = -((p1+ -// 'JA x .A x J+ ^ A x 3 (2 .1 4)

v . = - V t 1+- ^ ") + ~ (2 ' 1 5)Po Ax p Q

Then we approximate the time derivative using a central time difference.

/t = y[-“ . j L . { p ' - - p '-) + ̂ L (2-16)
Po Ax

The same method is used to arrive at the difference equations for the velocity components

in the x2 and x3 directions.

v; =v r “ - — (2-17)
p 0Ax p 0

t . t - A t
^ t 3+ - / ') + — (2<18)po Ax /?0

Now we have four equations (2.10) and (2.16) to (2.18) that instruct us how to update our

simulation grid based on the surrounding values. The time steps are also staggered in

27

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

time. First the pressure values are updated. Then a half time step later, the velocity

values are updated.

2.1.4 Stability Criteria

Stability conditions are necessary to achieve stable and accurate results. We

begin by defining our spatial step size Ax. This value is determined by assigning at least

8 grid points to the shortest wavelength Amm in the simulation [2]. Peifer et al. choose to

assign 15 grid points to the shortest wavelength in axial-symmetric acoustic version of

die finite integration technique [1]. This was done to ensure accuracy but is not

necessary. For our simulations, we assign 10 grid points to the shortest wavelength.

A x » i^ (2-19)
10

This stability criterion can also be found using the maximum speed of sound in the

simulation space cmax and the maximum frequency f max of the acoustic waves present in

the simulation.

Ax « Cm̂ ■ (2-20)
10/max

The temporal time step At is found using the standard Courant condition [2]. In three

dimensions, this is given by the following equation.

28

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

(2.21)
C m a x V 3

2.2 Simple Scattering Examples and 3D Visualization

Results from three different simulations are presented here to illustrate scattering

from three-dimensional objects and the method used to visualize the three-dimensional

acoustic waves.

2.2.1 Three-Dimensional Visualization

One of the major complications of three-dimensional simulations is visualizing

the wave propagation and interaction. Visualization is important because it provides

insight to into the complex physics of acoustic interactions. The visualizations also

provide a way to represent a large amount of data in a format that is easily understandable

by a large audience: pictures and movies.

We use the MATLAB programming environment to display 2D and 3D images of

acoustic wave propagation. Two-Dimensional images can be made by taking slices

through the 3D simulation space and plotting those values in a 2D color plot. An

example of these 2D plots can be seen in figure 2.7.

3D images can be made by taking many 2D slices through the simulation space.

These 2D slices are taken in all three planes in equal increments. The color and

transparency of these 2D slices are proportional to the pressure values. This creates a

cloud-like 3D image of acoustic waves. An example of these 3D images can be found in

figure 2.3.

29

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.2.2 Acoustic Scattering from Simple-Shape Objects

Three sample simulations are presented here to demonstrate the capabilities of the

simulation method and provide examples of the 3D visualization. The first two

simulations consist of a short 10 kHz acoustic wave incident upon a single 2” diameter

sphere and a single 2” diameter by 4” tall cylinder, respectively. We have also included

results from the same 10 kHz wave incident upon three 1” diameter by 6” tall cylinders.

Figure 2.3 shows the geometry of the objects along with the three-dimensional pressure

fields at three time instances. It’s important to note that three-dimensional pressure fields

are very computationally demanding to simulate, but the 3DAFIT technique on a large

parallel computer allows us to handle arbitrary geometries and perform systematic

parameter variations.

The most important use of the simulations is to provide insight to complicated

acoustic problems. In scattering simulations, it is useful to find the scattered acoustic

field. Figure 2.4 shows the scattered acoustic energy as a function of angle for the three

simulations. These values were recorded in the horizontal plane intersecting the center of

the scattering object. The value at 180° corresponds to the acoustic energy reflected back

to the source, where the signal would be recorded in a monostatic measurement scheme.

30

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Visualization of Three-Dimensional Acoustic Scattering

u

»•

Figure 2.3. Three-dimensional acoustic fields are shown at three time instances in the
three rows above. The top row is just before the plane wave interacts with the target. The
scatterers are a 2” diameter sphere (left column), a 2” by 4” cylinder (middle column), and
three 1” by 6” cylinders (right column). The incident wave is a single cycle 10 kHz wave.

31

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Acoustic Scattering Polar Plots

2” Sphere 2” x 4” Cylinder

120

150

180

210 330

240

270

180

240 300

270

Three 1” x 6” Cylinders

0.5

180

210 330

~ i ~

270

Figure 2.4. Acoustic polar scattering plots for the three example simulations.

32

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.3 Parallel Acoustic Finite Integration Technique

To run realistic 3D scenarios, our acoustic simulation code had to be parallelized.

This was accomplished by dividing the simulation space into many 3D slices and

distributing them across many computers. Each computer then treats an individual slice

as a separate simulation space. After each time step, neighboring computers trade

boundary values to create a large and seamless simulation space. Figure 2.5 illustrates

the simulation space decomposition. Similar decomposition methods can be found in the

following references [6, 7].

Figure 2.6 shows several snapshots from a large simulation that was performed

using the parallelized acoustic simulation code running on the SciClone. The simulation

space is a cube with each edge measuring a meter long. Five 1” by 6” cylindrical objects

are located at the center of the simulation space. As a 10 kHz wave passes through the

cube it scatters from the five cylinders. During this simulation, each of the 256 million

unknown variables were computed at each of the 700 time steps. This required 2.6

gigabytes of computer memory and produced 1.3 terabytes of data over the entire

simulation.

This same scenario was simulated using a much larger simulation space

measuring 2m on each edge. This simulation had 2 billion unknown variables that

required 16 gigabytes of computer memory. The simulation produced 22 terabytes of

data over 1400 time steps. It is not obvious how to best visualize datasets this large.

Simulations this large (and larger) were performed in Chapter 5 for the ultrasonic

periodontal probe. In that application, we only visualize two-dimensional pressure slices

because of the large memory requirements of 3D visualizations.

33

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

» •

Each worker node is given
a small slice of the

computational space

• • •
Z71

/
• • •

1 /

In between time steps, the
computers swap boundary

values

A /

* ■ / ♦s .
/ J /r * *

* \ *
* « .<. 7

* i
» i
• i

A r - - 1
i / '

' ' _ k i „

1 I
• I
I J

• { • • - V* / t /
X .

UL
i f 1 /
i ' % '
, r , ■ , , V m m 7

This creates a large and
seamless simulation space.

Figure 2.5. This figure demonstrates how the computational simulation space is
divided across many computers and recombined to form a large and seamless
computational space.

34

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

100,

100

20
100 100

100 100

Figure 2.6. Snapshots from a simulation showing a 10 kHz wave scattering off
five 1” by 6” cylinders. These simulation results were obtained with the new
parallelized acoustic simulation code mrming on the SciClone.

35

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.4 Inhomogeneous Simulation Spaces

The 3D Parallel Acoustic Finite Integration Technique as described above did not

allow for objects of different material compositions. In the derivation of the difference

equations, the material parameters (speed of sound Co and density po) were treated as

continuous variables. Objects placed into the simulation space were considered rigid

such that no acoustic energy penetrated them.

2.4.1 Discretization of Material Parameters

To include objects of different materials, we re-derived the difference equations

with the material parameters also discretized in space. We began with the equation of

continuity (2.22) and the equation of motion (2.23) where the material parameters have

not been factored out.

We then transform these partial difference equations using the Finite Integration

Technique just as before to reveal the following difference equations.

dt (2.22)

(2.23)

(2.24)

36

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

(2.25)

(2.26)

(2.27)

The spatial distribution of the simulation variables is done just as before with

pressure p and velocity v distributed on a staggered grid. The material parameters Co and

po are now discretized and spatially aligned with the pressure values. This places the

velocity values on the boundary between any two materials. The new difference

equations enforce that the normal of material displacement be continuous across any

material boundary.

2.4.2 Sample Acoustic Interaction with Objects of Different Materials

With these new difference equations and the appropriate boundary and stability

criteria, we can now simulate acoustic interactions with objects and collections of objects

of any material type. Figure 2.7 shows 2D pressure slices through a 3D acoustic

simulation. There are two cylinders placed in the middle of the simulation space of

different material types. The cylinder on the left is less dense and has a smaller acoustic

wave velocity than the rest of the propagation medium. The cylinder on the right is

denser and has a larger acoustic wave velocity than the rest of the propagation medium.

The difference in wave speed is clearly seen as a 10 kHz acoustic wave passes through

the two cylinders.

37

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 2.7. 2D pressure snapshots from a 3D acoustic simulation. Two
cylinders of different material compositions are placed in the middle of the
simulation space. A 10 kHz passes through the two cylinders differently
because of the difference in material composition.

38

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.4.3 Simulations including Material Layers

There are many physical scenarios where acoustic waves interact with objects and

thin material layers. For example, in medical ultrasound, acoustic waves may penetrate

many layers of tissue before reaching the desired location [8]. In other scenarios, the thin

layers themselves are being inspected by an acoustic method [9]. To study these types of

problems, we next introduce thin material layers into our simulation space.

Material layers are added to the simulation space just as other objects are placed

into the simulation space. This is done by adjusting the discrete material parameters in

the simulation space. Figure 2.8 shows pressure snapshots from a 3D acoustic simulation

of two rigid cylinders behind a thin layer. The thin layer reflects about 20% of the

incoming acoustic energy. The acoustic-back-scattered energy from the cylinders and the

thin material layer now overlap making the interpretation of the back-scattered data more

difficult.

39

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 2.8. Pressure snapshots from a 3D acoustic simulation. Two rigid
cylinders are placed behind a thin layer. The thin layer allows 80% of the acoustic
energy to penetrate. The acoustic backscatter from the cylinders is now overlaps
with the backscattered energy from the thin layer which complicates the
interpretation of the backscattered data.

40

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.5 3DPAFIT Conclusions

We have completed a computational framework to systematically study acoustic

wave interactions with complex shaped objects and layers. In this chapter we have

derived and presented the equations necessary to simulate 3D acoustic waves.

Simulating 3D acoustic waves is a very computationally demanding task, so we have also

developed a parallel algorithm that allows for very large simulation spaces. A very

successful and fairly simple method for visualizing 3D acoustic wave interactions has

also been presented.

In addition to studying acoustic wave interactions with rigid objects, we have also

developed the necessary simulation equations to create an inhomogeneous simulation

space. This allows for the study acoustic wave interactions with objects of varying

material parameters and with material layers. Overall, the parallel 3DAFIT simulation

method is a stable, accurate, and cost effective way to study 3D acoustic problems. In the

following chapter we validate this simulation method by compare simulation results

directly to experimental results.

41

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.6 References

1. A. Peiffer, B.K., and S. Petzold, The acoustic finite integration technique for
waves

o f cylindrical symmetry (CAFIT). Journal of the Acoustical Society of America, 1997.
102(2): p. 697-706.

2. F. Schubert, A.P., and B. Kohler, The elastodynamic finite integration technique
for waves o f cylindrical geometries. Journal of the Acoustical Society of America,
1998.104(5): p. 2604-2614.

3. P. Fellinger, R.M., K.J. Langenberg, and S. Klaholz, Numerical modeling o f
elastic wave propagation and scattering with EFIT - elastodynamic finite
integration technique. Wave Motion, 1995. 21: p. 47-66.

4. Pierce, A.D., Acoustics: An introduction to its physical principles and
application. 1989: Acoustical Society of America.

5. Kreysig, E., Advanced Engineering Mathmatics. 1999: John Wiley & Sons.
6. Bohlen, T., Parallel 3-D viscoelastic finite difference seismic modeling.

Computers & Geosciences, 2002. 28: p. 887-899.
7. Marklein, R., Numerical Simulation o f Fields and Waves in Nondestructive

Testing. 9th European Conference on Non-Destructive Testing, Berlin, 2006.
8. J. Bushberg, J.S., E. Leidboldt, Jr., J. Boone, The Essential Physics o f Medical

Imaging. 1994: Williams and Wilkins.
9. Krautkramer, J.K.a.H., Ultrasonic Testing o f Materials. 4th Edition ed. 1990:

Springer-Verlag.

42

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter III

Experimental Verification o f 3DPAFIT

In this chapter, we present an experimental study of acoustic scattering from cylindrical

targets. We then use the results of this experimental study to validate the 3D Parallel

Acoustic Finite Integration (3DPAFIT) technique described in Chapter 2. Several aspects

make this experiment are unique. It includes the use of a parametric array to create a

narrow but low-frequency sound beam, the use of a frequency sweep (chirp) excitation

signal, and the use of robust signal processing techniques to locate and analyze acoustic

backscatter signatures.

3.1. Experimental Apparatus

The experimental apparatus is composed of three main components: a parametric

array (Sennheiser AudioBeam), a parabolic microphone, and a laptop computer running a

simple MATLAB program to control the entire experimental set-up. The experimental

apparatus is composed of off-the-shelf components and except for the parametric array all

the components are inexpensive. The cost of the parametric array is associated with the

complex internal signal conditioning algorithms that are necessary to accurately

reproduce music and commentary for a wide variety of audio applications. The

transducer array itself is made from very inexpensive elements. A more detailed

discussion of parametric arrays can be found in the following chapter.

43

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

First, a digital waveform is created in MATLAB and played through the audio out

of the laptop computer. This waveform is sent to the parametric array where its internal

signal conditioning transforms the signal into a high intensity ultrasound signal. This

ultrasound signal is then played through an array of roughly 150 half-inch ultrasound

transducers. This creates a high intensity ultrasound waveform that propagates through

the air in a very narrow beam. As the waves propagate, they undergo distortions due to

the nonlinearity of air. This creates an audio signal that is nearly identical to the original

waveform created in the MATLAB environment. This audio signal is confined to a much

narrower beam than if it was created with a traditional loudspeaker because the beam

width is determined by the effective aperture of the array relative to the wavelength at the

50 kHz ultrasound frequencies.

The resulting sound waves interact with any objects in their path and some of the

acoustic energy will scatter back to the experimental apparatus. The returning waves are

collected using a parabolic microphone and this signal is passed through a microphone

preamplifier. The amplified signal is feed into the laptop via the microphone port and

then digitized and stored for analysis. A diagram of the experimental apparatus is shown

in figure 3.1. A picture of the experimental apparatus is shown in figure 3.2.

raraoonc iviicropnone

Figure 3.1. Diagram showing the experimental apparatus. The main components
are the parametric array, parabolic microphone, and the laptop computer.

Parametric Array
Laptop (P ill 300Mhz)

Audio Out (Headphone Jack)

Audio In (Microphone)

Microphone Pre-Ai

Audio Out
Audio In

44

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Parametric

Target

F ' ;-

Laptop
Computer

v Parabolic
Microphone

Figure 3.2. Picture of the experimental apparatus. The main components are the
parametric array, parabolic microphone, and the laptop computer. A target consisting
of five closely packed one foot long pipes with 1” inner diameters are shown in the
distance.

45

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.2. Acoustic Back Scatter Experiments

A scattering experiment was designed to evaluate the capabilities of the

experimental system, to explore signal processing techniques, and to validate 3D

scattering simulations. Objects were suspended 15 feet in front of the experimental

apparatus using thin wire. The parametric array was then excited using various

waveforms while the parabolic microphone recorded any returning sounds. The

microphone also records any extraneous environmental noises (such as people talking),

nut the experiments were performed in a large empty room with minimal background

noise. The target is then rotated to study how the backscattered acoustic energy is

affected as a function of angle of the incident beam. A large compass was mapped out

the floor to provide an accurate indication of angle of the target. Figure [3] shows a

picture of a target consisting of five one inch PVC tubes suspended above a large

compass.

46

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Compass Mapped
onto the Floor

Figure 3.3. Picture of a target suspended above a large compass mapped out
onto the floor. The compass is used to accurately measure the angle between
the target and tihe incoming sound beam.

3.2.1 Scattering from two 18” Cylinders

In this section, we describe an experiment where the target is composed of two 18

inch PVC pipe (2” inner diameter and 2.375” outer diameter) separated by two inches.

The initial waveform used is a linear frequency-modulated chirp. The chirp waveform S

is created using the following equation.

rr
S' = sin A +

w
(/ 2 - A) t

2D

\ \
27tt

/ J
(3.1)

47

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Where the variables are pulse duration D, time t ranging from zero to D, the starting

frequency // , and the ending frequency /j. In this particular experiment the chirp

waveform started at 500Hz and ended at 9400 Hz and was 0.4 seconds long. In air, the

acoustic wavelengths of this chirp range from 66cm at 500Hz to 3.5 cm at 9400 Hz. This

broad range of acoustic wavelengths is intended to provide a lot of useful information

about the scatter since the scattering behavior is strongly frequency dependent. A 0.4

second long sound pulse in air is roughly 132 meters (433 feet) long. This makes

resolving individual echoes very difficult but we will show how it can be done later with

signal processing.

Figure 3.4 shows a top down view of the two PVC pipes with the arrows indicating the

direction of the incoming sound beam as the cylinders are rotated. Figure 3.5 shows a

rough diagram of the dimensions of the large empty room where the experiments were

conducted. The blue arrow in this figure indicates the direction of the initial sound beam.

Experimental data was collected from angles ranging from -90° (or 270°) to 90°degrees

in 5° increments. Additional waveforms were collected when there was no target present.

Figure 3.6 shows the two raw waveforms as collected with no target present (top)

and with the two 18 inch cylinders at 0 degrees. Although they are clearly different, it is

difficult to identify characteristic differences in the two waveforms in this raw form. The

distance between the target and the back wall of the room where the measurements were

taken is 38 feet. This means that roughly 83% of the backscatter waveforms from the

target and the back wall overlap in time. It is clear that a time-domain only signal

processing approach will not be successful in identifying useful features from these

signals.

48

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

180°

90°

135°

225°

t
O

$

270°

45°

*
\%>»

v
315°

Figure 3.4. Top-down view of
the two PVC pipes with the
angles of the incoming sound
beam shown.

4-

4-

Target Experimental
a ̂ j - | Apparatus

, , T_TTT1
38’ 15’ 53’

106’

Figure 3.5. Top-down diagram of the room
used to take the experimental measurements.
The blue arrow indicates the initial direction
of the sound beam. The room dimensions
are important because multiple reflections
from the walls are present in the data.

-u .e
0.70.2 0.3 0.4 0.5 0.6

0.1 0.2 0.3

Figure 3.6. Experimental waveforms collected with no target
present (top) and with a target present (bottom). In the bottom case,
the target is two 18 inch PVC pipes with inner diameter of two
inches. The pipes are separated by two inches and the incoming
sound beam is at 0 degrees.

49

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.3. Signal Processing

We use advanced signal processing techniques to extract more information from

the acoustic signals to ultimately obtain more information about the scattering objects.

The original excitation signal is a chirp containing frequencies over roughly 9000 Hz.

The obvious technique to use is a short-time Fourier transform (also referred to as a

spectrogram).

3.3.1 The Short Time Fourier Transform (Spectrogram)

This technique transforms the one-dimensional time-domain signal into a two-

dimensional representation. This representation preserves temporal information (along

the x-axis) but also reveals frequency information about the signal (along the y-axis).

Figure 3.7 shows a sample spectrogram of the signal collected when there is no target

present (the same signal at the top of figure 3.6). The echo from the back wall is clearly

visible in the spectrogram as shown in the bottom of figure 3.7. This upward slant in the

time-frequency representation is exactly as expected because the original excitation was a

linear frequency-modulated chirp. There are also several other faint echoes present in the

signal that are the result of multiple reflections in the large room where the experiment

took place. Even the echoes from the two end walls of the room, which are 106 feet apart

overlap in time by 50 percent.

50

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 3.7. Spectrogram of the signal recorded with no target present. The identical
spectrogram on the bottom is used to show the features that correspond to the
backscatter echo from the wall and the multiple room reflections.

Figure 3.8 shows a sample spectrogram of the signal collected when a target was

present (the same signal shown in the bottom of figure 3.6). The target is two 18 inch

long PVC pipes with a two inch inner diameter and separated by two inches. The

incoming beam was at 0 degrees to the pipes as shown in figure 3.4. The strong echo

from the wall and the multiple reflections are still visible in this spectrogram. However,

this spectrogram has an additional feature that corresponds to the back scattered echo

from the target.

51

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

In this two-dimensional representation, it is easy to visually separate the features that

represent the back-scattered echoes from the target, the back wall of the room, and the

multiple room reflections. Now that we can visually identify the separate signals, we

need to extract useful information so that we can say something about the scattering

objects.

s '

/ y y ^
E c h o f rom Wal l

Figure 3.8. Spectrogram of the signal recorded with a target present. The identical
spectrogram on the bottom is used to show the features that correspond to the
backscatter echo from the target and the wall.

52

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.3.2 Feature Extraction

We use the term feature extraction to describe the act of retrieving information

from such a signal. This information is then used to describe the physical situation. In

this case, we want to extract information from the back-scattered echo to identify and

describe the object that caused the acoustic backscatter. We will begin by extracting the

amplitude of the backscattered echo as a function of frequency. Visually, this can be

accomplished by plotting the spectrogram as a 3D surface plot instead of a 2D color

intensity plot. Figure 3.9 shows a 3D spectrogram of the signal collected when no target

was present. Now, instead of a slanted line feature of the 2D plot, we have a narrow

mountain-like feature in the 3D representation. We can see a tall mountain that

represents the backscatter from the wall and smaller mountain-like features that represent

the multiple echoes from the room.

Figure 3.10 shows the 3D spectrogram of a signal with the target present. In this

plot, we can see two prominent mountain-like features. The smallest one in the front

represents the back-scattered echo from the target and the larger one represents the

backscattered echo from the wall. Figure 3.11 shows the 3D spectrogram from the same

target, but when the incoming sound beam was at 90 degrees. Notice that the mountain­

like feature that represents the back scatter from the wall is nearly identical in shape in all

three 3D spectrograms.

53

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 3.9. 3D Spectrogram of the signal recorded with no target
present. The prominent mountain-like feature corresponds to the
acoustic back-scatter from the wall.

Figure 3.10. 3D Spectrogram of the signal recorded with the target
present and at 0 degrees. The additional mountain-like feature in front
corresponds to the acoustic backscatter from the target.

54

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 3.11. 3D Spectrogram of the signal recorded with the target
present and at 90 degrees. The additional mountain-like feature in front
corresponds to the acoustic backscatter from the target.

Looking at the 3D spectrograms in Figure 3.10 and 3.11, we can see that the shape

mountain-like feature changes as the target is rotated. To describe the shape of the

mountain-like features, we trace out the height along the ridge line of the feature of

interest. A sample 3D trace is shown in Figure 3.12 for the target at 0 degrees. This trace

gives us a function of the amplitude of the acoustic backscatter as a function of

frequency. Examples of these traces are shown for 0°, 30°, 60°, and 90° in figure 3.13.

55

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 3.12. A 3D spectrogram with a trace of the ridge line of the mountain­
like feature shown by the black line.

56

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

0
6000 10000 120000 2000 4000 8000

o
2000 4000 6000 8000 10000 12000

0
120000 2000 4000 6000 8000 10000

o
0 2000 4000 6000 8000 10000 12000

Figure 3.13. Several examples of the amplitude of the back scattered acoustic
energy as a function of frequency for the same target but at 0°, 30°, 60°, and
90°.

57

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.3.3 Feature Extraction using Pulse Compression

This method for feature extraction in the previous section works reasonably well

but is not robust enough for an automatic feature extraction system. To quickly and

accurately extract information from the signal, we turn to a signal processing method

called pulse compression [1]. Here we use the fact that we know the structure of the

initial excitation and we assume that any backscattered signals will share some of that

structure. In this case, our initial excitation g(t) is a 0.4 second long frequency chirp

ranging from 500Hz to 9500Hz. We “compress” our incoming signal by finding the

cross-correlation between our initial excitation g(t) and our recorded signal f(t). The

cross-correlation function of two signals is found using equation (3.2).

(/ * g)(x) = \ /{ ty g { t + x)dt (3-2)

Note that the cross-covariance function is very similar to the convolution function. The

difference is the cross-covariance function takes the complex conjugate of f(t) (that has

no effect on our real signals) and has an addition of x instead of a subtraction of x in the

g(i+x) term.

Figure 3.14 shows the raw recorded waveform when there is no target present. It

is impossible to distinguish individual echoes in this signal. The bottom plot in Figure

3.14 shows the pulse-compressed signal. Now, the individual echoes are distinguishable

and separable. Figure 3.15 shows a raw and pulsed-compressed signal when the target is

present. The pulsed compressed signal looks identical to the one with no target except

for the large echo that is a result of the acoustic interaction with the target.

58

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 O.S 0.9

400

300

200

100

O

• 1 0 0

-200

-300

-400

Figure 3.14. The top plot is the raw recorded waveform with no target present but
with several overlapping echoes resulting from the room where the measurements
were taken. The bottom plot shows the pulsed compression of the same signal.
Several echoes are clearly distinguishable. They are the backscatter from the wall
(a) and the several multiple room echoes (b-d). The signal also includes several
echoes from other objects about the room (e).

59

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

400

300

2 0 0

100
O

• 1 OO

-200

-300

-400

Figure 3.15. The top plot is the raw recorded waveform with the target present
which includes many overlapping echoes. The bottom plot shows the pulsed
compression of the same signal. The same echoes are present (a-e) in this signal
as there was in the signal with no target. There is an additional strong echo (f) that
is the result of the acoustic interaction with the target.

60

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

B82D

The original 0.4 second long frequency chirp was approximately 132 meters long

in air. After pulse-compression, the resulting echoes are approximately .0004 seconds

long that is approximately 13 centimeters in air. The pulse compression improves the

spatial resolution of the signal by a factor 1000. Another interesting ability of the pulse

compression is its ability to pick out very faint echoes. For example, we can just pick out

the echo resulting in 3 round trips in the large room where the measurements were taken.

This sound wave traveled roughly 742 feet (or 226 meters).

Now we can clearly separate the echoes, but we need to extract the frequency

backscattered content. We do this by simply windowing around the desired echo and

taking the Fourier transform. Figure 3.16 shows the windowed echoes from the target at

0 degrees and 90 degrees along with their Fourier transforms. These frequency results

are identical to the ones we extracted using the previous image processing technique.

The pulse compression technique is fairly straight forward, easy to implement, and very

robust.

61

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

8 0 0

Pulse-Compressed Echo o f Target at 0 degrees -600

2 0 0

O

-200

-400

-600

-800

OOO

2 0 0

Time (seconds)

7000

Frequency Spectra o f Pulse-Compressed Echo of
Target at 0 degrees

6000

6 0 0 0

3000

2000

OOO

O

Frequency (Hz)
400

Pulse-Compressed Echo o f Target at 90 degrees300

2 0 0

1 OO

O

1 OO

-200

-300

•400

•600

Time (seconds)

Frequency Spectra o f Pulse-Compressed Echo of
Target at 90 degrees

Frequency (Hz)

Figure 3.16. Windowed echoes from the target at 0 degrees and 90 degrees
along with their Fourier transforms

62

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.4. Comparison to 3DPAFIT Simulations

The main objective of the parametric experiments was to validate the nonlinear

acoustic propagation and 3D scattering simulations. The entire process of nonlinear

beam forming and acoustic scattering from complex shaped objects is an extremely

complicated physical process. To validate the simulations we will directly compare to

measurements of backscattered acoustic energy from the PVC cylinders as a function of

frequency and incident angle.

Experimental acoustic backscatter data was recorded as the target was rotated 180

degrees in Figure 3.4. The target was the two 18 inch long PVC pipes as described in the

previous sections. The backscattered acoustic energy as a function of frequency was

extracted at each angular position. Picking a certain frequency, a polar plot is then

produced to show the backscattered acoustic energy as a function of incident angle.

Examples of these polar plots at different frequencies are shown in figure 3.17.

63

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2 kHz 120 2.5 kHz 120
0.80.8

0.6
150150

0.4 t

0.Z0.2

180180

330210210 330

240 300240 300

270270

90

3 kHz 3.5 kHz ,20
120 0.8

0.8

0.6 150
150 0.4

0.2

180
180

210 330210 330

300240240 300

270 270

90
4 kHz 4.5 kHz

120120
0.80.8

0.60.6
150150 30

0.4,

0.2

\ i /
180

210 330210 330

300240240 300

270 270

64

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5 kHz 5.5 kHz 120120
0.80.8

0.60.6
150150 30

0.2

180180

210 330210 330

240 300240 300

270270

6 kHz 6.5 kHz
120120

0.80.8

0.60.6
150150

180180

210 330210 330

240 300240 300

270270

Figure 3.17. Polar plots showing the acoustic backscattered energy as a function
angle at different frequencies.

65

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The symmetric multiple lobe structure of the polar plots are expected; as the

frequency is increased, the number of lobes also increases. Even with a relatively simple

target, the nature of the scattering is, of course, very complicated. The backscattered

acoustic wave is not only a sum of the scattering waves from the individual cylinders, but

also the multiple scattered waves that reflect from one cylinder than the other.

The same scenario was simulated to compare to the experimental measurements.

The KZK nonlinear simulations (which are described in Chapter 4) were used to

propagate the acoustic waves from the parametric array to the target. The waves then

entered the 3D acoustic simulation space where they reflected from the two cylinders.

The cylinders were rotated just as they were in the physical experiment. The only

difference between the two scenarios was that a single frequency tone burst was used in

the simulations instead of a frequency chirp. The acoustic backscatter was recorded at

each angle to produce a polar plot. The comparison between simulation and experiment

results at 4.2 kHz are shown in figure 3.18. There is very good agreement between the

two datasets.

66

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

90
4.2 kHz 120

0.6
150

0.4 ,

 1 1 1-5180

330210

240 300

270

Figure 3.18. Polar plot showing the acoustic backscattered energy as a
function angle at 4.2kHz. Blue represents the simulation results and
green represents the experimental results.

3.5 Conclusions

The acoustic scattering experiments using the parametric array and parabolic

microphone were very successful. We demonstrated that this system along with

advanced signal processing can be used to locate and describe targets. Two methods for

extracting the backscattered frequency content of the targets were successfully presented.

The pulse-compression method was superior in that it improved spatial resolution by at

least 1000 percent over the original signal and it provided a straight forward and robust

means to extract the frequency content of the individual echoes. This experimental

67

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

setup and the pulse-compression signal processing technique was used successfully

validate the acoustic scattering simulations described in chapter 2.

3.6 References

1. Szilard, F.L.aJ., Pulse compression techniques in ultrasonic non-destructive
testing. Ultrasonics, 1976.14(3): p. 111-114.

68

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter IV

Applied 3DPAFIT Simulations:

Nonlinear Acoustic Concealed Weapons Detection

In this chapter, we present examples of acoustic simulations and how they can be applied

to design hardware configurations and to study complicated acoustic interactions. The

first part of this chapter is devoted to a nonlinear finite-difference simulation method

used to simulate nonlinear sound beams. Many systematic simulations were run with this

code to provide hardware design guidelines for the development of a prototype Nonlinear

Acoustic Concealed Weapons Detector. Then this simulation method is coupled with the

3D parallel acoustic simulation method (3DPAFIT) to study acoustic wave interactions

with humans, clothing layers, and weapons.

4.1 Nonlinear Concealed Weapons Detection

Detecting concealed weapons and explosives on persons is an important and

challenging problem. Current weapon detection technologies are often inadequate

because they only detect metal objects at short distances. Our post 9/11 studies in

acoustic concealed weapons detection are showing great potential in their ability to detect

concealed objects at significant stand-off distances. The continued improvement of

acoustic weapons detection technology will require exhaustive experiments, development

69

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

of nonlinear acoustic computer simulations, and sophisticated signal processing

algorithms.

An acoustic weapons detection system consists of an ultrasonic transducer that

emits a short inaudible acoustic beam into the air. This sound propagates away from the

transducer until it comes in contact with the target person. The sound beam interacts with

the person’s clothes, body, and any other objects. Some of the energy in the sound burst

reflects back to the transducer where it can be recorded on a computer as a waveform.

The structure of the waveform depends on the details of the interaction between the

sound waves and the person. A waveform from a person with a hidden weapon will

differ from a waveform from a person without a hidden weapon.

Narrow-frequency band transducers were originally used to create the initial

sound burst in acoustic concealed weapons detection [1]. A nonlinear acoustic concealed

weapons detector uses sound waves to interrogate a person at large stand-off distances

via a sound beam created using a parametric array and directed onto a person [2-4].

Using parametric arrays to create the initial sound burst may have many advantages over

using typical transducers. Parametric arrays work by emitting high powered ultrasound

waves that transition to lower frequencies because of nonlinear and absorption effects as

the acoustic waves propagate. These nonlinear effects allow one to create a very narrow

sound beam that can deliver the acoustic energy over large distances. Traditional air-

coupled transducers have very narrow frequency bands that only allow single frequency

tone-bursts. In contrast, parametric arrays have a broad frequency band that allows the

initial waveform to contain a range of frequencies. In addition, the lower frequencies

70

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

produced by the nonlinear propagations will penetrate layers of clothing more effectively

than the higher ultrasound frequencies.

4.2 KZK Nonlinear Sound Beam Simulations

To model nonlinear acoustic beams, we turn to numerical solutions of the

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. The KZK equation is a nonlinear

parabolic wave equation that accounts for the combined effects of diffraction, absorption,

and nonlinearity in finite amplitude acoustic beams. In its derivation, the sound waves

are assumed to form a directive beam, which permits a parabolic approximation to be

made in the terms that account for diffraction. The parabolic approximation introduces

errors at more than 20° off the beam axis, and at locations within several source radii to

the source [5].

The KZK equation for an axi-symmetric sound beam that propagates in the

positive z direction can be written in terms of the acoustical pressure p as follows.

d2p _ c,
dzdt' 2

d2 p 1 dp
v dr2 r dr j

+J L 81l + p 8 P
2c\ d f 2p 0c\ dt'2 (4.1)

The first term on the right-hand side accounts for diffraction, the second term accounts

for absorption, and the third accounts for nonlinearity [5-7]. Lee and Hamilton

developed a finite difference method for simulating nonlinear sound beams based on the

KZK Equation [5, 8]. We developed a simulation code to model parametric arrays for

use in concealed weapons detection based on Lee and Hamilton’s method.

71

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

With the KZK nonlinear acoustic simulations, we can test different parametric

array specifications to judge their effectiveness for concealed weapons detection. For

example, we can change the parametric array size, curvature (for focusing), frequency,

and initial intensity. We can also test environmental effects such as air temperature and

humidity level and how these variables affect the acoustic wave propagation. We have

successfully used these KZK nonlinear simulations to provide design guidelines for

building custom parametric arrays and accurately predict the pressure waveforms before

they interact with the person.

4.2.1 Linear vs. Nonlinear Parametric Simulations

Parametric arrays create acoustic beams in air that are much narrower than

traditional speakers of the same size because the beam properties are determined by the

effective aperture relative to the ultrasound wavelengths. They work by emitting two

high powered ultrasound frequencies j) and f '2 that undergo nonlinear distortion in the air

to create a low acoustic difference frequency//-/?. This process is referred to as

nonlinear-demodulation and is explained more in reference [9]. This difference

frequency will be confined to a narrow beam and will propagate much further than the

ultrasound frequencies. Using the KZK simulation code, we are able to perform many

simulations of different transducer configurations with varying the degrees of

nonlinearity and absorption. This allows us to systematically explore the nonlinear

effects of acoustic propagation.

As an example, we will present the results of two simulations of the same

parametric configuration with and without nonlinear effects. The first simulation does

72

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

not include any nonlinear effects and the second uses the appropriate coefficient of

nonlinearity for air (J3 = 1.2). A 2 ft diameter transducer with a geometrical focus of 8m

is excited with a short pulse that contains two frequencies: 45 kHz and 55 kHz. The

initial sound pressure is 120 decibels.

Figure 4.1 shows the axial pressure waveforms from the linear simulation. Each

waveform is recorded at 2m intervals starting at the face of the transducer and extending

to 10m. At 0m, both ultrasound frequencies are of course present. As the wave

propagates away from the transducer, the ultrasound is quickly absorbed due to the

viscosity of the air. The 55 kHz component is absorbed much faster than the 45 kHz

component because absorption is frequency dependent. After 6m, most of ultrasonic

energy has been absorbed.

Figure 4.2 shows the axial pressure waveforms from the nonlinear simulation.

The pressure wave is absorbed in the same manner as in the linear simulation. Now the

difference frequency of 10 kHz is present and builds in amplitude as the waves propagate

further array from the parametric array. As the higher frequencies are absorbed, the

difference frequency becomes the dominant frequency in the wave. Figure 4.3 compares

the full pressure fields from the nonlinear and linear simulations. The two simulations

are almost identical until up the ultrasound frequencies are attenuated and the difference

frequency becomes the dominant component of the nonlinear simulation. This clearly

shows that the creation of the difference frequency is a result of the nonlinearity of air.

73

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Linear Axial Waveforms and their Fourier Transforms
Axial Pressure Waveform Fourier Transform

Figure 4.1. The left plots show the axial pressure waveforms from a focused parametric
transducer. The right plots show their corresponding frequency spectra. No nonlinear
effects are included in this simulation.

74

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Nonlinear Axial Waveforms and their Fourier Transforms
Axial Pressure Waveform Fourier Transform

4m

6m

8m

10m

JL

Figure 4.2. The left plots show the axial pressure waveforms from a focused parametric
transducer. The right plots show their corresponding frequency spectra. Nonlinear effects
are included in this simulation.

75

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Parametric Pulse Propagation - Nonlinear Vs. Linear

Nonlinear
Linear

N onlinear
Linear

4m a _Nonlinear
Linear

6m -*•- ,Ĥ . . . h..N oniLn.e2r.
Linear

8m

X
_Nonl inear

Linear

10m | N onlinear
Linear

Figure 4.3. Shown is the full pressure field as the wave propagates away from the
transducer. Each figure is spit with the nonlinear simulation on the top and the
linear simulation on the bottom. The x-axis represents time and the y axis
represents radial direction (2ft from axis to edge).

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4^99999999999995445

4.2.2 Comparison of Simulation and Experimental Results

Simulations have been performed to validate the final version of the nonlinear

acoustic simulation code. This was done to confirm both the experimental measurements

[2-4] and results from the new nonlinear acoustic simulation code. A 1ft diameter

transducer was excited with two frequencies: 53620 Hz and 45620 Hz. The amplitude of

the ultrasound frequencies and the difference frequencies were recorded along the beam

axis at several distances. Figure 4.4 shows the audio and ultrasound absorption data from

the transducer out to 6 meters. The experimental and simulated absorption data agree

overall. Figure 4.5 shows the beam width profiles for the simulated and experimental

data recorded at various distances from the parametric transducer. The simulated and

experimental beam width profiles match very well.

»— o—e

O£

6

Axial Distance (m) Axial Distance (m)

Figure 4.4. Axial absorption plots for the audio (left) and ultrasound (right)
components of the sound beam. The solid line represents the simulated data and the
dotted line represents the experimental data.

77

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Simulated and Experimental Beam Width Profile Comparison

5ft (1.5m)

o
z

5ft (1.5m)

'S
3

I ” '

□̂.4
O
Z"

11 f t (3.4m)
1.2

<D 11 f t (3.4m)
M 1

r ' i

/ \ I - i \

l \
TJ06
N f ̂ ' \

/ \ ̂&4 J f \ \
O
z 02

u13s

£5o,‘
o
z ° :-

•0.5 -0.4 -0.3 -0.2 -0.1

Radial Distance (m)
-0.S -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Radial Distance (m)

14 ft (4.3m) R
1.2

<L> 14 ft (4.3m)
X"— v 3 ’ f \

o s
J \ \

/ ° \
0) 0 6 1 X

A \
/ ** % 04 J ' \ \O£ °-2

0-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Radial Distance (m) Radial Distance (m)

22 ft (6.7m) 22 ft (6.7m)

•0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Radial Distance (m)
-0.5 -0.4 -0.3 -0.2.-0.2 -0.1 , 0 0.1 0.2 0.3 0.4 0.5

Radial Distance (m)

Figure 4.5. Beam width profiles for the audio (left) and ultrasound (right) components of the
sound beam measured at various distances from the parametric transducer. The solid line
represents the simulated data and the dotted line represents the experimental data.

78

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.2.3 Comparison of Confocal and Parametric Transducer Configurations

There are many hardware configurations that can deliver acoustic energy to the

target at large stand-off distances. In some cases, more than one device can be used to

deliver energy to the target. Many variables such as aperture size, curvature, and position

can influence the resulting sound beams that can influence of the performance of the

nonlinear concealed weapons detector. A primary objective of this portion of the work

was to study and compare the acoustic beams created by parametric array and cross beam

transducer configurations. By studying the resulting sound beams, we can help to

determine which configuration is best suited for detecting concealed weapons. In both

configurations, two ultrasonic frequencies are emitted. In a parametric array

configuration, the two ultrasonic frequencies are emitted from the same device that is

pointed at the target. In a cross beam configuration, two ultrasound frequencies are

emitted from two separate devices pointed at the target. Figure 4.6 shows a diagram of

the two transducer configurations.

The main difference between the two configurations is the location and size of the

interaction region of the two ultrasonic frequencies. In a cross beam configuration, the

two frequency components only interact where the beams intersect. In a parametric

Figure 4.6: Diagram of parametric (left) and cross beam (right) transducer configurations.
The blocks represent the transducers and the oval represents the target. The green regions
indicate the interaction region between the two ultrasound frequencies.

79

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

configuration, the two frequencies interact over the entire length of the beam.

Simulations, using the nonlinear KZK code have been conducted to explore and compare

the resulting sound beams of both configurations.

4.2.3.I. Parametric Transducer Array Configuration

A parametric array is a large transducer or an array of transducers that

simultaneously emit two high-powered high-frequency ultrasound waves. The

superposition of two frequencies causes the waveform to be amplitude modulated at the

difference of the two original frequencies (fl-£2). As the waves propagate away from the

parametric array, they begin to transform because of the nonlinearity of the air. When

two high-powered ultrasound frequencies are present, a nonlinear phenomenon called

demodulation occurs [9]. This creates a third frequency component at the difference

frequency of the two original frequencies. The difference frequency will stay confined to

the narrow beam creating a highly directional low frequency device.

Figure 4.7 shows pressure waveform snapshots for both a parametric and

crossbeam configuration from 0 to 10 meters in two meter increments. In the parametric

simulation, the transducer has a diameter of 0.6m (~2ft) with a geometrical focus of 8

meters. The parametric array emits a short pulse that contains two frequencies: 47 kHz

and 53 kHz. Figure 3 shows the beam profiles for the two initial frequency components

and the 6 kHz difference frequency component. The last plot of figure 4.8 shows the

interaction region between the two main frequency components.

80

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Pressure Waveform Snapshots at Two Meter Increments

Cross Beam (Confocal) Parametric

• i \U. Un"; ' nUVntUVU*
1 k k. » k 11 I fli I N l k t it 1 k k ».'I t H >1 k k A, A k 1 .1 k 1 >1

Figure 4.7: Pressure waveform snapshots at two meter increments for crossbeam (left) and
parametric (right) transducer configurations. The crossbeam configuration is simulated using a
confocal geometry. In both simulations the entire transducer has a diameter of 2ft and a
geometrical focus of 8m.

81

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Parametric Beam Profile (in Pascals)

4 7 a n d 53 k H z Int t 'raef io i i R e g i o n

Figure 4.8: Beam profiles for the parametric array configuration. The top two
plots show the beam profile for the ultrasound frequencies: 53 kHz and 47 kHz.
The third plot shows the 6 kHz difference frequency component. The last plot
shows the interaction region of both ultrasound frequencies which results in a 6
kHz amplitude modulated beat frequency

82

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.2.3.2 Confocal Transducer Configuration

A confocal geometry was used to simulate the crossbeam transducer

configuration. A confocal transducer consists of two transducer elements: a disk

transducer surrounded by a ring transducer. The two transducer elements are excited at

separate ultrasound frequencies. The faces of the two transducer elements are curved to

cross the two sound beams at the focal point.

A number of confocal simulations were performed to compare the resulting sound

beams to those of the parametric array configuration. Figure 4.9 shows typical pressure

waveform snapshots from a confocal transducer configuration starting at the face of the

transducer to 10 meters in 2 meter increments. In this simulation, the combined

transducer diameter is 0.6m (~2ft) with a geometrical focal distance of 8 meters. The two

transducer elements have the same surface area. The inner transducer emits a 53 kHz

pulse at the same time the outer transducer emits a 47 kHz pulse. The two beams overlap

as the two waves propagate towards the focal point. This creates both a beat frequency

due to the linear superposition of the beams and a difference frequency component due to

the nonlinear mixing. Figure 4.10 shows the beam profiles for the two main frequency

components, the nonlinear generated difference frequency component, and the interaction

region of the two ultrasound components.

Additional simulations were performed to explore the effect of increasing the

angle between the two sound beams. Figure 4.11 shows pressure waveform snapshots

from one of these simulations. In this simulation, the two transducer elements are

separated by about one meter. Figure 4.12 shows the different components of the

resulting sound beams. In the wide angle cross beam simulations, the nonlinear

83

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

generated difference frequency is much smaller than in the narrow angle cross beam

configuration. This smaller amplitude difference frequency is expected because the

interaction region of the two sound beams is much smaller than the interaction region of

in the small angle configuration.

It should be noted here that the wide angle cross beam configuration results show

a very narrow sound beam. The purpose of these simulations is to show that increasing

the angle of the two sound beams decreases the size of the interaction region. The

confocal transducer used to create the results shown in figure 4.11 and 4.12 has a

diameter of two meters. The large transducer size is the reason for the narrow sound

beam. In a traditional cross-beam configuration (such as the one pictured in Figure 4.6),

increasing the angle between the two transducers will not drastically affect the beam

width at the target.

There may be a pure geometrical advantage of a cross beam configuration. By

using two sound beams at separate angles, one should be able to retrieve more

information about the target and the presence of any concealed weapons. Basically, the

two sound beams have two separate “views” of the target. This is a purely geometric

advantage and should not be considered in comparing the details of the two transducer

configurations. This same effect could be achieved with a parametric array configuration

by using two parametric arrays, moving the single parametric array to capture both

“views”, or having the target simply rotate.

84

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Confocal Beam Profile (in Pascals)

6 k H z

C o l o r S o u l e M)()

4 7 a n d 54 k H z I n t e r a c t i o n R e g i o n

C o l o r S o u l e 7

Figure 4.9: Beam profiles for the cross-beam array configuration. The
top two plots show the beam profile for the ultrasound frequencies: 53
kHz and 47 kHz. The third plot shows the difference frequency 6 kHz
component. The last plot shows the interaction region of both
ultrasound frequencies which results in a 6 kHz amplitude modulated
beat frequency.

85

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Pressure Snapshots for a Wide Angle Confocal Geometry

Om

2m

4m

6m

8m

10m

1' l> , II i n , I I I I li (((' !
A X x n.'S t \ *, i ^ * 1,1 \\ \% - •, X s-SL t x% X"** 1

.s: c 2 :3 m i >■

Figure 4.10. Pressure snapshots from a wide angle confocal simulation.

86

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Wide Angle Confocal Beam Profile (in Pascals)

6 k H z

C o l o r S c a l e CM)
lO 20 80 40 BO BO 70 BO SO 100

4 7 a n d 53 k H z I n t e r a c t i o n R e g i o n

(. o lor Soak' 4.6

Figure 4.11: Beam profiles for a wide angle cross-beam array
configuration. The top two plots show the beam profile for the ultrasound
frequencies: 53 kHz and 47 kHz. The third plot shows the difference
frequency 6 kHz component. The last plot shows the interaction region of
both ultrasound frequencies which results in a 6 kHz amplitude modulated
beat frequency.

87

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.2.33. Comparison of the Two Transducer Configurations

There are some obvious similarities and some noticeable differences in the sound

beams created by parametric and the cross beam transducer configuration. While

discussing the two transducer configurations, we emphasize on results that affect the

interaction of the sound waves with a person’s clothing and/or a concealed weapon.

Acoustic Beam Widths

Knowing the physical dimensions of the acoustic beam of any transducer

configurations is very important. The width of an acoustic beam quantitatively describes

where the acoustic energy is located in the beam. The beam width is defined as the full-

width at the half-maximum pressure intensity. Figure 4.12 shows the beam width

profiles for the individual frequency components of the parametric and confocal

geometries at 3, 6, and 9 meters. Table 4.1 provides the beam width values at these

distances.

Another aspect that must be considered is the acoustic energy distribution at the

target for each transducer configuration. In a parametric configuration, the energy

distribution can be described by the beam width of the different frequency components.

For a cross-beam configuration, the two beams cross at an angle. This creates a

complicated interference pattern where the two sound waves constructively and

deconstructively interfere with one another. This effect is easily seen for the confocal

pressure waveform snapshots in figure 4.10. For a non-confocal cross beam transducer

configuration, the interference pattern is highly dependent on the orientation and angle of

the two sound beams. A small change in orientation of one of the sound beams will

88

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

change the resulting energy distribution at the target. An experimental device that

requires the two or more devices that are precisely positioned and aimed towards an

uncooperative target is impractical.

Full-Width at Half-Maximum Beam Widths

Parametric Confocal
53 kHz 47kHz 6kHz 53 kHz 47kHz 6kHz

3m 0.38m 0.39m 0.27m : — — —

6m 0.12m 0.12m 0.54m 0.13m — 0.70m
9m 0.14m 0.15m 0.89m 0.19m — 0.95m

Table 1: Beam width for the different frequency components for the parametric and
confocal geometry. For the confocal geometry, no beam widths are recorded at 3m because
the beams have not yet fully overlapped. The interference pattern in the interaction region
makes defining a beam width for the 47 kHz component difficult.

89

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Beam Width Profiles at 3 ,6 , and 9 meters (in Pascals)
Parametric Confocal

3m
(—9.8ft)

•0.5 ^kacfial Distance (m) 0.4 0.5

6m
(~19.7ft)

&
hj
O h

<73

•0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Radial Distance (m)

i-l
O h
t/3

9m ----- 53 kHz
----- 47 kHz

('-29.5ft)

_

Radial Distance (m)

•0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

6m
(~19.7ft)

-0.2 -0.1 0 0.1 0.2

Radial Distance (m)

Radiai Distance (m)Radial Distance (m)

Figure 4.12: Beam width profiles for the different frequency components of the
parametric (left) and confocal (right) transducer configurations. These beam width
profiles are shown for the following taken at

90

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Magnitude o f the Nonlinear Generated Difference Frequency

There are several reasons the nonlinear generated difference frequency is useful

for acoustic concealed weapons detection. First, this lower acoustic frequency is less

affected by absorption. The absorption of a sound wave in air is proportional to the

frequency of the sound wave squared/ [10]. A 50 kHz acoustic wave will lose about 10

percent of its energy per meter where as a 5 kHz acoustic wave will only lose about 1

percent of its energy per meter. Therefore, creating a strong nonlinear generated

difference frequency should result in much longer standoff distances for concealed

weapons detection.

Another advantage of lower frequency sound waves is their ability to efficiently

penetrate clothing. It has long been known in architectural acoustics, that lower

frequency sound can penetrate thin structures much more efficiently than higher

frequency sound. When a thin interface is smaller than the wavelength of the sound

waves, the amount of energy that is transmitted across the interface is proportional to 1 /

[11]. Therefore, a 5 kHz sound wave is 100 times more efficient in penetrating a thin

interface than a 50 kHz sound wave. As a result, lower frequency sound waves will also

penetrate clothing much more efficiently than higher ultrasound frequencies sound

waves.

91

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Linear Beam Profiles for Parametric and Confocal Configurations
Parametric Confocal

53 k H z

6 kH z

■
■ ■ ■ ■

6 kH z

Figure 4.13: Linear beam profiles for parametric (left) and confocal (right)
transducer geometries. These simulations are identical to the ones of figures 3 and
4, except the nonlinearity is turned off. This shows that the 6 kHz frequency
component is a product of the nonlinearity of the air.

We have shown that the difference frequency observed in the simulations is

coming from the nonlinearity in air. We proved this by performing the exact same

simulations but with the nonlinearity turned off (Figure 4.13). With the nonlinearity

turned off, there is no 6 kHz difference frequency component. The most noticeable

difference between the two transducer configurations is the magnitude of the nonlinear

difference frequency. The magnitude of the nonlinear difference frequency component

dependent on both the intensity of the two ultrasonic frequencies and the size of the

interaction region. For the parametric configuration, the two ultrasonic frequencies

overlap over the entire sound beam. This allows the nonlinear difference frequency

92

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

component to be generated over the entire length of the beam. The parametric

configuration also overlaps the two frequencies near the face of the transducer where the

ultrasonic frequencies are the strongest. Figure 4.14 shows the axial intensity of the

nonlinear difference frequency for both the parametric and confocal geometry.

For the confocal transducer configuration, the intensity of the nonlinearly

generated frequency component is significantly smaller than the intensity found with the

parametric configuration. As shown in figure 4.14, the nonlinear difference frequency of

the confocal configuration is at least an order of magnitude smaller than found for the

parametric configuration. This lower intensity difference frequency is caused by two

factors. First the interaction region of the two beams is much smaller. Also, the two

beams overlap away from the face of the transducers where the intensities of the

ultrasound frequencies have already diminished because of absorption effects. As the

angle between the two transducers becomes larger, the interaction region becomes

smaller. This further reduces the magnitude of the nonlinearly generated difference

C o n fo c a l
P a r a m e tr ic

0 . 9

0.8

0 . 7

0.6

0 .5

0 .4

0 .3

0.2

0.1

10
A x ia l D i s ta n c e (m e te r s)

Figure 4.14: Axial intensity values of the nonlinear difference frequency for the
confocal (blue) and parametric (green) configurations.

93

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

frequency.

Using a cross beam configuration will significantly reduce the amplitude of the

nonlinear generated difference frequency. This conclusion is supported by an analytical

study of Hamilton [12], where he shows that the nonlinear generated difference

frequency component is much smaller for noncollinear (small angle cross beam)

transducer geometries. Hamilton concludes that the reduction in the size of the

interaction region drastically reduces the ability for the cross beam configuration to

generate a difference frequency. We thus conclude that the parametric configuration is

the most efficient configuration for generating a nonlinear difference frequency.

4.2.3A. Amplitude Modulated Beat Frequency - Vibro-Acoustography

Creating a nonlinear difference frequency is not the only proposed method for

delivering energy to the target. Vibro-acoustography is an imaging method that uses an

amplitude modulated ultrasound wave to create a localized dynamic radiation force on an

object [13,14]. This dynamic radiation force causes the object to vibrate and emit an

acoustic signal. This acoustic emission signal is dependent on the object’s geometry and

material parameters.

Radiation pressure is defined as the time-averaged force exerted by an acoustic

field on an object [14]. An amplitude modulated ultrasound wave incident on an object’s

surface creates a dynamic radiation force at the same frequency of the amplitude

modulation. Unfortunately, this amplitude modulated signal will also undergo nonlinear

demodulation which generates a difference frequency component. When recording a low

frequency signal coming from the object, it is very difficult to determine which

94

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

phenomenon caused the low frequency signal. It could be from the nonlinear difference

frequency component scattering off the object, the acoustic emissions created by the

radiation pressure effect, or some combination of the two.

Both, the parametric and confocal geometry produce an amplitude modulated

acoustic wave that could produce a radiation pressure effect. The parametric

configuration produces a stronger and more uniform amplitude modulated signal than a

confocal geometry of the same overall transducer size. The parametric array emits both

frequencies over the entire face of the transducer. The confocal transducer only emits

one frequency per transducer element. Two transducers of the same surface area of the

parametric array would be needed to achieve the equivalent acoustic intensities.

For the Vibro-Acoustography method to be successful, the ultrasound frequencies

must reach the concealed weapon. We have already shown that the higher frequency

ultrasound waves are less efficient in penetrating clothing. Dense clothing materials,

such as leather, may reflect too much of the ultrasound energy for this method to be

viable. Additional studies will be needed to test the acoustic transmission of various

clothing types.

4.2.3.5. Confocal vs. Parametric Array Conclusion

We have simulated both parametric and cross beam transducer configurations to

compare the resulting sound beams. The parametric array produces a narrow and

uniform sound beam with a strong nonlinear difference frequency. The crossbeam

geometry has a reduced interaction region that reduces the intensity of the nonlinear

difference frequency. The cross beam geometry also produces a complicated interference

95

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

pattern in the interaction region of the two sound beams. This interference pattern may

make characterizing and repeating experimental measurements difficult, especially for

“uncooperative” targets under field conditions.

4.2.4. Effects of the Initial Sound Pressure Intensity on the Resulting Sound Beam

Several additional simulations have been performed to compare the sound beams

of different initial sound pressure intensities. A 2ft diameter transducer with a

geometrical focus of 8m was used in all of the following simulations. The transducer

emits a short dual frequency tone burst at 47 kHz and 53 kHz. Six initial sound pressure

intensities were tested: 120dB, 125dB, 130dB, 135dB, 140dB, and 145dB.

Table 4.2 gives the sound pressure intensities and the beam widths of the three

frequency components of the sound beam recorded at 5.8 meters. Figure 4.15 shows the

beam width profiles for the three frequency components of the sound beam measured at

5.8 meters. The shape and width of the beam are not affected by changing the initial

sound pressure intensity.

Nonlinear effects are amplified by increasing the amplitude of the initial sound

wave. As the initial sound intensity is increased, more energy is sent to the nonlinear

generated frequency components (nfi±mf2). This pattern is shown Table 4.2. As the

initial sound pressure is increased in 5dB increments, the intensity of ultrasound

frequencies recorded at 5.8m increases in increments less than 5dB. This loss is

attributed to more energy being sent to the nonlinearly generated frequencies. The

nonlinearly generated difference frequency (6 kHz) increases in increments of about 8-10

db each time the initial sound pressure is increased by 5dB. Figure 4.16 shows the axial

96

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

sound pressure intensities of the three frequency components for the different initial

sound pressure intensities.

Table 4.2 Beam Width and Intensities recorded at 5.8 meters for different
_______ initial sound pressure intensities._________________
Initial
Sound

Pressure

53 kHz Component 47 kHz Component 6 kHz Component
Intensity B

Width
Intensity B

Width
Intensity B

Width
120 db 111.6dB 12 cm 115.ldB 12cm 69.9dB 59cm
125 db 116.5dB 12 cm 119.9dB 12cm 79.7dB 59cm
130 db 121.2dB 12 cm 124.6dB 12cm 89.2dB 59cm
135 db 125.5dB 12 cm 129.1dB 12cm 98.6dB 59cm
140 db 129.3dB 12 cm 133.ldB 12cm 107.3dB 59cm
145 db 132.ldB 12 cm 136.5dB 12cm 115.2dB 59cm

97

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Beam Width Profiles for the Different Initial Sound Pressure Intensities
Measured at 5.8m

53 kHz

CLW

Radial Direction (m)

47 kHz

Radial Direction (m)

6 kHz

I

Radial Direction (m)

Figure 4.15. Beam width profiles recorded at 5.8m for the different
initial sound pressure intensities. Changing the initial intensity does not
affect the shape or width of the resulting sound beam.

98

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Axial Absorption Plots for the Different Initial Sound Pressure Intensities

53 kHz

o 1 2 3 4 5 6
Axial Distance • Meters

7 8 9 1 0

47 kHz

I

Axial Distance (Meters)

120 6kHz
110

100
90

80

70

60

1 2 0 d b
1 2 5 d b
1 3 0 d b
1 3 5 d b
1 4 0 d b
1 4 5 d b

50

40

30o 1 2 3 4 5 6
Axial Distance (meters)

7 8 109

Figure 4.16. Axial absorption plots for the different initial sound
pressure intensities. As the initial sound intensity is increased, more
energy is passed to the nonlinear generated frequencies.

99

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.2.5 Extended Distance Simulations

Extended simulations have been performed to test the KZK acoustic code to

larger distances such as 55 meters. Here we present an example of an extended-distance

simulation using a 2ft diameter flat parametric transducer. The parametric transducer

emits a short 140db dual frequency tone burst at 47 kHz and 53 kHz. Figure 4.17 shows

the pressure waveform snapshots recorded at various distances starting at 3.2 meters and

ending at 54.5 meters. Figure 4.18 shows the beam width profiles at these same

distances.

Figure 4.19 shows the absorption plots for the three frequency components of the

sound beam. At 15-20 meters, the nonlinear generated difference frequency component

becomes stronger than the ultrasound frequencies. At 50 meters, only the audio

component is present. The beam width of the 6 kHz component of the sound beam is

about 5 meters at 50 meters. The beam width can be reduced by using a larger transducer

and/or employing focusing techniques.

100

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Pressure Waveform Snapshots from an Extended Distance Simulation

Figure 4.17. Pressure waveform snapshots recorded at various distances from an
extended distance simulation.

101

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Beam Width Profiles at Various Distances for an Extended Distance Simulation

9.6 meters

<0a
CL

radial direction (m)

32 meters

& ci

radial direction (m)

20.8 meters
----- 53 kHz
----- 47 kHz
----- 6 kHz

A
/ P \

' yjJXW -

-5 -4 -3 -2 - t 0 1 2 3
redial direction (m)

4 5

43.2 meters
----- 53 kHz
— 47 kHz •
----- 6 kHz/ \

-

/ \ \
i \/ \

/ \

*

/ \

_̂________ / \ \

0l-------------1 — ,1 ,n. ii f------------- 1 - x - i-------------1 I________
-5 - 4 - 3 -2 -1 0 1 2 3 4 5

redial direction (m)

radial direction (m)

Figure 4.18. Beam width profiles at various distances for an extended distance
simulation. The three different components of the sound beam are shown: 53 kHz
(blue), 47 kHz (green), and 6 kHz (red).

102

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Absorption Plots for an Extended Distance Simulation

140

120

100

I 80 (0

60

40

2 0 1---------- 1------------ 1----------------I------------ 1-------------1------------ '------------- 1------------ 1------------- 1------------ 1------------- 1
0 5 10 15 20 25 30 35 40 45 50 55

Axial D istance (Meters)

Figure 4.19. Absorption plots for an extended distance simulation to a
distance of 55 meters. The three different components of the sound beam
are shown: 53 kHz (blue), 47 kHz (green), and 6 kHz (red).

4.2.5 Nonlinear Sound Beam Discussion

We have developed a useful and efficient tool for characterizing nonlinear

acoustic beams created by various devices. With the new nonlinear KZK simulation

code, many different transducer configurations can be quickly and systematically

simulated. Simulations results have been shown to match well with experimental results.

We have simulated both parametric and cross beam transducer configurations to

compare the resulting sound beams. The parametric array produces a narrow and

uniform sound beam with a strong nonlinear difference frequency. The crossbeam

geometry has a reduced interaction region that reduces the intensity of the nonlinear

difference frequency. The cross beam geometry also produces a complicated interference

53 kHz
47 kHz
6 kHz

103

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

pattern in the interaction region of the two sound beams. This interference pattern may

make characterizing and repeating experimental measurements difficult.

We now have a good understanding of the acoustic beams and their frequency

components just before the waveforms interact with the target. Additional experimental,

analytical, and computational studies should be performed to characterize the acoustic

interaction with various sized and shaped objects. The interaction of the acoustic waves

with an object depends strongly on the object’s material composition, shape, size, and

orientation. Understanding these interactions will be vital to developing a successful

acoustic concealed weapons detector.

104

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.3 3DPAFIT Simulations with Incident Nonlinear Sound Beam

4.3.1 Nonlinear Sound Beam Input

We have also merged the KZK simulation code and our 3D acoustic finite

integration (3DAFIT) code. The KZK simulation code is used to propagate the acoustic

wave from the parametric array to the target taking into account the effects of

nonlinearity and absorption. At a certain distance, beyond which the nonlinear

conversion is complete, the pressure waves flow from the KZK simulation space into the

3DPAFIT simulation space. We can thus place any combination of objects and layers

into the 3DPAFIT simulation space to study the acoustic interaction.

4.3.2 Inserting and Scattering from a Human Model

For concealed weapons and explosives detection, it is important to understand

how acoustic waves interact with the human body with and without objects concealed

under clothing layers. This is a very complicated scattering problem that is practically

impossible to study theoretically. Our 3D parallel acoustic simulation technique

(3DPAFIT) provides an accurate way to model these scenarios and study the acoustic

interactions.

To create realistic scenarios, we have included a 3D human model into our

acoustic scattering simulations. The 3D human model was created from low resolution

anatomical cross-sections taken from a male cadaver obtained in the Visible Human

Project [15]. Figure 4.20 shows four sample anatomical cross-sections from this dataset.

Figure 4.21 shows three different views of our 3D human male model.

105

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 4.22 shows pressure waveform snapshots created with the KZK simulation

code. A one meter diameter focused parametric array emits a short dual-tone pulse (45

kHz and 55 kHz). As the pulse propagates away from the parametric array, a 10 kHz

component is created due to the nonlinearity of the air. At 10 meters, the 10 kHz

component becomes the dominant frequency of the pulse because the higher ultrasound

frequencies are absorbed much more quickly. At 10 meters, this waveform propagates

into the 3DAFIT simulation space where it scatters from the 3D human model as shown

in figure 4.23.

Figure 4.20. Anatomical cross-sections taken from a male cadaver
obtained by the Visible Human Project.

106

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 4.21. Three different views of the 3D human male model created
from the anatomical cross-sections.

107

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 4.22. Pressure waveform snapshots created with the KZK simulation code. A
one meter diameter focused parametric array emits a short 140db dual-tone pulse (45
kHz and 55 kHz). As the pulse propagates away from the parametric array, a 10 kHz
component is created due to the nonlinearity of the air. The higher ultrasound
frequencies are absorbed much quicker so that at 10 meters, only the 10 kHz component
remains.

108

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

90

80v

40->

90

Figure 4.23. An acoustic pulse from the KZK
simulation shown in figure 3 scatters from the
3D human model. __

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.3.3 Inserting CAD Models

We have also created a 3D model of the RPG-7V1 Rocket Propelled Grenade

Launcher. The 3D model is shown at several angles in Figure 4.24. The dimensions of

each of the major geometrical features of the RPG were extrapolated from the image

shown in Figure 4.25. The 3D model was created in a commercial CAD package and

imported and rendered in the MATLAB environment. Once in the MATLAB

environment, we can position it into our simulation space at any orientation to study how

acoustic waves interact with it.

Figure 14.24. A 3D model of the RPG-7V1 Rocket
Propelled Grenade Launcher is shown at three angles in
the carrying position.

110

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 4.25. RPG-7V1 Rocket Propelled Grenade Launcher in
carrying position.

Before the CAD model can be placed into the simulations space, it must be

converted into the correct data format. To do this, we need cross sectional images similar

to the anatomical cross sectional data from the human model. CAD models are

composed of many triangles that fit together to create the surface of the 3D model. An

algorithm has been developed to slice the 3D CAD model to create cross sectional

images.

Sample cross sectional images of the RPG-7V1 are shown in figure 4.26. Many

of these images are combined into the correct format so that the object can be inserted

into the simulation space. This algorithm automatically adjusts the resolution of the

object to fit the resolution of the simulation. Figure 4.27 shows the RPG-7V1 at three

resolutions: 3mm, 6mm, and 9mm. It is easy to see that decreasing the resolution also

decreases the level of detail of the RPG model. In most all cases, the resolution of the

acoustic simulations will be 3mm or finer.

I l l

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 4.26. Cross-sectional images of the RPG-7V1 Rocket
Propelled Grenade Launcher model. They are taking at the front
handle (left), back handle (right) and in between the two (middle).

Figure 4.27. The RPG-7V1 Rocket Propelled Grenade Launcher model
shown at three different resolutions: 3mm (top), 6mm (middle), and 9mm
(bottom). The resolution of the 3D model must match the resolution of the
simulation.

112

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.3.4 Back Scattered Acoustic Energy as a Function of Angle

With the ability to add 3D CAD models into the computational space, we can

systematically explore different scattering scenarios. These simulations will provide

valuable information about how acoustic energy scatters with various objects and

clothing layers. This information will be key in the development of signal processing

algorithms and next generation hardware.

As an example, we placed the RPG model into the simulation and systematically

rotated it to determine the back-scattered energy as a function of incident beam angle.

The incoming sound wave is a 6 kHz sound beam that is the result of a nonlinear KZK

simulation. In this simulation, a 1 meter focused parametric array emits a dual tone burst

(50 kHz and 56 kHz). The waves are focused as they propagate and a 6 kHz difference

frequency wave becomes the dominate component in the wave. At 10 meters, the sound

waves flow from the nonlinear acoustic simulation into the 3D acoustic scattering

simulation. The waves then scatter from the RPG and the backscattered energy is

recorded.

This process was carried out for 40 different orientations of the RPG model.

Figure 4.28 shows the orientation of the RPG along with the incident wave angles. The

RPG was rotated 9 degrees between each simulation. This process provides the

backscattered acoustic energy as a function of angle for the RPG model at 6 kHz. This

distribution can be found in the polar plot shown in Figure 4.29. The strongest back

scattered energy is found between 120° and 240°. At these angles, both handles of the

113

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

RPG are facing the incoming sound beam which strongly reflects the incoming acoustic

energy.

The peak and valley structure of the backscattered energy is as expected and is

perhaps the most interesting part of the data. In some cases, a small change in orientation

(as small as 10°) can lead to a 60% drop in the backscattered energy. This plot only

shows the backscattered energy at 6 kHz, but a sequence of these backscattered-energy-

vs.-angle plots at different frequencies can provide a template of what to look for in

experimental measurements. Knowing how acoustic waves reflect from complicated

shaped weapons is necessary to develop a robust signal processing algorithms to

automatically detect them.

tII

180' 270'

II

Figure 4.28. The RPG-7V1 model is shown with angles of the
incident sound beam.

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

90
1

120

0.8

150

180

210 330

240 300

270

Figure 4.29. Polar plot shows the backscattered energy of the RPG-
7V1 model as a function of incident wave angle.

115

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.4 Conclusion

With the KZK nonlinear sound beam simulations, we can explore how variables

such as parametric array size, curvature, initial waveform, and intensity level affect the

resulting sound beams. We can also use these simulations to predict how parametric

arrays will perform under different environmental factors such as air temperature and

humidity level. With our 3D acoustic simulations (3DPAFIT), we can study how

acoustic waves interact with complex shaped objects such as the human figure, clothing

layers, and concealed weapons. We can also explore how the material composition of

objects affects the scattered acoustic energy.

We have coupled oiu KZK nonlinear acoustic simulations with our 3D acoustic

scattering simulations. Together we can simulate the entire process of nonlinear sound

propagation and acoustic scattering from the target. We have the full capabilities to

systematically simulate acoustic interactions with complex shaped objects including

humans, clothing layers, and weapons. These simulations provide a very powerful tool to

assist in the development of hardware and software systems for the next generation

acoustic concealed weapons detector.

116

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.5 References

1. Inc, J., Handheld Remote Concealed-Weapons Detector, Final Technical Report.
National Institute of Justice, 1999. #J200-99-0032/3031.

2. A. Achanta, M.M., S. Guy, E. Malyarenko, J. Lynch, J. Heyman, K. Rudd, M.
Hinders, Nonlinear Acoustic Concealed Weapons Detection. Materials
Evaluation, 2005. 63(12): p. 1195-1202.

3. A. Achanta, J.H., K. Rudd, M. Hinders, P. Costaines, Non-linear Acoustic
Concealed Weapons Detection System. Automatic Target Recognition XV, Proc.
SPEE, 2005. 5807: p. 162-169.

4. A. Achanta, J.H., M. McKenna, K. Rudd, M. Hinders, Nonlinear Acoustic
Concealed Weapons Detection. Proceedings of the 34th Applied Imagery
Recognition Workshop IEEE, 2005.

5. Lee, Y., Numerical Solution o f the KZK Equation for Pulsed Finite Sound Beams
in Thermoviscous Fluids. 1993, The University of Texas Austin.

6. Kuznetsov, V.P., Equations o f Nonlinear Acoustics. Sov. Phys. Acoust, 1971. 24:
p. 310-313.

7. Zabolotskaya, E.A.a.K., R.V., Quasi-plane waves in the nonlinear acoustics o f
confined beams. Sov. Phys. Acoust, 1969.15: p. 35-40.

8. Y. Lee, M.F.H., Time-domain Modeling o f pulsedfinite amplitude sound beams.
The Journal of the Acoustical Society of America, 1995. 97(2): p. 906-917.

9. M.F. Hamilton, D.T.B., Nonlinear Acoustics. 1998: Academic Press.
10. H.E. Bass, L.C.S., A.J. Zuckerwar, D.T. Blackstock, and D.M. Hester,

Atmospheric absorption o f sound: Further developments. Journal of Acoustical
Society of America, 1995. 97(1): p. 680-683.

11. L. Kinsler, A.F., A. Coopens, and J. Sanders, Fundamentals o f Acoustics. 4th ed.
2000: John Wiley & Sons, Inc. 162-63.

12. Hamilton, M.F., Effects o f noncollinear interaction on parametric acoustic arrays
in dispersive fluids. Journal of Acoustical Society of America, 1984. 76(5): p.
1493-1504.

13. M. Fatemi, A. A., J.F. Greenleaf, Characteristics o f the audio sound generated by
ultrasound imaging systems. Journal of Acoustical Society of America, 2005.
117(3): p. 1448-1455.

14. M. Fatemi, J.F.G., Vibro-acoustography: An imaging based on ultrasound-
stimulated acoustic emission. The National Academy of Science USA, 1999. 96:
p. 6603-6608.

15. Project®, V.H., http://www.nlm.nih.eov/research/visible/visible human.html.

117

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

http://www.nlm.nih.eov/research/visible/visible

Chapter V

Applied 3DPAFIT Simulations: Ultrasonic Periodontal Probe

5.1 Introduction

Periodontal disease refers to the inflammatory process of the tissues surrounding

the teeth due to bacterial accumulations. If untreated, periodontal disease can lead to a

progressive loss of tissue attachment to the tooth and underlying alveolar (jaw) bone and

ultimately lead to tooth loss [1]. The periodontal pocket is the crevice that forms in

between the tooth and the supporting tissue. Depending on depth of the pocket, which

can extend from 2 to 12 mm, it can harbor as much as 107 to 109 bacterial cells [1,2]

Half of the adult population in the United States has mild inflammation

(gingivitis), and about 30% of the population has periodontal disease that is defined by

having three or more periodontal pockets with depths of 4mm or more [3-7]. Between

5% and 15% of adults with periodontal disease have advanced forms with pocket depths

measuring 6mm or more [8]. Periodontal disease has also been associated with diabetes,

stroke, and adverse pregnancy conditions [9-11]. At least 14 of 17 studies have provided

statistically significant data to associate periodontal disease with cardiovascular disease

[12-14]. This suggest the possibility of periodontal disease as a risk factor for

cardiovascular disease [1].

Today, periodontal disease is typically diagnosed with manual probing [15]. A

clinician determines the depth of the periodontal pocket by inserting a thin metal probe

118

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

directly into the pocket. Ridges or markings on the probe indicate for depth of the

pocket. Manual probing has been shown to be unreliable [16-22] and it can be invasive

and painful. Studies in automatically-controlled force probes have shown success in

reducing operator-related error and subjectivity inherent in manual probing [23-26], but

these probes do not account for anatomic and inflammatory factors that can affect on

measurement accuracy [27,28]. New techniques and technologies based on ultrasound

may be able to diagnose periodontal disease more reliably than manual techniques while

being less invasive and painful to the patient.

5.1.1 The Ultrasonic Periodontal Probe

Over the past four decades, many researchers have explored the use of ultrasound

to image the periodontal region [29-38]. In 1998, Loker and Hagenbuch developed a

prototype of an ultrasonic device to measure the depth of the periodontal pocket [39].

Their device used a solid taper-delay line to couple the ultrasound into the tissue at

approximately the same location and orientation as manual probing [40]. Results from a

pilot clinical trial showed that correlation between measurements taken by manual

probing and with their ultrasonic device were “not particularly good”.

Also in 1998, Companion and Hinders [41,42] first reported results of an

ultrasonic periodontal probe that had been under development at NASA Langley for

several years [43, 44]. Hinders et. al reported on various aspects of this work [45-49] as it

developed over the next several years. This ultrasonic periodontal probe, which is the

basis of the simulations in this chapter, uses a hollow tapered tip that is filled with water

for coupling of the ultrasonic beam into the tissues. A diagram of this ultrasonic probe

119

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

and the geometry of the periodontal tissues are shown in Figure 5.1. The internal shape

of the hollow probe tip was optimized via a combination of computer simulations and

systematic experiments, and a sequence of increasingly more practical clinical prototypes

were developed and used in several pilot studies comparing ultrasonic to calibrated-

manual and controlled-force probing. Pictures of the latest generation of the ultrasonic

periodontal probe including the water flow system, ultrasonic probe, and the data

acquisition system is shown in Figure 5.2 and Figure 5.3. A critical development was the

recognition of the need for artificial intelligence algorithms to automatically identify the

very subtle echo-waveform features corresponding to the anatomy of interest. The

wavelet fingerprint technique of Hou and Hinders [50-55] was adapted for this purpose

and shows promise.

In this chapter, we use the three-dimensional parallel acoustic finite integration

technique (3DPAFIT) to simulate the ultrasound propagation in the tip and the intricate

geometries periodontal tissues. These simulations provide valuable insight into the

complex underling physics of the ultrasound propagation and interaction in the soft-

tissues. A sophisticated software package was developed to automatically define the 2D

and 3D geometry of the tip and the periodontal tissue structures and allow for easy

modifications of these geometries. Many simulations were completed to provide

systematic data sets to assist in the development of automated software algorithms for

determining the periodontal pocket depth under a variety of conditions.

120

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Ultrasound
Transducer

/vVvVvVvTO
Z / v V V v ' / v V -1
.•VvVv*-VVv\

/vV 'A 'V .'V /'v

VvV'/'.-V
.•V-̂ A-V
:-V \-V V V

Ultrasound
Beam

Gingival
Margin

Periodondal
Pocket

m m Periodontal
Ligament

Figure 5.1. Diagram of the ultrasonic periodontal probe and the
major tissue structures of the periodontal region.

121

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 5.2. Picture of the latest generation of the Ultrasonic Periodontal
Probe System.

Integral magnetic
position sensorTansducer at base of tip

sends and receives echoes

Hollow tip focuses
acoustic beam into
periodontal tissues

Quick disconnect
for signal and
couplant lines

Figure 5.3. Close-up picture of the Ultrasonic Periodontal Probe hand piece.

122

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.2 Acoustic Simulations of the Ultrasonic Periodontal Probe

A sophisticated set of software tools were developed to simulate the 3D acoustic

propagation and interaction in the tip and the periodontal tissues. These software

components automatically create the 3D geometries of interest, perform actual acoustic

simulations on a parallel super-computer, and process and visualize the results. The pre­

processing and post-processing, including visualizations, are performed on a single

desktop computer using the MATLAB programming environment. The actual

simulations are performed on William and Mary’s high performance computational

cluster (The SciClone). A flow chart of the entire process is shown in Figure 5.4.

First, a software system was developed to automatically create the 2D periodontal

geometry using a small number of parameters which define the scenario the user wants to

simulate. Most of the important features of the model are parameterized so that they can

be changed without having to modify the simulation software. These include the

geometry of the tissue structures, material parameters, the depth of the periodontal

pocket, and the curvature of the tooth and tissue structure. The ultrasonic tip is also

parameterized so that its shape, the angle in which it sits on top of the periodontal pocket,

and the size and frequency of the transducer can also be changed. Once these parameters

are set, the MATLAB software automatically creates the appropriate 2D models which

ultimately define the 3D geometry. Then, a set of input files are created that define all

the simulation parameters and geometries for the 3D acoustic simulation code.

These input files are then moved to the SciClone where the 3D parallel acoustic

simulations are performed. As the simulation runs, the simulation software computes and

records a variety of simulation values such as acoustic pressure inside the tissue. The

123

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

output files include sets of 2D pressure slices which show the acoustic wave propagation

and typical A-line data that is recorded across the front of the transducer face. More

details of the software components and the periodontal and tip geometries will be

discussed in the following sections.

Desktop PC running MATLAB

I fe 'tl& ^ o ^ ss in g ;

/p^^l|m&vi&tiali2atiQns

The SciClone
Parallel Computer

Figure 5.4. Chart showing the flow of data from the major software components for
simulating 3D acoustic waves for the ultrasonic periodontal probe.

124

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.3 Two-Dimensional Periodontal Tissue and Tip Geometry

The geometry of the periodontal pocket and surrounding tissues is very complex.

The shape and material properties of the tooth and tissues can vary from tooth to tooth

and from patient to patient. We have created a 2D geometry that is based on several

sources including real anatomical cross-sections and diagrams from leading periodontal

disease textbooks [ref]. Samples of an anatomical cross-sections and a diagram of the

anatomical area of interest are shown in figure 5.5.

A 2D model of the periodontal pocket and surrounding tissue is shown in figure

5.6. It includes the major anatomical features that are important to periodontal disease

development and the ultrasound propagation. The model includes the hard tissues of the

dentin, tooth enamel, and alveolar bone. It also includes the soft tissues of the

mucogingival which makes up most of the major soft tissue at the base of the tooth. The

junctional epithelium (JE) is located at the base of the periodontal pocket.

Figure 5.5. Anatomical cross-section and a diagram of the periodontal pocket
and surrounding tissues that were used to create the 2D periodontal model.

125

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1. Junctional Epithelium (JE)
2. Mucogingival
3. Alveolar Bone
4. Dentin
5. Enamel

Figure 5.6. 2D slice of the 3D periodontal model.

The 2D model maps the geometry of the different tissue structures. From the

beginning of development, it was assumed that the 2D model will have to be adaptive

instead of a static 2D image. With the advice from clinicians and experts in the field of

periodontics, the model can be continually improved in accuracy. We can also purposely

change the model to test a variety of geometries and pocket depths. In addition, the 2D

model needs to be scalable depending on the resolution of the simulation. For example, a

5 MHz simulation needs a model that is 5 times higher in resolution than a 1 MHz

simulation. To perform these changes on a static image would be difficult to accomplish

in a timely manner. The details of the adaptable 2D model of the periodontal tissue

structures are found in the following section.

126

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.3.1 Adaptable 2D Periodontal Tissue Model

A software system was developed so that the entire 2D model is defined by a

small set of points that indicate the boundaries between the different tissue structures.

Figure 5.7 shows the 2D model with a set of green points on the tissue boundaries. Once

the resolution of the simulation space is determined, the rest of the boundaries are found

using a cubic-spline interpolation between the major points. For example, the position,

size, and shape of the alveolar bone are determined by only 5 points. The entire

geometry of the model can be modified by simply moving the locations of these points or

adding new ones. Once the boundaries are defined, the material parameters are literally

filled in starting at the location of the red/blue dots.

Figure 5.7. The 2D geometry of the periodontal tissue
structures is defined by small set of points (shown in green),
which indicate the boundaries between the different tissues.
The entire geometry can be changed by moving these points or
adding new ones.

127

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.3.2 Adding the Periodontal Pocket

Once the major geometry is established, the periodontal pocket is created

automatically by specifying the depth of the pocket. For simplicity, the depth of the

periodontal pocket is defined as the vertical distance from the top of the gum to the

location of the junction between the gum and the tooth. The junctional epithelium (JE) is

then positioned in the bottom of the pocket with a vertical height of 1.5mm (this can be

changed). Then the pocket is completely filled with water (which is not shown in most of

the figures). Figure 5.8 shows the 2D model with the periodontal pocket depth of 2mm,

6mm, and 10mm.

2mm 6mm 10mm

0.025

Figure 5.8. The 2D periodontal model is shown for three different pocket
depths.

128

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.3.3 Two Dimensional Tip Construction and Placement

Like the periodontal pocket, the tip of the ultrasonic probe is modeled using a 2D

cross section. Previous work suggested that a tip with linear sloped walls would be the

most effective shape to deliver the ultrasound energy into the periodontal pocket [48]. A

2D model of a linear tip is shown in figure 5.9. It is parameterized such that one can

easily change the dimensions of the tip. These dimensions include base radius,

transducer radius, wall thickness, length, and tip radius. Additional tip shapes can be

modeled by specifying their cross sectional shape.

Once the shape of the tip is defined, it is placed into position at the top of the

periodontal pocket. The angle of the tip is also parameterized so that it can be easily

changed. The placement of the tip is completely automated. Figure 5.10 shows the tip of

the periodontal ultrasound probe at 65°, 50°, and 30°.

transducer
radius

Hollow Tip
wall thickness

tip radius

Figure 5.9. A linear tip and its parameterized dimensions.

129

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 5.10. The 2D periodontal model with the linear tip placed at three different
angles. Once the periodontal and tip geometries are defined, the placement of the tip
is done automatically.

130

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.4 Three Dimensional Periodontal Pocket and Ultrasonic Tip Geometry

Once the 2D geometries are defined, the 3D geometries are created by rotating or

sweeping the 2D models. The 3D tip is created by rotating the 2D tip geometry 360°

about its central axis. Figure 5.11 shows an example 3D tip with the transducer shown in

green. The 3D periodontal geometry is created by sweeping the 2D periodontal pocket

model to create a curved tooth and tissue structure. An example 3D geometry with the

3D tip in place is shown in figure 5.12. A close-up of the tip on top of the periodontal

pocket is shown in Figure 5.13 (the water is not shown). The radius of curvature is

parameterized so that tooth structures of different curvatures can be simulated. Figure

5.14 shows three different tooth curvatures. The blue boxes in these figures are the

boundaries of the simulation space.

Figure 5.11. 3D linear tip with the transducer in the base of the tip
shown in green.

131

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

0.03

0.025

0.02

0.015

0.01

0.005

0

-0.005
0.02

• 0.01

- 0.02 0.02

Figure 5.12. 3D periodontal simulation geometry

132

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 5.13. The 3D periodontal model is shown with the 3D tip placed at the
top of the pocket. The 3D model is created by sweeping the 2D model with a
fixed radius of curvature.

133

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 5.14. Three 3D models with different curvatures of the tooth
anatomy ranging from completely straight (top left) to very curvy
(bottom).

134

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.5 Example Simulation Output and Visualization

Once the 3D geometries and simulation parameters are determined, a set of input

files are created and passed to the 3DPAFIT code which runs on a parallel super

computer (The SciClone). The details of the 3DPAFIT simulation can be found in

chapter 2. Currently, the simulation software creates three different types of output or

simulation results for the ultrasonic periodontal probe simulations.

The first is a series of vertical 2D slices through the center of the simulation

space. These slices show the propagation of the acoustic waves starting from the

transducer and propagating into the periodontal pocket and surrounding tissues. Figure

5.15 shows a series of these snapshots for a simulation where the periodontal pocket

depth is approximately 2.5mm. Figure 5.16 shows a close up of one of these snapshots.

In addition to these 2D slices, the value of the pressure waves over the entire 3D

simulation space is accumulated. This 3D volume can be sliced to show the acoustic

energy distribution inside the tissue. Figure 5.17 shows several horizontal slices through

the volume to at three different depths below the tip. The brightness and color of these

plots shows the horizontal acoustic energy distribution. Finally, the pressure across the

face of the transducer is recorded to create the typical A-line. Figure 5.18 shows one of

these A-lines indicating the initial burst and two reflections from the internal tip

reflections.

135

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 5.15. Several 2D snapshots from the 3D simulation showing the acoustic
waves created by the transducer traveling down the tip and into the periodontal
pocket and surrounding tissue. The depth of the periodontal pocket is approximately
2.5mm.

136

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 5.16. A close up of the pressure waves in the tip
and the pocket.

137

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 5.17. Horizontal slices showing the acoustic energy distribution at three different
depths.

Initial Burst

2nd Reflections'
from TipReflections

from Tip- 4

-8
1000 2000 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0

Figure 5.18. A typical A-line (at 5 MHz) showing the initial burst and
two reflections from the tip.

138

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.6 Rigid Simulation and Experimental Results

Systematic rigid simulations were performed to provide an indication of where

the echoes from the bottom of the pocket should appear in the A-lines for the more

realistic simulations. Rigid simulations are performed with the geometry of the

periodontal tissues described in the previous sections except that the soft tissues of the

gingival and junctional epithelium (JE) are made rigid. This guarantees that all the

acoustic energy stays in the water inside the tip and the periodontal pocket and ensures

that all the acoustic energy that reaches the bottom of the pocket will be reflected. A total

of 40 rigid simulations were performed at 5 MHz with the pocket depth ranging from

0.5mm to 10.5mm in 0.25mm increments. Each of these simulations required about 8GB

of computer memory and took approximately one day to complete when mnning on 16

computers (at 750Mhz each).

Experimentally, data is collected with an aluminum block with a sequence of

holes drilled at different depths. The tip and the holes are filled with water just as the

periodontal pocket is in the simulations. The large acoustic impedance mismatch

between aluminum and the water keeps a large majority of the acoustic energy in the

water. Figure 5.19 shows A-lines from simulation of the rigid periodontal region and

experimental A-lines from the aluminum block at five different depts. (3mm to 7mm in

1mm increments). In both cases, the A-lines have been low-passed filtered and the

amplitude of the experimental A-line at 3mm was reduced to make the plot more

consistent (this echo had a very large amplitude). In both the simulated and experimental

data peaks stand out and shift to the right (further in time) as the depth of the pocket/hole

gets deeper.

139

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

R e p ro d u c e d with

Echo from Tip

Figure 5.19. A-lines are plotted for five simulations (ton) and
five experiments (bottom). l m d

140

perm iss ion of th e copyright owner. F u r th e r reproduction prohibited w ithout perm iss ion .

The differences in amplitudes can be attributed to several experimental and

geometrical differences. The experimental data was collected at 10 MHz and includes

hardware amplification. Also, the crevice (or slit like) geometry of the 3D periodontal

pocket confines the acoustic energy to two-dimensions while the hole of the experiment

confines the energy to one dimension. This would cause the echoes from the experiments

to be larger than seen in the simulations.

The velocity of sound in water is approximately 1500 meters per second. In the

simulated data, the average time between each peak is 1.3337 microseconds. This

corresponds to a distance of 0.00200055 meters or indicating the average depth change of

the pocket is 1.00027 mm. This distance is indeed the change in pocket depth in between

each of the simulations. In the experimental data, the average time between the peaks is

1.5625 microseconds which corresponds to an average change in the depth of the hole of

1.171 mm. This example illustrates that the acoustic simulations of the 3D periodontal

pocket can accurately create A-line data with echoes from the bottom of the periodontal

pocket. The echoes accurately represent the depth of the periodontal pocket. In the more

realistic simulations and experimental data, a more sophisticated signal processing

technique will be needed to detect the faint echoes from the bottom of the periodontal

pocket.

141

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.7 Periodontal Tissue Material Parameters

Accurate material parameters are necessary to simulate realistic acoustic

propagation in the soft tissues surrounding the periodontal pocket. For the 3D acoustic

simulations, the material parameters that are needed are the density p and the acoustic

wave velocity c. Unfortunately, we have been unable to find any references that quote

these material parameters directly. In previous work, 2D simulations were performed of

the tip and the region surrounding the periodontal pocket [48]. In these 2D simulations,

the junctional epithelium and gingiva are modeled as skin and muscle, respectively. We

will take the same approach in our 3D simulations.

There are several references for the acoustic material properties of muscle and

skin. From [56, 57], we find the density of skin and muscle as 1020 kg/mA3 and 1080

kg/mA3, respectively. In addition, Culjat et. al. cite the density and acoustic wave

velocity of soft tissue as 1540 m/s and 1060 kg/mA3 [58] and Duck cites the acoustic

velocity and density of muscle as 1550m/s and 1060 kg/mA3 [59]. The table below

indicates the material parameters used in the 3D simulations. For reference, the acoustic

wave velocity and density of water is also presented [60]. We suspect that these values

are close but not exact. The tissue surrounding the periodontal pocket contains many

muscle-like fibers that run perpendicular to acoustic wave propagation direction. This

could raise the acoustic impedance mismatch between the water and tissue. In most

simulations, the acoustic impedance mismatch was increased to account for this fact.

Material
Density

(kg/mA3)
Acoustic Wave
Velocity (m/s)

Skin (JE) 1020 1540
Muscle (Gingival) 1080 1550

Water 998.2 1482.1

142

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.810 MHz Ultrasound Beam Study

Describing the 3D ultrasound beam inside the probe tip and the complex tissue

structures requires a very sophisticated 3D model such as the one presented in this

chapter. The ultrasound beam is defined by the spatial distribution and intensity of the

acoustic energy inside the tissues. The ultrasound beam is very difficult to characterize

because the beam interacts with several tissue layers in an inherently 3D and non-

symmetric geometry. Understanding the shape of the ultrasound beam inside the tissues

can assist in the interpretation of the experimental A-line measurements.

We use several visualization methods to describe the ultrasound beam inside the

tissues. The first is a series of 2D vertical pressure snapshots showing the wave

propagation through the probe tip and into the periodontal tissues. Figure 5.20 shows

several snapshots from a 10 MHz simulation. These snapshots show that a large portion

of the acoustic wave energy is channeled down the water filling the pocket. After the

interaction with the bottom of the pocket, the waves scatter off the dentin below the crest

and the beam begins to slowly diverge away from the tooth.

Figure 5.21 shows a vertical pressure accumulated snapshot where the dark blue

color indicates the spatial distribution of the acoustic energy. This plot also shows a large

amount of the acoustic energy is confined to the pocket and scatters off the dentin below

the crest. This degree of the scattering off the dentin depends on the angle of the probe

tip and the geometry of the tooth structure.

143

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

0.028

0.024

0.022

0.0141 0.0141

0.012 0.012

0 .008 '
0.01 0.012 0.014 0.016 0.018 0.02 0.01 0.012 0.014 0.016 04)18 0.02 * 0.01 0.012 0.014 0.016 0.018 0.02

0.028

0.026 0.026

0.024

0.022 0.022

0.02 0.021 0.02

0.018 0.018 0.018

0.016 0.016 0,016

0.014 0.0140.014

0.012 0.012 0.012

0.01 0.01 0.01

0.01 0.012 0.014 0.016 0.018 0.02
0.006

0.01 0.012 0.014 0.016 0.018 0.02

Figure 5.20. A series of vertical pressure snapshots showing the acoustic wave
progression. In the top center snapshot, the 10 MHz acoustic waves are mostly
confined to the pocket or near the interface between the water in the pocket and
the gingival tissue.

144

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.01

Figure 5.21. Vertical beam profile from a 10 Mhz
simulation showing the spatial distribution of the acoustic
energy. The darkness of the blue is proportional to the
acoustic energy intensity.

145

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

In addition to vertical profile of the ultrasound beam, we also examine horizontal

profile slices showing the lateral spread of the beam as it propagates down though the

tissue. Figure 5.22 (spanning two pages) contains 12 horizontal beam profile slices

located in 0.5 mm increments below the bottom edge of the tip. The colors of the images

are proportional to the spatial energy intensity with red being more intense than blue.

The right side of these images would correspond to the facial side of the tissue geometry.

In this simulation, the depth of the pocket is 3mm. In between 0.5mm and

2.5mm, you can make out the boundary between the water in the pocket and the soft

gingival tissue. As the energy propagates through the tissue, several side lobes form

inside the gingival tissue and inside the pocket. The side lobes inside the gingival tissue

quickly lose their strength as compared to the main beam inside the pocket. Two side

lobes form on either side of the main beam inside the pocket. It is not suspected that any

significant returns would come from these side lobes since these lobes diverge away from

the main lobe as the waves propagate. When the acoustic waves interact with the bottom

of the pocket (3mm), the beam is very narrow and close to the tooth surface. From

approximately 4 - 6mm, the beam reflects off the dentin and begins to slowly spread out

but is still relatively narrow.

146

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

0.0mm 0.5mm

0.006 O.Ot 0.012 0.014 0.016 0.018 0.02

1.0mm

O.OOS 0X11 0.012 0.014 0.018 0.016 002

2.0mm

0.006 O.Ot 0.012 0.014 0.019 0.016 002

0.008 0.01 0.012 O.0U 0.016 0.016

.5mm

0.006 O.Ot 0.012 0.014 0.010 0.016 0.02

2.5mm

0.012 0.014 0.016 0.018 0.02

147

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.0mm

I

3.5inin

0.006 0.01 0.012 0.014 0.016 0,016 0.02

4.0mm

0.008 0.01 0ilt2 0.014 0.016 0.01« 0.02

0.008 0.01 04)12 0.014 0.018 0.016 0.0

4.5min

04108 04)1 04)12 0.014 0.018 0.018 0.02

5.0inm 5.5min

Figure 5.22. A series of horizontal beam profiles showing the lateral resolution of the
ultrasound beam at 10 MHz.

148

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.9 Conclusions

In this chapter, we have shown that the three-dimensional parallel acoustic finite

integration technique can accurately simulate acoustic wave propagation in the complex

geometry of the periodontal region. A sophisticated set of software tools were created to

automatically create the 3D geometry of the periodontal region and run systematic

simulations. Several techniques are used to visualize the ultrasound waves inside the tip

and in the periodontal pocket and surrounding tissues.

Rigid simulations were performed to show that the simulation software can

produce realistic data with echoes corresponding to the depth of the periodontal pocket.

A set of 10 MHz simulations were completed to describe the ultrasound beam inside the

tissue. In addition many systematic simulations were performed to create a large data set

to assist in the development of the signal processing algorithms to automatically detect

the pocket depth.

5.10 References

1. Walter J. Loesche, a.N.S.G., Periodontal Disease as a Specific, albeit Chronic,
Infection: Diagnosis and Treatment. Clin Microbiol Rev, 2001.14(4): p. 727-
752.

2. Socransky S S, H.A.D., Smith C, Dibart S., Relation o f counts o f microbial
species to clinical status at the sampled site. Journal of Clinical Periodontol,
1991.17: p. 788-792.

3. C.A. Evans, D.V.L., W.R. Maas, et al, Oral Health in America: A Report to the
Surgeon General. 2000, National Institute of Dental and Craniofacial Research:
Bethesda.

4. Nevins, E.P.B.a.M., Diagnosing periodontal diseases. J. Am. Dental Assoc.,
1990.121: p. 460-464.

5. G.C. Armitage, e.a., Diagnosis o f Periodontal Diseases, Academy Report Position
Paper. J. Periodontol, 2003. 74: p. 1237-1247.

149

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6. Albandar J M, B.J.A., Kingman A., Destructive periodontal disease in adults 30
years o f age and older in the United States, 1988-1994. J Periodontol, 1999. 70:
p. 13-29.

7. Oliver R C, B.L.J., Loe H., Periodontal diseases in the United States population.
J Periodontol., 1998. 69: p. 269-278.

8. N., P.P., Periodontal diseases: epidemiology. Ann Periodontol, 1996.1: p. 1-36.
9. Fowler, E.B., Periodontal disease and its association with systemic disease.

Military Medicine, 2001.166: p. 85-89.
10. Paquette, D.W., The periodontal infection-systemic disease link: a review o f the

truth or myth. J. Int. Acad, of Periodontology, 2002.4: p. 101-109.
11. Slots, J., Update on general health risk o f periodontal disease. International

Dental Journal, 2003. 53: p. 200-207.
12. Beck J D, P.J., Tyroler H A, Offenbacher S., Dental infections and

atherosclerosis. Am Heart J., 1999.138: p. S528-S533.
13. Loesche W J, S.A., Terpenning M S, Chen Y M, Dominguez B L, Grossman N.,

Assessing the relationship between dental disease and coronary heart disease in
elderly U.S. veterans. J Am Dent Assoc, 1998.129: p. 301-311.

14. Mattila K J, V.V.V., Nieminen M S, Asikainen S, Role o f infection as a risk
factor for atherosclerosis, myocardial infarction, and stroke. Clin Infect Dis,
1998. 26: p. 719-734.

15. Trovato, J.P., role o f the general dentist in periodontal care. General Dentistry,
2003. March-April: p. 176-181.

16. A.D. Haffajee, e.a., Clinical parameters as predictors o f destructive periodontal
disease activity. J. Clinical Periodontology, 1982.10: p. 257.

17. Slots, T.E.R.a.J., Comparison o f two pressure-sensitive periodontal probes and a
manual probe in shallow and deep pockets. Int. J. of Periodontics & Restorative
Dentistry, 1993.13: p. 521-529.

18. Corbet, N.P.L.a.E.F., Diagnostic procedures in daily practice. Int. Dental J.,
1995. 45: p. 5-15.

19. Lamster, G.G.a.I., Understanding diagnostic testing for periodontal diseases. J.
Periodontology, 1995. 66: p. 659-666.

20. Listgarten, M.A., Periodontal probing: What does it mean? J. Clin
Periodontology., 1980. 7: p. 165.

21. Hunter, F., Periodontal probes and probing. Int. Dental J., 1994. 44: p. 557-583.
22. L. Mayfield, G.B.a.R.A., Periodontal probe precision using 4 different

periodontal probes. J. Clin. Periodontology, 1996. 23: p. 76-82.
23. L. Tupta-Veselicky, e.a., A clinical study o f an electronic constant force

periodontal probe. J. Periodontology, 1994. 65: p. 616-622.
24. Cattabriga, M., Future diagnostic possibilities in periodontology. Int. Dental J.,

1993.43: p. 109-115.
25. M.C.K. Yang, e.a., Reproducibility o f an electronic probe in relative attachment

level measurements. J. Clin. Periodontology, 1992.19: p. 306-311.
26. N. Ahmed, T.L.P.W.a.R.F.W., An investigation o f the validity o f attachment level

measurements with an automated periodontal probe. J. Clin. Periodontology,
1996. 23: p. 452-455.

150

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

27. A. Aguero, e.a., Histological location o f a standardized periodontal probe in
man. J. Periodontology, 1995. 66: p. 184-190.

28. J.G. Keagle, e.a., Effect o f gingival wall on resistance to probing forces. J. Clin.
Periodontology, 1995. 22: p. 953-957.

29. Kydd WL,D.C., Wheeler JB 3rd., The thickness measurement o f masticatory
mucosa in vivo. Int Dent J., 1971. 21(4): p. 430-441.

30. H., S., Ultra-sonic diagnosis o f marginal periodontal diseases. 1971, Int Dent J.
21(4): p. 442-455.

31. Muraoka Y, S.T., Kinoshita S., Examination o f periodontal tissue with an
ultrasonic apparatus. Measurements o f the thickness ofgingiva, alveolar mucosa
and alveolar bone [Article in Japanese]. Nippon Shishubyo Gakkai Kaishi, 1982.
24(4): p. 601-606.

32. Sawada K, F.T., Sunada I., Ultrasonography o f the periodontal tissue [Article in
Japanese], Nippon Shishubyo Gakkai Kaishi, 1984. 26(1): p. 88-93.

33. Lost C, I.K., Nussle W.„ Periodontal ultrasonic diagnosis: experiments on thin
bony platelets and on a simulated periodontal ligament space. J Periodontal Res,
1988.41(9): p. 347-351.

34. Palou ME, M.M., Rossmann JA., The use o f ultrasoundfor the determination o f
periodontal bone morphology. J Periodontol, 1987. 58(4): p. 262-265.

35. Walmsley AD, L.W.a.L.P., Ultrasound in dentistry. Part 2 - periodontology and
endodontics. J. Dent, 1991.19: p. 11-17.

36. K., O., Application o f ultrasonography to periodontal diagnosis. [Article in
Japanese]. Nippon Shishubyo Gakkai Kaishi, 1989.1: p. 235-40.

37. T. Eger, H.-P.M.a.A.H., Ultrasonic determination o f gingival thickness. Journal
of Clinical Periodontology, 1996. 23(9): p. 839.

38. Tsiolis FI, N.I., Griffiths GS, Periodotal ultrasonography. J. Clin.
Periodontology, 2003. 30: p. 849-854.

39. K, L.D.R.H., Ultrasonic periodontal diagnostic instrumentation system with
clinical results. Measurement, 1998. 23(3): p. 125-129.

40. Demyun, S.M.H., Keith M., Ultrasonic method and apparatus for measuring the
periodontal pocket, Periosonics, Inc: United States.

41. Mark Hinders, J.C., ULTRASONIC PERIODONTAL PROBE. 25th Review of
Progress in Quantitative Nondestructive Evaluation, 1998.

42. Mark Hinders, A.G., John Companion, Ultrasonic periodontal probe. The Journal
of the Acoustical Society of America, 1998.104(3): p. 1844.

43. Goodbye Gingivitis. Virginia Business, 1997: p. 9.
44. Companion, J.A., Differential measurement periodontal structures mapping

system, The United States of America as represented by the Administrator NASA:
United States.

45. Farr, C., Ultrasonic Probing: The Wave o f the Future in Dentistry. Dentistry
Today, 2000.

46. Mark K. Hinders, J.E.L.a.G.B.M., CLINICAL TESTS OF AN ULTRASONIC
PERIODONTAL PROBE. 28th Review of Progress in Quantitative
Nondestructive Evaluation, 2001: p. 1880-1890.

47. M. Hinders, J.L.a.G.M. Disease Diagnosis using an UltraSonographic Probe, in
Advancements in Ultrasonics Symposium. 2001.

151

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

48. Lynch, T., Ultrasonographic Measurement o f Periodontal Attachment Levels, in
Department o f Applied Science. 2001, William and Mary.

49. JE Lynch, M.H., Ultrasonic device for measuring periodontal attachment levels.
Review of Scientific Instruments, 2002. 73(7): p. 2686-2693.

50. Hou, J., Ultrasonic Signal Detection and Characterization Using Dynamic
Wavelet Fingerprints, in Department o f Applied Science. 2004, William and
Mary.

51. Mark K. Hinders, J.H., ULTRASONIC PERIODONTAL PROBING BASED ON
THE DYNAMIC WAVELET FINGERPRINT 31st Review of Progress in
Quantitative Nondestructive Evaluation. See: AIP Conference, 2004. 760(2): p.
1549-1556.

52. Hou, J.R., ST; Hinders, MK, Ultrasonic Periodontal Probing Based on the
Dynamic Wavelet Fingerprint. Eurasip Journal on Applied Signal Processing,
2005. 7: p. 1137-1146.

53. Lynch, J.H., MK; McCombs, Clinical comparison o f an ultrasonographic
periodontal probe to manual and controlled-force probing. Measurement, 2006.
39(5): p. 429-439.

54. Hinders, G.B.M.a.M., The Potential o f the Ultrasonic Probe. Dimensions of
Dental Hygiene, 2006. 4(4): p. 16-18.

55. M. Hinders, J.H., Dynamic Wavelet Fingerprint Identification o f Ultrasound
Signals. Materials Evaluation, 2002. 60(9): p. 1089-1093.

56. EL Madsen, J.S., JA Zagzebski, Ultrasonic shear wave properties o f soft tissues
and tissuelike materials. Journal of Acoustical Society of America. 74: p. 1346-
55.

57. SA Goss, R.J., F Dunn, Comprehensive compilation o f empirical ultrasonic
properties o f mammalian tissues. Journal of Acoustical Society of America, 1978.
64: p. 423-56.

58. Culjat MO, S.R., Brown ER, Neurgaonkar RR, Yoon DC and White SN,
Ultrasound crack detection in a simulated tooth. Dentomaxillofacial Radiology,
2005. 34: p. 80-85.

59. Duck, F.A., Physical properties o f tissue. 1990, London: Academic Press.
60. L. Kinsler, A.F., A. Coopens, and J. Sanders, Fundamentals o f Acoustics. 4th ed.

2000: John Wiley & Sons, Inc. 162-63.

152

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter VI

3D Parallel Cylindrical Elastic Finite Integration Technique

(3DPCEFIT)

6.1 Introduction

We present here a simulation method based on the elastodynamic finite

integration technique (EFIT) that can model guided elastic wave propagation in pipe-like

structures including 3D pipe bends. Several simulation techniques exist for modeling

elastic waves in pipe-like structures. Gsell et al. developed a finite-difference technique

for modeling elastic waves in straight pipe-like structures based on the displacement-

equations of motion [1]. One advantage of this technique is its ability to model elastic

wave interaction with subtle flaws due to its fine grid spacing. Leutenegger et al. showed

how this method could be used to assist in locating defects in cylindrical structures [2].

Hayashi et a l developed a semi-analytical finite-element (SAFE) technique for modeling

elastic wave propagation in pipe-like structures including pipe bends [3, 4]. Their

technique uses a relatively large spatial discretization which leads to fast computational

times and allows for long pipe sections with multiple bends to be modeled.

Unfortunately, this technique as described can not be used to model guided wave

interactions with subtle flaws. The finite integration technique is a powerful, accurate,

and stable time-domain method for numerically solving partial differential equations. It

153

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

has been used to model 2D, axially-symmetric (2.5D) and full 3D elastic waves in the

Cartesian and cylindrical coordinate systems[5-7].

We present a finite integration method for modeling elastic waves in pipe-like

structures and pipe bends. We then show that this method compares well to experimental

results. We also show how the fine spatial discretization allows guided elastic wave

scattering from subtle flaws to be modeled. This simulation method can be used to

design complicated hardware devices such as phased array transducer belts to focus the

elastic wave energy on straight pipe sections, as well as beyond pipe bends, and to

generate systematic data to test signal processing algorithms.

6.2 3D Cylindrical Elastic Finite Integration Technique (3DCEFIT)

We first describe how the finite integration technique is used to simulate 3D

elastic waves in complex pipe-like structures. We present the equations necessary to

simulate elastic waves in a pipe-bend and show how they can easily be adapted to model

straight pipe sections.

6.3 Finite Integration Procedure

We begin with the nine equations for elastic wave propagation in solids using the

cylindrical coordinate system [8].

pvr =-
or r dip dz r (6.1)

154

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. oT,z 1 8Trpz 8Tzz 1 T f
pv =-+--+-+- + z or r orp oz r rz z (6.2)

. oT,rp 1 oTrprp aT rpz 2
pv¢=---+----+---+-T +f

(6.3) or r a rp oz r rrp rp

. () Ov, -{ v, I Ov, Ov, J T,, = A-+2,u -+ -+--+-
or r r orp oz (6.4)

. (A 2 t' I Ov, J -<(ilv, Ov,) T¢¢ = + ,u -+-- + -+-
r r orp or oz (6.5)

. av (v lilv, avJ Tzz = (A+2,u)---!.+A _r +--+-'
oz r r orp or (6.6)

. e Ov, Ov, v, J
T,rp = ,u ; orp + or - 7 (6.7)

T (Ovz Ov,) =,u -+-rz or oz (6.8)

. (iJv, I Ov,) T =,u-+--
zrp oz r orp (6.9)

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

z

Figure 6.1. Staggered distribution of the nine unknown
variables on a single 3D cylindrical computational cell.

The variables v and T are the components of the velocity vector and stress tensor,

respectively. The material parameters are density p and the Lame constants X and p. The

velocity source function components are represented by f r, f z, and f v. For the finite

integration method, the 9 unknown variables are placed on a staggered grid. A single

control volume with the variable distribution for the cylindrical coordinate system is

shown in figure 6.1. Many millions of these grid cells are stacked together to create a

computational space that accurately represents a pipe-like structure. Now we will

describe the derivation of the simulation equations.

156

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Simulation Equation for vr

First we integrate both sides of equation 6.1 over a cylindrical control volume

centered on the radial velocity component vr.

Now we invoke the divergence theorem which replaces part of the volume integrals on

the right hand side with a surface integral.

JJJ> rrdrdzd(p = (rTrrdzd(p + Tripdrdz + rTrzdrd<p)+ j{jj—--- — + f r j r drdzdq) (6.11)

Next we approximate the integrals by multiplying the integrand by the volume or

surface of each integral. Unlike the cartesian method (EFIT), the inner and outer surfaces

of the control volume have different surface areas. These surfaces areas are defined by

rAzAcp, where the distance r is different for the inner and outer surface of the control

volume. Thus we denote r(,) and r(o) as the radial distance to the inner and outer surfaces,

respectively. We also introduce superscripts + ,- , t , and b to indicate the direction of the

variables relative to the unknown variable vr. The superscripts + and - represent the

direction of the variables in the positive and negative <p direction and superscripts t and b

represent the direction of the variables in the positive and negative z direction.

157

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

pv, rArAzAp = - S ' V)az txp + (jr« - X/->)aMz + (t? - T™ >ArtV +
^ T ’C") + T ^ _ rr(.°)

t t rr P P

2r

i(i)

■ + f r r ArAzAp (6.12)

Next, we divide both sides by rArAzA(p.

(r (o)T (o) _ <i)T (i) \ (f (+) _-r
pVr _ \r Lrr r rr) . V r<p 1 rV

rAr
J ’(o) + y (0 _ y (°) _ y (0

+ ■
pp pp

2r

) , f o ’ - r f)
rA(Z> Az

+ fr
(6.13)

We have now spatially discretetized our equation. Later we will use a central time

difference to replace the time derivative on the left hand side to reveal our final equation.

We follow these same four steps to find the other 8 equations.

Simulation Equation for vz (Equation 6.2)

1) JJJpv2rdrdzdp = JJjĵ

= <$F {rTrzdzdp + T^drdz + rT22drdp)+ J J 0 Trz + f

STr2 1 dT dT22 1)
- ^ + — - ^ + — Z- + - T rz+ fz Ydrdzdp
dr r op Oz r)

2)

3)

4)

r drdzdp

pvzrArAzAp = (r(o)T j o)- r (% (0)AzA^ + (7 ^ - T ^ A r A z(+) T (") >

+ (T j° - T j b))rArAp +
f IJ1 (o) r p (i) 'N

" +/,rz rz

P » z =

+

2 r

(r<»>TJ a)- r^T„m) | (T^+)- T ^) [- Tzz(b))

r ArAzAp

rAr
(T ^ j _ T ^
v rz rz)

2 r

rAp Az

+ f z

158

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Simulation Equation for vv (Equation 6.3)

1) JJjpv ipr drdzdcp

2)

3) pv tprArAzA(p

4)

dTr. . 1 dT™ . dT« . 2
dr r d<p dz r

+—Tr9+ f9- X f J
= (r Trf dzd(p + + Tzlprdrd(p)

+ \ \ i z Tr v + f v \ drdzd(p

r drdzd(p

y
= (rwr « -r">r»)AzA«,+ (C -r«)ArAz

+ (C + + / , W * A « >
vr y

/ „ (o) t (») _ j . (O t (‘) \ / ' T ' (0 _ j , (*) ' v
V rg> rtp / . \ tptp (pq>) . \ ztp ztp)

+

rAr
(rr(°) i
V r p rtp)

rÂ >
2$? 2̂7

Az

+ /«

Simulation Equation for T„ (Equation 6.4)

^ Wfinrdrdzdtp = jjjj^ (A + 2p)^~- + A

2)

vr 1 dv dvz
— + ------------ + — -
r r d(p dz

w
r drdzdcp

J J

- r|^(A + 2fi)vrdzd(p-\— v^drdz + Avzdrd<p

A— r drdzdcp

3)

4)

TrrrArAzA(p = (^ + 2//)(r(o)v ^ - r (0v<°)AzA«p + A(v™ -)ArAz,(+)

+ - vf^)rArA(p +
(v(o)+ v(i) ̂

A r '
2r

rArAzAcp

- _ r < v >) + J _ (v « -v<->)
rAr rÂ >

+ ^ -(v ? , - v ™) + i(v ;" ’ +v;0)
Az 2r

159

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Simulation Equation for T„ (Equation 6.5)

^ If!^ /d rd zd p = JJJl (A + 2//)

2)

3)

4)

— + ■
r r dp

+ X
dvr dvz
— - + — -
dr dz

r drdzdcp

■■ ((A + 2fi)vf drdz + Avrrdzdp + Avzrdrdp)

J J jfd + 2 ^
r j

T^rArAzAp = + 2/0(v£+) - v(f })ArAz + A(r'c°)v'0) - r (i,v '°)AzA<p

r drdzdp

r
+ A fy^ - v\b))rArAp + (A + 2ju)

lr
rArAzAp

+

(A + 2 /i)(v(„ _ v„)+ J _ (rMvM _ r mvci>) + J . (vco _
rAp rAr Az

(A + 2/S) (v(0) + yCo)
2r

Simulation Equation for Tzz (Equation 6.6)

^ \\\Tzzrdrdzdp = JJJj (A + 2/d)-^- + A

2)

yyr r dp dr

- {r(A + 2 fi)vzdrdp + Avtpdrdz + rAvrdzdp)

r drdzdp

n (^ } drdzdp

3) TzzrArAzAp = (& + 2/^Xv^ - v f ’)rArAp + A(v<+) -)ArAz

+ A(r(o)v<o) - r (,y°)A zA p + ((v^o) + v<°)^
2 r

4)
(A + 2ju)

rArAzAp

A
Az rA#> rAr

v. - r

A+ ^ (v« +v;»)
2 r

160

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Simulation Equation for Trv (Equation 6.7)

1 dVr , 9VP
r d(p dr r J

0 jjjT rrrdrdzdp = + drdzdf,

2) = (jjvrdrdz + r/jvipdzdrp)~ Jj| /i
v '

r j
r drdzdrp

3) Tr<prArAzArp = M ^ +) - v<-))ArAz + ^ { r{o)v(fp] - r (i)vf)AzArp

i i (v(0) + v (0
2 r 9 9

4) t r = ^ (v « - v ! - >) + ^ (r <X l -r<'>v™)-ii(v<">

- f - « ’ +vJ>)rArAzA*>
Lr

rA<p" r rA r" 9 9 ' 2 r '

Simulation Equation for Tn (Equation 6.8)

1} J J f t rdrdzdtp = drdzdrp

2) = (fjv2rdzdrp + juvrrdrdtp)

3) f rzrArAzA<p = /*(r (° Y 0) ~ r (0v f)AzArp + ft(vrw - v<b))rSrArp

4) T„ = J L (rWvw _ r (0v(0) + i i (v(0 _ VW}
rAr Az

Simulation Equation for T z tp (Equation 6 . 9)

*> \ \ \ f zrrdrdzd9 = \ \ \ J ^ + ~ ^ d n t d 9

2) = (in /drdrp + juvzdrdz)

3) t ziprArSzA<p = ^ (vi° “ v? })rArAp + //(V^ - v(z~})ArAz

4) K = - f (v ?) -v?>) + - f . (v « - v «)
Az rA^>

161

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

To recap, our final nine simulation equations are giving below

L (0)7(0) _ „(0r (i) 'I (t(+) _ T’(-) 1 (T (t) _ T (Z>)) 7(0) . 7(0 _ 7(0) _ 7(0
• _ V' f 1rr / ̂ \ x rep) \J- „ 1 rz J ̂ rr rr J <p<p | r

rAr rAcp Az 2r r (6.14)

(r ^ T j o)- r wT„W) . ^ ~ T’S ') . (T j ° - Tzz(b)) (tJ 0) +tJ °) . ,
 7 * ----------+— 7Zi— +-------Z +------ £ ------ + /z (615)

. (r(o% ^ - r (% y) (T £ - T £) (7 f f - T £) (7ff + 7ff)
ĴVq> rAr rA<p Az r 9 (6.16)

t = (^ 0 (r(.,vw _ r C0v(0) + _ £ _ (v« _ VH)+J l (v« - v?) +± i v ? +v«)
rAr rAq> Az 2 r (6.17)

= H i ^ (vw _ v(r)) +_ L (r<*y») -vf>) + (^ 2— (v-0) +v<°)
rA^ v rAr Az 2r (6.18)

t -v<6>) + -£-(v<+) - v «) + 4 - < r(0)v̂ + v«)Az rÂ 7 rAr 2r (6.19)

f = -£ - (v<+) - v (_)) + - ^ (r (o)v(o) - r (‘V °) - — (v(o) +v(i))
rA^ rAr 2r (6.20)

r„ (r (o)v̂ o) - r (,V °) + — (v?} - v f)
rArV AzVr (6.21)

T = iL (v (0- v w) + - ^ - (v (+)- v (_))zc? * V 0 y a> / k V z z /Az rA$> (6.22)

After having discretized the equations in space using the finite integration

technique, we approximate the time derivatives using the standard central difference

v w = -v /" “1/2)At (6.23)

y, (»+1/2) _7j_(""1/2) ^ (6.24)

162

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Here the superscript n represents the time step. This leads to a temporal discretization

that is staggered in time. With these equations, we can update each value in our

simulation space based on the neighboring values.

6.4 Modifications for Pipe Bends

To describe elastic waves in pipe bends, we use a modified cylindrical coordinate

system where the z-axis is shifted and then curved to follow the center of a pipe bend as

shown in figure 6.2. The only effect this ultimately has on equations (6.1 to 6.9) is that

dz is now replaced with the following:

dz = r sin(> -0 .5 /r + <pcurvalure) + rcurvalure (6.25)

Here rcurvature is the radius of curvature of the pipe bend and <pCurvature is the angle that

points towards the inside of the pipe bend.

After making this substitution, we again we use the finite integration technique to

find our new simulation equations. Our control volume is similar to the one pictured in

figure 6.2, except that the z-axis is now bent. Now, the size of the volume and its faces

change depending where on the grid it is located. This requires us to keep track of our

position on the grid so that we can properly account for the different size volumes. We

rederive our simulation equations after making the substitution in (6.25) to find the

following new simulation equations.

163

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

New z axis

Old z axis

Figure 6.2. Curved cylindrical coordinate system.
The z-axis is shifted and curved to follow the
middle of a pipe bend.

(r («) (o) T (°) _ a) (i) T (‘) \ f r W (7 ’ W _ 7 ’ W ' \ j (°) , t ’ (0 _ j (°) _ j (0
. _ V L 1 rr ' u 1 rr } , V r<p J rip] V ' rz 1 rz I , rr * rr M qxp * <ptp j.

r W c (c) A r r (c) A ^ c (c) A d 2 r (c)

(r(o)c(o)TJo) _ r (0c(0TJ 0) (T j+) ~ r „ H) (T j ° - T j h)) (T j0)+Trz(i))
r (c)c(c)Ar r (c)Ap c(c) A0 2 r (c)

(rwcwr w - r ^ c P T ^) (7£> - t£ >) (r f f £ ^ _ + 0 _

PVp r (c)c(c)Ar + r (c)A<p + c(c)A0 + r (c) *

(/L + 2//)(r<°>Ĉ v<°>-r(i)c<-y->) A(v<+) -v<->) A(v<'> -vf>) A(v<a)+v<°)
r (c)c(c)Ar r(c) Aq> c^LO 2 r (c)

164

(6.26)

(6.27)

(6.28)

(6.29)

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

t (11) (A + 2 / / X v f - v f 1) [f f A(v<o) + v<°)
c(c)A0 r(c)A^ r (V c)Ar + 2r(c) (6 .3 0)

(A + 2 /0(v^-v<-)) i A(c(o)r (o)v ô) - c (i)r(i,v*i>) , A(v<° - v<4)) , (/L + 2/i)(v^ + v<°)
r (c)A<p

T — v I I I - . . .
"(C)A m r {c)c ic)Ar c (c)A6> 2rw (6.31)

ju(r(o)c(o)vlo) - r ^ c ^ v f) M(v ? -v<»>)

r (c)c(c)Ar c(c)A# (632)

• / /(v'+)- v «) M(r(o)c ^ - r ^ c ^) //(v<o)+ v «)

rf r (c)A^ + r (c)c(c)Ar 2r(c) (633)

c<c)A0 r (c)A p (6 3 4 >

Here r(i\ r(c>, and / 0y) are the radial distances measured from the curved z-axis to the

inside, center, and outside of the control volume. The variables c®, c^ , and </0yi are the

distances measured from the axis of curvature to the inside, center, and outside of the

control volume. These values are a function of the current radial position, the radius of

curvature rcurvature, and the angle pointing towards the inside of the bend (p curvature-

c(0 = (r(0 sin(<p - 0.5^ + <,ocurvalure) + rcunalure) (6.35)

c(c) = (r (c) sin(^ - 0.5tt + <pcurvattlJ + rcurvatuJ (6.36)

c(o) = (r(o) sin(<£> - 0.5;r + (pcurvature) + rcurvature) (6.37)

To simulate a straight pipe section with these equations, we set c(i) = c(c) = c(o> = 1 and A0

= Az. With these equations, it is straightforward to simulate elastic waves in pipe

segments containing combinations of straight sections and bends in any direction,

including multiple out-of-plane bends.

165

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6.5 Stability Criteria

The spatial discretization in the radial direction is identical to the one derived by

Schubert in his axially-symmetric cylindrical finite integration technique [5]. We assign

8 grid points to the smallest wavelength present in the simulation. In elastodynamics, this

is typically the Rayleigh wave, which is at most 13% slower than the shear wave, so we

assign 10 grid points to the shear wavelength.

Here, cs is the shear wave speed and f max is the maximum frequency present in the

simulation. The exact radial step size is adjusted as needed to simulate the correct pipe

wall thickness. Next, we choose Acp so that the grid spacing on the outer circumference

of the pipe (routerh(p) is equal or smaller than Ar and that the total number of grid points in

the <p direction sweeps an angle of exactly 2 k . First we find the number of grid points in

the (p-direction N9.

(6.38)

outer
(6.39)

Now we find the exact discretization angle A<p.

166

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2 nA (p -----
N ,

(6 .4 0)

Again, we choose Ad so that the grid spacing on the outside of a bend is equal or less

than Ar. First we find the number of grid points in the z-direction through the curve that

sweeps an angle of S.

^ (f o u le r ^curve)N a
A r (6.41)

Now we find Ad as

S_
N a=---- (6.42)

If a straight section is being simulated, than we set A d = Az< Ar. The temporal

discretization is found using the fastest wave speed and the smallest spatial grid sizes. In

the ^-direction, this is found on the inside circumference of the pipe. In the ^-direction,

this is found on the outer edge of the pipe on the inside of the pipe-bend. We use the grid

spacing at these locations to compute our time step At.

At <
1 1

2 + ((r - r)A d)2 + (r. A < p)2 (6-42)VV curve r outer / LA'y J v inner)

If a simulation models a pipe segment containing multiple bends of different

curvatures, then the smallest curvature must be used to determine the temporal step size.

167

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6.6 Boundary Conditions

Here we derive the stress-free boundary conditions at the surfaces of the pipe.

Even with added complexity of the frill 3D space and the curved z-axis, we arrive at the

same boundary conditions as Shubert[5] in the axially symmetric cylindrical case. We

begin by enforcing that the velocity components be placed on the surface of the pipe. At

the inner and outer surface of the pipe, we want the stress components Trr, Trz, and Tnp to

be zero. Since the Trz, and Tr<p stress components are on the surface, we simply set them

to zero. To enforce that T„ is zero at the surface, we set T j o) = -Trra> at the outer surface

of the pipe and Trr(i) = - T jo) at the inner surface of the pipe. We then extrapolate to find

the T̂ tp term that is outside the boundary of the pipe. This leads to the following

algorithm for finding vr.

At the outer surface o f the pipe (r = rmaz).

W s c o t T = T ® T ® T ('0 T = T = T = Av v g a o i i rr 1 rr > 1 tptp +*1 (ptp 1 (ptp y 1 rr 1 rz 1 rtp

(6.43)

At the inner surface o f the pipe (r = rmi„).

W o o o f T W = T (") T W = I T (°) T (° °) T = T = T = 0 v v c a o i i rr rr 9 1 (ptp qxp “ 1 <p(p 9 1 rr 1 rz 1 rg>

(6.44)

168

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The same procedure is carried for the z-velocity components vz equations on the pipe

ends.

At the ends o f the pipe (z= zmt^.

We set Tzz(h) = -Tzz(t\ Tzz=Trz= Tz<r0.

2t (6.45)

At the ends o f the pipe (z= zmax).

We set Tzz{,) = -Tzz{b\ Tzz=Trz= TZ(p=0.

2p (6.46)

c(c) A9pv2=-& rz + f 2

6.7 Absorbing Boundary Layers

In most simulations, it is important to eliminate or significantly reduce wave

reflections from the pipe ends, i.e. when the actual pipe is longer than the simulation

space allows. This is accomplished by adding absorbing boundary regions to the end(s)

of the simulated pipe. To do this, the velocities in the absorbing region are computed as

usual but with a small damping factor. The damping factor is a function of the distance

from the inside position in the absorbing layer a and the percentage p in which each layer

removes from the velocity values. We replace (6.23) with the following equation.

169

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

(6 .4 7)

Where the damping factor D is given by

D = (1 - p * a) (6.48)

The damping factor is zero at the inside of the region and steadily increases as one

moves to the outside of the absorbing region as shown in figure 6.3. This technique can

be used to significantly reduce reflections on all acoustic and elastic finite integration

methods. For the finite integration technique described in this paper, we found that an

absorbing region 40-70 nodes thick with a damping percentage of 0.2% (p=0.002)

worked well for reducing reflections from the artificial pipe ends.

6.8 Parallel Implementation

While some results can be obtained using the 3DCEFIT technique on a standard

desktop computer, substantial improvements in computational time and model

complexity are achieved with a parallel implementation. A parallel version of the

3DCEFIT has been implemented on William and Mary’s high performance

computational cluster, the SciClone. At the time of this work, the SciClone was

composed of 311 computer processors with 236 GB of physical memory and 15.1 TB of

disk capacity, and with a peak performance of 362 billion floating point operations per

second.

170

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The parallel algorithm uses a straight forward domain decomposition approach to

divide the simulation space across many computers. Similar decomposition methods can

be found in [9]. After every half time step of the simulation, each computer swaps the

appropriate boundary values with neighboring computers to create a large and seamless

simulation space. Most, if not all message passing interfaces allow blocking and non-

blocking routines to send and receive data. We use a combination of these routines to

achieve the most optimized parallel algorithm. The parallel algorithm is given below.

Parallel Algorithm

1) Compute boundary velocity values

2) Send the new boundary values to appropriate neighboring computers (using a

MPI non-blocking send)

3) Compute the rest of the velocity values

4) Receive the boundary velocity values from neighbors (using a MPI blocking

receive)

5) Repeat these 4 steps with the stress values.

Simulations that take many hours to complete on a single high-end desktop PC take just

minutes using this parallel implementation.

171

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6.9 Conclusions

In this chapter, we have presented all the necessary equations and stability and

boundary conditions to simulate elastic waves in pipes. In the following chapter, we will

validate this simulation method by comparing simulation results directly to experimental

data and to results from a commercial finite-element simulation package. We will also

present several applied examples of how this simulation technique can be used to solve

real-world problems in hardware and signal processing design.

172

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6.10 References

1. D. Gsell, T.L., and J. Dual, Modeling three-dimensional elastic wave propagation
in circular cylindrical structures using a finite-difference approach. Journal of
Acoustical Society of America, 2004.116(6): p. 3284-3293.

2. T. Leutenegger, J.D., Detection o f defects in cylindrical structures using a time
reverse method and a finite-difference approach. Ultrasonics, 2002. 40: p. 721—
725.

3. T. Hayashi, K.K., Z. Q. Sun, and J. L. Rose, Guided wave propagation mechanics
across a pipe elbow. Journal of Pressure Vessel Technology-Transactions of the
Asme, 2005.137(3): p. 322-327.

4. T. Hayashi, K.K., Z. Q. Sun, and J. L. Rose, Analysis offlexural mode focusing by
a semianalytical finite element method. Journal of Acoustical Society of America,
2003.113(3): p. 1241-1248.

5. F. Schubert, A.P., and B. Kohler, The elastodynamic finite integration technique
for waves o f cylindrical geometries. Journal of the Acoustical Society of America,
1998.104(5): p. 2604-2614.

6. P. Fellinger, R.M., K.J. Langenberg, and S. Klaholz, Numerical modeling o f
elastic wave propagation and scattering with EFIT - elastodynamic finite
integration technique. Wave Motion, 1995. 21: p. 47-66.

7. Schubert, F., Numerical time-domain modeling o f linear and nonlinear ultrasonic
wave propagation using finite integration techniques—theory and applications.
Ultrasonics, 2004. 42(42): p. 221-229.

8. Graff, K.F., Wave Motion In Elastic Solids. 1991, New York: Dover Publications.
9. Marklein, R., Numerical Simulation o f Fields and Waves in Nondestructive

Testing. 9th European Conference on Non-Destructive Testing, Berlin, 2006.
10. Harker, A.H., Elastic Waves in Solids - With Applications to Nondestructive

Testing o f Pipelines. 1988: British Gas.
11. J. L. Rose, D.J., and J. Spanner Jr, Ultrasonic Guided Wave NDE for Piping.

Materials Evaluation, 1996. 54(11): p. 1310-1313.
12. Alleyne, D.N.a.P.C., Long Range Propagation o f Lamb Waves in Chemical Plant

Pipework. Materials Evaluation, 1997. 55(4): p. 504-508.
13. M.J.S. Lowe, D.N.A., and P. Cawley, Defect detection in pipes using guided

waves. Ultrasonics, 1998. 36: p. 147-154.
14. D. Alleyne, e.a., The Lamb wave inspection o f chemical plant pipework. Review

of Progress in QNDE, 1997: p. 1269-1276.

173

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter VII

Applied Simulations: Guided Waves in Complex Piping Geometries

7.1 Introduction

Ultrasonic guided waves have been used successfully for nondestructive

evaluation of a wide variety of structures [1-3]. Using ultrasonic guided wave methods to

inspect piping systems hold great promise [4-8] but to successfully develop an ultrasonic

guided wave system for remotely inspecting beyond pipe elbows it is first necessary to

understand in detail how elastic waves propagate through and beyond pipe bends. With

sufficient computational resources, this can be accomplished efficiently using 3D

numerical simulations.

The 3DPCEFIT method allows us to accurately and systematically simulate the

interaction of guided elastic waves with arbitrary flaws in complex piping structures in

order to optimize ultrasonic guided wave pipe inspection protocols. In this Chapter we

validate the 3DPCEFIT technique by directly comparing simulation and experimental

results for a straight pipe. We then present several techniques for focusing guided waves

on a pipe. For pipe bends, we compare simulation results directly to results obtained

using a commercial finite element software package.

174

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 7.1. A photograph of the experimental apparatus. The steel pipe segment
is 3 feet long, has an inner diameter of 4 inches, and a wall thickness of 0.25
inches.

PC Back Panel

GAGE CS8012A DAQ Board

£
Ext Ch. A

Trig.

- •

J Serial Port

Matec TB-1000 Board

Rec. Out Rec. In Pulse Out

Velmex Motion
Controller

RS-232In Out HP 8447A
Amplifier

?

m

Figure 7.2. Line diagram showing the major components and
connections of the experimental apparatus.

175

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

7.2. Comparison with Experimental Data

To validate this simulation method, we compared simulated and experimental

ultrasonic guided waveforms. This was done by performing pitch-catch measurements

and corresponding simulations on a straight pipe section mounted in a laboratory scanner

[9-12] as shown in figure 7.1 and figure 7.2. A-line waveforms were directly compared

for three different catch transducer locations located at 0°, 90°, and 180° and at a

separation distance of 60cm from the pitch transducers. The longitudinal contact

transducers are 3cm in diameter and the pitch transducer is driven with a short 200 kHz

toneburst. Figure 7.3 shows several snapshots in time from this simulation. The gray­

scale intensity of these plots is proportional to the radial displacement on the outer

surface of the pipe. Absorbing boundary conditions were not included in this simulation

in order to closely match the experimental set-up, i.e. a short segment of pipe. It can be

seen from this figure how the presence of multiple modes, end reflections, and wrap

around waves can make signal interpretation quite difficult. Figure 7.4 shows normalized

A-line waveforms from the simulation and experiment plotted together. The A-lines

waveforms match well at all three locations which gives us confidence that our

simulation is accurately describing guided wave propagation in pipe-like structures.

176

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 7.3. Snapshots of a three dimensional 200 kHz pipe
simulation. A single 3cm transducer is driven with a short
200kHz tone-burst. The gray scale color intensity is
proportional to the radial displacement on the outer surface of
the pipe.

177

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

90°

180°

Figure 7.4. Comparison between the simulated (gray)
and the experimental (black) A-line data recorded at
three different locations on the pipe showing very
good agreement.

7.3 Guided Wave Scattering From Flaws

We next present simulation results from a pipe segment with a small thinning area

located in the center of the pipe. The pipe dimensions are identical to the pipe simulated

in the previous section. Figure 7.5 shows several snapshots from the simulation, while

figure 7.6 shows two recorded A-lines taken from a clean and flawed pipe segment,

respectively. The differences in the two A-lines are apparent at the beginning of the

signals where one of the guided wave modes has shifted in time and changed amplitude.

A systematic study of the interaction of guided waves with flaws and the resulting

changes in the recorded A-line measurements would greatly benefit the development of

automatic flaw detection algorithms.

178

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 7.6 demonstrates how small the differences are in the recorded waveforms

between a corrosive-type flaw and unflawed pipe sample. Corrosive flaws are gradual

thinnings that do not reflect strongly compared to other types of flaws such as saw cuts or

flat-bottomed holes. The problem is compounded if the flaw is small and located in a

hard to reach area such as underground or beyond pipe bends. For these reasons, it is

advantageous to be able to focus guided wave energy at long distances and beyond pipe

bends. The focal spot can then be walked about the circumference of the pipe and down

the axis to inspect the structure completely for flaws.

Figure 7.5. Snapshots of a three
dimensional pipe simulation with a small
thinning flaw located in the center of the
pipe. The color is proportional to the radial
displacement on the outer surface of the pipe.

179

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

time

Figure 7.6. Comparison of A-line data from a clean
(black) and flawed (gray) pipe segment. The circled
region shows where one of the guided wave modes
has shifted and changed in amplitude because of the
interaction with the flaw.

7.4 Focusing Techniques

7.4.1. Focusing with Hardware: Phased Array Transducer Belts

Guided wave focusing in pipes is typically done with phased array transducer

belts [13]. The timing and amplitude of each excitation waveform are adjusted such that

the desired guided-wave mode from each transducer arrives at the focal spot at the same

time. The delay of each transducer d can be found given the velocity v of the desired

guided wave mode and the shortest distance s between the given transducer and focal

point. The delay d is given by the following equation

For a straight pipe section, the shortest distance between the transducer and the focal

point is given by

180

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

s = J J J T y r 2 (7.2)

where f z is the axial distance between the transducer and the focal point, r is the radius of

the pipe, and y is the smallest angle between the transducer and focal point. This angle y

is given by the following equation

Here, a(p and f p are the angles in radians of the transducer and the focal point,

respectively. The following simulation demonstrates phased array focusing on a straight

pipe section. A phased array of thirty-two 1cm diameter normal-incidence contact

transducers evenly spaced along the circumference of a 4” inner diameter steel pipe with

a wall thickness of 0.25” is simulated. All the transducers are driven with the same

200kHz tone-burst excitation except they are delayed according to equation (7.1) such

that the desired guided wave mode arrives at the focal point, 1 meter from the transducer

belt, at the same time. Figure 7.7 shows several snapshots from this simulation. Figure

7.8 compares the energy distribution on the circumference of the pipe at one meter for the

focused simulation (black) and an axially-symmetric wave (gray). The energy of the

axially-symmetric wave is evenly distributed across the circumference while in the

focused simulation, the energy is concentrated at 180°.

(a y - f y + l T V)

y = minj (a ^ - f ^) 2

0 f 9 - 2 n f (7.3)

181

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 7.7. Snapshots of a three dimensional 200 kHz pipe
simulation. A transducer belt containing 32 omni-directional
transducers. The transducers fire out of phase such that the desired
guided wave becomes focused one meter from the transducer belt.

182

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

120

190

190

210 330

300

270

Figure 7.8. Polar plot comparing the
energy distribution on the
circumference of the pipe at one meter
for an axial symmetric wave (gray
circle) and the focused wave (black).
For an axial symmetric wave, the
energy is uniformly distributed around
the pipe. Using a phased array
transducer belt and the focusing
algorithm, the energy becomes
concentrated at 180 degrees.

7.4.2. Focusing in Software: The Synthetic Aperture Focusing Technique (SAFT)

The Synthetic Aperture Focusing Technique (SAFT) is a numerical method for

focusing wave fields. SAFT was originally developed for radar applications and has been

adapted by the NDE community for improving lateral resolution and imaging quality

[14]. The SAFT technique has been used successfully with Lamb waves for locating and

identifying flaws in plate-like structures [15]. Here we implement a time-domain SAFT

technique for focusing Lamb waves in pipe structures.

One of the advantages of this technique is that no complicated phased array

hardware is required. Instead, each transducer in the array fires individually while A-

lines are recorded at each of the catch transducer locations. These A-lines are stored and

then later combined using the SAFT algorithm to synthetically focus the ultrasound

waves onto any location on the pipe. The A-line waveforms are shifted in time and

summed up such that the guided waves arrived at the focal point at the same time. The

time shift of each waveform is identical to the time shift we previously used for phased

183

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

array focusing. The following equation produces a new A-line Ac at a given transducer

location c by combining all the A-lines recorded at that location.

N
SAc{t) = Y , A^ + d) (7.4)

n=1

Here N is the number of pitch transducers, SAc(t) is the new SAFT constructed A-line at

catch transducer location c, A„iC(t) is the recorded A-line from catch transducer c when

the pitch transducer n fired, and d is the same delay we computed in equation (7.1). It

should be noted that there are frequency domain versions of the SAFT algorithm that are

more computationally efficient [14]. A simulation was performed to validate the SAFT

algorithm, using a one meter pipe with 32 pitch and 32 catch transducers separated by 60

centimeters was simulated. Each pitch transducer fires individually while all 32 catch

transducers record the radial pipe displacements over time (A-lines). This creates 32 A-

lines recorded at each catch transducer location with 1024 A-lines in total. Figure 7.9

shows SAFT A-lines where the focal point was chosen to be at the location of one of the

catch transducers. The focused guided wave mode is clearly visible in the new A-line

data.

The SAFT technique also works well with experimental data. The same set-up as

described above was performed experimentally. The same pitch and catch transducer

locations were recorded experimentally so that the results could be compared to the

simulation results. Figure 7.9 shows the SAFT results with the experimental A-lines.

Figure 7.10 shows a polar plot comparing the energy distribution on the pipe for the

simulated and experimental data. In these examples, the focal point was chosen to be

184

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

located along the catch transducer ring. In practice, the focal point would be swept

across the entire surface of the pipe or sections of interest to image the pipe for flaws.

There is good agreement between the experimental and simulation results, and thus

gives an example of how simulations of this type can be used to develop signal

processing techniques that may be difficult to refine using experimental data alone. With

the SAFT algorithm, the focal point can be swept along the pipe in software to inspect it

for flaws, which can substantially reduce the cost and complexity of the experimental

apparatus.

Simulated A-Lines Experimental A-Lines

Figure 7.9. A-lines from produced by SAFT with the focal point
at the catch transducer located at 180 degrees. Results are shown
for simulated data (left) and experimental data (right). In both
cases, the So mode is focused at 180.

185

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

180

210 330

300

Figure 7.10. Polar plot showing the energy
distribution on the circumference of the pipe at the
focal point using the SAFT algorithm. There is
very good agreement between the experimental
(black) and simulated (gray) results.

7.5 Pipe Bend Simulations

Most piping systems contain bends which make inspecting them problematic. The

3DCEFIT technique as described above can simulate elastic guided waves propagation in

piping systems that contain combinations of bends of various curvature and in any

direction. Figure 7.11 shows snapshots from an initially axial-symmetric 50 kHz guided

wave propagating through a 90 degree pipe bend with radius of curvature of 6 inches.

The axi-symmetric wave was created with a transducer belt consisting of 32 omni­

directional 1cm diameter transducers. As expected, the guided waves naturally focus at

the back of the pipe bend.

186

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

To validate the simulation method for pipes with bends, we compare our

simulation results directly to results obtained with the commercial finite element software

package COMSOL. The pipe is symmetrically excited with 5 cycle 100kHz shear

transducer on the outer radius of the pipe. The pipe segment contains a 90 degree bend of

the same dimensions as the previous example, located 1.5 meters from the transducer

belt. The shear displacement on the outer surface of the pipe on the end of the bend

opposite the transducer belt was recorded over time. The shear displacements obtained

using COMSOL and 3DCEFIT at two time instances are shown in figure 7.12 and reveal

very good agreement. For comparison, this simulation took roughly 18 hours to run

using COMSOL on a high end desktop computer. The 3DCEFIT simulation took 7

minutes on a 64 node parallel computer (650 MHz processor per node). Similarities have

also been observed between simulation and experimental results. The pipe segment used

to obtain experimental results contained multiple welds which complicated the

comparison so they will not be presented here.

Figure 7.13 shows a 100 kHz guided wave propagating through an S-bend and

figure 7.14 shows a 100 kHz guided wave propagating through a series of 3D pipe bends.

These figures demonstrate the ability to simulate complex piping systems containing

multiple bends. This simulation method can also be used to simulate guided waves in

pipe coils that are routinely found in heating and cooling systems and power plants.

187

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 7.11. A 50 kHz guided elastic wave propagates
through a 90 degree pipe bend. The guided waves
naturally focus at the back of the bend.

\ - ! 0

m\

Figure 7.12. Polar plots of the sheer displacements obtained from a
COMSOL finite element simulation (black) and a 3DCEFIT
simulation (gray). The sheer displacements were recorded at 361pS
(left) and 390pS (right) from the initial transducer excitation.

188

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 7.13. A 100 kHz guided elastic wave propagates through
a pipe S-bend.

Figure 7.14. A 100 kHz guided elastic wave propagates through many 3D pipe
bends. The simulations provide a way to predict the path of the guided waves in
complicated piping systems.

189

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

7.6 3DCEFIT Conclusions

We have developed and implemented a 3D simulation method based on the finite

integration technique for modeling guided elastic waves in pipe-like structures including

pipe bends. Comparisons show agreement between simulated and experimental data, and

we have shown that the finite integration technique is well suited for modeling elastic

wave propagation and interactions with flaws. This simulation method can be used as a

design tool for developing complicated inspection hardware and signal processing

algorithms. Future work will focus on systematically studying guided wave interaction

with varying flaw types and sizes. Discretizing the material parameters will also allow

one to model piping systems which contain coatings and welds. Overall, the 3DCEFIT

technique provides an accurate method for simulating guided elastic waves in complex

piping systems.

190

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

7.7 References

1. Rose, J.L., Ultrasonic Waves in Solid Media. 1999: Cambridge University Press.
2. Rose, J.L., A baseline and vision o f ultrasonic guided wave inspection potential.

Journal of Pressure Vessel Technology-Transactions of the Asme, 2002.124(3):
p. 273-282.

3. Rose, J.L., Standing on the shoulders o f giants: An example o f guided wave
inspection. Materials Evaluation, 2002. 60(1): p. 53-59.

4. Harker, A.H., Elastic Waves in Solids - With Applications to Nondestructive
Testing o f Pipelines. 1988: British Gas.

5. J. L. Rose, D.J., and J. Spanner Jr, Ultrasonic Guided Wave NDE for Piping.
Materials Evaluation, 1996. 54(11): p. 1310-1313.

6. Alleyne, D.N.a.P.C., Long Range Propagation o f Lamb Waves in Chemical Plant
Pipework. Materials Evaluation, 1997. 55(4): p. 504-508.

7. M.J.S. Lowe, D.N.A., and P. Cawley, Defect detection in pipes using guided
waves. Ultrasonics, 1998. 36: p. 147-154.

8. D. Alleyne, e.a., The Lamb wave inspection o f chemical plant pipework. Review
of Progress in QNDE, 1997: p. 1269-1276.

9. K.R. Leonard, M.K.H., Guided Wave Helical Ultrasonic Tomography o f Pipes.
Journal of Acoustical Society of America, 2003. 767-774(114): p. 2.

10. K.R. Leonard, M.K.H., Lamb wave tomography o f pipe-like structures.
Ultrasonics, 2005. 44(7): p. 574-583.

11. K.R. Leonard, M.K.H., Lamb Wave Helical Ultrasonic Tomography. Review of
Progress in QNDE, 2004. 23: p. 173-180.

12. M.K. Hinders, K.R.L., Lamb Wave Tomography o f Pipes and Tanks using
Frequency Compounding. Review of Progress in QNDE, 2005. 24: p. 867-874.

13. T. Hayashi, K.K., Z. Sun, J. Rose, Guided Wave Focusing Mechanics in Pipe.
Journal of Pressure Vessel Technology-Transactions of the Asme, 2005.127: p.
317-321.

14. V. Schmitz, S.C.a.W.M., Experiences with synthetic aperture focusing technique
in the field. Ultrasonics, 2000. 38: p. 731-738.

15. R. Sicard, J.G.a.D.Z., A SAFT algorithm for Lamb wave imaging o f isotropic
plate-like structures. Ultrasonics, 2002. 39: p. 487-494.

191

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter VIII

Conclusions

In this dissertation, we have presented two parallelized simulation techniques for

three-dimensional acoustic and elastic wave propagation. We have demonstrated their

usefulness in solving real-world problems with examples in the three very different areas

of nondestructive evaluation, medical imaging, and security screening. More precisely,

these include concealed weapons detection, periodontal ultrasography, and guided wave

inspection of complex piping systems. In addition to this, we have also presented a novel

experimental study of air-coupled nonlinear sound beam scattering from complex targets

(Chapter 3) with very interesting and promising results.

The 3D parallel acoustic finite integration technique (3DPAFIT) can be used to

study acoustic interactions with objects and layers in large and realistic geometries. We

employed this technique along with a nonlinear finite-difference method to study

nonlinear acoustic beams and their interaction with complex shaped objects. These

objects included material layers, a human model, and an RPG model to assist in the

development of nonlinear acoustic concealed weapons detector. We also performed a

novel experiment to study air-coupled nonlinear sound beam scattering from objects.

This study included the design of a robust signal processing technique to extract useful

information about an object from backscattered acoustic energy. We used this

experiment to validate the 3DPAFIT simulation technique.

192

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The 3DPAFIT technique was also used to support the development of an

ultrasonographic periodontal probe. A sophisticated software system was created to

automatically define the intricate three-dimensional geometry of tissues in the periodontal

region at the base to the tooth. Systematic simulations were performed to provide a large

dataset to assist in the development of signal processing techniques to automatically

determine the depth of the periodontal pocket from ultrasonic pulse-echo measurements.

We also presented a three-dimensional parallel cylindrical finite integration

technique (3DPCFIT). This simulation method is ideal for modeling elastic waves in

piping systems. In the derivation of the 3DPCFIT method, we introduce a coordinate

transform to allow for the simulation of piping systems which include bends and twists.

We validated this simulation technique by comparing simulation results directly to

experimental measurements and to results from a commercial finite-element simulation

package. This simulation method was employed to study guided elastic wave inspection

of complex piping geometries and assisted in the development of both hardware

configurations and signal processing algorithms.

8.1 Suggestions for Future Work

Both simulation methods presented in this dissertation use a structured grid of

Cartesian (3DPAFIT) or curved cylindrical (3DPCEFIT) grid cells. One possible

improvement would be the introduction of a non-structured grid that is not confined to

regular grid shapes. This could possibly improve the accuracy of the simulations when

complex geometries are being modeled. One downfall to this adaptation will be the

increases the computation resources needed to model complex acoustic and elastic wave

193

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

interactions. The volume and surface areas of the cells will vary over the computational

space and thus require more memory to store these variables and require more

computations to update the individual simulation values.

There are several directions that can be pursued to further develop the Nonlinear

Acoustic Concealed Weapons Detector (NACWD). With the simulation code fully

functional, the first objective may be to systematically explore acoustic wave interactions

from people, clothing layers, and weapons. This would provide a large dataset of

simulated measurements to further refine the signal processing algorithms to

automatically identify concealed weapons. The pulse-compression technique described

in chapter 3 may be able to identify subtle features in the frequency backscatter

measurements to identify concealed weapons. This technique may also have applications

in other fields of nondestructive evaluation and robotics.

For the Ultrasonic Periodontal Probe, the geometry of the periodontal region can

be adapted to represent different tooth structures which vary from patient to patient and at

each probing site. Additional anatomical features can be placed into the model such as

cementum pearls, which form under the gum line and could possibly influence the

ultrasound measurements. Further systematic simulations will account for a broad range

of tooth and tissue geometries. This large data set could further enhance the signal

processing algorithms responsible for the automatic determination of the depth of the

periodontal pocket. Additional simulation studies can be performed to further optimize

the design of the tip geometry and to study elastic waves in the hard tooth tissue for the

detection of cavities and micro-cracks.

194

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The 3DCEFIT simulations presented in this dissertation can model homogenous

and isotropic materials such as solid pipes made of one material. In some situations, pipe

systems can contain coatings or be composed of anisotropic materials such as

composites. The material parameters in the simulations software can be discretized to

allow for the simulation of piping systems composed of more complicated materials.

This modification would allow the simulations of

In this dissertation, we have shown that parallel simulation methods for acoustic

and elastic waves have a wide application range. We presented several applied examples

where we used 3D parallel simulations to explore very difficult problems. There is

potential to apply the simulation methods presented in this dissertation to new application

areas. These application areas can include medical ultrasound, underwater acoustics,

geoacoustics (seismic modeling), and additional areas of nondestructive evaluation.

195

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Appendix A1

Determining Parameters of the Nonlinear KZK Simulation Code

A finite difference method used in Chapter 3 is presented here for simulating nonlinear

acoustic beams. This code package was written at the College of William and Mary and

is based on an existing and freely available algorithm and code package developed at the

University of Texas Austin [1-3]. The code presented here includes several

improvements over the Texas KZK code that improves computational efficiency and

usability.

'Ml.

li MS ' j ! j !) ! ’
nr mill mii; mii
nil!' .mil".IIIIN!

If'ii(
111111 > * 11111 i ■ 111111,

MM MljH Mi l u! n i t ' i IH i

(b)

(c)

Example results from the KZK nonlinear computer simulations. Shown are a confocal
pressure waveform snapshot (a), waveforms from a parametric source (initial waveform
(b) and the resulting waveform after propagating over some distance (c)), and an energy
distribution plot (d) for a 2ft focused transducer emitting a 50kHz pulse into air.

196

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A l.l. Overview of the KZK Simulation Algorithm

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is a nonlinear parabolic

wave equation that accounts for the combined effects of diffraction, absorption, and

nonlinearity in finite amplitude sound beams.

d2p _ c,
dzdt' 1

d p 1 dp
v dr2 r dr

2 _2

2cl d f 2pac\ dt'2 (1)

Approximations are made in the term that account for diffraction because the sound is

assumed to be confined to a narrow beam. This approximation introduces small errors at

locations far from the beam axis (more than 20°) and close to the source (within several

source radii of a piston).

Lee and Hamilton developed a finite difference technique to simulate nonlinear

acoustic propagation for axial symmetric sources in the time domain (often referred to as

the Texas KZK code) [1 - 3]. The core of the KZK simulation code written at the

College of William and Mary is based entirely on Lee and Hamilton’s algorithm.

The initial pressure field is specified by the user at the face of the transducer.

Then using a finite difference method, the waveform propagates away from the source

over small spatial steps. The algorithm first uses an Implicit Backward Finite Difference

(IBFD) method near the source of the transducer to minimize numerical error. Then the

algorithm switches to a Crank-Nicolson Finite Difference (CNFD) method which allows

197

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

for a larger spatial step size to improve computational efficiency. Details of the finite

difference derivations can be found in [1 - 2].

As the pressure waves propagate away from the transducer, a waveform at any

spatial location can be recorded. A series of individual waveforms will reveal the

evolution of the waveform as it propagates away from the transducer. Additional

processing techniques can be employed to quantitatively study and describe acoustic

emissions from axial symmetric transducers and transducer arrays.

Al.1.1. Improvements made the Texas KZK Code.

The core of the KZK simulation code written at the College of William and Mary

is based entirely on the Texas KZK Code. Several improvements were included in the

new KZK simulation code. The new KZK code was completely re-written in the freely

available Java programming language with an end goal of improving the computational

efficiency of the algorithm and usability of the code.

The largest improvement was the addition of absorbing boundary conditions.

With the Texas KZK code, the simulation space had to be made much larger than needed

to avoid non-physical reflections from the boundaries interfering with the acoustic beam.

By adding absorbing boundary conditions, the simulation space can be made at least four

times smaller while achieving the same results (if not better) than with the Texas KZK

code. This allows the simulations to run much faster and requires far less computer

memory. Several other smaller improvements were made to improve the computational

efficiency of the algorithm. For example, the same data structures are used in computing

198

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

the solutions in the absorption and diffraction steps. This lowers the memory

requirements of the algorithm.

Another goal of rewriting the KZK simulation code was to improve usability.

MATLAB scripts were created to set-up, execute, and display results from the KZK

simulations from within the MATLAB environment. This allows simulation space

parameters such as transducer dimensions and waveform frequency of the initial pressure

waveform to be easily changed. A MATLAB script was also created to read in the

results of the simulation directly into the MATLAB environment for further analysis.

A1.2. KZK Simulation Files. Installation and Execution

All the files needed to execute, record, and view simulation results are included in

the wmkzk.zip file. The contents of the wmkzk.zip file are described below.

kzk.java - Java source code for the KZK simulation.
kzkclass - Compiled KZK simulation code (Windows OS).

runkzkparametric.m - Example MATLAB interface file to set-up and
run a KZK simulation.

ReadWaves.m - Example MATLAB file to read in the waveforms
from a KZK simulation.

KZKSimulationDoc_Verl.doc - This document.

Al.2.1 Installation

The contents of the wmkzk.zip should be placed into a new directory where

simulations will be performed. The KZK simulations have been developed and tested on

the Sun Microsystems’s Java 1.4 platform. This can easily and freely be downloaded

from Sun’s website at http://java.sun.eom/j2se/l.4.2/ja/download.html. This java

199

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

http://java.sun.eom/j2se/l.4.2/ja/download.html

platform will need to be installed before continuing with the remaining of the installation

process.

After java has been installed, the appropriate CLASSPATH environmental

variable must be set. This variable will direct the java environment to the location of the

KZK simulation code. This can be done in Windows XP by first clicking on the Start

Menu and then the Control Panel icon. Once in the Control Panel, make sure you are in

classic view by clicking the top left link which says “switch to classic view”. Now

double click on the System icon, click the Advanced tab, and then the Environmental

Variables button to open a new window. In this window, add a new system variable

called CLASSPATH. Assign it a value of the path of the directory that holds the

kzk.class file. Now exit this window and the control panel. Instructions for setting the

CLASSPATH variable in other operating systems can be found on Sun’s Java Website

(http://java.sim.com).

MATLAB will be required to use the interface files provided with the KZK

simulation code. MATLAB Version 6.1 was used to execute and test the KZK

simulation code. MATLAB is not required to execute the KZK simulations but is highly

recommended for execution and analysis of the results.

Al.2.2. Executing a KZK Simulation from MATLAB Example

The file runkzkparametric. m is a MATLAB file that computes all the appropriate

parameters, initial pressure field, creates an input file, and then executes the KZK

simulation. It simulates a 2 ft diameter parametric array that emits a short burst that

200

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

http://java.sim.com

contains two frequencies: 45 kHz and 55 kHz. The waveforms are recorded every 0.1 m

from the face of the transducer to 10 m.

Once the runkzkparametric command is run from MATLAB, a file selection

window will prompt the user where to save the input file to be passed to the KZK

simulation. As the simulation runs, it will output the waveforms into an ASCII file

named waves.txt. This file will be placed in the same directory that the input file was

saved. The MATLAB function ReadWaves.m can then be used to import the waveforms

into the MATLAB environment. The MATLAB command sequence to execute this

example simulation and plot the waveform from the beam axis 5m from the transducer is

shown below.

>> runkzkparametric
== Starting KZK simulation == Version 1.0

number outputs in r-direction = 7.0
number outputs in z-direction = 101.0

number of t points = 1 2 03
== Starting with IBFD Method == ds is now: 0.0010
current step: 50/675
current step: 100/675

== Switching to CNFD Method == ds is now: 0.0020
current step: 150/675
current step: 200/675
current step: 250/675
current step: 300/675
current step: 350/675
current step: 400/675
current step: 450/675
current step: 500/675
current step: 550/675
current step: 600/675
current step: 650/675

== Done with KZK simulation ==
>> w = ReadWaves('waves.txt1);
>> plot(reshape(w(1,50,:),1,1203));

A1.3. Description of the KZK Simulation Parameters

201

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The KZK simulation code requires many simulation parameters to be specified

that describe the transducer configuration, propagation medium, and details about the

simulation space. These parameters are passed to the KZK simulation with an input file.

The MATLAB file called runkzkparametric.m shows how to create this input file and

execute a KZK simulation. This section will give the specifics for finding some of

simulation parameters.

Al.3.1. Unit-less Simulation Parameters

The KZK simulation requires three unit-less simulation parameters which

describe the degree of nonlinearity, absorption, and diffraction used in the simulation.

Al.3.1.1 Nonlinearity Coefficient

The unit-less nonlinear coefficient is found by the following equation.

v 2 ndffloP*
A A 3 (2)

Where d is the geometrical focal distance of the transducer in meters, /? is the coefficient

of nonlinearity of propagation medium,^ is the center frequency of the initial waveform

in Hertz, po is the initial sound pressure amplitude in Pascals (Pa), po is the density of the

propagation medium (kg/mA3), and co is the small amplitude speed of sound in the

propagation medium (m/s). For air, the coefficient of nonlineaxity ft is 1.2 [4], the density

po is 1.15 kg/mA3, and the speed of sound is 330 m/s2.

202

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Al.3.1.2 Absorption Coefficient

The unit-less Absorption coefficient is found by equation 3.

A=2naod (3)

Where d is the geometrical focal distance of the transducer and ao is the absorption

parameter in units of nepers/meter. For air, the absorption parameter is dependent on the

temperature of the air, the relative humidity of the air, and the frequency of the pressure

wave. The absorption parameter of air ao and related quantities are given in [Ref 5-6]

and can be found in equations 4-8.

f rr, A
a n = con \ 1.84x10

T

f rr, V 5/2
+

- 2 2 3 9 .1 IT , - 3 3 5 2 / 7 '

0.01275-
F„„+r»0 !F„

+ 0.1068-
Fm +co0 !Fn (4)

Where a>o is the frequency of the wave, To is the reference atmospheric temperature of air

(293.15 K), T is the temperature of the air in Kelvins, and Fro and Frn are the relaxation

frequencies of oxygen and nitrogen, respectively. These relaxation frequencies are

dependent on the air temperature T and the absolute value of humidity of the air h, and

are given in equations 5 and 6.

= 24 + 4.04x10*h4, 0.02 + h
0.391 + A

(5)

203

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

' T "1
1/2

•J'o J
9 + 280h x exp -4.17

/ n 1/3

_

Tv o ; (6)

The absolute humidity h can be found from the relative humidity hr by equation 7.

h = KP, (7)

Where psat is the saturation vapor pressure which is given by equation 8.

f
f r j i \ 1 .2 6 1 A

10A - 6.8346 1 Q \ + 4.6151
V

[t J (8)

Where Toi = 273.16K is the triple-point isotherm temperature. These equations are valid

when the ambient pressure level is 1 atm. Refer to [Ref 5] for finding absorption values

when the ambient pressure level is not 1 atm.

Al.3.1.3 Diffraction/Gain Coefficient

The unit-less Diffraction/Gain coefficient is found by equation 9.

2 c0d (9)

204

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Where fo is the center frequency of the waveform, a is the radius of the transducer in

meters, Co is the small amplitude speed of sound in the propagation medium (m/s), and d

is the geometrical focus distance of the transducer in meters.

Al.3.2. Other Simulation Parameters

The remaining simulation parameters describe the simulation space, transducer

configuration, initial pressure field, and output parameters. The runkzkparametric.m

MATLAB file shows how to set these parameters and execute a KZK simulation.

Following is a brief description of the parameters of the KZK simulation using the same

variable names as used in the runkzksimulation.m file.

Simulation Control Parameters
isNon - Boolean Variable to instruct the KZK simulations to include the effects of

Nonlinearity. (1 = include, 0 = do not include)
isDon - Boolean Variable to instruct the KZK simulations to include the effects

of Diffraction. (1 = include, 0 = do not include)
isAon - Boolean Variable to instruct the KZK simulations to include the effects of

Absorption. (1 = include, 0 = do not include)
isABCon - Boolean Variable to instruct the KZK simulations to include the

Absorbing Boundary Conditions. (1 = include, 0 = do not include)

Unit less Simulation Parameters (see section 3.11
N - Unit-less nonlinear coefficient of the simulation.
G - Unit-less diffraction/gain coefficient of the simulation.
A - Unit-less absorption coefficient of the simulation.

Transducer Parameters
radius - Radius of transducer in meters.
focald- Transducer geometrical focal distance in meters.

Initial Waveform Parameters
wo - Center frequency of the simulation. The initial waveform is normalized to

this center frequency.
FI - First frequency component of the initial waveform.
F2 - Second frequency component of the initial waveform.

205

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

taumin - Minimum of the time range.
taumax - Maximum of the time range.
numtaupercycle - Number of time diversions per time cycle.
Zpadby - Amount of zero padding to include on the edges of the initial waveform

(in percent: 0 - 1)
tukeya - Alpha of the Tukey window used to envelope the initial waveform

(Range from 0 - 1).

Simulation Space Parameters
maxr - Maximum number of steps in the radial direction.
ntrans - Number of radial points across the transducer.
IBFDds - Sigma (z) step size of IB finite difference method.
CNFDds - Sigma (z) step size of CN finite difference method.
rabc - Thickness of the absorbing boundary layer in the radial direction.
tabc - Thickness of the absorbing boundary layer in the time direction.

Output Parameters (in meters)
outstartz - Output waveforms starting at this z.
outbyz - Output waveforms at every interval of this z step.
outendz - Output waveforms ending at this z.
outstartr - Output waveforms starting at this r.
outbyr - Output waveforms at every interval of this r step.
outendr - Output waveforms ending at this r.

A1.4. References

206

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

[1]Y. Lee, “Numerical Solution of the KZK Equation for Pulsed Finite Sound Beams in

Thermoviscous Fluids.” Ph.D. Dissertation. The University of Texas Austin, 1993.

[2] Y. Lee and M.F. Hamilton, “Time-domain Modeling of pulsed finite amplitude sound

beams,” The Journal of the Acoustical Society of America 97(2), 906-917,1995

[3] Time-domain computer code developed at The University of Texas Austin -

http://people.bu.edu/robinc/kzk/

[4] M.F. Hamilton and D.T. Blackstock, “Nonlinear Acoustics,” Academic Press, 1998

[5] H.E. Bass, L.C. Sutherland, AJ. Zuckerwar, D.T. Blackstock, and D.M. Hester,

“Atmospheric absorption of sound: Further developments,” Journal of the Acoustic

Society of America 97(1), 680-683, January 1995

[6] H.E. Bass, L.C. Sutherland, A.J. Zuckerwar, D.T. Blackstock, and D.M. Hester,

“Erratum: Atmospheric absorption of sound: Further developments,” Journal of the

Acoustic Society of America 99(2), 1259, February 1996

207

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

http://people.bu.edu/robinc/kzk/

Appendix A2
Source Code for Simulation Techniques

A2.1 - 3D Parallel Acoustic Finite Integration Technique

A2.1.1 - Main Parallel Simulation Code

The following code initializes the simulation space and distrbutes the simulation
parameters. It uses the Massage Passing Interface (MPI) to communicate between the
nodes.
♦include <mpi.h>
♦include <iostream>
♦include <fstream>
♦include <string>
♦include <sstream>
♦include "acousticrect.h"
♦include "time.h"

using namespace std;

//♦include <time.h>
//♦include <mpi.h>

int maxt, outputevery, totalz, m2m3;
int rank, numworkers;

int whohasaline = 0;
int recordalineat = 2;

void master{);
void inputnode();
void slave ();
void DistributeSimulationParameters();
void dumpP(acousticrect sar, int t);
void dumpTopPlate (int t);
void addArbReflector(acousticrect ar, double filenumber, double si, double s2, int s3, double dd, double rc);

int main(int argc, char *argv[]){
MPI_Init(Sargc, Sargv);
MPI_Comm_rank(MPr_COMM_WORLD, firank);
MPI_Comm_size(MPI_COMM_WORLD, finumworkers); /* get number of nodes */

numworkers = numworkers-2; //numworkers--; changed for inputnode

if (rank == 0)
master();

else if (rank == numworkers+1)
inputnode () ;

else
slave () ;

MPI_Finalize();

return 0;
}

// This Runs on Master Node
void master (){

MPI_Status status;
time_t start,end;
time (&start);

cout << "master node is online! \n”;

DistributeSimulationParameters ();

double al=0;
ofstream outFile ("alineout.ascii", ios::out);

for (int t=0; t<maxt; t++)
{

MPI_Recv (Sal, 1, MPI_DOUBLE, whohasaline, 858, MPI_COMM_WORLD, Sstatus);
outFile « al << "

if (t%outputevery == 0)
{

dumpTopPlate(t);
cout « "Collecting Slices at time: " « t « "\n”;

}

}

208

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

outFile.close ();
time (Send);
printf ("Total Run Time: %.21f seconds\n", difftime (end,start));
return;

// This runs on all the slave nodes
void slave(){ // ---

// -- Receive Initial Data From Master
MPI_Status status; MPI_Request request[2];
double simparams[11] ;

MPI_Recv(Ssimparams, 11, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD, Sstatus);

acousticrect ar;
ar.numl = simparams[0]+2;
ar.num2 = simparams[1];
ar.num3 = simparams[2];
ar.ds = simparams[3];
ar.dt « simparams[4];
ar.den = simparams[5];
ar.cc = simparams[9];

maxt = simparams[6];
outputevery = simparams[7];
ar.zbeg = simparams[8];
ar.totalz = simparams[10];
m2m3 = ar.num2*ar.num3;

if (rank == 1) ar.type = 1;
else if (rank == numworkers) ar.type = 3;
else ar.type = 2;

a r .Init ();

// --
// — Receive Drive Function

if (rank==l){
double *drive = new double[maxt];

MPI_Recv{Sdrive[0], maxt, MPI_DOUBLE, 0, 202, MPI_COMM_WORLD, Sstatus);
ar.df = drive;

}

// --
// — Receive Reflectors
int nr; double *rpars = new double [8];
MPI_Recv(&nr, maxt, MPI_INT, 0, 203, MPI_COMM_WORLD, Sstatus);
for (int i = 0; i < nr; i++)
{

MPI_Recv(Srpars[0], 8, MPI_DOUBLE, 0, 204, MPI_COMM_WORLD, Sstatus);
if (rpars[0] - - 101)

addArbReflector(ar, rpars[5],rpars[1],rpars[2],rpars[3],rpars[6],rpars[7]);
else

ar.addReflector(rpars[0],rpars[1],rpars[2],rpars[3],rpars[4],rpars[5],rpars[6],rpars[7]);
//cout « ” 6";}

/ / --
// — Run Simulation
//douple *tosend = new double[m2m3*ar.numl];;
double al;
for (int t = 0; t < maxt; t++){

if (rank == 1) cout « " time: " « t « " " «ar.numl<<", "« a r . n u m 2 « " , "«ar.num3 << endl;

if ((recordalineat >= ar.zbeg) && (recordalineat < (ar.zbeg+ar.numl-1))){
al - ar.pp.val(recordalineat-ar.zbeg,100,100);

MPI_Isend(Sal, 1, MPI_DOUBLE, 0, 858, MPI_COMM_WORLD, request);
}

if (t%outputevery “ 0){
//tosend - ar.pp;

int len = ar.pp.GetEvenVolLen(ar.zbeg);
double *x = new double[len];

x = ar.pp.GetEvenVol(ar.zbeg);

MPI_Isend(Slen, 1, MPI_INT, 0, 1101, MPI_COMM_WORLD, request);
MPI_Isend(&x[0], len, MPI_DOUBLE, 0, 1102, MPI_COMM_WORLD, request);

}
ar.time = t;

ar.UpdatePs(1,1);
if (rank > 1) MPI_Isend(&ar.pp.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 301, MPI_COMM_WORLD, request);
ar.UpdatePs(2,ar.numl-2);
if (rank < numworkers) MPI_Recv(&ar.p p .a [(ar.numl-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 301,

MPI_COMM_WORLD, Sstatus);

//if (rank>l) a r .doBackABCs(totalz);

209

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

// if rank ™ 1 receive input from input node
if (rank == 1) MPI_Recv(&ar.pp.a[m2m3], m2m3, MPI_DOUBLE, (numworkers + 1) , 303, MPI_CQMM_WORLD, Sstatus);

ar.UpdateVs(ar.numl-2,ar.numl-2);
if (rank < numworkers) MPI_Isend(&ar.vl.a[(ar.numl-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 302, MPI_COMM_WORLD,

request);
ar.UpdateVs (l,ar.numl-3);
if (rank > 1) MPI_Recv(Sar.vl.a[0], m2m3, MPI_DOUBLE, (rank-1), 302, MPI_COMM_WORLD, Sstatus);

a r .doDriveFunction ();

}
void DistributeSimulationParameters(){

char inputFilename[] = "in.file";
ifstream inFile;
inFile.open ("in.file", ios::in);

if (!inFile) {
cerr « "Can't open input file " « inputFilename << endl;
exit (1);}

double *simparams = new double[11];

inFile » simparams[0]; //maxi
inFile » simparams[1]
inFile » simparams[2]
inFile » simparams[3]
inFile » simparams[4]
inFile » simparams[5

//max2
//max3
//ds
//dt

. .. //default den
inFile » simparams[9]; //default speed of sound

inFile » simparams[6]; //maxt
inFile » simparams[7]; //outevery

maxt = simparams[6];
outputevery = simparams[7];

m2m3 = simparamsfl]*simparams[2];
totalz = simparams[0];
simparams[10] = totalz;

// send initial data to each node

int div, divaccum = 0;
for (int n = 1; n <= numworkers; n++)

/* divide space along xl direstion */
div » (totalz/(numworkers)); if ({n-l)<= (totalz%(numworkers))) div++;
simparams[0] = div;
simparams[8] = divaccum; // tells the worker where its starting z location is
MPI_Send(Ssimparams[0], 11, MPI_DOUBLE, n, 201, MPI_COMM_WORLD);
divaccum = divaccum+div;
if ((whohasaline==0)& & (divaccum>=recordalineat)) whohasaline=n;

}
// send simparams to input node

MPI_Send(Ssimparams[0], 10, MPI_DOUBLE, numworkers+1, 201, MPI_COMM_WORLD);

cout « "whohasaline = " « whohasaline « "\n";
// read in DF and send to worker number 1
/ / ---

double *drive * new double[maxt];
for (int i - 0; icmaxt; i++)
inFile » drive[i];

MPI_Send(Sdrive[0], maxt, MPI_DOUBLE, 1, 202, MPI_COMM_WORLD);

// read in reflectors and distribute to all workers
// ---
int numref; inFile >> numref;
double *rpars = new double[8];
cout « " Number of reflectors: " « numref << endl;

for (int n = 1; n <= numworkers; n++)
MPI_Send(Snumref, 1, MPI_INT, n, 203, MPI_COMM_WORLD);

for (int i = 0; i < numref; i++)

inFile » rpars[0]; // reflector type
inFile » rpars[1]; // reflector position in xl
inFile » rpars[2]; // reflector position in x2
inFile » rpars[3]; // reflector position in x3
inFile » rpars[4]; // reflector position in x3

rpars[5] ;; // refector radius
inFile » rpars[6]; // refector density

(start for cylinder)
(end for cylinder)

inFile » rpars[7]; // refector speed of sound
for (int n = 1; n <= numworkers; n++)

MPI_Send(Srpars[0], 8, MPI_DOUBLE, n, 204, MPI_COMM_WORLD);
cout << " " << rpars[6] « " " « rpars[7] << "\n";

inFile.close();
return;

210

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

}

void dumpSlice(int t){
MPI_Status status;

double *topplate;
int len;

stringstream strm; strm « t;
string fname = "toplate_at_t" +strm.str() + ".ascii";

ofstream outFile(fname.c_str(), ios::out);

for (int n = 1; n <= numworkers; n++){
MPI_Recv(&len, 1, MPI_INT, n, 1101, MPI_COMM_WORLD, Sstatus);
if (n==l) topplate = new double[len];

MPI_Recv(&topplate[0], len, MPI_DOUBLE, n, 1102, MPI_COMM_WORLD, Sstatus);

for (int i = 0; i < len; i++)
outFile « topplate[i] « " ";

}
delete topplate;

outFile.close();
return;

// dump 3D Pressure Values
void dumpP(acousticrect &ar, int t){

stringstream strm; strm << t;
string fname = "Pat" +strm.str()+ ".ascii";

ofstream outFile(fname.c_str(), ios::out);

outFile << ar.numl-2 << " " « ar.num2 « " " « ar.num3 « " ";
for (int i3=0; i3 < ar.num3; i3++)

for (int i2=0; 12 < ar.num2; i2++)
for (int il=l; il < ar.numl-1; il++)

outFile « ar.pp.val(il,i2,13) « " ";

outFile.close();
return;}

// Do the input!!
void inputnode(){

printf("InputNODE! ");

int nr, nt, c, x2, x3, rf, r e ­
double r, dir, dit;

MPI__Status status; MPI_Request request [2];
double simparams[10];

MPI_Recv(Ssimparams, 10, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD, Sstatus);

acousticrect ar; // just used to hold simulation parameters
ar.numl = 1;
ar.num2 = simparams[1];
ar.num3 = simparams[2];
ar.ds = simparams[3];
ar.dt = simparams[4];
ar.den = simparams[5];

maxt = simparams[6];
int m2m3 = ar.num2*ar.num3;

//int m2m3 = max2*max3;
int c2 = (ar.num2/2);
int c3 = (ar.num3/2);

double *p = new double [m2m3];
for (int ii = 0; ii<m2m3; ii++) p[ii]=0;

// open file
ifstream inFile;
inFile.open("KZKwaveform.in", ios::in);
if {!inFile) {

cerr << "Can't open KZK input file " « endl;
exit (1) ;}

// size of 2D p-array
// find center value in x2 direction
// find center value in x3 direction

// pressure matrix

inFile » nr; // read number of r steps
inFile » nt; // read number of t steps
inFile » dir; // read size of r step
inFile » dit; // read size of t step (should be same as simulation dt)

double *pin “ new double[nr]; // allocate array to hold p values along r at each time step

for (int tt=l;tt<=maxt;++tt){
if (tt < nt)

211

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

for (int i=0; i < nr; ++i)
inFile >> pin[i]; // read in p values for this time step

for (x2 = 1; x2<ar.num2-l; ++x2)
for (x3 - 1; x3<ar.num3-l; ++x3) // loop over 2d plane interpolating p-wave onto it.{

r = fabs(sqrt((double)((x2-c2)* (x2-c2) + (x3-c3)* (x3-c3))))*(ar.ds/dir);

rf = floor(r); // compute floor of r
rc = ceil(r); // compute ceiling of r

c=(x2*ar.num3)+x3;

if (rc < nr)
p(c] = pin[rf] + (r-rf) * (pin[rc]-pin(rf]);

// interpolate pressure wave onto cartesian grid
//p[c] = p in[0];

MPI_Send(& p [0], (m2m3), MPI_DOUBLE, 1, 303, MPI_COMM_WORLD); //Send ps to node 2
}

inFile.close();

return;

void addArbReflector(acousticrect ar, double filenumber, double si, double s2, int s3, double dd, double rc){
//cout « "arb!";

stringstream strm; strm « filenumber;
string fname = strm.str()+ ".ArbSimulationObject";

ifstream inFile;
inFile.open(fname.c_str(), ios::in);

if (linFile) {
cerr << "Can't open input file " << fname.c_str() << endl;
exit (1);

}

int nl, n2, n3, w ;

inFile » nl; // read number of steps in xl
inFile » n2; // read number of steps in x2
inFile » n3; // read number of steps in x3

for (int il = 0; ilcnl; il++)
for (int i2 « 0; i2<n2; i2++)

for (int i3 = 0; 13<n3; i3++){
inFile » vv; // read in volume value (1 or 0)

if ((w == 1) && ((sl + il)>=ar.zbeg) && ((sl+il)< (ar.numl+ar.zbeg-1)))// && ((s2+i2)< (ar.num2)) &&
((s3 + i3)< (ar.num3))) {

if ((rc -1) && (dd — -1)){
a r .B .set (sl+il-ar.zbeg+1,s2 + i2,s3+i3,2);}

else {
ar.c.set (sl+il-ar.zbeg+1,s2+i2,s3+i3,rc);
a r .d.set (sl+il-ar.zbeg+1,s2+i2,s3+i3,dd);}}}

inFile.close();
}

A2.1.2 - Acoustic Simulation Code (AcousticRect.h)

This code is where the actual simulation is performed. Each slave node gets a slice of the
continous simulation space and the individual pressure and velocity values are updated
here.
finclude <iostream>
#include "array3D.h"
finclude "array3D_int.h"
//finclude "transducer.h"

#define min(a,b) ({(a)< (b))?(a): (b))
#define max(a,b) (((a)> (b))?(a): (b))

class acousticrect

212

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

{

public:
acousticrect{) { }

~acousticrect () { }

int numl; // number of grid points in r direction
int num2; // number of grid points in z direction
int num3; // number of grid points in p direction
int totalz; //

int abc; // number of abc points on each end

double ds; // spatial step size in r and z direction (meters)
double dt; // time step size (seconds)

double den; // density (kg/mA3)
double cc; // default speed of sound

int zbeg; // z start position (meters)

int type; // type -> 1 = left end , 2 = middle, 3 = right end

array3D vl; / / I - velocities
array3D v2; // 2 - velocities

array3D v3; // 3 - velocities
array3D pp; // pressures

array3D c; // speed of sound
array3D d; // density

array3D_int B; // Boundary Array

int time;

double *df;

//transducer *trans;
//int numtrans;

//int numreflectors;
//int *rftype; // reflector type 0 - sphere, 1 = cylinder
//double *rxl;
//double *rx2;
//int *rx3start;
//int *rx3end;
//double *rrad;

private:

double dtods;
//double dtods;

int il,i2,i3;

public:

void Init(){
v l .Init(numl,num2,num3);

v 2 .Init(numl,num2,num3);
v 3 .Init(numl,num2,num3);
pp.Init(numl,num2,num3);

c.Init (numl,num2,num3,cc);
d.Init(numl,num2,num3,den);

B.Init (numl,num2,num3, type);

dtods = dt/ds;

time = 0;
abc = 40;}

void UpdatePs(int zs, int zend){
//for (il = 1; il < numl-1; il++) // changed numl -> numl-1

for (il =» zs; il <= zend; il++)// changed numl -> numl-1
for (i2 = 1; i2 < num2-l; i2++)

{
pp.setindx(il,12,1); v l .setindx(il,i2,1); v 2 .setindx(il,i2,1);

v3.setindx(il,i2,1);d.setindx(il,i2,1);c.setindx(il,i2,1);
for (13 = 1; i3 < num3-l; i3++){

pp. sv (pp. v () -dtods *d. v () *c.v()*c.v()*((vl. v() -vl. vlm()) + (v2 . v () -v2 . v2m ()) + (v3 . v () -v3 . v3m ()))) ;
pp.incindx(); v l .incindx(); v 2 .incindx(); v 3 .incindx(); d.incindx(); c.incindx();

}}
//plane - bcs

//for (il - 1; il < numl; il++)
for (il = zs; il <= zend; il++){

213

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

pp.set {il,0,0, pp.val(il,0,0)-dtods*d.val(il,0,0)*c.val(il,0,0)*c.val(il,0,0)*(vl.val(il,0,0)-vl.val(il—
1, 0, 0))) ;

p p . set (il, 0, num3-l, p p . val (il, 0, num3-l) -dtods*d. val (il, 0, num3-l) *c. val (il, 0, num3-l) *c .val (il, 0 , num3-
1) * (vl.val(il, 0, num3-l)-vl.val(il —1,0,num3-l)));

pp . set (il, num2-l, num3-l, p p . val (il, num2-l, num3-l) - dtods*d. val (il, nurri2-l, nun3-l) *c. val (il, num2-l, num3-
1) *c.val (il,num2-l,num3-l) * (vl .val (il, num2-l, num3-l) -vl.val (il— 1, nuiri2-l, nutn3-l))) ;

pp. set (il, num2-l, 0, pp. val (il, num2-l, 0) -dtods*d. val (il,num2-l, 0) *c.val (il, num2-l, 0) *c.val (il, num2-
1,0)*(vl.val(il,num2-l,0)-vl.val(il-1,num2-l,0)));

for (i2 = 1/ i2 < num2-l; i2++){
pp.set (il,i2,0, pp.val(il,12,0)-dtods*d.val(il,i2,0)*c.val(il,i2,0)*c.val(il,i2,0)*((vl.val(il,i2,0)-

vl.val (il-1,i2,0)) + (v2.val(il,i2,0)-v2.val(il,i2-l,0))));
pp.set(il,i2,num3-l, pp.val(il,i2,num3-l)-dtods*d.val(il,i2,num3-l)*c.val (il,i2,num3-

1) *c .val (il, i2, num3-l) * ((vl.val (il, i2, nuin3-l) - vl .val (il-1, i2, num3-l)) + (v2.val (il, i2, num3-l) -v2 .val (il, i2—1, num3-l))));}
for (i3 = 1; i3 < num3-l; i3++)

{
pp.set (il,0,i3, pp.val(il,0,i3)-dtods*d.val(il,0,i3)*c.val(il,0,i3) *c.val(il,0,i3)*((vl.val(il,0,i3) —

v l .val(il-l,0,i3)) + (v3.val(il,0,i3)-v3.val(il,0,i3-l))));
pp.set (il,num2-l,i3, pp.val(il,num2-l,i3)-dtods*d.val(il,num2-l,i3)*c.val(il, num2-l, i3)*c.val(il,num2-

1,i3)*((vl.v a l (il,num2-l,i3)-vl.val(il-1,num2-l,i3)) + (v3.v a l (il,num2-l,i3)-v3.val(il,num2-l,i3-l))));}}

void UpdateVs(int zs, int zend){
//for (il = 1; il < numl-2; il++)

for (il = zs; il <= zend; il++)
for (i2 = 0; i2 < num2-l; i2++){

pp.setindx(il,i2,0); v l .setindx (il,i2,0); v 2 .setindx(il,i2,0); v 3 .setindx(il,i2,0);d.setindx(il,i2,1);
for (i3 = 0; i3 < nuin3-l; i3++){

vl.sv(vl.v() - 2*dtods/(d. v ()+d. vlp ()) * (pp.vlp ()-pp. v ()));
v2.sv(v2.v() - 2*dtods/(d. v {)+d. v2p ()) * (pp. v2p ()-pp. v ()));
v3.sv(v3.v() - 2*dtods/(d. v{)+d. v3p ()) * (pp. v3p ()-pp. v ()));

pp.incindx{); v l .incindx(); v 2 .incindx(); v 3 .incindx(); d.incindx();} }
//'for (il = 1; il < numl-2; il + +)

for (il = zs; il <= zend; il++)(
for (i2 = 0; i2 < num2; i2++) // changed num.2-1 -> num2

v l . set (il, i2, num3-l, v l .val (il, i2, num3-l) - 2*dtods/ (d. val (i 1+1, i2, num3-l) +d. val (il, i2,num3-
1))*(pp.val(il+1,i2,num3-l)-pp.val(il,i2,num3-l))) ;

for (i3 = 0; i3 < num3; i3++)
v l . set (il, nuin2-l, i3, v l . val (il, num2-l, i3) - 2*dtods/ (d.val (il+1, num2-l, i3) +d.val (il,num2-

1, i3)) * (pp. val (il+1, num2-l, i3) -pp.val (il, num2-l, i3)));
}

// Rigid Reflectors!

//for (il = 1; il < numl-2; il++)
for (il = zs; il <= zend; il++)

for (i2 = 0; i2 < num2-l; i2++){
B .setindx(il,i2,0); v l .setindx(il,i2,0); v 2 .setindx(il,i2,0); v 3 .setindx(il,i2,0);

for (i3 « 0; i3 < num3-l; i3++){
if (B.v() == 2){

if (B.vlp () == 2) vl.sv(O) ;
if (B.v2p () == 2) v2 . sv (0) ;
if (B.v3p() == 2) v3.sv{0);

}

B.incindx (); v l .incindx(); v 2 .incindx (); v 3 .incindx();}}
doABCs () ;
doBackABCs(totalz);

}

void doABCs ()
{

int aabc = 25;
double per;

for (il = 2; il< numl-2; il++)
for (i2 = 0; i2<num2; i2++)

for(i3 =1; i3 < aabc; i3++){
per = (1-.002*(aabc-i3));
v l .setindx (il,i2,i3); v 2 .setindx(il,i2,i3); v 3 .setindx(il,i2,i3);

v l . sv (vl. v () *per) ; v 2 . sv (v2. v () *per) ; v 3 . sv (v3. v () *per) ;

v l .setindx(il,i2,num3-i3-l); v 2 .setindx(il,i2,num3-i3-l);
v3.setindx(il,i2,num3-i3-l);

vl .sv (vl. v {) *per) ;v2. sv (v2 .v () *per); v 3 . sv (v3. v () *per);}

214

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

12—1,13);

for (il =» 2; il< numl-2; il++)
for {12 = 1; 12<aabc; i2++)

for(i3 =aabc; 13 < num3-aabc; i3++)
{

per = (1-.002* (aabc-i2));
v l .setindx (il,12,13); v 2 .setindx(il,i2,13); v 3 .setindx (il,i2,i3);

v l .sv(vl.v()*per);v2.sv(v2.v()*per);v3 .sv(v3.v ()*per);

v l .setindx(il,num2-i2-l,i3); v l .setindx(il,num2-i2-l,13); v l .setindx(il,num2-

vl .sv (vl. v {) *per) ;v2. sv (v2. v {) *per) ; v 3 . sv (v3. v () *per);}
}
void doBackABCs(int TotalZ) //ABC on the backside of the space (maxi)
{

int aabc « 25;
double per;

for (il = max(TotalZ-aabc-1,zbeg); { (il >= zbeg) & (il< (zbeg+numl-1))); il + +){
v l .setindx (il-zbeg,0,0); v 2 .setindx (il-zbeg,0,0); v 3 .setindx(il-zbeg,0,0);

per = (1+.002* (—i1+ (TotalZ-aabc-1)));
//std:;cout << ”, " « il <<", " << per«'\n';
//if (pipetype==3) std::cout « il « ”, " « il-zbeg « ”, " « per«'\n';
for (i2 = 1 ; 12 < num2; i2++)

for (i3 = 1; i3 < nura3; i3++){
v l .setindx(il-zbeg,12,13); v 2 .setindx(il-zbeg,i2,i3); v 3 .setindx(il-zbeg,i2,i3);
v l . sv (vl. v () *per) ; v2 .sv (v2. v () *per) ; v3 . sv(v3 . v () *per) ;

//vl.incindx(); v2.incindx(); v3.incindx();}}}
void doDriveFunction(){

if (type == 1)(
vl .setindx(0,0,0);
for (i2 = 0 ; i2 < num2; i2++)

for (13 = 0; i3 < num3; i3++){
v l . sv (v l .v () -

2*dtods/(d.val(1,i2,13)+d.val(0,i2,i3))*(pp.val(1,12,i3)-pp.val(0,12,13)+ df[time]));
v l .incindx();}

}

}

void addReflector(double typ, double pi, double p2, int start3, int end3, double rad, double dd, double rc)
{

if (typ == 0) //sphere(
for (il = 0; il < numl; il++)

for (i2 = 0; i2 < num2; i2++)
for (13 « 0; 13 < num3; i3++)

if (((il+zbeg-l-pl)* (il+zbeg-l-pl) + (i2-p2)* (i2—p2) + (i3-start3)*{i3 —
start3)) < rad*rad)

if ((rc == -1) && (dd « -1))
(
B.set(il,i2,i3, 2) ;}

else{
c. set (il, 12, i3, rc);
d.set(il,i2,13,dd);}}

else if (typ == 1) //cylinder (
for (il = 0; il < numl; il++)

for (i2 = 0; i2 < num2; i2++)
if (((il + zbeg-l-pl)* (il + zbeg-l-pl) + (i2-p2)* (i2-p2)) < rad*rad)

for (13 = start3; 13 <- end3; i3++)
if ((rc — -1) && (dd -- -1))(

B .set(il,i2,i3,2);}
else{

c.set(il,12,i3,rc);
d. set (il, i2,13, dd) ;}

}
else if (typ =“ 2) //rectangle{

for (il = 0; il < numl; il++)

215

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

for (i2 = 0; L2 < num2; i2++)
for (i3 = 0; i3 < num3; i3++)

if ({il+zbeg-1 >= start3) && (il+zbeg-1 <= end3))
if ((rc == -1) && (dd == -1))
{

B.set(il, i2,i3,2) ;
}
else{

c.set(il,i2,13,rc);
d.set(il,i2,i3,dd);}

A2.1.3 - 3D Array

Object that mimics 3D array of doubles with fast access methods.

♦include <iostream>

class array3D {
private:

int ci; // current index
int ci3; // current i3 index (used for contenous Boundary)
int L2L3; // max2*max3

public:
double *a;

int lenl; // number of grid points in r direction
int len2; // number of grid points in z direction
int len3; // number of grid points m P direction

// Blank Constructer
array3D() {}

// Blank Deconstructor
~array3D{) {}

/ / = = = == = : == = = = == = == = = = = == === = = == = = = = = = ==== = = = = ==== = = = ==== = == = == =

// Init - defines the array and its dimensions - MUST 3E CALLED BEFORE USING
void Init (int ml, int m2, int m3)
{ Init(ml,m2,m3,0)? }

void Init (int ml, int m2, int m3, double def){
lenl = ml; len2 = m2; len3 = m3;
L2L3 = m2*m3;
a - new double[ml*m2*m3];

clear (def);
return;}

// Return value at il, i2, i3
double val(int il, int 12, int i3)
{

return a [(il*L2L3) +{i2*len3)+i3] ;

/ / —---
// Set value at il, 12, 13
void set (int il, int 12, int i3, double val){

a [(il*L2L3) + (i2*len3)+i3] - val;
return;}

/ / = = = = = — = = = = = = = = = = = = = = =
// quick access methods

void setindx(int il, int i2, int 13) { ci = (il*L2L3) + (i2*len3)+i3; ci3 = i3; }
void incindx{)

{ ci = ci+1; ci3 = ci3+l;
if (ci3==len3) ci3=0;}

void sv(double x) { a[ci] = x; } // set value at ci
double v() { return a[ci]; } // equiv of a (il][12][i3]
double vlp() { return a[ci+L2L3]; } // equiv of a[il-1][12][13]

216

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

double vlm() { return a[ci-L2L3]; } // equiv of a[il+l][i2][i3]
double v2p() { return a[ci+len3]; } // equiv of a[il][i2+l][i3J

double v2p2() { return a[ci+2*len3]; } // equiv of a[il][i2+2]
double v2m() { return a[ci-len3]; } // equiv of a[il][i2-l][i3]
double v3p() {// return a[ci+l]; } // equiv c

if (ci3 -- len3-l)
return a [ci-len3+l];

else

[i 3]
f a [il] [

return a[ci+l]

double v3m() { //return a[ci-l]; }
if {ci3 == 0)

return a[ci+len3-l]

// equiv of a[il][i2][i3-l]

return a[ci-l]

f l ======
// clear - sets all values - 0;

void clear(double def){
for (int i « 0; i< L2L3*lenl; i++)

a[i) = def;}
/ / --
// returns 2D slice through 3D array at fixed index 2

double* slice_fix2 (int i2){
double *x = new double[(lenl-2)*len3];
x [0] - (lenl-2)*len3;

int c - 0;
for (int il = 1; ilclenl-l; il++) // does not return ends

for (int i3 - 0; i3<len3; i3++){
x[c]=val(il, i2, i3);
C++;}

return x;}
int slice__f ix2_count () { return (lenl-2) *len3; }

n ===== --
// returns 3D volume returning only the even indexes

double* GetEvenVol(int start){
int len = GetEvenVolLen(start);
double *x - new double[len];

int c == 0;
for (int il = l+(start%2); il<lenl-l; il=il+2) // does not return ends

for (int i2 = 0; i2<len2; i2=i2+2)
for (int i3 = 0; i3<len2; i3=i3+2){

x[c] = (val(il-1, i2, i3)+val(il, i2, i3))/2;
C++;}

//std::cout << len << " " << c-1 « ”\n";

return x;}
int GetEvenVolLen(int start){

int len;
if (start%2 == 0)

len - (lenl-1)/2*(len2/2)* (len3/2);
else

len = (lenl-2)/2*(len2/2)* (len3/2);
return len;}};

A2.1.3 - 3D Array of integers

Object that mimics 3D array of Integers with fast access methods.

class array3D_int{
private s

int *a;
int ci; // current index

int L2L3; // max2*max3

217

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

int endtype;

public:

int lenl; // number of grid points in z direction
int len2; // number of grid points in r direction
int len3; // number of grid points in P direction

// Blank Constructer
array3D_int () {}

// Deconstructor
~array3D_int() {}

// Init - defines the array and its dimensions - MUST BE CALLED BEFORE USING
void Init (int ml, int m2, int m3, int type){

lenl = ml; len2 = m2; len3 = m3;
L2L3 = m2*m3;
a = new int[ml*m2*m3];

endtype = type;
clear ();
return;}

// Return value at il, i2, i3
int val(int il, int 12, int 13){

return a [(il*L2L3)+ (i2*len3)+i3];
}
// Set value at il, i2, i3
void set(int il, int i2, int 13, int val)
{

a [(il*L2L3)+ (i2*len3)+i3] -va l ;
return;}

// quick access methods
void setindx(int il, int i2, int i3) {

void incindx() { ci == ci+1; }
ci = (il*L2L3)+ (12*len3)+i3;

int v() [return a[ci]; // equiv of a [il] [12][13]
int vlp () ; return a[ci+L2L3]; // equiv of a [il- n [i2 j [i3
int vim () ; return a[ci-L2L3]; // equiv of a [il+ 1] [12] (13
int v2p () ; return a[ci+len3]; // equiv of a [il) [12+1][13
int v2m () ■ return a(ci-len3]; // equiv of a [il] [12-1][13
int v3p() [return a[ci+1]; // equiv of a [il] [12][13+1
int v3m () { return a[ci-l]; // equiv of a [il] [12](13-1

// clear - sets all values = 0;
void clear()

//std::cout «
for (int i = 0,

"type " « endtype « "\n";
i< L2L3*lenl; i++)

= 0;

218

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A2.2 KZK Nonlinear Sound Beam Simulations

A2.2.1 Java KZK source code (kzLjava)
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ ///////////////////////

kzk.java - March 2005 Kevin Rudd kerudd®wm.edu

This code solves the KZK equation for focused axial symetric sources. The core algorithim
was developed at the University of Texas at Austin. It includes the effects of nonlinearity,
absorption, and diffraction. More details of the code can be found in the following refrences.

[1] Yang Sub-Lee, "Numerical solution of the KZK equation for pulsed finite-
amplitude sound beams in thermoviecous fluids", Ph D dissertation,
The University of Texas at Austin, December 1993.

[2] Yang Sub-Lee and Mark P. Hamilton, "Time-domain modeling of finite-
amplitude beams", J. Acoust. Soc. Am. 97, 906-917 (1995).

This java version was written to be easily interfaced with MATLAB. It also includes absorbing
boundary conditions which allow the simulations to run much quicker because the simulation
space can be reduced. Any questions and comments about this code can be
directed to ...

Kevin Rudd
The Nondestructive Evaluation Laboratory
The Applied Science Department
The College of William and Mary
kerudd®wm.edu

import java.util.*;
import java.io.*;
import j ava.1ang.Math.*;

public class kzk

public static double G = 0; //
public static double A = 0; //
public static double N = 0; //
public static int isNon = 0; //
public static int isAon = 0; //
public static int isDon = 0; //
public static int isABCon = 0; //

public static int maxr = 0; //
public static int IBFDzsteps = 100; //
public static int totalzsteps = 0; //

public static int maxt = 0; //
public static int rabc = 50; //
public static int tabc = 50; //

public static double dt = 0; //
public static double tstart = 0; //
public static double dr = 0; //
public static double ds = 0; //
public static double IBFDds = 0; //
public static double CNFDds = 0; //

public static int t = 1; //
public static double sigma = 0; //

public static double [] [] p; //
public static doublet]!] LHSDiff; //
public static doublet] [] LHSAbso; //

is Nonlinarity on? (to be read in)
is Absortion on? (to be read in)
is Diffraction on? (to be read in)

r-direction (to be read in)
-direction for IBPD
s in z-direction (to be read in)

t ac (both ends) (to be read in)

size (to be read in)
ep size (to be read in)

// pressure matrix

public static int ors = 0; public static int orb = 0;
public static int ore = 0; public static double ozs = 0;
public static double ozb = 0; public static double oze = 0;

// which waveforms to output
// s = start, b = skip by
// e = end (to be read in)

public static String workdir // working directory

// - -
// temp vars - I know this is bad programming, but it speeds up computations ----
public static int i; public static int ii; public static int j; public static int j j;
public static double!] sumP;
public static doublet] rhs;
public static doublet] beta;
public static doublet] gamma;
public static doublet] sol;
public static double R; public static double Ro2; public static double Ro4;//R for Diff
public static double Ro8;public static double S; public static double So2;//S for Absorb
public static double dDisto; public static double dDeltaPmax; //for Nonlinear
public static double dDeltaPdt; public static int k;
public static doublet] TauDisto; public static doublet] pold;
// - - -
public static void main(String[Jargs) throws IOException {

initVars(args); // Initialize Variables from input file
ds = IBFDds; // Set the z-step size to the CNFD ds
initLHS__IBFD() ; // Initialize LHS matricies for the IBPD method

// Set up outputfile
BufferedWriter outfile=new BufferedWriter (new FileWriter(workdir + "waves.txt"));

System.out.println(
System.out.println(
System.out.println(
System.out.println(
System.out.println(
System.out.println(

== Starting KZK simulation == Version 1.0")") ;
number outputs in r-direction
number outputs in z-direction

number of t points") ;
(Math.floor{(ore-ors)/orb)+1)
(Math.floor((oze-ozs)/ozb)+1)
(maxt+1) + " ");

219

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

ds is now: " + IBFDds);

L

// do the IBFD Diffraction Step
// do the IBFD Absorption Step
// do the Nonlinear Step
// do the Absorbing Boundaries Step
// Output waveform?

OutputWaveforms(outfile); // Output initial waveform?

System.out.println("== Starting with IBFD Me
for (t=l;t<=IBFDzsteps;t++)

sigma = t*ds; // set current sigma

if (isDon==l) IBFDDiffractionO;
if (isAon==l) IBFDAbsorptionO;
if (isNon==l) NonlinearO;
if (isABCon==l) DoABCs();
OutputWaveforms(outfile);

if (t% (50) == 0) System.out,println(" current step: "+t+"/"+totalzsteps);

System.out.println("== Switching to CNFD Method == ds is now: " + CNFDds);
ds = CNFDds; // Set the z-step size to the CNFD ds
initLHS_CNFD(); // Initialize LHS matricies for the CNFD method

for (t=t;t<=totalzsteps;t++){
sigma = (t-IBFDzsteps)*CNFDds+(IBFDzsteps)*IBFDds; // set current sigma

if (isDon==l) CNFDDiffraction(); // do the CNFD Diffraction Step
if (isAon==l) CNFDAbsorption(); // do the CNFD Absorption Step
if (isNon==l) NonlinearO; // do the Nonlinear Step
if (isABCon==l) DoABCsO; // do the Absorbing Boundaries Step
OutputWaveforms(outfile)? // Output waveform?

if (t%(50) == 0) System.o ut.println(" current step: "+t+"/"+totalzsteps);

outfile.close();

System.out.println("== Done with KZK simulation ==");
}

/ / - --
// IBFDDiffraction - Implicit Backward Finite Difference Method for the diffraction term in the KZK// - - - ----------------------
public static void IBFDDiffractionO {

for (j=l; j<=maxr-l; j++)
{ sumP[j] = 0; sol[j] = 0 ; }

for (i=l; i<maxt-l; i++){ for (j = 0; j< =maxr-l; j++)
sumP[j] = sumP[j] + p[i-l] [j] ;

rhs[0] * p[i][0] + R* (sumP [1]-sumP [0]) ;
for (j=l; j<maxr-2; j++)

rhs [j] = p[i] [j j + (1-1/ (2* j)) * (Ro4) *sumP [j -1] - (Ro2) *sumP [j]+(l+l/(2*j))* (Ro4) *sumP t j+1] ;
rhs[maxr-l] = p[i][maxr-l] + (1-1/(2*(maxr-1)))*(Ro4)*sump [maxr-2]- (Ro2)*sumP[maxr-1];

tridiagDiff(LHSDiff, rhs, 0, maxr-1);
for (j = 0;j <=maxr-1;j ++)

p[i] Ejj = sol [j] ;

}
/ / ---
// CNFDDiffraction - Crank-Nicolson Finite Difference Method for the diffraction term in the KZK
// - - - ------------------------------------
public static void CNFDDiffractionO

for (j=0; j<=maxr-l; j++)
{ sumPEj] a 0; sol[j] = 0 ; }

for (i«l; i<maxt-l; i++){
for (j=0 ; j<=maxr-l; j++)

sumPtj] = sumPEj] + sol[j]j
rhs[0] = 2*p [i] [0] + Ro2* (sumP [1] -sumP [0]) ;
for (jsl; j<maxr-2; j++)

rhs [jj =2*p[i][j] + (l-l/(2*j))* (Ro8) *sumP [j -1] - (Ro4) *sumP [j] + (l+l/(2*j))* (Ro8) *sumP [j +1] ;
rhs[maxr-l] = 2*p[i] [maxr-1] + (1-1/(2*(maxr-1)))*(Ro8)*sumP[maxr-2]- (Ro4)*sumP[maxr-1];

tridiagDiff(LHSDiff, rhs, 0, maxr-1);
for {j=0;j<=maxr-l;j++)

p [i] Cj] = sol [j] -p [i] [j];

} }
/ / - ---
// IBFDAbsorption - Implicit Backward Finite Difference Method for the absorption term in the KZK
// - - --
public static void IBFDAbsorptionO

for (j = 0; j<=maxr-l; j++)

for (i=l; i<=maxt-l; i++)
rhs[i]=p[i] [j] ;

tridiagDiff(LHSAbso, rhs, 1, maxt-1);
for (i=l; i<=maxt-l; i++)

 ̂ p[i] [j]=sol [i] ;

// ----
// CNFDAbsorption - Crank-Nicolson Finite Difference Method for the absorption term in the KZK// - -------------
public static void CNFDAbsorption0

220

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

for (j = 0; j<=maxr-l; j+ +)

for (i=l; i<=maxt-l; i++)
rhs [i] = {So2) *p[i-1] [j] + (1-S) *p [i] [j] +{So2) *p [i + 1] [j] ;

tridiagDiff(LHSAbso, rhs, 1, maxt-1);
for (i=l; i<=maxt-l; i++)

p [i] [j]=sol[i];

} 1
/ / — — -
// Nonlinear - nonlinear term in the KZK
// ------
public static void NonlinearO throws lOException

for (j=0; jcmaxr; j++){
pold[0] = 0; pold[maxt] = 0;
for (i = l; i<=maxt-l; i++){

if (p [i] [j] >=0)
pold [i] = p [i] [j] / (1-N* (p [i+1] [j] -p[i] [j]) *ds) ;

else
 ̂ pold [i] = p [i] [j] / (1-N* (p[i] [j] -p[i-l] [j]) *ds) ;

for (i=0; i<=maxt; i++)
p [i] [j] = pold [i] ;

// - ---------
// DoABCs - Attenuates the pressure values at the boundaries to reduce reflections
// --------
public static void DoABCs()

for (i = 1; i <=rabc; i++)
for (j = 1; j <= rnaxt; j++)

p[j] [maxr-rabc+i] = (1-.005*i)*p [j] [maxr-rabc+i];
for (i = 1; i <=maxr; i++)
for (j = 1 ; j <= tabc; j++)

p[maxt-tabc+j] [i] = (1-.005*j)*p[maxt-tabc] [i];
p[tabc-j][i] = (1-.005*j)*p [tabc] [i];

// -
// tridiagDiff - Solves the tridiagonal system for the <LHS> coeficients for a given <rhs>
// The solution is left in variable sol. This is the Thomas algorithim./ / -...........
public static void tridiagDiff(double[][] LHS, doublet] rhs, int start, int end)

beta [start] = LHS[1] [start];
gamma[start] = rhs[start] / beta[start];
for (ii=start+l;ii<=end;ii++>

beta [ii] = LHS[l][ii] - LHS [0] [ii] *LHS [2 J [ii-1]/beta [ii-1] ;
gamma [ii] = (rhs[ii] - LHS [0] [ii] *gamma [ii-1])/beta [ii] ;

sol [end] = gamma [end] ;
for (ii=end-l; ii>=start; ii--)

sol[ii] = gamma [ii] - LHS [2] [ii]*sol [ii+1]/beta[ii] ;

// --------
// initLHS_IBFD - Initialize LHS matrix Coefficients for the IBFD method
// ----------
public static void initLHS_IBFD()

//== Initialize left hand side diffraction Coefficients ==
LHSDiff = new double[3][maxr+1];
R=dt*ds/(G*dr*dr); Ro2 = R/2; Ro4 = R/4; Ro8 = R/8;

LHSDiff[0] [0] = 0; LHSDiff[0] [maxr-1] = (-1 + 1/(2*(maxr-1)))
LHSDiff[1] [0] = 1+Ro2; LHSDiff[1] [maxr-1] = l+Ro4;
LHSDiff[2] [0] = -Ro2; LHSDiff[2] [maxr-1] = 0;
for(j=l; j<=maxr-2; j++)

LHSDiff[0][j] = (-1+1/(2*j))*Ro8;
LHSDiff [1] [j] = l+Ro4;
LHSDiff [2] [j] = - (1+1/(2*j)) *Ro8 ;

//== Initialize left hand side absorption Coefficients ==
LHSAbso = new double[3][maxt+1];
S=A*ds/(dt*dt); So2 = S/2;

LHSAbso[0][1] = 0; LHSAbso[0][maxt-1] = -S;
LHSAbso[1][1] = 1+S; LHSAbso[1][maxt-1] = 1+2*S;
LHSAbso[2][1] = -S; LHSAbso[2][maxt-1] = 0;
for(j=l; j<=maxt-l; j++){
LHSAbso [0] [j] = -S;

LHSAbso[l] [j] = (1+2*S);
LHSAbso[2][j] = -S;

} 1
// ---------
// initLHS_CNFD - Initialize LHS matrix Coefficients for the CNFD method// --------------------
public static void initLHS_CNFD{)

I I - - Initialize left hand side diffraction Coefficients =
R=dt*ds/(G*dr*dr); Ro2 = R/2; Ro4 = R/4; Ro8 = R/8;

221

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

LHSDiff [0] [maxr-1]
LHSDiff[1] [maxr-lj
LHSDiff [2] [maxr-1]

= (-1 + 1 / (2 -*
= I+R0 8 ;
= 0 ;

LHSDiff[0][0] = 0;
LHSDiff[1][0] = l+Ro4;
LHSDiff [2] [0] = -Ro4;
for(j=l; j<=maxr-2 ; j++)

LHSDiff[0] [j] = (-1+1/(2*j))*R/16;
LHSDiff [1] [j] = I+R0 8 ;
LHSDiff [2] [j] = - (l+l/(2*j))*R/16;}

//== Initialize left hand side absorption Coefficients ==
S=A*ds/(dt*dt); So2 = S/2;

LHSAbso[0][1] = 0; LHSAbso[0][maxt-1] = -So2;
LHSAbso[1][1] = 1+S; LHSAbso[1][maxt-1] = 1+S;
LHSAbso[2] [1] = -So2; LHSAbso[2] [maxt-1] = 0;
for(j=l; j<=maxt-l; j++)

LHSAbso [0] [j] = -So2;
LHSAbso [1] [j] = (1+S);
LHSAbso [2] [j] = - So2 ;

(maxr-1)))*R/16;

//
// initP - Reads in initial configuration from file// -
public static void initVars(String[] args) throws lOException {

if (args.length != 1)
System.o ut.println(" You must specify initial waveform file! ");

BufferedReader infile=new BufferedReader (new FileReader(args[0])); // open waveform file
StringTokenizer st = new StringTokenizer(infile.readLine()); // read it all in as a

Tokenizer
infile.close() ;

N = Double.parseDouble(st.nextToken()); // N
G = Double.parseDouble(st.nextToken()); // G
A = Double.parseDouble(st.nextToken()); / / A

maxr = Integer.parselnt(st.nextToken());
IBFDds = Double.parseDouble(st.nextToken());

CNFDds = Double.parseDouble(st.nextToken());
rabc = Integer.parselnt(st.nextToken{))
tabc = Integer.parseInt(s t .nextToken())
isNon = Integer.parselnt(st.nextToken())
isDon = Integer.parselnt(st.nextToken())
isAon = Integer.parseInt(s t .nextToken(})
isABCon= Integer.parseInt(s t .nextToken())

// maxr
// IBFD spatial step

// CNFD spatial step
// # r abc
// # t abc
// is N on?
// is D on?
// is A on?
// is ABC on?

int nrpiston = Integer.parselnt(st.nextToken{)); // number of elements across piston
maxt = Integer.parselnt{s t .nextToken())+1; // number of t steps

dt = Double.parseDouble(st.nextToken()); // time step size
tstart a Double.parseDouble(st.nextToken()); // start time
dr = Double.parseDouble(st.nextToken()); // r step size

p = new double[maxt+1] [maxr+1] ; // initialize p matrix to correct size

for (int r = 0 ; rcnrpiston; r++)
for (int t = 0 ; tcmaxt; t++)

p[t] [r] = Double.parseDouble(st.nextToken0);

// read in the waveforms

for (int r = nrpiston; rcmaxr; r++)
for (int t = 0; t<maxt; t++)

p(t] [r] = 0;

// output stuff
totalzsteps = Integer.parselnt(st.nextToken());
ors = Integer.parseInt(s t .nextToken()) ;
orb = Integer.parselnt(st.nextToken()}
ore = Integer.parselnt(st.nextToken())
ozs = Double.parseDouble(st.nextToken())
ozb = Double.parseDouble(st.nextToken())
oze = Double.parseDouble(st.nextToken())

workdir = s t .nextToken();

int s = Math.max(maxt,maxr);
// init some other vars while we are at it
rhs = new double [s+1];
beta = new double [s+1];

gamma = new double[s+1] ;
sol = new double [s+1] ;
TauDisto = new double[s+1];
pold = new double[s+1];
sumP = new double[s+1];

// set the rest of the values to zero

// total z ;steps
// out wave position - start rho
i i out wave position - skip rho
i i out wave position - end rho
i i out wave position - start sigma
i i out wave position - skip sigma
i i out wave position - end sigma

// —-
// OutputWaveforms -// - ..
public static void OutputWaveforms(BufferedWriter outfile) throws lOException

if((ozs <= sigma)

for (int r - ors; r<= ore; r+=orb)
writeWave(outfile, r);

ozs += ozb;
if (ozs > oze) ors = 999999;

i i .. -...........
i i writeWave - Writes current waveform at r to outfile
i i --------- ----------- -------------------------------------

222

String

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

public static void writeWave(BufferedWriter outfile, int r) throws lOException
//System.out.println{"Writing wave to file at sigma: " + sigmat" r:" +r + " step: "+t);
for (int t=1; t<= maxt; t++)
outfile.write(p[t][r]+" '*);

outfile.newLine();}
// -
// writeP - Writes current pressure field to outfile//
public static void writeP(BufferedWriter outfile) throws lOException

for (int r=0; r<=199; r++){
for (int t=l; t<= maxt; t++)

outfile .write (p[tj[r]+” ");
outfile.newLine();

>>

A2.2.2 MATLAB KZK setup and execution script (runkzkparametric.m)
function [output_args] = runkzkparametric(input_args)
%KZKPARAMETRIC -- Runs KZK simulation for a parametric source

% ===
% KZK Simulation Settings
% = = === = = === = = = = == = = = = = = === = = = = = = === = = = = = = = := = = = = = = := = = = =: = = = = = = = := = = = = = = = = = = = = = = := = == = =

i sNon = 1;
i sDon = 1;
i sAon = 1?
isABCon - 1;

% =====
radius
focald

= 0.230
= 0.094
= 0.860

= 50000;
= 55000/wo;
= 45000/w o ;
= -30;
= 30;

numtaupercycle = 20;
Zpadby - .1;
tukeya = 0.5;

FI
F2
taumin
taumax

maxr = 3 00;
ntrans = 100;
IBFDds = 0.001;
CNFDds = 0.002;
rabc = 40;
tabc - 40;

% Effects to include in Simulation (1 = on, 0 = off)
% Nonlinearity
% Diffraction
% Absorption
% Absorbing Boundary Conditions

% Main Coefficients of Simulation
% Nonlinear Coefficient
% Diffraction/Gain Coefficient
% Absorption Coefficient

% Transducer Configuration
% Transducer Radius in meters
% Focal length in meters

% Waveform Parameters
% Center Frequency (normalized to this one)
% First frequency component
% Second frequency component
% time range - min
% time range - max
% number of time points per wo cycle
% Zero pad percent
% Tukey Window Alpha (0-1)

% Simulation Space Parameters
% Maximum number of steps in the radial direction
% Number of points across the transducer
% Step Size of IB finite difference
% Step Size of CN finite difference
% Number of absorbing boundary layers in the radial direction
% Number of absorbing boundary layers in the time direction

% ================= % Where to record the Waveforms (in Meters)
outstartz
outbyz
outendz
outstartr
outbyr
outendr

0 ;
0 . 1 ;
1 0 ?
0 ;
0 . 1 ;
0 . 6 6 ;

% Output to start at outstartz
% Output by every outbyz
% Output to end at outendz
% Output to start at outstartr
% Output by every outbyr
% Output to end at outendr

> In the z-Direction/\
> In the r-Direction

% s s s s = = = 3 s a s - ::- s = = = = = s - s - - - = = = = - - = s s - - = - = - = = = = = - 3 = = = - - - - = = - = = :::===; = = - - ==== = = = : ; - - = ::= :

% Create inital waveform - change this is you want another type of initial waveform
% =======3SS===3S=======::=======- =- s ==a = = = = -=- === = ====a - = = = s=::a = a - 3a== ======= = =;3=3=:
Ntau=ceil{(taumax-taumin)*numtaupercycle);
t aumi n= t aumi n;
t aumax= t aumax;
Dtau=(taumax-taumin)/Ntau;
tau= [taumin:Dtau:taumax];
Mintau = min(tau)?
Ntau = length(tau);
Drho=l/(ntrans-1);
rho= [0:Drho:1];
middle = ceil((1-2*Zpadby)*Ntau)+1;
midstart = floor(Zpadby*Ntau);
zeropad(l:midstart) = 0;
for jj=l:ntrans
dum=tau+G*(jj-1).A2*Drho.* 2 ;
dumm = dum{midstart:midstart+middle-1);
p = tukeywin(middle,tukeya)'.*(sin(dumm.*Fl*2*pi)+sin(dumm.*F2*2*pi));
p = [zeropad p zeropad];
Ps(jj,:)=p;

end
Ps = Ps./max(max(Ps));
%====3===============3========= 333========= 333========3 =3 ==========================:
% Write Inputfile for KZK simulation - do not change the order of this!
% = = = = ===== ==== = = = = == = = = == ==== = = = = === == = = :

223

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

[fname,pname] = uiputfile(1 user.cfg', 'Save Configuration');
fp=fopen([pname '\' fname],'w');

fprintf{fp, %15.6f ’ , N) ; % Nonlinear Coefficient
fprintf(fp, %15.6f ’ , G) ; % Diffraction/Gain Coefficient
fprintf(fp, %15.Sf ' , A) ; % Absorption
fprintf(fp, %15.Of ', maxr) ; % maxr
fprintf(fp, %15.6f ', IBFDds); % IBFD ds
fprintf(fp, %15.6f ', CNFDds); % CNFD ds
fprintf(fp, %15.Of ' , rabc) ; % # r abc
fprintf(fp, %1S.Of ', tabc); % # t abc
fprintf(fp, %15.Of ', isNon); % is N on?
fprintf(fp, %15.Of ', isDon); % is D on?
fprintf(fp, %15.Of ', isAon); % is A on?
fprintf(fp, %15.Of ', isABCon) ; % is Absorbing Boundary on?
fprintf(fp, % 8 .Of ' , ntrans); % number of points across transducer
fprintf(fp, % 8 .Of ' , Ntau) ; % total number of time points
fprintf(fp, %15.8f ', Dtau); % time step size
fprintf(fp, %15.8f ', Mintau); % minimum time
fprintf(fp, %15.8f ', Drho) ; % rho step size
fprintf(fp, %15.8f Ps'); % initial pressure field
fprintf(fp, %15.Of ', ceil{(outendz-IBFDds*focald*100)/(CNFDds*focald))
fprintf(fp, %15.Of ', outstartr/radius*ntrans); % out waves start r
fprintf(fp, %15.Of ', outbyr/radius*ntrans); % out waves by r
fprintf(fp, %15.Of ', outendr/radius*ntrans); % out waves end r
fprintf(fp, %15.4f ', outstartz/focald); % out waves start z
fprintf(fp, %15.4f ', outbyz/focald); % out waves by z
fprintf(fp, %15.4f ', outendz/focald); % out waves end z

fprintf(fp, %s , [pname]); % working directory
fclose(fp);

% total z steps

% Run the KZK simulation
%========================
dos(['java -Xmx500m kzk 1 pname '\ ' fname]);

A2.2.3 MATLAB read data output script (ReadWaves.m)

The following code is used to read in the KZK results and plot the wave field as the
sound propagates away from the source.

function [w] = ReadWaves{ fn)

in = textread(fn);

nz = 101;
nr = length(in{:,1))/nz;
nt = length(i n {1,:));

w (1:n r ,1:n z ,1:n t) = 0;

C = 1 ;

for r = l:nr
for z = l:nz

for t = 1 :nt
w(r,z,t) = i n ((r-1)*nr+z,t);
c = c+1;

end
end

end

A2.2.4 MATLAB GUI to setup a nonlinear KZK simulation

This is a graphical user interface to automatically determine simulation parameters, save
the configuration files, and run the KZK nonlinear acoustic simulations.

GUI Screenshot

224

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Setup K/.k

Madium Propertiat (Ail)

Dmsty(kgiln'9)

Speed of Sound (mb)

Paramalir of Naninoaty (BM)

ReWveHun**y(%)

Sourca Propertiea
R«fus(m)

Center Frequency (Hz)

MUel Sound M eraiy (db)

Norm Distance

Output Parameters

Total Axial Distance (m)

@ Output Waveforms

oyr .1start r o endr o

atartz p | by z j j | e n d z | f o

@ Output Total Pressure M erely Prof
Initial Waveform

Frequency 1 (Hz)

Frequency 2 (Hz)

Frequency 3 (Hz)

Frequency 4 (Hz)

tau mb

taumax

f ta u par wo cycle

Zero Pad Length (%)

TukeyVMndow Alpha

Simulation Space Parameters

Cels Across Sourca (r-dr)

Max cels (r-dr)

BFD Sigma Step Size

CNFD Sigma Step Size

Cels for r-ABC

Cels fort-ABC

Focal Distance (m

I Show Delete

|save Configuration | |loadConflgurallon|Include These Effects

0 N o rin ea r ©Diffraction ©Absorption

® Absortaig Boundary CondHo...

| MaSeKZKFIe | |RunKZKSImtteHon

GUI Sourcecode
function varargout = setupKZK(varargin)
% SETUPKZK Application M-file for setupKZK.fig
% FIG = SETUPKZK launch setupKZK GUI.
% SETUPKZK('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 05-Aug-2005 11:51:23

if nargin == 0 % LAUNCH GUI

fig = openfig (mfilename,'reuse');

% Generate a structure of handles to pass to callbacks, and store it.
handles = guihandles(fig);
guidata(fig, handles)?

if nargout > 0
varargout{1} = fig?

end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try
if (nargout)

[varargout{l:nargout}] = feval(varargin{:}); % FEVAL switchyard
else

feval(vararginf:}); % FEVAL switchyard
end

catch
disp (lasterr);

end

% This function automatically determines the simulation parameters
function [A,N,G,shock,raydist,a] - getANG(handles)

den = str2num(get(handles.editDensity, 'string'))?
= str2num(get(handles.editSos, 'string'))?
= str2num(get(handles.editBoA, 'string'))?

hr = str2num(get(handles.editRH, 'string'))?
r * str2num (get(handles.editRadius, 'string'))?
wo = str2num (get(handles.editFreq, 'string'));
P = str2nuin (get (handles, editlntensity, 'string'))?
d = str2num(get(handles.editFocal, 'string'));

B

dens ity
speed of sound
B/A - nonlinearity
relative humidity
radius of* source
center frequency
max pressure at source
focal length

B (l+B/2)?

% — find shock formation distance
Ppa = 0.00002*10A (P/20); % convert db to pascals
shock = (den*cA3)/ (B*wo*2*pi*Ppa)?

225

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

% == find rayleigh distance
raydist = (2*pi*wo*rA2)/ (2*c);

% == find ao - absortion coefficient

To = 293.15/ % kelvin - Reference (room temp)
T = 293.15; % Temperature - room temp

psat = 10A (-6.8346* (273.16/T)A (1.261)+4.6151);
h = hr*(psat);

Fro = 24+4.04*10A4 *h*((0.02+h)/ (0.391+h));
Frn = sqrt(To/T)*(9+280*h*exp(-4.17 * ((To/T)A (1/3)-1)));

a = (woA2)* (1.84*10A (-11)*sqrt(T/To) + (T/To)A (-5/2)*(0.01275*exp (-2239.1/T)/ (Frc+woA2/Fro)+0.1068*exp (-
3352/T)/ (Frn+woA2/Frn)));

% == find NAG

A = a*d*(2*pi);
N » d/shock;
G = raydist/d;

% Creates the initial waveform
function [Ps, Nrho, Ntau, Dtau, Mintau, Drho] = getlnitialWaveforms(handles, G)

% new! - re-normalize initial waveform

rf = str2num(get(handles.editRealFocus, 'string'))/ % real focal length
d = str2num(get(handles.editFocal, 'string')); % old focal length (normalized)
G = G*d;
G - G/rf;

wo = str2num(get(handles.editFreq, 'string'));
FI = str2num(get (handles.editFl, 'string'))/wo;
F2 = str2num (get(handles.editF2, 'string'))/wo;
F3 = str2num(get(handles.editF3, 1 string'))/wo;
F4 = str2num(get(handles.editF4, 'string'))/wo;

% center frequency
% first frequency component
% second frequency component
% third frequency component
% forth frequency component

% min tau
% max tau
% num tau per center frequency cycle
% Zero pad percent
% Tukey Window Alpha

Ntau=ceil((taumax-taumin)*numtaupercycle);
taumin=taumin*2*pi;
taumax=taumax* 2*pi;
Dtau=(taumax-taumin)/Ntau
tau=[taumin:Dtau:taumax];
Mintau * min(tau);
Ntau = length(tau);

taumin = str2num(get(handles.edittaumin, 'string'));
taumax - str2num (get(handles.edittaumax, 'string'));
numtaupercycle = str2num(get(handles.editNumtaupercycle, 'string'));
Zpadby = str2num(get(handles.editZeropadpercent, 'string'))./100;
tukeya = str2num(get(handles.edittukeyalpha, 'string'));

Nrho=str2num(get(handles.editnumrsource, 'string')); % Number of cells across source (in r-direction)
Drho=l/(Nrho-1);
rho=[0:Drho:1];

middle = ceil((l-2*Zpadby)*Ntau)+1;
midstart = floor(Zpadby*Ntau);
zeropad(1:midstart) = 0;

%if (G == 0) Nrho » 1; end
for jj=l:Nrho

dum=tau+(G)* (jj-1).A2*Drho.A2;
dumm - dum(midstart:midstart+middle-l);
p = tukeywin(middle,tukeya)'.*(sin(dumm.*F1)+sin(dumm.*F2)+sin(dumm.*F3)+sin(dumm.*F4));
p = [zeropad p zeropad];
Ps (j j , :) =p;

end

Ps — Ps./max(max(Ps));

function varargout = buttonShowDetails_Callback(h, eventdata, handles, varargin)

[A,N,G,shock,raydist,a] - getANG(handles);
ibfdds = str2num(get(handles.editlBFDds, 'string'))*str2num(get(handles.editFocal, 'string'));
cnfdds = str2num(get(handles.editCNFDds, 'string'))*str2num(get(handles.editFocal, 'string'));
totalsteps = ceil((str2num(get(handles.editEndDistance, 'string'))-ibfdds*10Q)/cnfdds)+100;
dr = str2num(get(handles.editRadius, 'string'))/str2num(get(handles.editnumrsource, 'string'));

m =
m = strvcat(m,
m = strvcat(m,
m = strvcat(m,
m = strvcat(m,
m - strvcat(m,
m = strvcat(m,
m - strvcat(m,
m = strvcat(m,

Detail Variables for Simulation'];-*]) ;
Shockwave Formation Distance: ', num2str(shock), •
Rayleigh Distance: ', num2str(raydist), '_m']);
Absortion Coef: ', num2str(a), '_Napiers/(m*HzA2) -*]);
Onitless Variables for Simulation ']);-’]);
Gain (G): ', num2str (G),]);

226

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

in = strvcat(m, ['Absorprion (A): ', num2str(A),]);
m = strvcat(m, ['Nonlinearity (N): ', num2str(N),]);
m = strvcat(m, [*— *]);
m = strvcat(m, ['Real spatial step sizes ']);
m ■ strvcat(m,
m * strvcat(m, ['z (IBFD): ', num2str(ibfdds), 1_m ']);
m = strvcat(m, ['z (CNFD): ', num2str(cnfdds), 1_m ']);
m = strvcat(m, ['r : ', num2str(dr), ' m ']);
m = strvcat(m, ['Total simulation Steps : num2str(totalsteps)]);

msgbox(m ,' Details')

function varargout = buttonShowWaveform_Callback(h, eventdata, handles, varargin)
% Plot the Initial Waveform
[Ps] = getlnitialWaveforms(handles, 0);
figure; plot(Ps(1,:)); axis tight;

function varargout = buttonShowWaveField_Callback(h, eventdata, handles, varargin)
[A,N,G] = getANG(handles);
[Ps] = getlnitialWaveforms(handles, G);
figure; h = pcolor(Ps); set (h,'l i n e s t y l e n o n e ');

function varargout = buttonLoadConfiguration_Callback(h, eventdata, handles, varargin)

[fname,pname] = uigetfile ('*.kzkcfg',
n=load([pname '\' fname]);

'Open Configuration1);

set(handles.editDensity, * string', num2str(n(1)));
set (handles.editSos, 'string', num2str(n(2)));
set(handles.editBoA, 'string ' , num2str(n(3)));
set(handles.editRH, 'string', num2str (n (4)));
set(handles.editRadius, 'string', num2str (n (5)));
set(handles.editFreq, 'string', num2str (n (6)));
set(handles.editlntensity, 'string', num2str(n(7)));
set(handles.editFocal, 'string', num2str(n(8)));
set(handles.editFreq, 'string', num2str (n (9)));
set(handles.editFl, 'string*, num2str (n (10)));
set(handles,editF2, 'string', num2str (n (11)));
set (handles.editF3, 'string', num2str(n (12)));
set(handles.editF4, 'string', num2str (n (13)));
set (handles.edittaumin, 'string', num2str (n(14)));
set (handles.edittaumax, 'string', num2str (n(15)));
set (handles.editNumtaupercycle, 'string', num2str (n(16)));
set(handles.editZeropadpercent, 'string', num2str(n(17)));
set (handles.edittukeyalpha, 'string', num2str(n (18)));
set(handles.editnumrsource, 'string', num2str(n (19)));
set(handles.editmaxr, 'string*, num2str (n (20)));
set(handles.editlBFDds, 'string*, num2str (n(21)));
set (handles.editCNFDds, 'string*, num2str (n(22)));
set (handles.editrabc, 'string', num2str (n(23)));
set(handles.edittabc, 'string', num2str (n (24)));
set(handles.radiobuttonN, 'value', (n(25)));
set (handles.radiobuttonD, 'value', (n(26)));
set (handles.radiobuttonA, 'value', (n(27)));
set (handles.radiobuttonABC, 'value', (n(28)));
set(handles.editEndDistance, 'string', (n(29)));
set(handles.checkboxOutWaves, 'value', (n(30)));
set (handles.editowstartr, 'string', num2str(n(31)));
set (handles.editowbyr, 'string*, num2str(n(32)));
set(handles.editowendr, 'string*, num2str (n (33)));
set(handles.editowstartz, 'string*, num2str(n(34)));
set (handles.editowbyz, 'string', num2str(n(35)));
set (handles.editowendz, 'string', num2str(n(36)));
set (handles.checkboxOutTotalP, 'value', (n(37)));

component
component
component
component

density
speed of sound
B/A - nonlinearity
relative humidity
radius of source
center frequency
max pressure at souro
focal length
center frequency
first frequency ;
second frequency
third frequency
forth frequency
min tau
max tau
nun tau per center frequency cycle
Zero pad percent
Tukey Window Alpha
Number Cells across Source (r-dir)
maxr
IBFD sigma step size
CNFD sigma step size
r abc
t abc
is N on?
is D on
is A on'
is Absorbing Boundary on?
end z distance
output Waves?
out waves start r
out waves by r
out waves end r
out waves start z
out waves by z
out waves end z
output total?

function varargout = buttonSaveConf iguration__Callback (h, eventdata, handles, varargin)

[fname,pname] = uiputfile('test.kzkcfg', 'Save Configuration');
fp=fopen([pname '* fname],*w');

fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,

%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
%15.4f
*15.4f
%15.4f
%15.6f

str2num(get(handles.editDensity, 'string')));
str2num(get(handles.editSos, 'string1)));
str2num(get(handles.editBoA, 1 string1)));
str2num(get(handles.editRH, 'string’)));
str2num(get(handles.editRadius, 'string')));
str2num(get(handles.editFreq, 1 string1)));
str2num(get(handles.editlntensity, 'string')));
str2num(get(handles.editFocal, 'string')));
str2num(get(handles.editFreq, 'string')));
str2num(get(handles.editFl, 'string')));
str2num(get(handles.editF2, 'string')));
str2num(get(handles.editF3, 'string')));
str2num(get(handles.editF4, 'string')));
str2num(get(handles.edittaumin, 1 string1)));
str2num(get(handles.edittaumax, 'string')));
str2num(get(handles.editNumtaupercycle, 'string')));
str2num(get(handles.editZeropadpercent, 'string')));
str2num(get(handles.edittukeyalpha, 'string')));
str2num(get(handles.editnumrsource, 'string')));
str2num(get(handles.editmaxr, 'string')));
str2num(get(handles.editlBFDds, 1 string')));

% density
% speed of sound
% 3/A - nonlinearity
% relative humidity
% radius of source
% center frequency
% max pressure at source
% focal length
% center frequency
% first frequency component
% second frequency component
% third frequency component
% forth frequency component
% min tau
% max tau
% num tau per center frequency cycle
% Zero pad percent
% Tukey Window Alpha
% Number Cells across Source (r-dir)
% maxr
% IBFD sigma step size

227

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

fprintf(fp, %15 6f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fclose(fp);

str2num(get(handles.editCNFDds, 'string')));
str2num(get(handles.editrabc, 'string')));
str2num(get (handles.edittabc, 'string'))) ;
(get (handles.radiobuttonN, 'value 1)));
(get(handles.radiobuttonD, 'value 1)));
(get (handles.radiobuttonA, 'value')));
(get(handles.radiobuttonABC, 'value 1)));
str2num(get(handles.editEndDistance, 'string')))
(get(handles.checkboxOutWaves, 'value')));
str2nuin (get (handles. editowstartr, ' string'))) ;
str2num (get(handles.editowbyr, 'string')));
str2num (get(handles.editowendr, 'string')));
str2num (get(handles.editowstartz, 'stringr)));
str2num(get(handles.editowbyz, ‘string1)));
str2num(get(handles.editowendz, 'string')));
(get(handles.checkboxOutTotalP, 'value'))); %

% CNFD sigma step size
r abe

% # t abc
% is N on?
% is D on?
% is A on?
% is Absorbing Boundary on?

; % end z distance
% output Waves?
% out waves start r
% out waves by r
% out waves end r
% out waves start z
% out waves by z
% out waves end z

output totalP?

function varargout = buttonMakeKZKFile_Callback(h, eventdata, handles, varargin)

[A,N,G] = getANG(handles);
[Ps, Nrho, Ntau, Dtau, Mintau, Drho) = getlnitialWaveforms(handles, 0);% WAG G

[fname,pname] = uiputfile ('user.cfg', 'Save Configuration');
fp=fopen ([pname * \ • fname],'w1);

fprintf(fp,
fprintf(fp,
fprintf(fp,

fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,

%15.6f
%15.6f
%15.6f

%15.Of
%15.6f
%15.6f
%15.Of
%15.Of
%15.Of
%15.Of
%15.Of
%15.Of

% Nonlinear Coefficient
% Diffraction/Gain Coefficient
% Absorption

str2num(get(handles.editmaxr, 'string')));
str2num(get(handles.editlBFDds, 'string')));
str2num(get(handles.editCNFDds, 'string')));
str2num(get(handles.editrabc, 'string')));
str2num(get(handles.edittabc, 'string')));
(get(handles.radiobuttonN, 'value1)));
(get(handles.radiobuttonD, 'value')));
(get(handles.radiobuttonA, 'value')));
(get(handles.radiobuttonABC, ’value’)));

maxr
IBFD ds
CNFD ds
r abc
t abc
is N on
is D on
is A on
is Absorbing Boundary on?

% Waveform a
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,

%8. Of
%8.Of '
%15.8f
%15.8f
%15.8f
%15.8f

parameters
Nrho);
Ntau);
Dtau);
Mintau);
Drho);
Ps ') ;

% output stuff
d = str2num(get(handles.editFocal, 'string'));
ibfdds = str2num(get(handles.editlBFDds, 'string'))*d;
cnfdds - str2num(get(handles.editCNFDds, 'string'))*d;

ed = str2num(get (handles.editEndDistance, 'string'));
totalsteps = ceil((ed-ibfdds*10Q)/cnfdds)+100;

a = str2num(get(handles.editRadius, 'string'));
ns = str2num(get (handles.editnumrsource, 'string'));

fprintf(fp, ' %15.Of
round(str2num(get

fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,
fprintf(fp,

%15.Of
%15.Of
%15.Of
%15.4f
%15.4f
%15.4f

', totalsteps); % total z steps
(handles.editowbyr, 'string'))/a*ns)
', round(str2num(get(handles.editowstartr, 'string'))/a*ns))
', round(str2num(get(handles.editowbyr, 'string'))/a*ns));
', round(str2num(get(handles.editowendr, 'string'))/a*ns));
', str2num(get(handles.editowstartz, 'string'))/d);
', str2num(get(handles.editowbyz, 1 string'))/d);
', str2num(get(handles.editowendz, 'string'))/d);

% out waves start
% out waves by r
% out waves end r
% out waves start
% out waves by z
% out waves end z

fprintf(fp, [pname]) % working directory

fclose(fp);

function varargout = ButtonRunKZK(h, eventdata, handles, varargin)

[fname,pname] * uigetfile{'*.cfg', 'Open Configuration');
% n=load([pname *\' fnamej);
c = ['java -Xmx500m kzk ' pname '\ * fname]
dos(['java -Xmx500m kzk ' pname '* fname]);

228

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A2.3 Periodontal Acoustic Simulation Code

A2.3.1 Main Structure of Parallel Simulation Code

This code reads in the input files that define the simulation space geometry and
distributes these values to all the nodes.

#include <mpi.h>
♦include <iostream>
♦include <fstream>
♦include <string>
♦include <sstream>
♦include <cmath>
♦include "acousticrect.h"
♦include "time.h"

using namespace std;

int maxt, outputevery, totalz, m2m3;
int rank, numworkers;

double originl; //origin of simulation
double origin3; //

void master () ;
void slave();
void syncnodes_master();
void DistributeSimulationParameters{);
void dumpP(acousticrect sar, int t);
void createCurvedDomain(acousticrect ar);
void drop_pAcum (acousticrect ar, int time);
void sendslicefix3_slave(acousticrect ar, int fix3);
void collectslices_master(int t);
acousticrect addTip(acousticrect ar);

int main(int argc, char *argv[]){
MPI_Init(Sargc, Sargv);
MPI_Comm_rank(MPI_COMM_WORLD, Srank);
MPI_Comm_size(MPI_COMM_WORLD, Snumworkers); /* get number of nodes */
numworkers--;

if (rank == 0)
master{);

else
slave () ;

MPI_Finalize();

return 0;}

229

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

void master {){
MPI_Status status2;
time_t start,end;
time (fistart);

cout « "master node is online! \n";

DistributeSimulationParameters();

syncnodes__master () ;

for (int t=0; tcmaxt; t++)//maxt{
if (t%outputevery == 0){

collectslices_master(t);
cout « "Collecting Slices at time: " « t « "\n";

}

// receive aline

double al_, tal_;
ofstream outFile ("aline.ascii", ios::out);

for (int t=0; t<maxt; t++)
{

al_ = 0;
for (int n = 1; n <= numworkers; n++){

MPI_Recv (&tal_, 1, MPI_DOUBLE, n, 858, MPI__COMM_WORLD, &status2);
al_=al_+tal_;}

//cout << al << ” ”;
outFile « al_ « " ";}

outFile.close() ;
time (fiend);
printf ("Total Run Time: %.21f seconds\n", difftime (end,start));
return;

void slave(){
// --

// — Receive Initial Data From Master
MPI_Status status; MPI_Request request[2];
MPI_Request request2[2];
double simparams[10];

MPI_Recv(fisimparams, 10, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD, fistatus);

acousticrect ar;
ar.numl * simparams[0]+2;
ar.num2 = simparams[1];
ar.num3 = simparams[2];
ar.ds = simparams[3];
ar.dt = simparams[4];
ar.den = 1000; // Default=water simparams[5];
ar.cc = 1490; // simparams [9];

maxt = simparams[5];
outputevery = simparams[6];

ar.zbeg = simparams[7];
ar.totalz = simparams[8];

m2m3 * ar.num2*ar.num3;

if (rank =»= 1) ar.type = 1;
else if (rank == numworkers) ar.type - 3;
else ar.type = 2;

ar. Init () ;

// Get Drive Function from master
MPI__Recv(£ar.drivelen, 1, MPI_INT, 0, 208, MPI_COMM_WORLD, fistatus);
double *drive » new double[ar.drivelen];
MPI_Rec v (fidrive [0] , ar.drivelen, MPI_DOUBLE, 0, 209, MPI__COMM_WORLD, fistatus);

ar.df = drive;

// Create Curved Perio Geom
createCurvedDomain(ar);

// Now add the Tip and Transducer
ar “ addTip(ar);
ar.preFindBoundaries();

// SYNC nodes!

230

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

int temps = rank;
MPI_Send(&temps, 1, MPI_INT, 0, 744, MPI_COMM_WORLD);

MPT_Recv(fitemps, 1, MPI_INT, 0, 745, MPI_COMM_WORLD, Sstatus);

double *a line = new double[maxt];

// Run Simulation!
for (int t = 0; t < maxt; t++)//maxt {

// Send Aline
a line[t]=ar.getAline();

// Send Slice
if (t%outputevery == 0)

sendslicefix3_slave(ar, (int)(ar.num3/2));

if (rank — 1) cout « " time: " « t « "/" << maxt « " " « a r . n u m l « " , " « a r . n u m 2 « " , "«ar.num3 <<
endl;

ar.time = t;

ar.UpdatePs(1,1);
if (rank > 1) MPI_Isend(&ar.pp.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 301, MPI_COMM_WORLD, request);
ar.UpdatePs(2,ar.numl-2);
if (rank < numworkers) MPI_Recv(Sar.pp.a[(ar.numl-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 301,

MPI_COMM_WORLD, Sstatus);
ar.doDriveFunction {);

ar.UpdateVs(ar.numl-2,ar.numl-2);
if (rank < numworkers) MPI_Isend(Sar.vl.a [(ar.numl-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 302, MPI_COMM_WORLD,

request);
ar.UpdateVs(l,ar.numl-3);
if (rank > 1) MPI_Recv (Sar. v l . a [0] , m2m3, MPI_DOUBLE, (rank-1), 302, MPI_COMM_WORLD, fistatus);

//if (t==2500) drop__pAcum (ar, t) ;
//if (t— *3000) drop_pAcum (ar, t) ;

for (int t=0; t<maxt; t++)
MPI_Send(&a line[t], 1, MPI_DOUBLE, 0, 858, MPI_COMM_WORLD);

}
void syncnodes_master(){

int len;MPI_Status status;
cout « " sync nodes - ";

for (int n = 1; n <= numworkers; n++){
MPI_Recv (Slen, 1, MPI_INT, n, 744, MPI_COMM:_WORLD, Sstatus);
cout << n << " ";}

for (int n = 1; n <= numworkers; n++)
MPI_Send(Slen, 1, MPIJENT, n, 745, MPI_COMM_WORLD);

}
void DistributeSimulationParameters(){

char inputFilename[] = "perioin.ascii";
ifstream inFile;
//inFile.open ("perioin.ascii", ios::in);

inFile.open(inputFilename, ios::in);

if (!inFile) {
cerr « "Can't open input file ” « inputFilename << endl;
exit (1);

}

double *simparams = new double [10];

inFile » simparams[1]; //max2 Switched these to divide along longest direction
inFile » simparams[0
inFile » simparams(2
inFile » simparams[3]
inFile » simparams[4]
inFile » simparams[5]
inFile » simparams[6]

//maxi
//max3
//ds
//dt
//maxt
//outevery

maxt = simparams[5];
outputevery =■ simparams [6] ;

m2m3 = simparams[1]*simparams[2];
totalz = simparams[0];
simparams[8]= totalz;

// send initial data to each node// --
int div, divaccum = 0;
for (int n = 1; n <*= numworkers; n++)

{

231

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

div «* (totalz/(numworkers)); if ((n-l)<= (totalz%(numworkers))) div++; /* divide space along
direstion */

simparams[03 “ div;
simparams[7] = divaccum; // tells the worker where its starting z location is

MPI_Send (&simparams[0] , 10, MPI_DOUBLE, n, 201, MPI_COMM_WORLD);
divaccum = divaccum+div;}

// read in drive function and send to all nodes
int dlen;
inFile » dlen;
double *drivefun = new double[dlen];
//cout << " < " << dlen << " > ”;
for (int i = 0; i <= dlen; i++)

inFile » drivefunfi];

for (int n = 1; n <= numworkers; n++){
MPI_Send(Sdlen, 1, MPI_INT, n, 208, MPI_C0MM_W0RLD);
MPI_Send(Sdrivefun[0], dlen, MPI_DOUBLE, n, 209, MPI_C0MM_W0RLD);

}

inFile.close();
return;

// dump topplate
void dumpP(acousticrect &ar, int t)(

stringstream strm; strm « t;
string fname = "Pat" +strm.str()+ ".ascii";

ofstream outFile(fname.c_str(), ios::out);

outFile << ar.numl-2 << " " « ar.num2 << ” " << ar.num3 << " ";
for (int i3=0; i3 < ar.num3; i3++)

for (int i2=0; i2 < ar.num2; i2++)
for (int il-1; il < ar.numl-1; il++)

outFile « a r .p p .val(il,i2,i3) << "

outFile.close();
return;}

void createCurvedDomain(acousticrect ar){
double curve;

double num2dl;
double num2d3;
int numzones;

// read in 2D domain
char inputFilename[] = "2DPerioGeom.ascii";
ifstream inFile;
inFile.open(inputFilename, ios::in);

inFile » curve; //if (rank==l) cout « c u r v e « ” ";
inFile » origin3; //if (rank==l) cout «origin3/ar.ds « " "; GLOBAL
inFile » originl; //if (rank==l) cout <<originl/ar.ds << " "; GLOBAL
inFile » num2dl; //if (rank==l) ccut « num2dl « " ";
inFile » num2d3; //if (rank==l) cout « num2d3 « " ";

inFile » numzones;

// read in zone info
double *zonedensities = new double(numzones];

double *zonespeedofsounds = new double[numzones];
for (int il=0; iKnumzones; il++){

inFile » zonedensities[il];
inFile » zonespeedofsounds[il];
//if (rank~l) cout «zonedensities [il] « ” ” « zcnespeedof sounds [il] « " / ”;}

// read in 2d data
int len = num2dl*num2d3;

double *y = new double[len];
for (int il = 0; il<num2dl;il++)

for (int i2 = 0; i2<num2d3; i2++)
inFile » y [((il)* (int)num2d3)+i2];

// now sweep the 2D domain to create a 3D one
double mid3 = ar.num3/2-.5;
double d;

int zonenumber;
int tmpvar;

for (int i2=0; i2<ar.num2;i2++)(
for (int i3=0; i3<ar.num3; i3++)(

d = sqrt((i2+curve/ar.ds)* (i2+curve/ar.ds)+ (i3-mid3)* (i3-mid3)); //sqrt this!
d = d-curve/ar.ds;

232

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

for {int il = 0; il<ar.numl;il++)
{

tmpvar = (int) (ar.zbeg+(il-0)+originl/ar.ds);

zonenumber = y[tmpvar*(int)num2d3+(int) (d+origin3/ar.ds)];

if (zonenumber =- 0) (
//just keep as default
ar.B.set (il,i2,i3,2);}

else if (zonespeedofsounds[zonenumber-1] == -1) //rigid zone (
ar.B.set (il,i2,i3,2);}

else{
ar.c.set(il,i2,i3,zonespeedofsounds[zonenumber-1]);

ar.d.set(il,i2,i3,zonedensities[zonenumber-1]);
ar.B.set(il,i2,i3,0);

}

}
return;}

void sendslicefix3_slave(acousticrect ar, int fix3){
MPI_Status status; MPI_Request request[2];
int len * (ar.numl-2)*ar.num2;
double *x = new double[len];
MPI_Isend(slen, 1, MPI_INT, 0, 1151, MPI_COMM_WORLD, request);

for (int il-1; il<(ar.numl-1);il++)
for (int i2=0; i2<ar.num2; i2++)(

x[((il-1)*ar.num2)+12]=ar.p p .val(il,i2,fix3);
//x[((il-1)*ar.num2)+12]=ar.B.val(il,i2,fix3);}

MPI_Isend(& x [0], len, MPI_DOUBLE, 0, 1152, MPI_COMM_WORLD,request);

//delete(x); <--- BIG NoNo
return;}

void collectslices_master(int t){
MPI_Status status;

double *topplate;
int len;

stringstream strm; strm « t;
string fname = ”Slice_M +strm.str()+ ".ascii";

ofstream outFile (fname.c_str{), ios::out);

for (int n = 1; n <= numworkers; n++){
MPI_Recv(Slen, 1, MPI_INT, n, 1151, MPI_COMM_WORLD, Sstatus);
if (n==“l) topplate = new double [len];

MPI_Recv (Stopplate [0] , len, MPI_DOUBLE, n, 1152, MPI__COMM_WORLD, Sstatus);

for (int i = 0; i < len; i++)(
outFile « topplate [i] « " ";

}

delete topplate;
outFile.close ();
return;}

void drop_pAcum(acousticrect ar, int time){
stringstream strm; strm « rank;

stringstream strmt; strmt << time;
string fname = ”PAccum_" +strm.str()+ "_t" + strmt. str ()+".ascii";
ofstream outFile(fname.c_str(), ios::out);

outFile << ar.numl << " M << ar.num2 << " " << ar.num3 << n ";

for (int nl = 1; nl < ar.numl; nl++)
for (int n2 = 0; n2 < ar.num2; n2++)

for (int n3 = 0; n3 < ar.num3; n3++)
outFile « ar.pAcum.val(nl,n2,n3) << " ";

outFile. close () ;

233

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

acousticrect addTip(acousticrect ar)
{

string fname = "2DTipGeom.ascii";
ifstream inFile;
inFile.open(fname.c_str(), ios:2in);

if (!inFile) {
cerr « "Can't open input file " « fname.c_str() << endl;
exit (1);}

double ol, o2, o3, dl, d2, d3, scalef; // o=origin, d=vect pointing down tip, u = vect pointing up
double num2dl, num2d2;

inFile » ol; // tip origin
inFile » o2; //
inFile » o3; //

inFile » dl
inFile » d2
inFile » d3

inFile » scalef;

// orentation
// vector pointing down the tip!//

inFile » num2dl; // image dimensions
inFile » num2d2; //

int len = num2dl*num2d2; //
double *y = new double[len]; //

for (int il - 0; il<num2dl;il++) // Read in tip image
for (int i2 = 0; i2<num2d2; 12++) //

inFile » y [((il)* (int)num2d2)+i2]; //

double mid3 = ar.num3/2-.5; // find mid point in 3
int il, i2;
double PV1, PV2, PV3, PVmag, A;

for (int n2=0; n2<ar.num2;n2++)
for (int n3=0; n3<ar.num3; n3++)

for (int nl = 0; n K a r . numl; nl + +){
PV1 = nl + ar.zbeg - (o2/ar.ds - originl/ar.ds); // find vector pointing from tip
PV2 = n2 - (ol/ar.ds - origin3/ar.ds); // origin to point of interest
PV3 = n3 - (o3/ar.ds + mid3);

PVmag = sqrt(PV1*PV1+PV2*PV2+PV3*PV3); // Mag of pointing vector
PV1 = PVl/PVmag; PV2 = PV2/PVmag; PV3 = PV3/PVmag; // normalize poting vector

A = acos(PVl*d2+PV2*dl+PV3*d3); // angle between pointing vector, and down vector

i2 = (int) (cos(A)*PVmag*s cale f+.5);
il = (int)(sin(A)*PVmag*scalef+.5);

if ((il<num2dl) && (il>=0) && { i2<num2d2) && (i2>=0)){
//cout << " " « (int)(jl-ar.zbeg+1) << "

if (y[((il)* (int)num2d2)+12] == 1) // tip{
ar.B.set (nl,n2,n3,2);}

else if (y[((il)* (int)num2d2)+i2] == 2) // transducer {
ar.addTpoint(nl,n2,n3);
ar.B.set(nl,n2,n3,0);
//ar.B.set(nl,n2,n3,3);}

else if (y[((il)* (int)num2d2)+i2] == 3) // water{
a r .d .set(nl,n2,n3,998); // Default=water

a r .c .set(nl,n2,n3, 1482) ; //
ar.B.set(nl,n2,n3,0);}

inFile.close();
return ar;}

234

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A3 - 3DPCEFIT - Cylindrical Elastic Wave Source Code

♦include <mpi.h>
♦include <iostream>
finclude <fstream>
finclude <string>
finclude <sstream>
finclude <time.h>
finclude "spipe.h"

using namespace std;
const int syncevery - 100;

void master ();
void slave();
int* DistributeSimulationParameters(); // sends out simulation params to workers
void DistributeTransducers(int *zposs); // distributes transducers to the appropriate workers
void dumpTopPlate(int t);
void collectAlines();
void SyncNodes();

int rank, numworkers;

int maxt, maxz, m2m3; // max number of time steps
int outputevery; // output every
int numtransducers; //
int main(int argc, char *argv[])
{
MPI_Init(&argc, sargv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI__Comm_size (MPI_COMM_WORLD, Snumworkers); /* get number of nodes */
numworkers— ;

if (rank == 0)
master {);

else
slave () ;

MPI_Finalize ();
return 0;}

// master node! — distribures simulation space and receives data for output

void master (){
time_t start,end;
time (Sstart);

int rank, div, n, i, maxz;
int *zstartpos - new int[numworkers];

MPI_Status status;
cout « "master node is online! \nM;

235

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

//--
/* Send out initialization messages to each node */

zstartpos = DistributeSimulationParameters{);
DistributeTransducers(zstartpos);

for (int t=0; tcmaxt; t++){
if (t%outputevery == 0){

dumpTopPlate(t);
cout « "Collecting Slices at time: " « t « "\n”;

}
//if (t%syncevery == 0)

// SyncNodes{);}
cout « "Collecting A-lines! \n";
collectAlines ();

time (Send);
printf ("Total Run Time: %.21f seconds\n", difftime (end,start));
return;

// — =======
// slave node! — Does the grunt work
/ / -— , === ======--------------
void slave(){ // ---

// receive simulation parameters from master and initialize pipe secti
MPI__Status status; MPI_Request request[2];
double simparams[15];

MPI_Recv(fisimparams, 15, MPI_DOOBLE, 0, 201, MPI_COMM_WORLD, fistatus);

spipe pxpe;
pipe.numr = simparams[0];

pipe.numz = simparams[1]+2; //
pipe nump = s imparams[2]; //
pipe.ds = simparams[3]; //
pipe.dp = simparams[4]; //
pipe.dt = simparams[5]; //
pipe.den - simparams[6]; //
pipe.lm - simparams[7]; //
pipe.mu = simparams[8]; //
pipe rbeg = simparams[10]; //
pipe zbeg = simparams[11]; I !
maxt = simparams[12]; //

// number of nodes in r direction
mber of nodes in z direction

step size in r and z (meters)

er of time steps
outputevery = simparams(13]; // output every time steps
maxz = simparams[14]; // total number of z across entire simulation
m2m3 = simparams[0]*simparams[2];

if (rank == 1) pipe.pipetype = 1;
else if (rank == numworkers) pipe.pipetype = 3;
else pipe.pipetype = 2;

// receive curve data
int numz = pipe.numz-2;
double *curveparamsl = new double[numz];
double *curveparams2 * new double[numz];
double *curveparams3 = new double[numz];
MPI_Recv(ficurveparamsl[0], numz, MPI_DOUBLE, 0, 231, MPI_COMM_WORLD, fistatus);
pipe.curvem - curveparamsl;
if (rank==numworkers) cout<<pipe. curvem[0] « " " << pipe.curvem[numz-l] «"\n";
//pipe.curvem - new double[numz];

MPI_Recv(ficurveparams2[0], numz, MPI_DOUBLE, 0, 232, MPI_COMM_WORLD, fistatus);
pipe.dtheta = curveparams2;
MPI_Recv(&curveparams3[0], numz, MPI_DOUBLE, 0, 233, MPI_COMM_WORLD, fistatus);

pipe.anglem = curveparams3;

//cout << pipe.numr << " " << pipe.numz << ” " << pipe.nump << " " << pipe. curvem [1] <<" 99 \ntf
pipe.Init ();

n ---
// receive transducer parameters from master and add them to the pipe

double tparams[6];
bool done = false;

while (done == false){
MPI_Recv(fitparams, 6, MPI_DOUBLE, 0, 211, MPI_COMM_WORLD, fistatus);
//cout << " " « tparams[5] << " " « rank << " \n";
if (tparams[0] == -1) done - true;
else{

transducer t(tparams[0],tparams[1],tparams[2],tparams[3],tparams[5],maxt);
//transducer t(tparams[0],5,tparams[2],tparams[3],(int)tparams[5] , maxt);
if (tparams[4] > 0){

double *drive = new double(tparams[4]];
MPI_Recv(fidrive[0], tparams[4], MPI_DOUBLE, 0, 212, MPI_COMM_WORLD, fistatus);

t .setDriveFunction(tparams[4],drive);}
pipe.addTransducer(t);

236

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

//stream outFile; if {pipe.zbeg <= 471 && pipe.zbeg+pipe.numz >= 471)//{
// ofstream outFile("aalines", ios::out};/
// c out«"I got it: "<<ran)«<’, " « pipe.zbeg «"\n";// }

// ---
// perform simulation
double *toplate; int len;
for (int t - 0; tcmaxt; t++){

//if (pipe.zbeg <= 471 && pipe.zbeg+pipe.numz >= 471)//{ //
// stringstream strm; strm << t;
// string fname = "alines_at_t,, +strm.str()+ ".ascii";

// ofstream outFile(fname.c_str(), ios::out);

//for (int y=0; ycpipe.nump; y++)
// outFile << pipe.vr.val(471-pipe.zbeg+1,pipe.numr-1,y) << " ";

//outFile.close ();
/ / }

if (rank == 1 && t%10==0) cout « "timestep: " << t << " " « pipe.numz « " " « pipe.numr « " " << pipe.nump«"\n";
pipe.time=t;

pipe.UpdateTransducers(t);

/ / -------- Send Output to M a s t e r --------------
if (t%outputevery =* 0){

len = pipe. vr. slice_fix2__count () ;
toplate = new double[len];
toplate = pipe.vr.slice_fix2(pipe.numr-1);
MPI_Send(Slen, 1, MPI_INT, 0, 401, MPI_COMM_WORLD);
MPI_Send(Stoplate[0], len, MPI_DOUBLE, 0, 402, MPI_COMM_WORLD);
delete toplate;

/ / ------ Update V ' s --------------
pipe.UpdateVs (1,1) ; // tJpdate left boundary
pipe.UpdateVs(pipe.numz-2,pipe.numz-2); // Update right boundary

if (rank>l) // send vz left
MPI_Isend(&pipe.vz.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 301, MPI_COMM_WORLD, request);

if (rankcnumworkers) // send vr, vp right{
MPI_Isend(Spipe.vr.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 302,

MPI_COMM_WORLD, request);
MPI_Isend(&pipe.vp.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 303, MPI_COMM_WORLD,

request); }
pipe.UpdateVs(2,pipe.numz-3); // update inner nodes

if (rankcnumworkers) // reveive vz from right{
MPI_Recv(&pipe.vz.a[(pipe.numz-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 301, MPI_COMM_WORLD,

&status); }
if (rank>l) // receive vr, vp from left{

MPI__Recv(Spipe.v r .a [0] , m2m3, MPI_DOUBLE, (rank-1), 302, MPI_C0MM_W0RLD, Sstatus);
MPI_Recv(Spipe.v p .a [0], m2m3, MPI_DOUBLE, (rank-1), 303, MPI_COMM_WORLD, Sstatus);}

pipe.doABCs(maxz);

/ / ------ Update T ' s ----------------
pipe.UpdateTs(1,1); // Update left boundary
pipe.UpdateTs(pipe.numz-2,pipe.numz-2); // Update right boundary

if (rank>l) // send Trz, Tzp left{
MPI_Isend(Spipe.Trz.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 311, MPI_COMM_WORLD, request);
MPI_Isend(Spipe.Tzp.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 312, MPI_COMM_WORLD, request);}

if (rankcnumworkers) // send Tzz, Trp right{
MPI_Isend(£pipe.Tzz.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 313,

MPI_COMM_WORLD, request);
MPI_Isend(Spipe.Trp.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 314, MPI_C0MM_W0RLD,

request); }
pipe.UpdateTs(2,pipe.numz-3); // update inner nodes

237

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

if (rankcnumworkers) // reveive Trz, Tzp from right
{

MPI_Recv(Spipe.Trz.a[(pipe.numz-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1) , 311, MPI_COMM_WORLD, Sstatus);
MPI_Recv(Spipe.Tzp.a ((pipe.numz-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 312, MPI_COMM_WORLD, Sstatus);

}
if (rank>l) // receive Tzz, Trp from left
{

MPI_Recv(Spipe.Tzz.a [0], m2m3, MPI_DOUBLE, (rank-1), 313, MPI_COMM_WORLD, Sstatus);
MPI_Recv(Spipe.Trp.a [0], m2m3, MPI_DOUBLE, (rank-1), 314, MPI_COMM_WORLD, Sstatus);}

// Send A-line Data to master
MPI_Send(Spipe.numtrans, 1, MPI_INT, 0, 501, MPI_COMM_WORLD) ;
for (int tr = 0; tr < pipe.numtrans; tr++){

tparams[0] = pipe.trans[tr].posil*pipe.ds; // transducer z position (meters)
tparams[l] = pipe.trans[tr].posi2*pipe.ds; // transducer r position (meters)

tparams[2] = pipe.trans[tr].posi3*pipe.dp; // transducer p position (radians)
tparams[3] = pipe.trans[tr].radius*pipe.ds; // transducer radius (meters)

MPI_Send(Spipe.trans[tr].transID , 1, MPI_INT, 0, 502, MPI_COMM_WORLD);
MPI_Send(Stparams[0] , 4, MPI_DOUBLE, 0, 503, MPI_COMM_WORLD);

MPI_Send(Spipe.trans[tr].record[0], maxt, MPI_DOUBLE, 0, 504, MPIJOOMMJWORLD);}
return;

// Reads in parameter file and distributes parameters to all workers. This is also
// where the simulation space is divided up.

int* DistributeSimulationParameters(){
char inputFilename[] = "in.file";
ifstream inFile;
inFile.open("in.file", ios::in);

if (!inFile) {
cerr << "Can't open input file " << inputFilename « endl;
exit (1) ;}

double *simparams = new double[15];

inFile » simparams[0]; //pipe.numr; // number of nodes in r direction
inFile » simparams[1]
inFile » simparams[2]
inFile » simparams[3]
inFile » simparams[4] •
inFile » simparams[5]
inFile » simparams[6]
inFile » simparams[7]
inFile » simparams[8]
inFile » simparams[10
inFile » maxt;
inFile » outputevery;
simparams[12] - maxt; simparams[13]

simparams[14] = simparams[1];
m2m3 *» simparams [0] *simparams [2] ;

//pipe.numz; // number of nodes in z direction
//pipe.nump; // number of nodes in p direction
//pipe.ds; // spatial step size in r and z (meters)
//pipe.dp; // spatial step size in phi (radians)
//pipe.dt; // time step size (seconds)
//pipe.den; // density
//pipe.lm; // Lame constant - lambda
//pipe.mu; // Lame constant - mu
//pipe.rbeg; // pipe inner radius (in ds units)
// number of time steps
I f number of nodes in x3 direction

outputevery;

maxz = simparams[1];
double *cur = new double[maxz]; for(int i = 0; icmaxz; i++)
double *dth = new double[maxz]; for(int i = 0; icmaxz; i++)
double *ang = new double[maxz]; for(int i = 0; icmaxz; i++)

inFile » cur[i];
inFile » dth[i];
inFile » ang[i];

// send initial data to each node
int div, divaccum = 0;
int* zpos - new int[numworkers];

for (int n “ 1; n c= numworkers; n++){
div » (maxz/(numworkers)); if ((n-l)C (maxz%(numworkers))) div++; /* divide space along xl direstion
simparams[1] = div;

simparams[11] = divaccum; // tells the worker where its starting z location is
MPI_Send(Ssimparams[0], 15, MPI_DOUBLE, n, 201, MPI_COMM_WORLD);

MPI_Send(&cur[divaccum], div, MPI_DOUBLE, n, 231, MPI_COMM_WORLD)
MPI~Send(&dth[divaccum], div, MPI_DOUBLE, n, 232, MPI_COMM_WORLD)
MPI_Send(&ang[divaccum], div, MPI_DOUBLE, n, 233, MPI_COMM_WORLD)

zpos[n-l] * simparams[11]; divaccum = divaccum+div;}

inFile.close ();
return zpos;

>
// Reads in transducer file and distributes transducers to the correct workers.

238

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

void DistributeTransducers (int *zposs){
double *drive;
double tparams[6];
int drivelen, numtrans, worker;

char inputFilename[] = "trans.file";
ifstream inFile;
inFile.open("trans.file", ios::in);

if {!inFile) {
cerr << "Can’t open input file ” << inputFilename << endl;
exit (1) ;

}

inFile » numtrans;
cout « " number of transducers; " « numtrans « endl;
numtransducers = numtrans;

for (int tr = 0; tr<numtrans; tr++){
inFile » tparams[0]; // tposz; // transducer z location

inFile » tparams[1]; // tposr; // transducer r location
inFile » tparams[2]; // tposp; // transducer p location
inFile » tparams[3]; // trad; // transducer radius

inFile » tparams[4]; // drivelen; // len of drive function
tparams[5] = tr;

if (tparams[4]>0){
drive = new double[tparams[4]

for (int i = 0; i<tparams[4]; i++)
inFile » drive[i];

}

// find which worker gets the transducer
worker = 0;
for (int tosend = 1; tosend<numworkers; tosend++)

if (tparams[0] >= zposs[tosend-1] && tparams[0] < zposs[tosend]) worker = tosend;
if (tparams[0] >= zposs[numworkers-1] £& tparams[0] < maxz) worker = numworkers;

else if (worker — 0) cout « "error: transducer postion not found: zpos - ” << tparams[0] « ”, " «
zposs[numworkers-1] « ", " « maxz « endl;

// send the transducer info to worker
if (worker > 1)

if ((tparams[0] - tparams[3]) <= zposs[worker]){
MPI_Send(fitparams[0], 6, MPI_DOUBLE, worker-1, 211, MPI_COMM_WORLD);

if (tparams [4] >0) MPI__Send (fidrive [0] , tparams [4], MPI_DOUBLE, worker-1, 212, MPI_COMM_WORLD);

MPI_Send(Stparams[0], 6, MPI_DOUBLE, worker, 211, MPI_COMM_WORLD);
if (tparams[4]>0) MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, worker, 212, MPI_COMM_WORLD);

if (worker < numworkers)
if ({tparams[0] + tparams[3]) >= zposs[worker+1]){

MPI_Send(Stparams[0], 6, MPI_DOUBLE, worker+1, 211, MPI_COMM_WORLD);
if (tparams[4]>0) MPI_Send(fidrive[0], tparams[4], MPI_DOUBLE, worker+1, 212, MPI_COMM_WORLD);}

}

// send all workers a message letting them know we are done distributing transducers
tparams[0] = -1;tparams[1] = -1;tparams[2] - -1;tparams[3] = -1;tparams[4] = -1;tparams[5] “ -1;
for (int n = 1; n <= numworkers; n++)

MPI_Send(Stparams[0], 5, MPI_DOUBLE, n, 211, MPI_COMM_WORLD);

inFile.close ();
delete drive;

return;

void SyncNodes()
{

int s; MPI_Status status;
for (int n « 1; n <= numworkers; n++)

MPI_Recv(&s, 1, MPI_INT, n, 721, MPI_COMM_WORLD, fistatus);
for (int n =■ 1; n <= numworkers; n++)

MPI_Send(fin, 1, MPI_INT, n, 722, MPI_COMM_WORLD);
cout « " nodes synced \n";

// dump topplate
void dumpTopPlate(int t){

MPI_Status status;
double *topplate;
int len;

stringstream strm; strm « t;

239

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

string fname = "toplate_at_t" +strm.str()+ ".ascii”;
ofstream outFile{fname.c_str(), ios::out);

for {int n = 1; n <= numworkers; n++)
{

MPI_Recv(filen, 1, MPI_INT, n, 401, MPI_COMM_WORLD, fistatus);
topplate = new double[len];
MPI_Recv(fitopplate[0], len, MPI_DOUBLE, n, 402, MPI_COMM_WORLD, fistatus);

//cout « " « " << h[0] « "\n";
for {int i = 1; i <= len; i++)

outFile << topplate[i] « " ";
}

outFile.close();
delete topplate;
return;

void collectAlines()
{

MPl_Status status;

array3D alines;
alines.Init(1,numtransducers,maxt+4) ;

int numts, ct;
double tparams[4];
double *rec = new double[maxt];

for {int n = 1; n <= numworkers; n++)
{

MPI_Recv(finumts, 1, MPI_INT, n, 501, MPI_C0MM_W0RLD, fistatus);

for (int i = 0; i < numts; i++)
{

MPI_Recv(fict, 1, MPI_INT, n, 502, MPI_COMM_WORLD, fistatus);
//cout « n « " l\n";

MPI_Recv{fitparams, 4, MPI_DOUBLE, n, 503, MPI_COMM_WORLD, fistatus);
//cout « n << ” 2\n”;

MPI_Recv(firec[0], maxt, MPI_DOUBLE, n, 504, MPI_COMM_WORLD, fistatus);
//cout « n « " 3\n”;

alines.s et(0,ct,0,tparams[0]); // trans zpos
alines.set{0,ct,1,tparams[1]); /axines . ser tu, cr, i, rparams 1.1 j j ; // trans rpos
alines.set(0,ct,2,tparams[2]); // trans ppos
alines.set(0,ct,3,tparams[3]); // trans radius

for (int t = 0; t < maxt; t++)
alines.set(0,ct,4+t,(alines.v a l (0,ct,4+t) + rec[t]));

string fname = "alines.ascii";
ofstream outFile (fname.c_str(), ios::out);

for (int n = 0; n < numtransducers; n++){
for (int i = 0; i < (maxt+4); i++)

outFile « alines.va l (0,n,i) « " ";
outFile « "\n” ;

}

outFile.close();
return;}

♦include <iostream>
♦include "array3D.h"
♦include "array3D_int.h”
♦include "transducer.h"

♦define min(a,b) (((a)< (b))? (a): (b))
♦define max(a,b) (((a)> (b)) ? (a): (b))

class spipe {
public:

spipe ()
-spipe () (}

int numr; // number of grid points in r direction
int numz; // number of grid points in z direction
int nump; // number of grid points in P direction

ibc; // number of abc points on each end

double ds; // spatial step size in r and z direction (meters)
double dp; // angular step size in p direction (radians)
double dt; // time step size (seconds)

double den; // density {kg/m,'3)
double lm; // lame constant - lamda

240

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

double mu; // lame constant - mu

double *curvem;
double *anglem;
double *dtheta;

double zbeg; // z start position (meters)
double rbeg? // r start position (meters) !inner pipe radius!

int pipetype; // pipe type 1 = left end , 2 = middle, 3 = right end

array3D vr; // r - velocities
array3D vz; // z velocities

array3D vp; // p - velocities
array3D Trr; // rr - normal stress
array3D Tzz; // zz - normal stress
array3D Tpp; // pp - normal stress
array3D Trz; // rz - sheer stress
array3D Trp; // rp - sheer stress
array3D Tzp; // zp - sheer stress

array3D int B; // Boundary Array

int time;

transducer *trans;
int numtrans;

private:

double dtodsp;
double lmdtods;
double 12mdtods;
double mdtods;

int r,z,p,ppl,pml;
double ro,ri,rr,co,ci, cc;

double PIo2;

public:

void Init(){
vr.Init(numz,numr,nump);

v z .Init(numz,numr,nump);
vp.Init(numz,numr,nump);
Trr.Init(numz,numr,nump);
Tzz.Init(numz,numr,nump);
Tpp.Init(numz,numr,nump);
Trz.Init(numz,numr,nump);
Trp.Init(numz,numr,nump);
Tzp.Init(numz,numr,nump);
B .Init(numz+2,numr+2,nump+2, pipetype);

dtodsp = (dt)/ (den*ds);
lmdtods = (lm*dt)/ds;
12mdtods = ((lm+2*mu)*dt)/ds;
mdtods = (mu*dt)/ds;

PIo2 = 3.14159265358979/2;

numtrans=0;
time = 0;
abc = 80;

}

void UpdateVs(int zs, int zend){

for (z = zs; z <= zend; z++)
{
vr.setindx (z,0,0); vz.setindx(z,0,0); vp.setindx(z,0,0);
Trr.setindx (z,0,0); Tzz.setindx(z,0,0); Tpp.setindx(z,0,0);

Trz.setindx(z,0,0); Trp.setindx (z,0,0); Tzp.setindx (z,0,0);

for (r = 0 ; r < numr; r++){
B.setindx(z+1,r+1,1);

for (p = 0; p < nump; p++){
rr = r+rbeg;
ro = (rr+0.5);
ri » (rr-0.5);

if (curvem(z-1]>0){
ci = (ri*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-l]);

cc = (rr*ds*sin (p*dp-PIo2-anglem[z-1])+curvem[z-1]);

241

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

co = (ro*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]);}
else { ci = 1; cc « 1; co = 1; }

ri = ri*ci;
ro = ro*co;
//if {z==numz-2 && r— 0 && p==10 && pipetype— 2) std::cout << Tpp.vO << " " «Tpp.v2m()<< "\n";

if (B.v()-=0) vr.sv(vr.v() + dtodsp* ((1/(rr*cc))* (ro*Trr.v2p{)-
ri*Trr.v{)) + (1/ (rr*dp)) * (Trp.v () -Trp. v 3 m ()) + (ds/ (cc*dtheta[z-l])) * (Trz . vlp {) -Trz. v()) + (1/ (2*rr)) * (Trr. v2p () +Trr.v () -
Tpp. v2p()-Tpp.v ()))) ;

else if (B.v()==2 | B . v l p O — 2 | B.v3m()==2) {}
//else if (B.v2p()==2 & B. v () >-1000) vr.sv(vr.v{) - dtodsp*(trans[B.v()-1000].drivef(time)+2*Trr.v ()

+ ((1/(2* (rr)))* (3*Tpp.v()-Tpp.v2m()))) >;
//vr.svf vr.v() + dtodsp* (trans [B .v () -

1000].drivef(time)+ (1/rr)*((1/(2*(rr)))*(3*Tpp.v()-Tpp.v2m()))));
else if (B.v2p()==2) vr.svf vr.v() - dtodsp* (2*Trr. v () + ((1/(2 * (rr))) * (3*Tpp. v ()

Tpp.v 2 m {)))));
else if (B.v2m()==2) vr.sv(vr.v() + dtodsp* (2*Trr.v2p() +((1/(2*(rr)))*(3*Tpp.v 2 p ()-

Tpp. v2p2 ())))) ;
else vr.svf vr.v{) + dtodsp* ((1/(rr*cc))* (ro*Trr.v2p ()-

ri*Trr.v ()) + (1/ (rr*dp))* (Trp.vf) -Trp. v 3 m ()) + (ds/ (cc*dtheta[z-l])) * (Trz.vlp () -Trz. v ()) + (1/ (2*rr)) * (Trr. v2p () +Trr. v {) -
Tpp.v 2 p ()-Tpp.v ())));

rr = r+rbeg-0.5;
ro = (rr+0.5);
ri « (rr-0.5);

if (curvem(z-l]>0){
ci = (ri*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]);

cc = (rr*ds*sin(p*dp-PIo2-anglem[z-1])+curvem(z-1]);
co = (ro*ds*sin(p*dp-PIo2-anglem[z-1])tcurvem[z-1]);}

else { ci = 1; cc = ci; co = ci; }
ri = ri*ci;

ro = ro*co;

// v z -----------
if (B.v()==0) vz . sv { vz.v() + dtodsp* ((1/(rr*cc))* (ro*Trz . v ()-

ri *Trz . v2m ()) + (1/ (rr*dp)) * (Tzp. v () -Tzp. v3m ()) + (ds / (cc*dtheta [z-1])) *(Tzz.v()-Tzz. vim ()) + (1/ (2*rr)) * (Trz . v () +Trz . v2m ()))
) ;

else if (B.v()~2 I B.v2m()==2 | B.v3m()— 2) {}
else if (B.v2p()==2 & B.v()>=1000) vz.sv{ vz.vf) - dtodsp* (trans [B.v{) -

1000].drivef(time)+2*Tzz.vim()));
else if {B.vlpO— 2) vz.sv(vz.v() - dtodsp* (2*Tzz.vlm()));

else if (B.vlm () ““2) vz.sv(vz.v() + dtodsp* (2*Tzz.v()));
else vz.sv(vz.v() + dtodsp* {(1/(rr*cc))* (ro*Trz.v() -

ri*Trz .v2m {)) + (1/ (rr*dp)) * (Tzp.v () -Tzp. v3m ()) + (ds/ (cc*dtheta[z-1])) * (Tzz .v () -Tzz. vln ()) + (1/ (2*rr))*(Trz.v() +Trz .v2m ()))) ;
// v p -----------

if (B.v()==0) vp.sv(vp.v() + dtodsp* ((1/ (rr*cc))* (ro*Trp.v () -
ri*Trp.v2m ()) + (!/ (rr*dp)) * (Tpp.v3p () -Tpp. v ())+ (ds/ (cc*dtheta[z-l])) * (Tzp.vlp () -Tzp. v ()) + (1/rr) * (Trp. v{) +Trp. v2m (}))) ;

else if (B.v()==2 | B.v2m()==2 | B . v l p O — 2) {}
else if (B.v3p()==2) vp.sv(vp.v() - dtodsp*2*Tpp. v ());
else if (B.v3m()==2) vp.sv(vp.v() + dtodsp* (2*Tpp. v3p ()));
else vp.sv(vp.v() + dtodsp* ((1/(rr*cc))* (ro*Trp.v() -

ri*Trp.v2m()) + (1/ (rr*dp)) * (Tpp. v3p () -Tpp. v ()) + (ds/ (cc*dtheta [z-1])) * (Tzp. vlp {) -Tzp. v ()) + (1/rr) * (Trp. v() +Trp.v2m ())));

B. incindx () ; vr. incindx () ; vz . incindx () ; vp. incindx () ;
Trr. incindx () ; Tzz. incindx () ; Tpp. incindx () ; Trz. incindx () ; Trp. incindx () ; Tzp. incindx () ;

}
} }

}

void UpdateTs(int zs, int zend){
for (z = zs; z o zend; z ++)

{
vr.setindx(z,0,0); vz.setindx(z,0,0); vp.setindx(z,0,0);
Trr.setindx(z,0,0); Tzz.setindx(z,0,0); Tpp.setindx(z,0,0);

Trz.setindx(z,0,0); Trp.setindx(z,0,0); Tzp.setindx (z,0,0);

for (r = 0; r < numr; r++)(
B.setindx(z+1,r+1,1);

for (p = 0; p < nump; p++){
//rr = r+rbeg-.5;

rr = r+rbeg;
ro = (rr+0.5);
ri = (rr-0.5);

if (curvem[z-1]>0){
ci = (ri*ds*sin (p*dp-PIo2-anglem(z-1])+curvem[z-1]);

cc = (rr*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]);
co - (ro*ds*sin(p*dp-PIo2-anglem[z-l])+curvem[z-1]);

}
else { ci = 1; cc = 1; co ■ 1; }

242

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

ro = ro*co?

// Tii
if (B . v O — 2 | B.v2m() - - 2 \ B.v3m()==2 | B.vlp()~2) {}
else

{
Trr.sv(Trr.v() + (12mdtods/(rr*cc)) * (ro*vr.v ()-ri*vr.v 2 m ()) + Imdtods*((1/(rr*dp)) * (vp.v ()-

vp.v3m ()) + {ds / {cc*dtheta [z-1])) * (vz .vlp () -vz.v ()) + (l/(2*rr))* (vr. v () +vr. v2m ()))) ;
Tpp.sv(Tpp.v() + 12mdtods*((1/(rr*dp))*(vp.v()-

vp. v3m {)) + (1/ (2*rr))*(vr.v{) +vr.v2m ())) +Imdtods* ({1/ (rr*cc)) * (ro*vr.v() -ri*vr. v2m {)) + (ds / (cc*dtheta [z-1])) * {vz . vlp () -
v z .v ())));

Tzz.sv(Tzz.vO + 12mdtods* (ds/(cc*dtheta[z-1]))*(vz.v l p ()-
vz . v {)) +Imdtods* ((1/ (rr*dp)) * (vp. v () - vp. v3m ()) + (1/ (cc*rr)) * (ro*vr. v () -ri*vr. v2m ()) + (1/ (2*rr)) * (vr. v () +vr. v2m ()))) ;

}

// Tzp
if (B.v()~2 I B . vlp () ==2 1 B . v l m O — 2 [B.v3p()==2 | B.v3m()==2] B.v2m()==2) {}
else Tzp.sv(Tzp.v() + mdtods* ((ds/(cc*dtheta[z-1]))* (vp.v()-vp.vim())+1/(rr*dp)* (vz.v 3 p {)-vz.v ())));

//z] [p] - Tzp[p] + mdtods* ((ds/(cc*dtheta[z])*(vp[r][z][p]-vp[r][z-
1] [p])+1/(rr*dp)* (vz[r][z][ppl]-vz[r][z][pi)));

rr = r+rbeg;
ro - (rr+0.5)?
ri - (rr-0.5);

if (curvem[z-1]>0){
ci - (ri*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-l]);

cc « (rr*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-l]);
co = (ro*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]);}

else { ci = 1; cc = ci; co « ci; }
ri = ri*ci;

ro - ro*co;

// Trp
if (B . v O — 2 I B.v2p()==2 I B.v2m()==2 | B.v3p()==2 | B.v3m()==2 I B . v l p O — 2) {}
else Trp. sv { Trp. v() + (mdtods/rr) * ((1/dp) * (vr.v3p () -vr.v ()) + (1/cc) * (ro*vp.v2p () -ri*vp.v{)) -

(1/2) * (vp.v2p () +vp.v()))) ;

// Trz
if (B. v () - —2 1 B.v2p()==2 ! B.v2m()==2 | B.vlp()— 2 | B.vlm()==2 I B.v3m()==2) {}
else Trz.sv(Trz.vO + mdtods* ((1/(cc*rr)) * (ro*vz . v2p ()-ri*vz. v ()) + (ds/(cc*dtheta(z-1])) * (vr. v {)-

vr.vlm ())));

B.incindx (); v r .incindx(); v z .incindx(); vp.incindx();
Trr.incindx(); Tzz.incindx (); Tpp.incindx (); Tr z .incindx(); Trp.incindx(); Tzp.incindx();

}} }}
void doABCs(int TotalZ){

double per;
for (int il = min(abc+1,zbeg+numz-1); (il>=zbeg); il—)
{

per = (1-.0015* (abc-il));
vr.setindx(il-zbeg,0,0); v z .setindx(il-zbeg,0,0); vp.setindx(il-zbeg,0,0);
for (int i2 = 0; i2 <numr; i2++)

for (int i3 = 0; i3 < nump; i3++){
v z .sv(vz.v ()*per);v r .sv(vr.v ()*per);vp.sv(vp.v()*per);

v r .incindx(); vz.incindx{); vp.incindx() ;
}}

for (int il = max(TotalZ-abc-1,zbeg); ((il >= zbeg) & (il< (zbeg+numz-1))); il++){
vr.setindx(il-zbeg,0,0); vz.setindx(il-zbeg,0,0); vp.setindx(il-zbeg, 0,0);

per = (1+.0015*{—il+(TotalZ-abc-1)));
//st.d: scout << time <<", ’’ << il « " , " << p e r « ’\ri';
//if (pipeti,pe==3) stdsscout « il « ”, " « il-zbeg « ", " « per«'\n';
for (int i2 ■* 0; i2 <numr; i2++)

for (int i3 = 0; i3 < nump; i3++){
v z . sv (vz. v () *per); vr .sv (vr. v () *per); vp. sv(vp. v () *per);

vr.incindx (); vz.incindx(); vp.incindx();}}}

void UpdateTransducers(int t){
int tr;

for (int il = 1; il<numz-l; il++)
for (int i3 = 0; i3<nump; i3++)

if (B.val(il+l,numr,i3+l) >= 1000)
{

243

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

tr = B.val{il+1,numr,13+1)-1000;
trans[tr].record[t] = trans[tr].record[t] + v z .v a l {il,numr-1,i3);

void addTransducer(transducer t)
{

numtrans = numtrans+1;
transducer *temp = new transducer[numtrans];
for (int i = 0; i<numtrans-l; i++)

temp[i] = trans[i];
temp[numtrans-1] = t;
trans = temp;

int nnodes = 0 ;
//if (trans[numtrans-1].driven)

for (int il = 1; il<numz-l; il++)
for (int i3 = 0; i3<nump; i3++)

if {((trans[numtrans-1].posil-zbeg-il)* (trans[numtrans-1].posil-zbeg-il)+ (trans[numtrans-
1].posi3-i3)* (t.posi3-i3)) <=(trans[numtrans-1].radius*trans[numtrans-1].radius)){

B.set(il+1,t.posi2+l,i3+l, 1000+numtrans-l);
nnodes++;}

//if (t.posil-zbeg+1 >0) B.set (t.posil-zbeg+1,t.posi2+l,t.posi3+l,1000+numtrans-l);

temp[numtrans-1].numnodes = nnodes;
}

class transducer {
private:

double *drive; // array that holds drive function

int dflen; // length of drivefunc

public:

double posil; // transducer center (r-direction) - meters
double posi2; // transducer center (z-direction) - meters
double posi3; // transducer center (p-direction) - angle

double radius; // transducer radius - meters
bool driven; // driven = true - active (pitch or pitch/catch)

// = false - passive (catch)
int transID;

int numnodes; // number of nodes in simulation space

double *record; // array that holds recorded value

// Blank Constructer
transducer() {driven = false;}

//
transducer(double xl, double x2, double x3, double rad, int tID, int maxt){

posil = xl;
posi2 = x2;
posi3 = x3;
radius = rad;
transID = tID;
driven = false;

dflen=0;

record = new double[maxt];
for (int i = 0; i< maxt; i++) record[i] = 0;

}

// Blank Deconstructor
-transducer() {}

// Init - defines the array and its dimensions - MUST BE CALLED BEFORE USING
void setDriveFunction(int len, double df[])

{
//drive - new double[len];

drive = df;
dflen = len;

driven = true;
return;

}

double drivef(int t)
{

if (tkdflen)
return drive[t];

else
return 0;

}

244

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

	Parallel three-dimensional acoustic and elastic wave simulation methods with applications in nondestructive evaluation
	Recommended Citation

	tmp.1539734415.pdf.IeyCv

