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ABSTRACT PAGE

In this dissertation, we present two parallelized 3D simulation techniques for three- 
dimensional acoustic and elastic wave propagation based on the finite integration 
technique. We demonstrate their usefulness in solving real-world problems with examples 
in the three very different areas of nondestructive evaluation, medical imaging, and security 
screening. More precisely, these include concealed weapons detection, periodontal 
ultrasography, and guided wave inspection of complex piping systems. We have 
employed these simulation methods to study complex wave phenomena and to develop 
and test a variety of signal processing and hardware configurations. Simulation results are 
compared to experimental measurements to confirm the accuracy of the parallel simulation 
methods.
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Chapter I 

Introduction

1.1 Introduction

This dissertation focuses on three-dimensional parallel computer simulation 

methods for simulating acoustic and elastic waves in realistic geometries. We present 

two three-dimensional parallel simulation methods and demonstrate their usefulness with 

three very different applications in nondestructive evaluation. These applications range 

from locating corrosive damage in complex piping systems to detecting concealed 

weapons using nonlinear acoustics. We utilize the 3D parallel simulation methods to 

develop and test experimental hardware configurations and signal processing algorithms.

Computer or numerical simulations are based on mathematical models of physical 

laws. They are used to perform complex numerical experiments to solve problems that 

are difficult or impossible to solve using traditional mathematical methods. We will 

focus on the finite integration technique (FIT) for simulating acoustic and elastic waves, 

but we will also use a finite difference method for simulating nonlinear acoustic waves in 

Chapter 4. The different techniques for simulating acoustic and elastic waves will be 

presented in the next section. At the end of this introduction, we will present examples of 

2D acoustic and elastic wave simulations and then discuss both their usefulness and 

limitations.

1
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Today’s desktop computers do not have the computational resources to run full 

3D realistic simulations. The simulation methods presented in this dissertation have been 

designed to distribute the computational demands across many computers networked 

together to form a supercomputer. Each computer works on its own part of the 

simulation space and stays in constant communications with the other computers to 

perform large 3D simulations. Each computer works in parallel with the others (hence 

the term parallel in the names of the simulation method).

In Chapter 2, we present the 3D parallel acoustic finite integration technique 

(3DPAFIT) for simulating acoustic waves with large and realistic geometries. We 

validate this simulation method with a novel experiment that is presented in Chapter 3.

In this experiment, we use an air-coupled nonlinear sound beam to study the acoustic 

back scatter from multiple objects. We then demonstrate the usefulness of this simulation 

method with two very-different applied examples. These are the development of a 

nonlinear acoustic concealed weapons detector in Chapter 4 and an ultrasonic periodontal 

probe in Chapter 5.

A 3D parallel cylindrical finite integration technique (3DPCEFIT) for simulating 

elastic waves in complex piping geometries is presented in Chapter 6. This simulation 

method introduces a coordinate transform to handle elastic waves in pipe bends. In 

Chapter 7, the 3DPCEFIT method is validated by direct comparisons to experimental 

data and simulation results from a commercial finite-element package. Several 

simulation scenarios are presented including guided elastic wave interaction with 

corrosive-like flaws in pipes and hardware and software guided wave focusing 

techniques.

2
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1.2. Acoustic and Elastic Wave Simulation Methods

There are many simulation methods for modeling acoustic and elastic waves. All 

of them begin with a set of partial differential equations that govern the wave mechanics. 

Some simulation methods begin with a wave equation while others begin with 

conservation laws. The specific details of the discretization and solution methods are 

where the simulation methods differ.

1.2.1 The Finite Integration Technique

Since this dissertation mainly focuses on the finite integration technique, we will 

review its theory and the relevant work of other researchers in detail. The finite 

integration technique has been successfully used to model acoustic, elastic, and 

electromagnetic waves [1]. The finite-integration method is similar to the finite- 

difference method but has some important distinctions. The finite-difference method 

directly approximates the derivatives of a differential equation, where as the finite- 

integration technique first integrates the differential equation over a control volume and 

then approximates the integrals. In simple cases, both methods can yield the same 

discrete versions of a given differential equation. The advantage of the finite integration 

method is that it leads directly to a staggered grid formulation that is more stable and 

accurate [2, 3]. It also provides a simpler method of handling boundary conditions as 

well as the discretization of inhomogeneous and anisotropic materials [3].

The finite integration technique has been used successfully to simulate acoustic 

and elastic waves for a variety of applications. Fellinger et al. first introduced the 

Elastodynamic Finite Integration Technique (EFIT) for simulating elastic waves in 2D

3
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and 3D Cartesian coordinates [2]. They start with Cauchy’s equation of motion and the 

deformation rate equation and integrate them over a cube (or square for 2D). In 3D, the 

discretization leads to a staggered grid of 12 variables: the three components of the 

velocity vector, the six components of the stress tensor, and the three material 

components (density and the two Lame constants). Fellinger also includes a very detailed 

derivation of the stability criteria that is valid for the finite integration techniques 

introduced in this dissertation. At the end of this chapter, we show two example 

simulations using the 2DEFIT method. The first simulates an impulse on the top of a 

steel block, and the second simulates Lamb waves in an aluminum plate.

Peiffer et. al. developed the Cylindrical Acoustic Finite Integration Method 

CAFIT for simulating acoustic waves in axial symmetric cylindrical coordinates [4].

This allowed for the simulation of limited 3D scenarios using a 2D simulation space.

They begin with the linear equation of continuity and of motion. These equations are 

integrated over a 3D “piece-of-cake” control volume. It is assumed that the acoustic 

waves are axial symmetric, so this integration reduces to two dimensions: axial (z) and 

radius (r). The discretization leads to a staggered grid of only three variables, which are 

the two velocity components and the acoustic pressure. They validate this simulation 

method against two well known test cases. The first is a spherical expanding pressure 

wave and the second is a piston in an infinite baffle. For both cases, the CAFIT 

simulation was very accurate. At the end of this chapter we will show sample CAFIT 

simulations that were used to study ultrasound scattering from air and fat bubbles in the 

blood stream.

4
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F. Schubert et al. developed the cylindrical elastodynamics finite integration 

technique for simulating elastic waves in axial-symmetric cylindrical coordinates 

(CEFIT) [3]. Schubert starts with Hooke’s law and the equation of motion and 

discretizes these equations in a similar manner to Fellinger’s and Peiffer’s methods. 

Shubert also includes a detailed derivation on handling inhomogeneous materials and 

various boundary conditions including a plane-wave boundary condition. In a later 

paper, Schubert demonstrates how the EFIT technique can be used to simulate a variety 

of applications including inspection of concrete and acoustic emission problems [5]. 

Also, in this same paper, he uses the EFIT technique to simulate a one-dimensional 

nonlinear elastic wave. The EFIT technique has also been shown to model dissipative 

and anisotropic materials [6], air-coupled ultrasound [7], and applied to various NDE 

techniques [8].

1.2.2 Finite Difference Method

The finite difference method is one of the most common and widely used 

simulation methods. It has been used to simulate and model a wide variety of processes 

in acoustics, elastodynamics, thermodynamics, electromagnetics, and even used in fields 

such as financial modeling. The finite difference method is a relatively simple method. 

The derivatives of a differential equation are directly approximated with a finite 

difference. This transforms a differential equation into an algebraic “difference” 

equation. Given both the initial and boundary conditions, the difference equation is then 

solved to yield an approximate solution to the original differential equation. The most 

notable cases that are related to the research in this dissertation will be mentioned here.

5
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A majority of the advances in elastic wave propagation methods utilizing the 

finite-difference method have come from the geophysics community. Kelly et al. 

developed a 2D finite difference simulation method based on second-order elastic 

equations [9, 10]. J. Vireux introduced a finite difference method for simulating shear 

horizontal (SH) waves [11] and pressure and shear vertical (P-SV) waves [12]. He 

begins with the basic elastic equations and uses a staggered grid similar to the one used in 

the finite integration method. Since then, many researchers have used the finite- 

difference method to study elastic waves including sonic logging [13, 14]. Bohlen 

introduced a 3D parallel finite difference method that uses a domain decomposition 

scheme similar to the one used in this dissertation [15].

1.2.3 Boundary Element Method

The Boundary Element Method (BEM) is another popular technique for studying 

acoustic problems. It was first introduced by Chen and Schweikert [16] in 1963. The 

boundary element method directly solves the Helmholtz equation in either a bounded 

interior domain or an unbounded exterior domain [17]. One of the main advantages of 

the boundary element method is that only the boundary of the domain and interfaces need 

to be discretized and not the entire simulation space. This is import important when 

realistic 3D volumes were impossible to simulate with even the largest computers. In 

many cases, this reduces the complexity and computational time of setting up a 

simulation. The BEM may not be the best simulation method when the geometry of the 

problem is complicated or when there are many material boundaries.

6
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The boundary element method is typically used to study steady state problems 

such as radiation from an arbitrary vibrating source or scattering from an object with a 

continuous source. Early research has been carried out for time-dependent problems [18, 

19]. In addition, the boundary element has also been successfully used to study 

elastodynamics problems [20]. For an overview of the Time-Domain Boundary Element 

Method, refer to the chapter 8 of reference [17].

7
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1.3 - 2D and 2.5D Simulation Examples

Simulations are very useful tools for exploring and visualizing elastic and 

acoustic wave propagation and interaction. Two-dimensional simulations are now 

relatively easy to program in a high level numerical software package such as MATLAB. 

We here present some examples of two-dimensional simulations and show they are useful 

for visualizing and learning about the different types of waves, their propagation, 

interaction, and complex mode conversions. First we present a 2D elastic simulation 

method and demonstrate its usefulness for exploring and learning about elastic wave 

propagation. Then we present an applied example of how we can use the finite 

integration technique to characterize air-bubbles in the blood stream.

1.3.1 - 2D Elastic Block

Elastic waves are much more complicated phenomena than acoustic waves.

There are three types of waves that can co-exist in a solid: longitudinal bulk 

(compression), transverse bulk (shear), and surface-guided waves. When these waves 

interact with an interface, material variation, edge, inclusion, or flaw, a portion of the 

wave energy will mode-convert to another type of wave. For example, a longitudinal 

wave obliquely incident on a boundary between two solid materials will result in atleast 

four outgoing waves: a transmitted and reflected longitudinal wave and a transmitted and 

reflected transverse wave.

Figure 1.1 shows four time snapshots of a 2D elastic wave simulation. An 

impulse (a half-cycle 800 kHz wave) excites the top of a 7 cm square steel block. The 

colors of these plots are proportional to the absolute velocity of the material. Radiating

8
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from the point of impact are the three different elastic wave types. Just as expected, the 

longitudinal wave is the fastest followed by the shear wave and then the surface wave. 

As the longitudinal wave reflects from the edges, some of the energy is converted into a 

transverse wave.

V ' ■vy

Figure 1.1. 2D elastic wave simulation. An impulse excites the top of a 7-cm 
square block. In the bottom left snapshot, the labeled waves are longitudinal 
wave (a), transverse wave (b), surface (Rayleigh) wave (c), and a reflected 
longitudinal wave (d). The shear wave (e) is the result of a mode-conversion 
from the reflected longitudinal wave on the left edge.

9
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Looking at figure 1.1, it is difficult to distinguish between the different wave 

types. One of the advantages of simulations is the ability to stop time and to examine 

complex phenomena more carefully. Another advantage is the ability to look inside a 

material that is often impossible to do experimentally. Instead of a false-color plot of the 

absolute velocity, figure 1.2 shows three quiver plots of three areas inside the steel block. 

A quiver plot is a set of arrow or vectors indicating the discrete velocity of the material.

The velocity profile of the longitudinal, transverse, and surface wave are all 

shown in Figure 1.2. The large black arrow indicates the direction the wave is 

propagating. In these plots it is easy to see the difference in the longitudinal and 

transverse wave. With a longitudinal or compression wave, the local material velocity 

components are parallel to the direction of the propagating wave. With a transverse or 

shear wave, the local material velocity component is perpendicular to the direction of the 

propagating wave. The surface or Rayleigh wave has an elliptical velocity profile.

10
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Figure 1.2. Velocity profiles of a longitudinal (top), shear (middle), and 
surface (bottom) waves. The large black arrow indicates the direction of 
the wave propagation.
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1.3.2 - 2D Lamb Waves

Lamb waves axe routinely used to nondestructively evaluate thin solid materials 

such as sheet metal, piping, and composites. In chapter 6, we present a 3D cylindrical 

simulation method for modeling Lamb waves in complex piping systems. Lamb waves 

are guided elastic wave modes that form after multiple reflections and mode conversions 

from the top and bottom surface of a thin plate. There are two types of Lamb wave 

modes: symmetric and anti-symmetric. The quantity and group velocity of these modes 

is dependent on the thickness of the plate and frequency of the initial excitation.

Figure 1.3 shows snapshots of a 2D elastic wave simulation of a 3.2 mm thick 

aluminum plate. The color of these snapshots is proportional to the velocity of the plate 

in the xi-direction (out of plane). A 1mm transducer excites the top of the plate with a 

five cycle 680 kHz tone burst. At first, the lamb wave modes overlap. As they propagate 

down the plate, the three Lamb wave modes separate because they have different group 

velocities. The bottom snapshot of figure 1.3 identifies the three modes.

iiw °

W iffTB 111—BUB M i

Figure 1.3. 2D elastic wave simulation of Lamb waves in a 3.2 mm thick aluminum 
plate. At 680 kHz, three Lamb wave modes form and propagate at different 
velocities.
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Figure 1.4. A dispersion curve showing the group velocities of the lamb waves 
as a function of the frequency plate thickness product. The dotted line indicates 
the Lamb wave velocities for the simulation shown in figure X-3.

Figure 1.4 shows the Lamb wave dispersion curve for an aluminum plate. A 

dispersion curve provides the group velocity of the Lamb wave modes as a function of 

the frequency and plate-thickness product. The dotted line indicates the location along 

the dispersion curves where this simulation is carried out. It clearly indicates that there 

should be three modes and in order of velocity they are ai, ao, and so. This is exact order 

we see the lamb waves in the simulation snapshot.

The snapshots in figure 1.3 are very informative, but we can extract more 

detail from the 2D simulations. Figure 1.5 shows the velocity profile of the symmetric So 

and anti-symmetric ao modes. From these quiver plots, it is easy to see the differences 

between the two mode types.
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Figure 1.5. Velocity profiles of a symmetric so (top) and anti­
symmetric ao (bottom) Lamb wave modes.

These two-dimensional simulations are a valuable tool for learning about complex 

elastic wave propagation. It is simple to “experiment” with the different simulation 

parameters and to observe how they affect the wave propagation. The simulation can be 

stopped to closely study the fine details of the wave propagation, interaction, and mode 

conversions.
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1.3.3. Axial-Symmetric (2.5D) Cylindrical Acoustic Simulations

Now we present an applied example of a cylindrical acoustic finite integration 

simulation method. In this study, the frequency-domain and time-domain analysis of 

ultrasound scattering by fluid spheres is applied to emboli classification. An embolus (pi. 

emboli) refers to a microbubble, generally of gas or lipid composition, that flows through 

the bloodstream. Presenting a significant health hazard, these emboli may occlude blood 

vessels and thereby prevent the flow of blood to surrounding tissue and vital organs [21]. 

The cylindrical acoustic finite integration technique was used to model the ultrasound 

scattering in order to evaluate the inverse problem of determining the size and 

composition of individual spherical scatterers.

Figure 1.6 shows several snapshots of an acoustic wave interacting with a small 

air bubble in blood. A typical pulse-echo A-line is shown in Figure 1.7. The back 

scattered acoustic wave from the simulation is compared directly to a theoretical back 

scatter model [22]. Figure 1.8 shows the two signals plotted together showing good 

agreement. This example shows that 2D and 2.5D simulations can be useful for solving 

problems of simple geometries.
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Figure 1.6. Snapshots from a CAFIT simulation showing the ultrasound scattering 
from air bubble in blood.
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Figure 1.7. An A-line produced by the CAFIT simulation for a 300pm 
air bubble in blood.
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Figure 1.8. Time-domain reflection from air in blood. The CAFIT 
curve is shown in blue, and the analytical comparison is presented in 
black.
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1.4. Need for 3D Computer Simulation Methods

In the previous section, we demonstrated the pedagogical value of 2D simulations 

and also presented a case where they can solve simple real-world problems. In most 

situations, the geometries are too complex to generalize into a 2D problem. The ability to 

simulate full 3D wave propagation and interaction in realistic geometries is the goal of 

this dissertation. The major limitation to solving full 3D simulations it the computational 

resources required. For example, to simulate a 330 kHz acoustic wave in a two- 

dimensional one meter box will require roughly 32 megabytes of computer memory. To 

simulate the same wave in a three-dimensional one meter cube of air will require roughly 

40 gigabytes of computer memory. This amount of memory is not available on today’s 

desktop PCs.

To solve this problem, we have developed the simulation software to run on a 

parallel super computer. In Chapter 2 and Chapter 6, we present two full 3D parallel 

simulation methods for simulating acoustic and elastic wave propagation. We present 

three applications in nondestructive evaluation with complex geometries that can only be 

solved with 3D simulations. We employ these simulation methods to help understand the 

complex physics of full 3D wave propagation and scattering. These simulation methods 

are also very useful at designing and virtual prototyping hardware configurations and 

signal processing algorithms.
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Chapter II

Parallel Three-Dimensional Acoustic Finite Integration Technique

Simulating three-dimensional acoustic waves is an important and very 

challenging task. Our world is full of complicated shaped objects that are impossible to 

describe using two-dimensional models. For example, modeling sonar scattering from a 

submarine, medical ultrasound imaging of a fetus, or acoustic emissions from an 

automobile engine all require a three-dimensional acoustic computer simulation. In this 

chapter, we will describe a three-dimensional parallel acoustic simulation method 

(3DPAFIT) based on the finite integration technique. The derivations of the difference 

equations will be presented along with the stability criteria.

At the writing this dissertation, the computer power is not yet available to run 

useful three-dimensional simulations on a single desktop computer. So, we will present a 

parallel version of the three-dimensional acoustic simulation technique. The simulation 

method is validated by comparing scattering results to experimental measurements. A 

method of visualizing the 3D acoustic waves will also be presented. This simulation 

method is validated by comparing directly to experimental results in Chapter 3. We then 

use the 3DPAFIT simulations to assist in the development of Nonlinear Acoustic 

Concealed Weapons Detector and an Ultrasonic Periodontal Probe in chapters 4 and 5.
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2.1 Three-Dimensional Acoustic Finite Integration Technique

The finite integration technique has been used successfully to simulate acoustic

and elastic waves in varying coordinate systems [1-3]. We have used the finite 

integration method to solve the basic acoustic equations in the three-dimensional 

Cartesian coordinate system.

2.1.1 Derivation of the Discrete Simulation Equations

Here, we will describe how to derive the difference equations that are necessary to 

simulate three-dimensional acoustic waves. First, we begin with the equation of 

continuity (2.1) and the equation of motion (2.2) [4].

The unknown variables are pressure p  and the three components of the velocity 

vector v . The remaining known variables are time t, density po, speed of sound Co, and 

the pressure and velocity source functions M  and F . To discretize these equations, we 

use the finite-integration technique (FIT). If we were to use the finite-difference 

technique, we would approximate the derivatives in (2.1) and (2.2) directly. But, with the 

finite integration technique, we integrate the partial differential equations over a control 

volume and then approximate the integrals. This leads to a staggered grid in space and 

time that is more stable and accurate than a straight forward finite-difference method.

- £  + p 0c02V -v  = M  
ct (2.1)

(2.2)
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4 ► Velocity in the xi -direction
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f  Velocity in the X3-direction

#  Pressure Value

Figure 2.1. Staggered grid used in the 3D Acoustic Finite Integration Technique

Additional steps would be required to introduce this staggered grid in a finite difference 

method [2]. Figure 2.1 shows the staggered grid used in the 3D acoustic finite integration 

technique.

2.1.2 Derivation of the Discrete Continuity Equation

We begin by integrating both sides of continuity equation (2.1) over a cube 

control volume V.

Now, we use the Divergence Theorem (2.4), also called the Gauss's Theorem, which 

states that in the absence of the sources, the density within a region of space can only 

change when mass flows into or out of the region through its boundary [5].

(2.3)
v V
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JfjV -v rfr = $ f v-da
V 8V

(2.4)

Here a is the surface of volume V. We use the divergence theorem to replace the volume 

integrals of the velocity components on the right hand side with surface flux integrals.

Now we approximate all the integrals by multiplying the integrands by the volume or 

surface of the integrals. This is easier done by visualizing the control volume with the 

variable distribution. The cube control volume and the variable distribution are shown in 

figure 2.2. We place the pressure value at the center of the control volume and the 

velocity components on the center of the faces. We introduce superscripts that indicate 

the position of a given variable relative to the center of the cube. For example, the 

superscript (2-) indicates that the variable is in the negative x2 direction from the center

Figure 2.2. Control volume and the variable distribution for the computation of 
the Discrete Continuity Equation.

\ \ \p d V  = - p Qc02jf f i -d a +  JJ\M d V (E2.5)
V V

AX1AX3

AX3AX3
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o f  the cube.

When approximating the surface-flux integral only the velocity components that 

are perpendicular to a given surface contribute to that term. So, we approximate the 

surface-flux integral in the following way.

v-da  « (V[l+ - v11“)Ax2Ax3 + (v2+ -  v2~)AX[Ax3 + (v3+ - v| “)Ax1Ax2 (2.6)
SV

We simplify our cube by setting all three sides equal (Ax= Axi= A x 2 =  AX3). The volume 

integrals are more straight-forward to approximate leading us to the following equation.

P A*3 = - A>co2[(vi+ - v11‘ )Ax2 + (v2+ - v2~)Ax2 + (v3+ - v3“)Ax2]+MAx3 (2.7)

p =  - ^ [ ( v , ' *  - v ; - )  + ( v f  - v ’ - )  + ( v r  - v f ) ] + M  <2 -8)
Ax

Now we use a standard central difference to replace the time derivative on the left hand 

side. The standard central-difference is given by the flowing equation.

/  f + A f / Z  t - M  Z \

p * < £  Z £  > (2.9)
At

Where At is the time step that will be defined in the following section. Using this, we 

arrive at our final discrete equation.
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t+At/2 t - A t l  2

This equation tells us what the pressure value at time (t + At / 2) is based on the 

surrounding velocity values and the pressure value at the past time step.

2.1.3 Derivation of the Discrete Equation of Motion

The Equation of Motion will tell us how to update our velocity values as our 

simulation marches in time. The equation of motion can be split to individually look at 

the three components of the velocity vector. Here, we will find the discrete equation of 

motion in the x, direction.

We integrate both sides over the cube control volume.

Again, we use the Divergence Theorem to transform the volume integral of the pressure 

value on the right hand side to a surface-flux integral.

(2 .12)
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( |Ja ,A  dV  = • da + \\\F xdV
V SV V

(2.13)

Next, we approximate the integrals and let Ax = Axj = Ax2 = Ax3

p 0vx Ax3 = -((p1+ -// 'JA x .A x J+ ^ A x 3 (2 .1 4 )

v . = - V t 1+- ^ " ) + ~  ( 2 ' 1 5 )Po Ax p Q

Then we approximate the time derivative using a central time difference.

/t = y[-“ . j L . { p ' - - p '-) + ̂ L  (2-16)
Po Ax

The same method is used to arrive at the difference equations for the velocity components 

in the x2 and x3 directions.

v; =v r “ - — (2-17)
p 0Ax p 0

t  .  t - A t
^  t 3+ - / ' ) + —  (2<18)po Ax /?0

Now we have four equations (2.10) and (2.16) to (2.18) that instruct us how to update our 

simulation grid based on the surrounding values. The time steps are also staggered in
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time. First the pressure values are updated. Then a half time step later, the velocity 

values are updated.

2.1.4 Stability Criteria

Stability conditions are necessary to achieve stable and accurate results. We 

begin by defining our spatial step size Ax. This value is determined by assigning at least 

8 grid points to the shortest wavelength Amm in the simulation [2]. Peifer et al. choose to 

assign 15 grid points to the shortest wavelength in axial-symmetric acoustic version of 

die finite integration technique [1]. This was done to ensure accuracy but is not 

necessary. For our simulations, we assign 10 grid points to the shortest wavelength.

A x » i^  (2-19)
10

This stability criterion can also be found using the maximum speed of sound in the 

simulation space cmax and the maximum frequency f max of the acoustic waves present in 

the simulation.

Ax « Cm̂  ■ (2-20)
10/max

The temporal time step At is found using the standard Courant condition [2]. In three 

dimensions, this is given by the following equation.
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(2.21)
C m a x V 3

2.2 Simple Scattering Examples and 3D Visualization

Results from three different simulations are presented here to illustrate scattering 

from three-dimensional objects and the method used to visualize the three-dimensional 

acoustic waves.

2.2.1 Three-Dimensional Visualization

One of the major complications of three-dimensional simulations is visualizing 

the wave propagation and interaction. Visualization is important because it provides 

insight to into the complex physics of acoustic interactions. The visualizations also 

provide a way to represent a large amount of data in a format that is easily understandable 

by a large audience: pictures and movies.

We use the MATLAB programming environment to display 2D and 3D images of 

acoustic wave propagation. Two-Dimensional images can be made by taking slices 

through the 3D simulation space and plotting those values in a 2D color plot. An 

example of these 2D plots can be seen in figure 2.7.

3D images can be made by taking many 2D slices through the simulation space. 

These 2D slices are taken in all three planes in equal increments. The color and 

transparency of these 2D slices are proportional to the pressure values. This creates a 

cloud-like 3D image of acoustic waves. An example of these 3D images can be found in 

figure 2.3.
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2.2.2 Acoustic Scattering from Simple-Shape Objects

Three sample simulations are presented here to demonstrate the capabilities of the 

simulation method and provide examples of the 3D visualization. The first two 

simulations consist of a short 10 kHz acoustic wave incident upon a single 2” diameter 

sphere and a single 2” diameter by 4” tall cylinder, respectively. We have also included 

results from the same 10 kHz wave incident upon three 1” diameter by 6” tall cylinders. 

Figure 2.3 shows the geometry of the objects along with the three-dimensional pressure 

fields at three time instances. It’s important to note that three-dimensional pressure fields 

are very computationally demanding to simulate, but the 3DAFIT technique on a large 

parallel computer allows us to handle arbitrary geometries and perform systematic 

parameter variations.

The most important use of the simulations is to provide insight to complicated 

acoustic problems. In scattering simulations, it is useful to find the scattered acoustic 

field. Figure 2.4 shows the scattered acoustic energy as a function of angle for the three 

simulations. These values were recorded in the horizontal plane intersecting the center of 

the scattering object. The value at 180° corresponds to the acoustic energy reflected back 

to the source, where the signal would be recorded in a monostatic measurement scheme.
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Visualization of Three-Dimensional Acoustic Scattering

u

»•

Figure 2.3. Three-dimensional acoustic fields are shown at three time instances in the 
three rows above. The top row is just before the plane wave interacts with the target. The 
scatterers are a 2” diameter sphere (left column), a 2” by 4” cylinder (middle column), and 
three 1” by 6” cylinders (right column). The incident wave is a single cycle 10 kHz wave.

31

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Acoustic Scattering Polar Plots 
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Figure 2.4. Acoustic polar scattering plots for the three example simulations.
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2.3 Parallel Acoustic Finite Integration Technique

To run realistic 3D scenarios, our acoustic simulation code had to be parallelized. 

This was accomplished by dividing the simulation space into many 3D slices and 

distributing them across many computers. Each computer then treats an individual slice 

as a separate simulation space. After each time step, neighboring computers trade 

boundary values to create a large and seamless simulation space. Figure 2.5 illustrates 

the simulation space decomposition. Similar decomposition methods can be found in the 

following references [6, 7].

Figure 2.6 shows several snapshots from a large simulation that was performed 

using the parallelized acoustic simulation code running on the SciClone. The simulation 

space is a cube with each edge measuring a meter long. Five 1” by 6” cylindrical objects 

are located at the center of the simulation space. As a 10 kHz wave passes through the 

cube it scatters from the five cylinders. During this simulation, each of the 256 million 

unknown variables were computed at each of the 700 time steps. This required 2.6 

gigabytes of computer memory and produced 1.3 terabytes of data over the entire 

simulation.

This same scenario was simulated using a much larger simulation space 

measuring 2m on each edge. This simulation had 2 billion unknown variables that 

required 16 gigabytes of computer memory. The simulation produced 22 terabytes of 

data over 1400 time steps. It is not obvious how to best visualize datasets this large. 

Simulations this large (and larger) were performed in Chapter 5 for the ultrasonic 

periodontal probe. In that application, we only visualize two-dimensional pressure slices 

because of the large memory requirements of 3D visualizations.
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Figure 2.5. This figure demonstrates how the computational simulation space is 
divided across many computers and recombined to form a large and seamless 
computational space.
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Figure 2.6. Snapshots from a simulation showing a 10 kHz wave scattering off 
five 1” by 6” cylinders. These simulation results were obtained with the new 
parallelized acoustic simulation code mrming on the SciClone.
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2.4 Inhomogeneous Simulation Spaces

The 3D Parallel Acoustic Finite Integration Technique as described above did not 

allow for objects of different material compositions. In the derivation of the difference 

equations, the material parameters (speed of sound Co and density po) were treated as 

continuous variables. Objects placed into the simulation space were considered rigid 

such that no acoustic energy penetrated them.

2.4.1 Discretization of Material Parameters

To include objects of different materials, we re-derived the difference equations 

with the material parameters also discretized in space. We began with the equation of 

continuity (2.22) and the equation of motion (2.23) where the material parameters have 

not been factored out.

We then transform these partial difference equations using the Finite Integration 

Technique just as before to reveal the following difference equations.

dt (2.22)

(2.23)

(2.24)
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(2.25)

(2.26)

(2.27)

The spatial distribution of the simulation variables is done just as before with 

pressure p  and velocity v distributed on a staggered grid. The material parameters Co and 

po are now discretized and spatially aligned with the pressure values. This places the 

velocity values on the boundary between any two materials. The new difference 

equations enforce that the normal of material displacement be continuous across any 

material boundary.

2.4.2 Sample Acoustic Interaction with Objects of Different Materials

With these new difference equations and the appropriate boundary and stability 

criteria, we can now simulate acoustic interactions with objects and collections of objects 

of any material type. Figure 2.7 shows 2D pressure slices through a 3D acoustic 

simulation. There are two cylinders placed in the middle of the simulation space of 

different material types. The cylinder on the left is less dense and has a smaller acoustic 

wave velocity than the rest of the propagation medium. The cylinder on the right is 

denser and has a larger acoustic wave velocity than the rest of the propagation medium. 

The difference in wave speed is clearly seen as a 10 kHz acoustic wave passes through 

the two cylinders.
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Figure 2.7. 2D pressure snapshots from a 3D acoustic simulation. Two 
cylinders of different material compositions are placed in the middle of the 
simulation space. A 10 kHz passes through the two cylinders differently 
because of the difference in material composition.
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2.4.3 Simulations including Material Layers

There are many physical scenarios where acoustic waves interact with objects and 

thin material layers. For example, in medical ultrasound, acoustic waves may penetrate 

many layers of tissue before reaching the desired location [8]. In other scenarios, the thin 

layers themselves are being inspected by an acoustic method [9]. To study these types of 

problems, we next introduce thin material layers into our simulation space.

Material layers are added to the simulation space just as other objects are placed 

into the simulation space. This is done by adjusting the discrete material parameters in 

the simulation space. Figure 2.8 shows pressure snapshots from a 3D acoustic simulation 

of two rigid cylinders behind a thin layer. The thin layer reflects about 20% of the 

incoming acoustic energy. The acoustic-back-scattered energy from the cylinders and the 

thin material layer now overlap making the interpretation of the back-scattered data more 

difficult.
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Figure 2.8. Pressure snapshots from a 3D acoustic simulation. Two rigid 
cylinders are placed behind a thin layer. The thin layer allows 80% of the acoustic 
energy to penetrate. The acoustic backscatter from the cylinders is now overlaps 
with the backscattered energy from the thin layer which complicates the 
interpretation of the backscattered data.
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2.5 3DPAFIT Conclusions

We have completed a computational framework to systematically study acoustic 

wave interactions with complex shaped objects and layers. In this chapter we have 

derived and presented the equations necessary to simulate 3D acoustic waves.

Simulating 3D acoustic waves is a very computationally demanding task, so we have also 

developed a parallel algorithm that allows for very large simulation spaces. A very 

successful and fairly simple method for visualizing 3D acoustic wave interactions has 

also been presented.

In addition to studying acoustic wave interactions with rigid objects, we have also 

developed the necessary simulation equations to create an inhomogeneous simulation 

space. This allows for the study acoustic wave interactions with objects of varying 

material parameters and with material layers. Overall, the parallel 3DAFIT simulation 

method is a stable, accurate, and cost effective way to study 3D acoustic problems. In the 

following chapter we validate this simulation method by compare simulation results 

directly to experimental results.
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Chapter III 

Experimental Verification o f 3DPAFIT

In this chapter, we present an experimental study of acoustic scattering from cylindrical 

targets. We then use the results of this experimental study to validate the 3D Parallel 

Acoustic Finite Integration (3DPAFIT) technique described in Chapter 2. Several aspects 

make this experiment are unique. It includes the use of a parametric array to create a 

narrow but low-frequency sound beam, the use of a frequency sweep (chirp) excitation 

signal, and the use of robust signal processing techniques to locate and analyze acoustic 

backscatter signatures.

3.1. Experimental Apparatus

The experimental apparatus is composed of three main components: a parametric 

array (Sennheiser AudioBeam), a parabolic microphone, and a laptop computer running a 

simple MATLAB program to control the entire experimental set-up. The experimental 

apparatus is composed of off-the-shelf components and except for the parametric array all 

the components are inexpensive. The cost of the parametric array is associated with the 

complex internal signal conditioning algorithms that are necessary to accurately 

reproduce music and commentary for a wide variety of audio applications. The 

transducer array itself is made from very inexpensive elements. A more detailed 

discussion of parametric arrays can be found in the following chapter.
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First, a digital waveform is created in MATLAB and played through the audio out 

of the laptop computer. This waveform is sent to the parametric array where its internal 

signal conditioning transforms the signal into a high intensity ultrasound signal. This 

ultrasound signal is then played through an array of roughly 150 half-inch ultrasound 

transducers. This creates a high intensity ultrasound waveform that propagates through 

the air in a very narrow beam. As the waves propagate, they undergo distortions due to 

the nonlinearity of air. This creates an audio signal that is nearly identical to the original 

waveform created in the MATLAB environment. This audio signal is confined to a much 

narrower beam than if it was created with a traditional loudspeaker because the beam 

width is determined by the effective aperture of the array relative to the wavelength at the 

50 kHz ultrasound frequencies.

The resulting sound waves interact with any objects in their path and some of the 

acoustic energy will scatter back to the experimental apparatus. The returning waves are 

collected using a parabolic microphone and this signal is passed through a microphone 

preamplifier. The amplified signal is feed into the laptop via the microphone port and 

then digitized and stored for analysis. A diagram of the experimental apparatus is shown 

in figure 3.1. A picture of the experimental apparatus is shown in figure 3.2.

raraoonc iviicropnone

Figure 3.1. Diagram showing the experimental apparatus. The main components 
are the parametric array, parabolic microphone, and the laptop computer.

Parametric Array
Laptop (P ill 300Mhz)

Audio Out (Headphone Jack) 

Audio In (Microphone)

Microphone Pre-Ai

Audio Out 
Audio In
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Figure 3.2. Picture of the experimental apparatus. The main components are the 
parametric array, parabolic microphone, and the laptop computer. A target consisting 
of five closely packed one foot long pipes with 1” inner diameters are shown in the 
distance.
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3.2. Acoustic Back Scatter Experiments

A scattering experiment was designed to evaluate the capabilities of the 

experimental system, to explore signal processing techniques, and to validate 3D 

scattering simulations. Objects were suspended 15 feet in front of the experimental 

apparatus using thin wire. The parametric array was then excited using various 

waveforms while the parabolic microphone recorded any returning sounds. The 

microphone also records any extraneous environmental noises (such as people talking), 

nut the experiments were performed in a large empty room with minimal background 

noise. The target is then rotated to study how the backscattered acoustic energy is 

affected as a function of angle of the incident beam. A large compass was mapped out 

the floor to provide an accurate indication of angle of the target. Figure [3] shows a 

picture of a target consisting of five one inch PVC tubes suspended above a large 

compass.
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Compass Mapped 
onto the Floor

Figure 3.3. Picture of a target suspended above a large compass mapped out 
onto the floor. The compass is used to accurately measure the angle between 
the target and tihe incoming sound beam.

3.2.1 Scattering from two 18” Cylinders

In this section, we describe an experiment where the target is composed of two 18 

inch PVC pipe (2” inner diameter and 2.375” outer diameter) separated by two inches. 

The initial waveform used is a linear frequency-modulated chirp. The chirp waveform S 

is created using the following equation.

rr
S' = sin A  +

w
( / 2 - A ) t  

2D

\  \
27tt

/  J
(3.1)
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Where the variables are pulse duration D, time t ranging from zero to D, the starting 

frequency // , and the ending frequency /j. In this particular experiment the chirp 

waveform started at 500Hz and ended at 9400 Hz and was 0.4 seconds long. In air, the 

acoustic wavelengths of this chirp range from 66cm at 500Hz to 3.5 cm at 9400 Hz. This 

broad range of acoustic wavelengths is intended to provide a lot of useful information 

about the scatter since the scattering behavior is strongly frequency dependent. A 0.4 

second long sound pulse in air is roughly 132 meters (433 feet) long. This makes 

resolving individual echoes very difficult but we will show how it can be done later with 

signal processing.

Figure 3.4 shows a top down view of the two PVC pipes with the arrows indicating the 

direction of the incoming sound beam as the cylinders are rotated. Figure 3.5 shows a 

rough diagram of the dimensions of the large empty room where the experiments were 

conducted. The blue arrow in this figure indicates the direction of the initial sound beam. 

Experimental data was collected from angles ranging from -90° (or 270°) to 90°degrees 

in 5° increments. Additional waveforms were collected when there was no target present.

Figure 3.6 shows the two raw waveforms as collected with no target present (top) 

and with the two 18 inch cylinders at 0 degrees. Although they are clearly different, it is 

difficult to identify characteristic differences in the two waveforms in this raw form. The 

distance between the target and the back wall of the room where the measurements were 

taken is 38 feet. This means that roughly 83% of the backscatter waveforms from the 

target and the back wall overlap in time. It is clear that a time-domain only signal 

processing approach will not be successful in identifying useful features from these 

signals.
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Figure 3.4. Top-down view of 
the two PVC pipes with the 
angles of the incoming sound 
beam shown.
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38’ 15’ 53’

106’

Figure 3.5. Top-down diagram of the room 
used to take the experimental measurements. 
The blue arrow indicates the initial direction 
of the sound beam. The room dimensions 
are important because multiple reflections 
from the walls are present in the data.

-u .e
0.70.2 0.3 0.4 0.5 0.6

0.1 0.2 0.3

Figure 3.6. Experimental waveforms collected with no target 
present (top) and with a target present (bottom). In the bottom case, 
the target is two 18 inch PVC pipes with inner diameter of two 
inches. The pipes are separated by two inches and the incoming 
sound beam is at 0 degrees.
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3.3. Signal Processing

We use advanced signal processing techniques to extract more information from 

the acoustic signals to ultimately obtain more information about the scattering objects. 

The original excitation signal is a chirp containing frequencies over roughly 9000 Hz.

The obvious technique to use is a short-time Fourier transform (also referred to as a 

spectrogram).

3.3.1 The Short Time Fourier Transform (Spectrogram)

This technique transforms the one-dimensional time-domain signal into a two- 

dimensional representation. This representation preserves temporal information (along 

the x-axis) but also reveals frequency information about the signal (along the y-axis). 

Figure 3.7 shows a sample spectrogram of the signal collected when there is no target 

present (the same signal at the top of figure 3.6). The echo from the back wall is clearly 

visible in the spectrogram as shown in the bottom of figure 3.7. This upward slant in the 

time-frequency representation is exactly as expected because the original excitation was a 

linear frequency-modulated chirp. There are also several other faint echoes present in the 

signal that are the result of multiple reflections in the large room where the experiment 

took place. Even the echoes from the two end walls of the room, which are 106 feet apart 

overlap in time by 50 percent.
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Figure 3.7. Spectrogram of the signal recorded with no target present. The identical 
spectrogram on the bottom is used to show the features that correspond to the 
backscatter echo from the wall and the multiple room reflections.

Figure 3.8 shows a sample spectrogram of the signal collected when a target was 

present (the same signal shown in the bottom of figure 3.6). The target is two 18 inch 

long PVC pipes with a two inch inner diameter and separated by two inches. The 

incoming beam was at 0 degrees to the pipes as shown in figure 3.4. The strong echo 

from the wall and the multiple reflections are still visible in this spectrogram. However, 

this spectrogram has an additional feature that corresponds to the back scattered echo 

from the target.
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In this two-dimensional representation, it is easy to visually separate the features that 

represent the back-scattered echoes from the target, the back wall of the room, and the 

multiple room reflections. Now that we can visually identify the separate signals, we 

need to extract useful information so that we can say something about the scattering 

objects.

s  '

/ y y  ^
E c h o  f rom  Wal l

Figure 3.8. Spectrogram of the signal recorded with a target present. The identical 
spectrogram on the bottom is used to show the features that correspond to the 
backscatter echo from the target and the wall.
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3.3.2 Feature Extraction

We use the term feature extraction to describe the act of retrieving information 

from such a signal. This information is then used to describe the physical situation. In 

this case, we want to extract information from the back-scattered echo to identify and 

describe the object that caused the acoustic backscatter. We will begin by extracting the 

amplitude of the backscattered echo as a function of frequency. Visually, this can be 

accomplished by plotting the spectrogram as a 3D surface plot instead of a 2D color 

intensity plot. Figure 3.9 shows a 3D spectrogram of the signal collected when no target 

was present. Now, instead of a slanted line feature of the 2D plot, we have a narrow 

mountain-like feature in the 3D representation. We can see a tall mountain that 

represents the backscatter from the wall and smaller mountain-like features that represent 

the multiple echoes from the room.

Figure 3.10 shows the 3D spectrogram of a signal with the target present. In this 

plot, we can see two prominent mountain-like features. The smallest one in the front 

represents the back-scattered echo from the target and the larger one represents the 

backscattered echo from the wall. Figure 3.11 shows the 3D spectrogram from the same 

target, but when the incoming sound beam was at 90 degrees. Notice that the mountain­

like feature that represents the back scatter from the wall is nearly identical in shape in all 

three 3D spectrograms.
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Figure 3.9. 3D Spectrogram of the signal recorded with no target 
present. The prominent mountain-like feature corresponds to the 
acoustic back-scatter from the wall.

Figure 3.10. 3D Spectrogram of the signal recorded with the target 
present and at 0 degrees. The additional mountain-like feature in front 
corresponds to the acoustic backscatter from the target.
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Figure 3.11. 3D Spectrogram of the signal recorded with the target 
present and at 90 degrees. The additional mountain-like feature in front 
corresponds to the acoustic backscatter from the target.

Looking at the 3D spectrograms in Figure 3.10 and 3.11, we can see that the shape 

mountain-like feature changes as the target is rotated. To describe the shape of the 

mountain-like features, we trace out the height along the ridge line of the feature of 

interest. A sample 3D trace is shown in Figure 3.12 for the target at 0 degrees. This trace 

gives us a function of the amplitude of the acoustic backscatter as a function of 

frequency. Examples of these traces are shown for 0°, 30°, 60°, and 90° in figure 3.13.
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Figure 3.12. A 3D spectrogram with a trace of the ridge line of the mountain­
like feature shown by the black line.
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Figure 3.13. Several examples of the amplitude of the back scattered acoustic 
energy as a function of frequency for the same target but at 0°, 30°, 60°, and 
90°.
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3.3.3 Feature Extraction using Pulse Compression

This method for feature extraction in the previous section works reasonably well 

but is not robust enough for an automatic feature extraction system. To quickly and 

accurately extract information from the signal, we turn to a signal processing method 

called pulse compression [1]. Here we use the fact that we know the structure of the 

initial excitation and we assume that any backscattered signals will share some of that 

structure. In this case, our initial excitation g(t) is a 0.4 second long frequency chirp 

ranging from 500Hz to 9500Hz. We “compress” our incoming signal by finding the 

cross-correlation between our initial excitation g(t) and our recorded signal f(t). The 

cross-correlation function of two signals is found using equation (3.2).

( /  * g)(x) = \ /{ ty g { t  + x)dt (3-2)

Note that the cross-covariance function is very similar to the convolution function. The 

difference is the cross-covariance function takes the complex conjugate of f(t) (that has 

no effect on our real signals) and has an addition of x instead of a subtraction of x in the 

g(i+x) term.

Figure 3.14 shows the raw recorded waveform when there is no target present. It 

is impossible to distinguish individual echoes in this signal. The bottom plot in Figure 

3.14 shows the pulse-compressed signal. Now, the individual echoes are distinguishable 

and separable. Figure 3.15 shows a raw and pulsed-compressed signal when the target is 

present. The pulsed compressed signal looks identical to the one with no target except 

for the large echo that is a result of the acoustic interaction with the target.
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Figure 3.14. The top plot is the raw recorded waveform with no target present but 
with several overlapping echoes resulting from the room where the measurements 
were taken. The bottom plot shows the pulsed compression of the same signal. 
Several echoes are clearly distinguishable. They are the backscatter from the wall 
(a) and the several multiple room echoes (b-d). The signal also includes several 
echoes from other objects about the room (e).
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Figure 3.15. The top plot is the raw recorded waveform with the target present 
which includes many overlapping echoes. The bottom plot shows the pulsed 
compression of the same signal. The same echoes are present (a-e) in this signal 
as there was in the signal with no target. There is an additional strong echo (f) that 
is the result of the acoustic interaction with the target.
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The original 0.4 second long frequency chirp was approximately 132 meters long 

in air. After pulse-compression, the resulting echoes are approximately .0004 seconds 

long that is approximately 13 centimeters in air. The pulse compression improves the 

spatial resolution of the signal by a factor 1000. Another interesting ability of the pulse 

compression is its ability to pick out very faint echoes. For example, we can just pick out 

the echo resulting in 3 round trips in the large room where the measurements were taken. 

This sound wave traveled roughly 742 feet (or 226 meters).

Now we can clearly separate the echoes, but we need to extract the frequency 

backscattered content. We do this by simply windowing around the desired echo and 

taking the Fourier transform. Figure 3.16 shows the windowed echoes from the target at 

0 degrees and 90 degrees along with their Fourier transforms. These frequency results 

are identical to the ones we extracted using the previous image processing technique. 

The pulse compression technique is fairly straight forward, easy to implement, and very 

robust.
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Figure 3.16. Windowed echoes from the target at 0 degrees and 90 degrees 
along with their Fourier transforms
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3.4. Comparison to 3DPAFIT Simulations

The main objective of the parametric experiments was to validate the nonlinear 

acoustic propagation and 3D scattering simulations. The entire process of nonlinear 

beam forming and acoustic scattering from complex shaped objects is an extremely 

complicated physical process. To validate the simulations we will directly compare to 

measurements of backscattered acoustic energy from the PVC cylinders as a function of 

frequency and incident angle.

Experimental acoustic backscatter data was recorded as the target was rotated 180 

degrees in Figure 3.4. The target was the two 18 inch long PVC pipes as described in the 

previous sections. The backscattered acoustic energy as a function of frequency was 

extracted at each angular position. Picking a certain frequency, a polar plot is then 

produced to show the backscattered acoustic energy as a function of incident angle. 

Examples of these polar plots at different frequencies are shown in figure 3.17.
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Figure 3.17. Polar plots showing the acoustic backscattered energy as a function 
angle at different frequencies.
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The symmetric multiple lobe structure of the polar plots are expected; as the 

frequency is increased, the number of lobes also increases. Even with a relatively simple 

target, the nature of the scattering is, of course, very complicated. The backscattered 

acoustic wave is not only a sum of the scattering waves from the individual cylinders, but 

also the multiple scattered waves that reflect from one cylinder than the other.

The same scenario was simulated to compare to the experimental measurements. 

The KZK nonlinear simulations (which are described in Chapter 4) were used to 

propagate the acoustic waves from the parametric array to the target. The waves then 

entered the 3D acoustic simulation space where they reflected from the two cylinders.

The cylinders were rotated just as they were in the physical experiment. The only 

difference between the two scenarios was that a single frequency tone burst was used in 

the simulations instead of a frequency chirp. The acoustic backscatter was recorded at 

each angle to produce a polar plot. The comparison between simulation and experiment 

results at 4.2 kHz are shown in figure 3.18. There is very good agreement between the 

two datasets.
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Figure 3.18. Polar plot showing the acoustic backscattered energy as a 
function angle at 4.2kHz. Blue represents the simulation results and 
green represents the experimental results.

3.5 Conclusions

The acoustic scattering experiments using the parametric array and parabolic 

microphone were very successful. We demonstrated that this system along with 

advanced signal processing can be used to locate and describe targets. Two methods for 

extracting the backscattered frequency content of the targets were successfully presented. 

The pulse-compression method was superior in that it improved spatial resolution by at 

least 1000 percent over the original signal and it provided a straight forward and robust 

means to extract the frequency content of the individual echoes. This experimental
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setup and the pulse-compression signal processing technique was used successfully 

validate the acoustic scattering simulations described in chapter 2.

3.6 References
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Chapter IV 

Applied 3DPAFIT Simulations: 

Nonlinear Acoustic Concealed Weapons Detection

In this chapter, we present examples of acoustic simulations and how they can be applied 

to design hardware configurations and to study complicated acoustic interactions. The 

first part of this chapter is devoted to a nonlinear finite-difference simulation method 

used to simulate nonlinear sound beams. Many systematic simulations were run with this 

code to provide hardware design guidelines for the development of a prototype Nonlinear 

Acoustic Concealed Weapons Detector. Then this simulation method is coupled with the 

3D parallel acoustic simulation method (3DPAFIT) to study acoustic wave interactions 

with humans, clothing layers, and weapons.

4.1 Nonlinear Concealed Weapons Detection

Detecting concealed weapons and explosives on persons is an important and 

challenging problem. Current weapon detection technologies are often inadequate 

because they only detect metal objects at short distances. Our post 9/11 studies in 

acoustic concealed weapons detection are showing great potential in their ability to detect 

concealed objects at significant stand-off distances. The continued improvement of 

acoustic weapons detection technology will require exhaustive experiments, development
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of nonlinear acoustic computer simulations, and sophisticated signal processing 

algorithms.

An acoustic weapons detection system consists of an ultrasonic transducer that 

emits a short inaudible acoustic beam into the air. This sound propagates away from the 

transducer until it comes in contact with the target person. The sound beam interacts with 

the person’s clothes, body, and any other objects. Some of the energy in the sound burst 

reflects back to the transducer where it can be recorded on a computer as a waveform.

The structure of the waveform depends on the details of the interaction between the 

sound waves and the person. A waveform from a person with a hidden weapon will 

differ from a waveform from a person without a hidden weapon.

Narrow-frequency band transducers were originally used to create the initial 

sound burst in acoustic concealed weapons detection [1]. A nonlinear acoustic concealed 

weapons detector uses sound waves to interrogate a person at large stand-off distances 

via a sound beam created using a parametric array and directed onto a person [2-4].

Using parametric arrays to create the initial sound burst may have many advantages over 

using typical transducers. Parametric arrays work by emitting high powered ultrasound 

waves that transition to lower frequencies because of nonlinear and absorption effects as 

the acoustic waves propagate. These nonlinear effects allow one to create a very narrow 

sound beam that can deliver the acoustic energy over large distances. Traditional air- 

coupled transducers have very narrow frequency bands that only allow single frequency 

tone-bursts. In contrast, parametric arrays have a broad frequency band that allows the 

initial waveform to contain a range of frequencies. In addition, the lower frequencies
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produced by the nonlinear propagations will penetrate layers of clothing more effectively 

than the higher ultrasound frequencies.

4.2 KZK Nonlinear Sound Beam Simulations

To model nonlinear acoustic beams, we turn to numerical solutions of the 

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. The KZK equation is a nonlinear 

parabolic wave equation that accounts for the combined effects of diffraction, absorption, 

and nonlinearity in finite amplitude acoustic beams. In its derivation, the sound waves 

are assumed to form a directive beam, which permits a parabolic approximation to be 

made in the terms that account for diffraction. The parabolic approximation introduces 

errors at more than 20° off the beam axis, and at locations within several source radii to 

the source [5].

The KZK equation for an axi-symmetric sound beam that propagates in the 

positive z direction can be written in terms of the acoustical pressure p  as follows.

d2p  _ c, 
dzdt' 2

d2 p  1 dp 
v dr2 r dr j

+J L 81l + p  8 P
2c\ d f  2p 0c\ dt'2 (4.1)

The first term on the right-hand side accounts for diffraction, the second term accounts 

for absorption, and the third accounts for nonlinearity [5-7]. Lee and Hamilton 

developed a finite difference method for simulating nonlinear sound beams based on the 

KZK Equation [5, 8]. We developed a simulation code to model parametric arrays for 

use in concealed weapons detection based on Lee and Hamilton’s method.
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With the KZK nonlinear acoustic simulations, we can test different parametric 

array specifications to judge their effectiveness for concealed weapons detection. For 

example, we can change the parametric array size, curvature (for focusing), frequency, 

and initial intensity. We can also test environmental effects such as air temperature and 

humidity level and how these variables affect the acoustic wave propagation. We have 

successfully used these KZK nonlinear simulations to provide design guidelines for 

building custom parametric arrays and accurately predict the pressure waveforms before 

they interact with the person.

4.2.1 Linear vs. Nonlinear Parametric Simulations

Parametric arrays create acoustic beams in air that are much narrower than 

traditional speakers of the same size because the beam properties are determined by the 

effective aperture relative to the ultrasound wavelengths. They work by emitting two 

high powered ultrasound frequencies j)  and f '2 that undergo nonlinear distortion in the air 

to create a low acoustic difference frequency//-/?. This process is referred to as 

nonlinear-demodulation and is explained more in reference [9]. This difference 

frequency will be confined to a narrow beam and will propagate much further than the 

ultrasound frequencies. Using the KZK simulation code, we are able to perform many 

simulations of different transducer configurations with varying the degrees of 

nonlinearity and absorption. This allows us to systematically explore the nonlinear 

effects of acoustic propagation.

As an example, we will present the results of two simulations of the same 

parametric configuration with and without nonlinear effects. The first simulation does
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not include any nonlinear effects and the second uses the appropriate coefficient of 

nonlinearity for air (J3 = 1.2). A 2 ft diameter transducer with a geometrical focus of 8m 

is excited with a short pulse that contains two frequencies: 45 kHz and 55 kHz. The 

initial sound pressure is 120 decibels.

Figure 4.1 shows the axial pressure waveforms from the linear simulation. Each 

waveform is recorded at 2m intervals starting at the face of the transducer and extending 

to 10m. At 0m, both ultrasound frequencies are of course present. As the wave 

propagates away from the transducer, the ultrasound is quickly absorbed due to the 

viscosity of the air. The 55 kHz component is absorbed much faster than the 45 kHz 

component because absorption is frequency dependent. After 6m, most of ultrasonic 

energy has been absorbed.

Figure 4.2 shows the axial pressure waveforms from the nonlinear simulation.

The pressure wave is absorbed in the same manner as in the linear simulation. Now the 

difference frequency of 10 kHz is present and builds in amplitude as the waves propagate 

further array from the parametric array. As the higher frequencies are absorbed, the 

difference frequency becomes the dominant frequency in the wave. Figure 4.3 compares 

the full pressure fields from the nonlinear and linear simulations. The two simulations 

are almost identical until up the ultrasound frequencies are attenuated and the difference 

frequency becomes the dominant component of the nonlinear simulation. This clearly 

shows that the creation of the difference frequency is a result of the nonlinearity of air.
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Linear Axial Waveforms and their Fourier Transforms
Axial Pressure Waveform Fourier Transform

Figure 4.1. The left plots show the axial pressure waveforms from a focused parametric 
transducer. The right plots show their corresponding frequency spectra. No nonlinear 
effects are included in this simulation.
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Nonlinear Axial Waveforms and their Fourier Transforms 
Axial Pressure Waveform Fourier Transform

4m

6m

8m

10m

JL

Figure 4.2. The left plots show the axial pressure waveforms from a focused parametric 
transducer. The right plots show their corresponding frequency spectra. Nonlinear effects 
are included in this simulation.
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Parametric Pulse Propagation -  Nonlinear Vs. Linear
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Figure 4.3. Shown is the full pressure field as the wave propagates away from the 
transducer. Each figure is spit with the nonlinear simulation on the top and the 
linear simulation on the bottom. The x-axis represents time and the y axis 
represents radial direction (2ft from axis to edge).
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4.2.2 Comparison of Simulation and Experimental Results

Simulations have been performed to validate the final version of the nonlinear 

acoustic simulation code. This was done to confirm both the experimental measurements 

[2-4] and results from the new nonlinear acoustic simulation code. A 1ft diameter 

transducer was excited with two frequencies: 53620 Hz and 45620 Hz. The amplitude of 

the ultrasound frequencies and the difference frequencies were recorded along the beam 

axis at several distances. Figure 4.4 shows the audio and ultrasound absorption data from 

the transducer out to 6 meters. The experimental and simulated absorption data agree 

overall. Figure 4.5 shows the beam width profiles for the simulated and experimental 

data recorded at various distances from the parametric transducer. The simulated and 

experimental beam width profiles match very well.

»— o—e

O£

6

Axial Distance (m) Axial Distance (m)

Figure 4.4. Axial absorption plots for the audio (left) and ultrasound (right) 
components of the sound beam. The solid line represents the simulated data and the 
dotted line represents the experimental data.
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Simulated and Experimental Beam Width Profile Comparison
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Figure 4.5. Beam width profiles for the audio (left) and ultrasound (right) components of the 
sound beam measured at various distances from the parametric transducer. The solid line 
represents the simulated data and the dotted line represents the experimental data.
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4.2.3 Comparison of Confocal and Parametric Transducer Configurations

There are many hardware configurations that can deliver acoustic energy to the 

target at large stand-off distances. In some cases, more than one device can be used to 

deliver energy to the target. Many variables such as aperture size, curvature, and position 

can influence the resulting sound beams that can influence of the performance of the 

nonlinear concealed weapons detector. A primary objective of this portion of the work 

was to study and compare the acoustic beams created by parametric array and cross beam 

transducer configurations. By studying the resulting sound beams, we can help to 

determine which configuration is best suited for detecting concealed weapons. In both 

configurations, two ultrasonic frequencies are emitted. In a parametric array 

configuration, the two ultrasonic frequencies are emitted from the same device that is 

pointed at the target. In a cross beam configuration, two ultrasound frequencies are 

emitted from two separate devices pointed at the target. Figure 4.6 shows a diagram of 

the two transducer configurations.

The main difference between the two configurations is the location and size of the 

interaction region of the two ultrasonic frequencies. In a cross beam configuration, the 

two frequency components only interact where the beams intersect. In a parametric

Figure 4.6: Diagram of parametric (left) and cross beam (right) transducer configurations. 
The blocks represent the transducers and the oval represents the target. The green regions 
indicate the interaction region between the two ultrasound frequencies.
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configuration, the two frequencies interact over the entire length of the beam.

Simulations, using the nonlinear KZK code have been conducted to explore and compare 

the resulting sound beams of both configurations.

4.2.3.I. Parametric Transducer Array Configuration

A parametric array is a large transducer or an array of transducers that 

simultaneously emit two high-powered high-frequency ultrasound waves. The 

superposition of two frequencies causes the waveform to be amplitude modulated at the 

difference of the two original frequencies (fl-£2). As the waves propagate away from the 

parametric array, they begin to transform because of the nonlinearity of the air. When 

two high-powered ultrasound frequencies are present, a nonlinear phenomenon called 

demodulation occurs [9]. This creates a third frequency component at the difference 

frequency of the two original frequencies. The difference frequency will stay confined to 

the narrow beam creating a highly directional low frequency device.

Figure 4.7 shows pressure waveform snapshots for both a parametric and 

crossbeam configuration from 0 to 10 meters in two meter increments. In the parametric 

simulation, the transducer has a diameter of 0.6m (~2ft) with a geometrical focus of 8 

meters. The parametric array emits a short pulse that contains two frequencies: 47 kHz 

and 53 kHz. Figure 3 shows the beam profiles for the two initial frequency components 

and the 6 kHz difference frequency component. The last plot of figure 4.8 shows the 

interaction region between the two main frequency components.
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Pressure Waveform Snapshots at Two Meter Increments 

Cross Beam (Confocal) Parametric
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Figure 4.7: Pressure waveform snapshots at two meter increments for crossbeam (left) and 
parametric (right) transducer configurations. The crossbeam configuration is simulated using a 
confocal geometry. In both simulations the entire transducer has a diameter of 2ft and a 
geometrical focus of 8m.
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Parametric Beam Profile (in Pascals)

4 7  a n d  53  k H z  Int t 'raef io i i  R e g i o n

Figure 4.8: Beam profiles for the parametric array configuration. The top two 
plots show the beam profile for the ultrasound frequencies: 53 kHz and 47 kHz. 
The third plot shows the 6 kHz difference frequency component. The last plot 
shows the interaction region of both ultrasound frequencies which results in a 6 
kHz amplitude modulated beat frequency
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4.2.3.2 Confocal Transducer Configuration

A confocal geometry was used to simulate the crossbeam transducer 

configuration. A confocal transducer consists of two transducer elements: a disk 

transducer surrounded by a ring transducer. The two transducer elements are excited at 

separate ultrasound frequencies. The faces of the two transducer elements are curved to 

cross the two sound beams at the focal point.

A number of confocal simulations were performed to compare the resulting sound 

beams to those of the parametric array configuration. Figure 4.9 shows typical pressure 

waveform snapshots from a confocal transducer configuration starting at the face of the 

transducer to 10 meters in 2 meter increments. In this simulation, the combined 

transducer diameter is 0.6m (~2ft) with a geometrical focal distance of 8 meters. The two 

transducer elements have the same surface area. The inner transducer emits a 53 kHz 

pulse at the same time the outer transducer emits a 47 kHz pulse. The two beams overlap 

as the two waves propagate towards the focal point. This creates both a beat frequency 

due to the linear superposition of the beams and a difference frequency component due to 

the nonlinear mixing. Figure 4.10 shows the beam profiles for the two main frequency 

components, the nonlinear generated difference frequency component, and the interaction 

region of the two ultrasound components.

Additional simulations were performed to explore the effect of increasing the 

angle between the two sound beams. Figure 4.11 shows pressure waveform snapshots 

from one of these simulations. In this simulation, the two transducer elements are 

separated by about one meter. Figure 4.12 shows the different components of the 

resulting sound beams. In the wide angle cross beam simulations, the nonlinear
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generated difference frequency is much smaller than in the narrow angle cross beam 

configuration. This smaller amplitude difference frequency is expected because the 

interaction region of the two sound beams is much smaller than the interaction region of 

in the small angle configuration.

It should be noted here that the wide angle cross beam configuration results show 

a very narrow sound beam. The purpose of these simulations is to show that increasing 

the angle of the two sound beams decreases the size of the interaction region. The 

confocal transducer used to create the results shown in figure 4.11 and 4.12 has a 

diameter of two meters. The large transducer size is the reason for the narrow sound 

beam. In a traditional cross-beam configuration (such as the one pictured in Figure 4.6), 

increasing the angle between the two transducers will not drastically affect the beam 

width at the target.

There may be a pure geometrical advantage of a cross beam configuration. By 

using two sound beams at separate angles, one should be able to retrieve more 

information about the target and the presence of any concealed weapons. Basically, the 

two sound beams have two separate “views” of the target. This is a purely geometric 

advantage and should not be considered in comparing the details of the two transducer 

configurations. This same effect could be achieved with a parametric array configuration 

by using two parametric arrays, moving the single parametric array to capture both 

“views”, or having the target simply rotate.
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Confocal Beam Profile (in Pascals)
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Figure 4.9: Beam profiles for the cross-beam array configuration. The 
top two plots show the beam profile for the ultrasound frequencies: 53 
kHz and 47 kHz. The third plot shows the difference frequency 6 kHz 
component. The last plot shows the interaction region of both 
ultrasound frequencies which results in a 6 kHz amplitude modulated 
beat frequency.
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Pressure Snapshots for a Wide Angle Confocal Geometry
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Figure 4.10. Pressure snapshots from a wide angle confocal simulation.
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Wide Angle Confocal Beam Profile (in Pascals)
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Figure 4.11: Beam profiles for a wide angle cross-beam array
configuration. The top two plots show the beam profile for the ultrasound 
frequencies: 53 kHz and 47 kHz. The third plot shows the difference 
frequency 6 kHz component. The last plot shows the interaction region of 
both ultrasound frequencies which results in a 6 kHz amplitude modulated 
beat frequency.
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2.2.33. Comparison of the Two Transducer Configurations

There are some obvious similarities and some noticeable differences in the sound 

beams created by parametric and the cross beam transducer configuration. While 

discussing the two transducer configurations, we emphasize on results that affect the 

interaction of the sound waves with a person’s clothing and/or a concealed weapon.

Acoustic Beam Widths

Knowing the physical dimensions of the acoustic beam of any transducer 

configurations is very important. The width of an acoustic beam quantitatively describes 

where the acoustic energy is located in the beam. The beam width is defined as the full- 

width at the half-maximum pressure intensity. Figure 4.12 shows the beam width 

profiles for the individual frequency components of the parametric and confocal 

geometries at 3, 6, and 9 meters. Table 4.1 provides the beam width values at these 

distances.

Another aspect that must be considered is the acoustic energy distribution at the 

target for each transducer configuration. In a parametric configuration, the energy 

distribution can be described by the beam width of the different frequency components. 

For a cross-beam configuration, the two beams cross at an angle. This creates a 

complicated interference pattern where the two sound waves constructively and 

deconstructively interfere with one another. This effect is easily seen for the confocal 

pressure waveform snapshots in figure 4.10. For a non-confocal cross beam transducer 

configuration, the interference pattern is highly dependent on the orientation and angle of 

the two sound beams. A small change in orientation of one of the sound beams will
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change the resulting energy distribution at the target. An experimental device that 

requires the two or more devices that are precisely positioned and aimed towards an 

uncooperative target is impractical.

Full-Width at Half-Maximum Beam Widths

Parametric Confocal
53 kHz 47kHz 6kHz 53 kHz 47kHz 6kHz

3m 0.38m 0.39m 0.27m : — — —

6m 0.12m 0.12m 0.54m 0.13m — 0.70m
9m 0.14m 0.15m 0.89m 0.19m — 0.95m

Table 1: Beam width for the different frequency components for the parametric and 
confocal geometry. For the confocal geometry, no beam widths are recorded at 3m because 
the beams have not yet fully overlapped. The interference pattern in the interaction region 
makes defining a beam width for the 47 kHz component difficult.
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Beam Width Profiles at 3 ,6 , and 9 meters (in Pascals)
Parametric Confocal
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Figure 4.12: Beam width profiles for the different frequency components of the 
parametric (left) and confocal (right) transducer configurations. These beam width 
profiles are shown for the following taken at
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Magnitude o f the Nonlinear Generated Difference Frequency

There are several reasons the nonlinear generated difference frequency is useful 

for acoustic concealed weapons detection. First, this lower acoustic frequency is less 

affected by absorption. The absorption of a sound wave in air is proportional to the 

frequency of the sound wave squared/ [10]. A 50 kHz acoustic wave will lose about 10 

percent of its energy per meter where as a 5 kHz acoustic wave will only lose about 1 

percent of its energy per meter. Therefore, creating a strong nonlinear generated 

difference frequency should result in much longer standoff distances for concealed 

weapons detection.

Another advantage of lower frequency sound waves is their ability to efficiently 

penetrate clothing. It has long been known in architectural acoustics, that lower 

frequency sound can penetrate thin structures much more efficiently than higher 

frequency sound. When a thin interface is smaller than the wavelength of the sound 

waves, the amount of energy that is transmitted across the interface is proportional to 1 /  

[11]. Therefore, a 5 kHz sound wave is 100 times more efficient in penetrating a thin 

interface than a 50 kHz sound wave. As a result, lower frequency sound waves will also 

penetrate clothing much more efficiently than higher ultrasound frequencies sound 

waves.
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Linear Beam Profiles for Parametric and Confocal Configurations
Parametric Confocal
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Figure 4.13: Linear beam profiles for parametric (left) and confocal (right)
transducer geometries. These simulations are identical to the ones of figures 3 and 
4, except the nonlinearity is turned off. This shows that the 6 kHz frequency 
component is a product of the nonlinearity of the air.

We have shown that the difference frequency observed in the simulations is 

coming from the nonlinearity in air. We proved this by performing the exact same 

simulations but with the nonlinearity turned off (Figure 4.13). With the nonlinearity 

turned off, there is no 6 kHz difference frequency component. The most noticeable 

difference between the two transducer configurations is the magnitude of the nonlinear 

difference frequency. The magnitude of the nonlinear difference frequency component 

dependent on both the intensity of the two ultrasonic frequencies and the size of the 

interaction region. For the parametric configuration, the two ultrasonic frequencies 

overlap over the entire sound beam. This allows the nonlinear difference frequency

92

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



component to be generated over the entire length of the beam. The parametric 

configuration also overlaps the two frequencies near the face of the transducer where the 

ultrasonic frequencies are the strongest. Figure 4.14 shows the axial intensity of the 

nonlinear difference frequency for both the parametric and confocal geometry.

For the confocal transducer configuration, the intensity of the nonlinearly 

generated frequency component is significantly smaller than the intensity found with the 

parametric configuration. As shown in figure 4.14, the nonlinear difference frequency of 

the confocal configuration is at least an order of magnitude smaller than found for the 

parametric configuration. This lower intensity difference frequency is caused by two 

factors. First the interaction region of the two beams is much smaller. Also, the two 

beams overlap away from the face of the transducers where the intensities of the 

ultrasound frequencies have already diminished because of absorption effects. As the 

angle between the two transducers becomes larger, the interaction region becomes 

smaller. This further reduces the magnitude of the nonlinearly generated difference
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Figure 4.14: Axial intensity values of the nonlinear difference frequency for the 
confocal (blue) and parametric (green) configurations.
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frequency.

Using a cross beam configuration will significantly reduce the amplitude of the 

nonlinear generated difference frequency. This conclusion is supported by an analytical 

study of Hamilton [12], where he shows that the nonlinear generated difference 

frequency component is much smaller for noncollinear (small angle cross beam) 

transducer geometries. Hamilton concludes that the reduction in the size of the 

interaction region drastically reduces the ability for the cross beam configuration to 

generate a difference frequency. We thus conclude that the parametric configuration is 

the most efficient configuration for generating a nonlinear difference frequency.

4.2.3A. Amplitude Modulated Beat Frequency - Vibro-Acoustography

Creating a nonlinear difference frequency is not the only proposed method for 

delivering energy to the target. Vibro-acoustography is an imaging method that uses an 

amplitude modulated ultrasound wave to create a localized dynamic radiation force on an 

object [13,14]. This dynamic radiation force causes the object to vibrate and emit an 

acoustic signal. This acoustic emission signal is dependent on the object’s geometry and 

material parameters.

Radiation pressure is defined as the time-averaged force exerted by an acoustic 

field on an object [14]. An amplitude modulated ultrasound wave incident on an object’s 

surface creates a dynamic radiation force at the same frequency of the amplitude 

modulation. Unfortunately, this amplitude modulated signal will also undergo nonlinear 

demodulation which generates a difference frequency component. When recording a low 

frequency signal coming from the object, it is very difficult to determine which
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phenomenon caused the low frequency signal. It could be from the nonlinear difference 

frequency component scattering off the object, the acoustic emissions created by the 

radiation pressure effect, or some combination of the two.

Both, the parametric and confocal geometry produce an amplitude modulated 

acoustic wave that could produce a radiation pressure effect. The parametric 

configuration produces a stronger and more uniform amplitude modulated signal than a 

confocal geometry of the same overall transducer size. The parametric array emits both 

frequencies over the entire face of the transducer. The confocal transducer only emits 

one frequency per transducer element. Two transducers of the same surface area of the 

parametric array would be needed to achieve the equivalent acoustic intensities.

For the Vibro-Acoustography method to be successful, the ultrasound frequencies 

must reach the concealed weapon. We have already shown that the higher frequency 

ultrasound waves are less efficient in penetrating clothing. Dense clothing materials, 

such as leather, may reflect too much of the ultrasound energy for this method to be 

viable. Additional studies will be needed to test the acoustic transmission of various 

clothing types.

4.2.3.5. Confocal vs. Parametric Array Conclusion

We have simulated both parametric and cross beam transducer configurations to 

compare the resulting sound beams. The parametric array produces a narrow and 

uniform sound beam with a strong nonlinear difference frequency. The crossbeam 

geometry has a reduced interaction region that reduces the intensity of the nonlinear 

difference frequency. The cross beam geometry also produces a complicated interference
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pattern in the interaction region of the two sound beams. This interference pattern may 

make characterizing and repeating experimental measurements difficult, especially for 

“uncooperative” targets under field conditions.

4.2.4. Effects of the Initial Sound Pressure Intensity on the Resulting Sound Beam

Several additional simulations have been performed to compare the sound beams 

of different initial sound pressure intensities. A 2ft diameter transducer with a 

geometrical focus of 8m was used in all of the following simulations. The transducer 

emits a short dual frequency tone burst at 47 kHz and 53 kHz. Six initial sound pressure 

intensities were tested: 120dB, 125dB, 130dB, 135dB, 140dB, and 145dB.

Table 4.2 gives the sound pressure intensities and the beam widths of the three 

frequency components of the sound beam recorded at 5.8 meters. Figure 4.15 shows the 

beam width profiles for the three frequency components of the sound beam measured at 

5.8 meters. The shape and width of the beam are not affected by changing the initial 

sound pressure intensity.

Nonlinear effects are amplified by increasing the amplitude of the initial sound 

wave. As the initial sound intensity is increased, more energy is sent to the nonlinear 

generated frequency components (nfi±mf2 ). This pattern is shown Table 4.2. As the 

initial sound pressure is increased in 5dB increments, the intensity of ultrasound 

frequencies recorded at 5.8m increases in increments less than 5dB. This loss is 

attributed to more energy being sent to the nonlinearly generated frequencies. The 

nonlinearly generated difference frequency (6 kHz) increases in increments of about 8-10 

db each time the initial sound pressure is increased by 5dB. Figure 4.16 shows the axial
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sound pressure intensities of the three frequency components for the different initial 

sound pressure intensities.

Table 4.2 Beam Width and Intensities recorded at 5.8 meters for different 
_______  initial sound pressure intensities._________________
Initial
Sound

Pressure

53 kHz Component 47 kHz Component 6 kHz Component
Intensity B

Width
Intensity B

Width
Intensity B

Width
120 db 111.6dB 12 cm 115.ldB 12cm 69.9dB 59cm
125 db 116.5dB 12 cm 119.9dB 12cm 79.7dB 59cm
130 db 121.2dB 12 cm 124.6dB 12cm 89.2dB 59cm
135 db 125.5dB 12 cm 129.1dB 12cm 98.6dB 59cm
140 db 129.3dB 12 cm 133.ldB 12cm 107.3dB 59cm
145 db 132.ldB 12 cm 136.5dB 12cm 115.2dB 59cm
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Beam Width Profiles for the Different Initial Sound Pressure Intensities
Measured at 5.8m

53 kHz

CLW

Radial Direction (m)

47 kHz

Radial Direction (m)

6 kHz

I

Radial Direction (m)

Figure 4.15. Beam width profiles recorded at 5.8m for the different 
initial sound pressure intensities. Changing the initial intensity does not 
affect the shape or width of the resulting sound beam.
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Axial Absorption Plots for the Different Initial Sound Pressure Intensities
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Figure 4.16. Axial absorption plots for the different initial sound 
pressure intensities. As the initial sound intensity is increased, more 
energy is passed to the nonlinear generated frequencies.
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4.2.5 Extended Distance Simulations

Extended simulations have been performed to test the KZK acoustic code to 

larger distances such as 55 meters. Here we present an example of an extended-distance 

simulation using a 2ft diameter flat parametric transducer. The parametric transducer 

emits a short 140db dual frequency tone burst at 47 kHz and 53 kHz. Figure 4.17 shows 

the pressure waveform snapshots recorded at various distances starting at 3.2 meters and 

ending at 54.5 meters. Figure 4.18 shows the beam width profiles at these same 

distances.

Figure 4.19 shows the absorption plots for the three frequency components of the 

sound beam. At 15-20 meters, the nonlinear generated difference frequency component 

becomes stronger than the ultrasound frequencies. At 50 meters, only the audio 

component is present. The beam width of the 6 kHz component of the sound beam is 

about 5 meters at 50 meters. The beam width can be reduced by using a larger transducer 

and/or employing focusing techniques.
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Pressure Waveform Snapshots from an Extended Distance Simulation

Figure 4.17. Pressure waveform snapshots recorded at various distances from an 
extended distance simulation.
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Beam Width Profiles at Various Distances for an Extended Distance Simulation
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Figure 4.18. Beam width profiles at various distances for an extended distance 
simulation. The three different components of the sound beam are shown: 53 kHz 
(blue), 47 kHz (green), and 6 kHz (red).
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Absorption Plots for an Extended Distance Simulation
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Figure 4.19. Absorption plots for an extended distance simulation to a 
distance of 55 meters. The three different components of the sound beam 
are shown: 53 kHz (blue), 47 kHz (green), and 6 kHz (red).

4.2.5 Nonlinear Sound Beam Discussion

We have developed a useful and efficient tool for characterizing nonlinear 

acoustic beams created by various devices. With the new nonlinear KZK simulation 

code, many different transducer configurations can be quickly and systematically 

simulated. Simulations results have been shown to match well with experimental results.

We have simulated both parametric and cross beam transducer configurations to 

compare the resulting sound beams. The parametric array produces a narrow and 

uniform sound beam with a strong nonlinear difference frequency. The crossbeam 

geometry has a reduced interaction region that reduces the intensity of the nonlinear 

difference frequency. The cross beam geometry also produces a complicated interference

53 kHz 
47 kHz 
6 kHz
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pattern in the interaction region of the two sound beams. This interference pattern may 

make characterizing and repeating experimental measurements difficult.

We now have a good understanding of the acoustic beams and their frequency 

components just before the waveforms interact with the target. Additional experimental, 

analytical, and computational studies should be performed to characterize the acoustic 

interaction with various sized and shaped objects. The interaction of the acoustic waves 

with an object depends strongly on the object’s material composition, shape, size, and 

orientation. Understanding these interactions will be vital to developing a successful 

acoustic concealed weapons detector.
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4.3 3DPAFIT Simulations with Incident Nonlinear Sound Beam

4.3.1 Nonlinear Sound Beam Input

We have also merged the KZK simulation code and our 3D acoustic finite 

integration (3DAFIT) code. The KZK simulation code is used to propagate the acoustic 

wave from the parametric array to the target taking into account the effects of 

nonlinearity and absorption. At a certain distance, beyond which the nonlinear 

conversion is complete, the pressure waves flow from the KZK simulation space into the 

3DPAFIT simulation space. We can thus place any combination of objects and layers 

into the 3DPAFIT simulation space to study the acoustic interaction.

4.3.2 Inserting and Scattering from a Human Model

For concealed weapons and explosives detection, it is important to understand 

how acoustic waves interact with the human body with and without objects concealed 

under clothing layers. This is a very complicated scattering problem that is practically 

impossible to study theoretically. Our 3D parallel acoustic simulation technique 

(3DPAFIT) provides an accurate way to model these scenarios and study the acoustic 

interactions.

To create realistic scenarios, we have included a 3D human model into our 

acoustic scattering simulations. The 3D human model was created from low resolution 

anatomical cross-sections taken from a male cadaver obtained in the Visible Human 

Project [15]. Figure 4.20 shows four sample anatomical cross-sections from this dataset. 

Figure 4.21 shows three different views of our 3D human male model.
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Figure 4.22 shows pressure waveform snapshots created with the KZK simulation 

code. A one meter diameter focused parametric array emits a short dual-tone pulse (45 

kHz and 55 kHz). As the pulse propagates away from the parametric array, a 10 kHz 

component is created due to the nonlinearity of the air. At 10 meters, the 10 kHz 

component becomes the dominant frequency of the pulse because the higher ultrasound 

frequencies are absorbed much more quickly. At 10 meters, this waveform propagates 

into the 3DAFIT simulation space where it scatters from the 3D human model as shown 

in figure 4.23.

Figure 4.20. Anatomical cross-sections taken from a male cadaver 
obtained by the Visible Human Project.
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Figure 4.21. Three different views of the 3D human male model created 
from the anatomical cross-sections.
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Figure 4.22. Pressure waveform snapshots created with the KZK simulation code. A 
one meter diameter focused parametric array emits a short 140db dual-tone pulse (45 
kHz and 55 kHz). As the pulse propagates away from the parametric array, a 10 kHz 
component is created due to the nonlinearity of the air. The higher ultrasound 
frequencies are absorbed much quicker so that at 10 meters, only the 10 kHz component 
remains.
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Figure 4.23. An acoustic pulse from the KZK 
simulation shown in figure 3 scatters from the 
3D human model. __
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4.3.3 Inserting CAD Models

We have also created a 3D model of the RPG-7V1 Rocket Propelled Grenade 

Launcher. The 3D model is shown at several angles in Figure 4.24. The dimensions of 

each of the major geometrical features of the RPG were extrapolated from the image 

shown in Figure 4.25. The 3D model was created in a commercial CAD package and 

imported and rendered in the MATLAB environment. Once in the MATLAB 

environment, we can position it into our simulation space at any orientation to study how 

acoustic waves interact with it.

Figure 14.24. A 3D model of the RPG-7V1 Rocket 
Propelled Grenade Launcher is shown at three angles in 
the carrying position.
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Figure 4.25. RPG-7V1 Rocket Propelled Grenade Launcher in 
carrying position.

Before the CAD model can be placed into the simulations space, it must be 

converted into the correct data format. To do this, we need cross sectional images similar 

to the anatomical cross sectional data from the human model. CAD models are 

composed of many triangles that fit together to create the surface of the 3D model. An 

algorithm has been developed to slice the 3D CAD model to create cross sectional 

images.

Sample cross sectional images of the RPG-7V1 are shown in figure 4.26. Many 

of these images are combined into the correct format so that the object can be inserted 

into the simulation space. This algorithm automatically adjusts the resolution of the 

object to fit the resolution of the simulation. Figure 4.27 shows the RPG-7V1 at three 

resolutions: 3mm, 6mm, and 9mm. It is easy to see that decreasing the resolution also 

decreases the level of detail of the RPG model. In most all cases, the resolution of the 

acoustic simulations will be 3mm or finer.
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Figure 4.26. Cross-sectional images of the RPG-7V1 Rocket 
Propelled Grenade Launcher model. They are taking at the front 
handle (left), back handle (right) and in between the two (middle).

Figure 4.27. The RPG-7V1 Rocket Propelled Grenade Launcher model 
shown at three different resolutions: 3mm (top), 6mm (middle), and 9mm 
(bottom). The resolution of the 3D model must match the resolution of the 
simulation.
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4.3.4 Back Scattered Acoustic Energy as a Function of Angle

With the ability to add 3D CAD models into the computational space, we can 

systematically explore different scattering scenarios. These simulations will provide 

valuable information about how acoustic energy scatters with various objects and 

clothing layers. This information will be key in the development of signal processing 

algorithms and next generation hardware.

As an example, we placed the RPG model into the simulation and systematically 

rotated it to determine the back-scattered energy as a function of incident beam angle. 

The incoming sound wave is a 6 kHz sound beam that is the result of a nonlinear KZK 

simulation. In this simulation, a 1 meter focused parametric array emits a dual tone burst 

(50 kHz and 56 kHz). The waves are focused as they propagate and a 6 kHz difference 

frequency wave becomes the dominate component in the wave. At 10 meters, the sound 

waves flow from the nonlinear acoustic simulation into the 3D acoustic scattering 

simulation. The waves then scatter from the RPG and the backscattered energy is 

recorded.

This process was carried out for 40 different orientations of the RPG model. 

Figure 4.28 shows the orientation of the RPG along with the incident wave angles. The 

RPG was rotated 9 degrees between each simulation. This process provides the 

backscattered acoustic energy as a function of angle for the RPG model at 6 kHz. This 

distribution can be found in the polar plot shown in Figure 4.29. The strongest back 

scattered energy is found between 120° and 240°. At these angles, both handles of the
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RPG are facing the incoming sound beam which strongly reflects the incoming acoustic 

energy.

The peak and valley structure of the backscattered energy is as expected and is 

perhaps the most interesting part of the data. In some cases, a small change in orientation 

(as small as 10°) can lead to a 60% drop in the backscattered energy. This plot only 

shows the backscattered energy at 6 kHz, but a sequence of these backscattered-energy- 

vs.-angle plots at different frequencies can provide a template of what to look for in 

experimental measurements. Knowing how acoustic waves reflect from complicated 

shaped weapons is necessary to develop a robust signal processing algorithms to 

automatically detect them.

tII

180' 270'

II

Figure 4.28. The RPG-7V1 model is shown with angles of the 
incident sound beam.
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Figure 4.29. Polar plot shows the backscattered energy of the RPG- 
7V1 model as a function of incident wave angle.
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4.4 Conclusion

With the KZK nonlinear sound beam simulations, we can explore how variables 

such as parametric array size, curvature, initial waveform, and intensity level affect the 

resulting sound beams. We can also use these simulations to predict how parametric 

arrays will perform under different environmental factors such as air temperature and 

humidity level. With our 3D acoustic simulations (3DPAFIT), we can study how 

acoustic waves interact with complex shaped objects such as the human figure, clothing 

layers, and concealed weapons. We can also explore how the material composition of 

objects affects the scattered acoustic energy.

We have coupled oiu KZK nonlinear acoustic simulations with our 3D acoustic 

scattering simulations. Together we can simulate the entire process of nonlinear sound 

propagation and acoustic scattering from the target. We have the full capabilities to 

systematically simulate acoustic interactions with complex shaped objects including 

humans, clothing layers, and weapons. These simulations provide a very powerful tool to 

assist in the development of hardware and software systems for the next generation 

acoustic concealed weapons detector.
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Chapter V

Applied 3DPAFIT Simulations: Ultrasonic Periodontal Probe

5.1 Introduction

Periodontal disease refers to the inflammatory process of the tissues surrounding 

the teeth due to bacterial accumulations. If untreated, periodontal disease can lead to a 

progressive loss of tissue attachment to the tooth and underlying alveolar (jaw) bone and 

ultimately lead to tooth loss [1]. The periodontal pocket is the crevice that forms in 

between the tooth and the supporting tissue. Depending on depth of the pocket, which 

can extend from 2 to 12 mm, it can harbor as much as 107 to 109 bacterial cells [1,2]

Half of the adult population in the United States has mild inflammation 

(gingivitis), and about 30% of the population has periodontal disease that is defined by 

having three or more periodontal pockets with depths of 4mm or more [3-7]. Between 

5% and 15% of adults with periodontal disease have advanced forms with pocket depths 

measuring 6mm or more [8]. Periodontal disease has also been associated with diabetes, 

stroke, and adverse pregnancy conditions [9-11]. At least 14 of 17 studies have provided 

statistically significant data to associate periodontal disease with cardiovascular disease 

[12-14]. This suggest the possibility of periodontal disease as a risk factor for 

cardiovascular disease [1].

Today, periodontal disease is typically diagnosed with manual probing [15]. A 

clinician determines the depth of the periodontal pocket by inserting a thin metal probe
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directly into the pocket. Ridges or markings on the probe indicate for depth of the 

pocket. Manual probing has been shown to be unreliable [16-22] and it can be invasive 

and painful. Studies in automatically-controlled force probes have shown success in 

reducing operator-related error and subjectivity inherent in manual probing [23-26], but 

these probes do not account for anatomic and inflammatory factors that can affect on 

measurement accuracy [27,28]. New techniques and technologies based on ultrasound 

may be able to diagnose periodontal disease more reliably than manual techniques while 

being less invasive and painful to the patient.

5.1.1 The Ultrasonic Periodontal Probe

Over the past four decades, many researchers have explored the use of ultrasound 

to image the periodontal region [29-38]. In 1998, Loker and Hagenbuch developed a 

prototype of an ultrasonic device to measure the depth of the periodontal pocket [39]. 

Their device used a solid taper-delay line to couple the ultrasound into the tissue at 

approximately the same location and orientation as manual probing [40]. Results from a 

pilot clinical trial showed that correlation between measurements taken by manual 

probing and with their ultrasonic device were “not particularly good”.

Also in 1998, Companion and Hinders [41,42] first reported results of an 

ultrasonic periodontal probe that had been under development at NASA Langley for 

several years [43, 44]. Hinders et. al reported on various aspects of this work [45-49] as it 

developed over the next several years. This ultrasonic periodontal probe, which is the 

basis of the simulations in this chapter, uses a hollow tapered tip that is filled with water 

for coupling of the ultrasonic beam into the tissues. A diagram of this ultrasonic probe
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and the geometry of the periodontal tissues are shown in Figure 5.1. The internal shape 

of the hollow probe tip was optimized via a combination of computer simulations and 

systematic experiments, and a sequence of increasingly more practical clinical prototypes 

were developed and used in several pilot studies comparing ultrasonic to calibrated- 

manual and controlled-force probing. Pictures of the latest generation of the ultrasonic 

periodontal probe including the water flow system, ultrasonic probe, and the data 

acquisition system is shown in Figure 5.2 and Figure 5.3. A critical development was the 

recognition of the need for artificial intelligence algorithms to automatically identify the 

very subtle echo-waveform features corresponding to the anatomy of interest. The 

wavelet fingerprint technique of Hou and Hinders [50-55] was adapted for this purpose 

and shows promise.

In this chapter, we use the three-dimensional parallel acoustic finite integration 

technique (3DPAFIT) to simulate the ultrasound propagation in the tip and the intricate 

geometries periodontal tissues. These simulations provide valuable insight into the 

complex underling physics of the ultrasound propagation and interaction in the soft- 

tissues. A sophisticated software package was developed to automatically define the 2D 

and 3D geometry of the tip and the periodontal tissue structures and allow for easy 

modifications of these geometries. Many simulations were completed to provide 

systematic data sets to assist in the development of automated software algorithms for 

determining the periodontal pocket depth under a variety of conditions.
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Figure 5.1. Diagram of the ultrasonic periodontal probe and the 
major tissue structures of the periodontal region.
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Figure 5.2. Picture of the latest generation of the Ultrasonic Periodontal 
Probe System.

Integral magnetic 
position sensorTansducer at base of tip 
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periodontal tissues

Quick disconnect 
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couplant lines

Figure 5.3. Close-up picture of the Ultrasonic Periodontal Probe hand piece.
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5.2 Acoustic Simulations of the Ultrasonic Periodontal Probe

A sophisticated set of software tools were developed to simulate the 3D acoustic 

propagation and interaction in the tip and the periodontal tissues. These software 

components automatically create the 3D geometries of interest, perform actual acoustic 

simulations on a parallel super-computer, and process and visualize the results. The pre­

processing and post-processing, including visualizations, are performed on a single 

desktop computer using the MATLAB programming environment. The actual 

simulations are performed on William and Mary’s high performance computational 

cluster (The SciClone). A flow chart of the entire process is shown in Figure 5.4.

First, a software system was developed to automatically create the 2D periodontal 

geometry using a small number of parameters which define the scenario the user wants to 

simulate. Most of the important features of the model are parameterized so that they can 

be changed without having to modify the simulation software. These include the 

geometry of the tissue structures, material parameters, the depth of the periodontal 

pocket, and the curvature of the tooth and tissue structure. The ultrasonic tip is also 

parameterized so that its shape, the angle in which it sits on top of the periodontal pocket, 

and the size and frequency of the transducer can also be changed. Once these parameters 

are set, the MATLAB software automatically creates the appropriate 2D models which 

ultimately define the 3D geometry. Then, a set of input files are created that define all 

the simulation parameters and geometries for the 3D acoustic simulation code.

These input files are then moved to the SciClone where the 3D parallel acoustic 

simulations are performed. As the simulation runs, the simulation software computes and 

records a variety of simulation values such as acoustic pressure inside the tissue. The
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output files include sets of 2D pressure slices which show the acoustic wave propagation 

and typical A-line data that is recorded across the front of the transducer face. More 

details of the software components and the periodontal and tip geometries will be 

discussed in the following sections.

Desktop PC running MATLAB

I fe 'tl& ^ o ^ ss in g  ; 

/p^^l|m&vi&tiali2atiQns

The SciClone 
Parallel Computer

Figure 5.4. Chart showing the flow of data from the major software components for 
simulating 3D acoustic waves for the ultrasonic periodontal probe.
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5.3 Two-Dimensional Periodontal Tissue and Tip Geometry

The geometry of the periodontal pocket and surrounding tissues is very complex. 

The shape and material properties of the tooth and tissues can vary from tooth to tooth 

and from patient to patient. We have created a 2D geometry that is based on several 

sources including real anatomical cross-sections and diagrams from leading periodontal 

disease textbooks [ref]. Samples of an anatomical cross-sections and a diagram of the 

anatomical area of interest are shown in figure 5.5.

A 2D model of the periodontal pocket and surrounding tissue is shown in figure 

5.6. It includes the major anatomical features that are important to periodontal disease 

development and the ultrasound propagation. The model includes the hard tissues of the 

dentin, tooth enamel, and alveolar bone. It also includes the soft tissues of the 

mucogingival which makes up most of the major soft tissue at the base of the tooth. The 

junctional epithelium (JE) is located at the base of the periodontal pocket.

Figure 5.5. Anatomical cross-section and a diagram of the periodontal pocket 
and surrounding tissues that were used to create the 2D periodontal model.
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1. Junctional Epithelium (JE)
2. Mucogingival
3. Alveolar Bone
4. Dentin
5. Enamel

Figure 5.6. 2D slice of the 3D periodontal model.

The 2D model maps the geometry of the different tissue structures. From the 

beginning of development, it was assumed that the 2D model will have to be adaptive 

instead of a static 2D image. With the advice from clinicians and experts in the field of 

periodontics, the model can be continually improved in accuracy. We can also purposely 

change the model to test a variety of geometries and pocket depths. In addition, the 2D 

model needs to be scalable depending on the resolution of the simulation. For example, a 

5 MHz simulation needs a model that is 5 times higher in resolution than a 1 MHz 

simulation. To perform these changes on a static image would be difficult to accomplish 

in a timely manner. The details of the adaptable 2D model of the periodontal tissue 

structures are found in the following section.
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5.3.1 Adaptable 2D Periodontal Tissue Model

A software system was developed so that the entire 2D model is defined by a 

small set of points that indicate the boundaries between the different tissue structures. 

Figure 5.7 shows the 2D model with a set of green points on the tissue boundaries. Once 

the resolution of the simulation space is determined, the rest of the boundaries are found 

using a cubic-spline interpolation between the major points. For example, the position, 

size, and shape of the alveolar bone are determined by only 5 points. The entire 

geometry of the model can be modified by simply moving the locations of these points or 

adding new ones. Once the boundaries are defined, the material parameters are literally 

filled in starting at the location of the red/blue dots.

Figure 5.7. The 2D geometry of the periodontal tissue 
structures is defined by small set of points (shown in green), 
which indicate the boundaries between the different tissues. 
The entire geometry can be changed by moving these points or 
adding new ones.
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5.3.2 Adding the Periodontal Pocket

Once the major geometry is established, the periodontal pocket is created 

automatically by specifying the depth of the pocket. For simplicity, the depth of the 

periodontal pocket is defined as the vertical distance from the top of the gum to the 

location of the junction between the gum and the tooth. The junctional epithelium (JE) is 

then positioned in the bottom of the pocket with a vertical height of 1.5mm (this can be 

changed). Then the pocket is completely filled with water (which is not shown in most of 

the figures). Figure 5.8 shows the 2D model with the periodontal pocket depth of 2mm, 

6mm, and 10mm.

2mm 6mm 10mm

0.025

Figure 5.8. The 2D periodontal model is shown for three different pocket 
depths.
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5.3.3 Two Dimensional Tip Construction and Placement

Like the periodontal pocket, the tip of the ultrasonic probe is modeled using a 2D 

cross section. Previous work suggested that a tip with linear sloped walls would be the 

most effective shape to deliver the ultrasound energy into the periodontal pocket [48]. A 

2D model of a linear tip is shown in figure 5.9. It is parameterized such that one can 

easily change the dimensions of the tip. These dimensions include base radius, 

transducer radius, wall thickness, length, and tip radius. Additional tip shapes can be 

modeled by specifying their cross sectional shape.

Once the shape of the tip is defined, it is placed into position at the top of the 

periodontal pocket. The angle of the tip is also parameterized so that it can be easily 

changed. The placement of the tip is completely automated. Figure 5.10 shows the tip of 

the periodontal ultrasound probe at 65°, 50°, and 30°.

transducer
radius

Hollow Tip
wall thickness

tip radius

Figure 5.9. A linear tip and its parameterized dimensions.
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Figure 5.10. The 2D periodontal model with the linear tip placed at three different 
angles. Once the periodontal and tip geometries are defined, the placement of the tip 
is done automatically.
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5.4 Three Dimensional Periodontal Pocket and Ultrasonic Tip Geometry

Once the 2D geometries are defined, the 3D geometries are created by rotating or 

sweeping the 2D models. The 3D tip is created by rotating the 2D tip geometry 360° 

about its central axis. Figure 5.11 shows an example 3D tip with the transducer shown in 

green. The 3D periodontal geometry is created by sweeping the 2D periodontal pocket 

model to create a curved tooth and tissue structure. An example 3D geometry with the 

3D tip in place is shown in figure 5.12. A close-up of the tip on top of the periodontal 

pocket is shown in Figure 5.13 (the water is not shown). The radius of curvature is 

parameterized so that tooth structures of different curvatures can be simulated. Figure 

5.14 shows three different tooth curvatures. The blue boxes in these figures are the 

boundaries of the simulation space.

Figure 5.11. 3D linear tip with the transducer in the base of the tip
shown in green.
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Figure 5.12. 3D periodontal simulation geometry
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Figure 5.13. The 3D periodontal model is shown with the 3D tip placed at the 
top of the pocket. The 3D model is created by sweeping the 2D model with a 
fixed radius of curvature.
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Figure 5.14. Three 3D models with different curvatures of the tooth 
anatomy ranging from completely straight (top left) to very curvy 
(bottom).
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5.5 Example Simulation Output and Visualization

Once the 3D geometries and simulation parameters are determined, a set of input 

files are created and passed to the 3DPAFIT code which runs on a parallel super 

computer (The SciClone). The details of the 3DPAFIT simulation can be found in 

chapter 2. Currently, the simulation software creates three different types of output or 

simulation results for the ultrasonic periodontal probe simulations.

The first is a series of vertical 2D slices through the center of the simulation 

space. These slices show the propagation of the acoustic waves starting from the 

transducer and propagating into the periodontal pocket and surrounding tissues. Figure 

5.15 shows a series of these snapshots for a simulation where the periodontal pocket 

depth is approximately 2.5mm. Figure 5.16 shows a close up of one of these snapshots.

In addition to these 2D slices, the value of the pressure waves over the entire 3D 

simulation space is accumulated. This 3D volume can be sliced to show the acoustic 

energy distribution inside the tissue. Figure 5.17 shows several horizontal slices through 

the volume to at three different depths below the tip. The brightness and color of these 

plots shows the horizontal acoustic energy distribution. Finally, the pressure across the 

face of the transducer is recorded to create the typical A-line. Figure 5.18 shows one of 

these A-lines indicating the initial burst and two reflections from the internal tip 

reflections.
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Figure 5.15. Several 2D snapshots from the 3D simulation showing the acoustic 
waves created by the transducer traveling down the tip and into the periodontal 
pocket and surrounding tissue. The depth of the periodontal pocket is approximately 
2.5mm.
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Figure 5.16. A close up of the pressure waves in the tip 
and the pocket.
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Figure 5.17. Horizontal slices showing the acoustic energy distribution at three different 
depths.

Initial Burst

2nd Reflections' 
from TipReflections 

from Tip- 4

-8
1000 2000 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0

Figure 5.18. A typical A-line (at 5 MHz) showing the initial burst and 
two reflections from the tip.
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5.6 Rigid Simulation and Experimental Results

Systematic rigid simulations were performed to provide an indication of where 

the echoes from the bottom of the pocket should appear in the A-lines for the more 

realistic simulations. Rigid simulations are performed with the geometry of the 

periodontal tissues described in the previous sections except that the soft tissues of the 

gingival and junctional epithelium (JE) are made rigid. This guarantees that all the 

acoustic energy stays in the water inside the tip and the periodontal pocket and ensures 

that all the acoustic energy that reaches the bottom of the pocket will be reflected. A total 

of 40 rigid simulations were performed at 5 MHz with the pocket depth ranging from

0.5mm to 10.5mm in 0.25mm increments. Each of these simulations required about 8GB 

of computer memory and took approximately one day to complete when mnning on 16 

computers (at 750Mhz each).

Experimentally, data is collected with an aluminum block with a sequence of 

holes drilled at different depths. The tip and the holes are filled with water just as the 

periodontal pocket is in the simulations. The large acoustic impedance mismatch 

between aluminum and the water keeps a large majority of the acoustic energy in the 

water. Figure 5.19 shows A-lines from simulation of the rigid periodontal region and 

experimental A-lines from the aluminum block at five different depts. (3mm to 7mm in 

1mm increments). In both cases, the A-lines have been low-passed filtered and the 

amplitude of the experimental A-line at 3mm was reduced to make the plot more 

consistent (this echo had a very large amplitude). In both the simulated and experimental 

data peaks stand out and shift to the right (further in time) as the depth of the pocket/hole 

gets deeper.

139

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



R e p ro d u c e d  with

Echo from Tip

Figure 5.19. A-lines are plotted for five simulations (ton) and 
five experiments (bottom). l m d
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The differences in amplitudes can be attributed to several experimental and 

geometrical differences. The experimental data was collected at 10 MHz and includes 

hardware amplification. Also, the crevice (or slit like) geometry of the 3D periodontal 

pocket confines the acoustic energy to two-dimensions while the hole of the experiment 

confines the energy to one dimension. This would cause the echoes from the experiments 

to be larger than seen in the simulations.

The velocity of sound in water is approximately 1500 meters per second. In the 

simulated data, the average time between each peak is 1.3337 microseconds. This 

corresponds to a distance of 0.00200055 meters or indicating the average depth change of 

the pocket is 1.00027 mm. This distance is indeed the change in pocket depth in between 

each of the simulations. In the experimental data, the average time between the peaks is 

1.5625 microseconds which corresponds to an average change in the depth of the hole of 

1.171 mm. This example illustrates that the acoustic simulations of the 3D periodontal 

pocket can accurately create A-line data with echoes from the bottom of the periodontal 

pocket. The echoes accurately represent the depth of the periodontal pocket. In the more 

realistic simulations and experimental data, a more sophisticated signal processing 

technique will be needed to detect the faint echoes from the bottom of the periodontal 

pocket.
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5.7 Periodontal Tissue Material Parameters

Accurate material parameters are necessary to simulate realistic acoustic 

propagation in the soft tissues surrounding the periodontal pocket. For the 3D acoustic 

simulations, the material parameters that are needed are the density p and the acoustic 

wave velocity c. Unfortunately, we have been unable to find any references that quote 

these material parameters directly. In previous work, 2D simulations were performed of 

the tip and the region surrounding the periodontal pocket [48]. In these 2D simulations, 

the junctional epithelium and gingiva are modeled as skin and muscle, respectively. We 

will take the same approach in our 3D simulations.

There are several references for the acoustic material properties of muscle and 

skin. From [56, 57], we find the density of skin and muscle as 1020 kg/mA3 and 1080 

kg/mA3, respectively. In addition, Culjat et. al. cite the density and acoustic wave 

velocity of soft tissue as 1540 m/s and 1060 kg/mA3 [58] and Duck cites the acoustic 

velocity and density of muscle as 1550m/s and 1060 kg/mA3 [59]. The table below 

indicates the material parameters used in the 3D simulations. For reference, the acoustic 

wave velocity and density of water is also presented [60]. We suspect that these values 

are close but not exact. The tissue surrounding the periodontal pocket contains many 

muscle-like fibers that run perpendicular to acoustic wave propagation direction. This 

could raise the acoustic impedance mismatch between the water and tissue. In most 

simulations, the acoustic impedance mismatch was increased to account for this fact.

Material
Density

(kg/mA3)
Acoustic Wave 
Velocity (m/s)

Skin (JE) 1020 1540
Muscle (Gingival) 1080 1550

Water 998.2 1482.1
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5.810 MHz Ultrasound Beam Study

Describing the 3D ultrasound beam inside the probe tip and the complex tissue 

structures requires a very sophisticated 3D model such as the one presented in this 

chapter. The ultrasound beam is defined by the spatial distribution and intensity of the 

acoustic energy inside the tissues. The ultrasound beam is very difficult to characterize 

because the beam interacts with several tissue layers in an inherently 3D and non- 

symmetric geometry. Understanding the shape of the ultrasound beam inside the tissues 

can assist in the interpretation of the experimental A-line measurements.

We use several visualization methods to describe the ultrasound beam inside the 

tissues. The first is a series of 2D vertical pressure snapshots showing the wave 

propagation through the probe tip and into the periodontal tissues. Figure 5.20 shows 

several snapshots from a 10 MHz simulation. These snapshots show that a large portion 

of the acoustic wave energy is channeled down the water filling the pocket. After the 

interaction with the bottom of the pocket, the waves scatter off the dentin below the crest 

and the beam begins to slowly diverge away from the tooth.

Figure 5.21 shows a vertical pressure accumulated snapshot where the dark blue 

color indicates the spatial distribution of the acoustic energy. This plot also shows a large 

amount of the acoustic energy is confined to the pocket and scatters off the dentin below 

the crest. This degree of the scattering off the dentin depends on the angle of the probe 

tip and the geometry of the tooth structure.
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Figure 5.20. A series of vertical pressure snapshots showing the acoustic wave 
progression. In the top center snapshot, the 10 MHz acoustic waves are mostly 
confined to the pocket or near the interface between the water in the pocket and 
the gingival tissue.
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Figure 5.21. Vertical beam profile from a 10 Mhz 
simulation showing the spatial distribution of the acoustic 
energy. The darkness of the blue is proportional to the 
acoustic energy intensity.
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In addition to vertical profile of the ultrasound beam, we also examine horizontal 

profile slices showing the lateral spread of the beam as it propagates down though the 

tissue. Figure 5.22 (spanning two pages) contains 12 horizontal beam profile slices 

located in 0.5 mm increments below the bottom edge of the tip. The colors of the images 

are proportional to the spatial energy intensity with red being more intense than blue.

The right side of these images would correspond to the facial side of the tissue geometry.

In this simulation, the depth of the pocket is 3mm. In between 0.5mm and 

2.5mm, you can make out the boundary between the water in the pocket and the soft 

gingival tissue. As the energy propagates through the tissue, several side lobes form 

inside the gingival tissue and inside the pocket. The side lobes inside the gingival tissue 

quickly lose their strength as compared to the main beam inside the pocket. Two side 

lobes form on either side of the main beam inside the pocket. It is not suspected that any 

significant returns would come from these side lobes since these lobes diverge away from 

the main lobe as the waves propagate. When the acoustic waves interact with the bottom 

of the pocket (3mm), the beam is very narrow and close to the tooth surface. From 

approximately 4 -  6mm, the beam reflects off the dentin and begins to slowly spread out 

but is still relatively narrow.
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Figure 5.22. A series of horizontal beam profiles showing the lateral resolution of the 
ultrasound beam at 10 MHz.
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5.9 Conclusions

In this chapter, we have shown that the three-dimensional parallel acoustic finite 

integration technique can accurately simulate acoustic wave propagation in the complex 

geometry of the periodontal region. A sophisticated set of software tools were created to 

automatically create the 3D geometry of the periodontal region and run systematic 

simulations. Several techniques are used to visualize the ultrasound waves inside the tip 

and in the periodontal pocket and surrounding tissues.

Rigid simulations were performed to show that the simulation software can 

produce realistic data with echoes corresponding to the depth of the periodontal pocket.

A set of 10 MHz simulations were completed to describe the ultrasound beam inside the 

tissue. In addition many systematic simulations were performed to create a large data set 

to assist in the development of the signal processing algorithms to automatically detect 

the pocket depth.
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Chapter VI 

3D Parallel Cylindrical Elastic Finite Integration Technique 

(3DPCEFIT)

6.1 Introduction

We present here a simulation method based on the elastodynamic finite 

integration technique (EFIT) that can model guided elastic wave propagation in pipe-like 

structures including 3D pipe bends. Several simulation techniques exist for modeling 

elastic waves in pipe-like structures. Gsell et al. developed a finite-difference technique 

for modeling elastic waves in straight pipe-like structures based on the displacement- 

equations of motion [1]. One advantage of this technique is its ability to model elastic 

wave interaction with subtle flaws due to its fine grid spacing. Leutenegger et al. showed 

how this method could be used to assist in locating defects in cylindrical structures [2]. 

Hayashi et a l developed a semi-analytical finite-element (SAFE) technique for modeling 

elastic wave propagation in pipe-like structures including pipe bends [3, 4]. Their 

technique uses a relatively large spatial discretization which leads to fast computational 

times and allows for long pipe sections with multiple bends to be modeled.

Unfortunately, this technique as described can not be used to model guided wave 

interactions with subtle flaws. The finite integration technique is a powerful, accurate, 

and stable time-domain method for numerically solving partial differential equations. It

153

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



has been used to model 2D, axially-symmetric (2.5D) and full 3D elastic waves in the 

Cartesian and cylindrical coordinate systems[5-7].

We present a finite integration method for modeling elastic waves in pipe-like 

structures and pipe bends. We then show that this method compares well to experimental 

results. We also show how the fine spatial discretization allows guided elastic wave 

scattering from subtle flaws to be modeled. This simulation method can be used to 

design complicated hardware devices such as phased array transducer belts to focus the 

elastic wave energy on straight pipe sections, as well as beyond pipe bends, and to 

generate systematic data to test signal processing algorithms.

6.2 3D Cylindrical Elastic Finite Integration Technique (3DCEFIT)

We first describe how the finite integration technique is used to simulate 3D 

elastic waves in complex pipe-like structures. We present the equations necessary to 

simulate elastic waves in a pipe-bend and show how they can easily be adapted to model 

straight pipe sections.

6.3 Finite Integration Procedure

We begin with the nine equations for elastic wave propagation in solids using the 

cylindrical coordinate system [8].

pvr =-
or r dip dz r (6.1)

154

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. oT,z 1 8Trpz 8Tzz 1 T f 
pv =-+--+-+- + z or r orp oz r rz z (6.2) 

. oT,rp 1 oTrprp aT rpz 2 
pv¢=---+----+---+-T +f 

(6.3) or r a rp oz r rrp rp 

. ( ) Ov, -{ v, I Ov, Ov, J T,, = A-+2,u -+ -+--+-
or r r orp oz (6.4) 

. (A 2 t' I Ov, J -<(ilv, Ov,) T¢¢ = + ,u -+-- + -+-
r r orp or oz (6.5) 

. av (v lilv, avJ Tzz = (A+2,u)---!.+A _r +--+-' 
oz r r orp or (6.6) 

. e Ov, Ov, v, J 
T,rp = ,u ; orp + or - 7 (6.7) 

T (Ovz Ov,) =,u -+-rz or oz (6.8) 

. ( iJv, I Ov, ) T =,u-+--
zrp oz r orp (6.9) 
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z

Figure 6.1. Staggered distribution of the nine unknown 
variables on a single 3D cylindrical computational cell.

The variables v and T are the components of the velocity vector and stress tensor, 

respectively. The material parameters are density p and the Lame constants X and p. The 

velocity source function components are represented by f r, f z, and f v. For the finite 

integration method, the 9 unknown variables are placed on a staggered grid. A single 

control volume with the variable distribution for the cylindrical coordinate system is 

shown in figure 6.1. Many millions of these grid cells are stacked together to create a 

computational space that accurately represents a pipe-like structure. Now we will 

describe the derivation of the simulation equations.
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Simulation Equation for vr

First we integrate both sides of equation 6.1 over a cylindrical control volume 

centered on the radial velocity component vr.

Now we invoke the divergence theorem which replaces part of the volume integrals on 

the right hand side with a surface integral.

JJJ> rrdrdzd(p = (rTrrdzd(p + Tripdrdz + rTrzdrd<p)+ j{jj—--- — + f r j r  drdzdq) (6.11)

Next we approximate the integrals by multiplying the integrand by the volume or 

surface of each integral. Unlike the cartesian method (EFIT), the inner and outer surfaces 

of the control volume have different surface areas. These surfaces areas are defined by 

rAzAcp, where the distance r is different for the inner and outer surface of the control 

volume. Thus we denote r(,) and r(o) as the radial distance to the inner and outer surfaces, 

respectively. We also introduce superscripts + ,- , t , and b to indicate the direction of the 

variables relative to the unknown variable vr. The superscripts + and - represent the 

direction of the variables in the positive and negative <p direction and superscripts t and b 

represent the direction of the variables in the positive and negative z direction.
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pv, rArAzAp = -  S ' V  )az txp + (jr«  -  X/-> )aMz + ( t?  -  T™ >ArtV +
^ T ’C") + T ^  _  rr(.°)

t t  rr P P

2r

i(i)

■ +  f r r ArAzAp (6.12)

Next, we divide both sides by rArAzA(p.

(r (o)T (o) _  <i)T ( i ) \  ( f ( + )  _-r
pVr _ \r Lrr r rr ) . V  r<p 1 rV

rAr
J ’(o) +  y ( 0  _ y ( ° )  _  y ( 0

+  ■
pp pp

2r

) ,  f o ’ - r f )
rA(Z> Az

+ fr
(6.13)

We have now spatially discretetized our equation. Later we will use a central time 

difference to replace the time derivative on the left hand side to reveal our final equation. 

We follow these same four steps to find the other 8 equations.

Simulation Equation for vz (Equation 6.2)

1) JJJpv2rdrdzdp = JJjĵ

= <$F {rTrzdzdp + T^drdz + rT22drdp)+ J J 0  Trz + f

STr2 1 dT dT22 1 )
- ^  + — - ^  + — Z- + - T rz+ fz Ydrdzdp 
dr r op Oz r )

2)

3)

4)

r drdzdp

pvzrArAzAp = (r(o)T j o)- r (% (0)AzA^ + ( 7 ^ - T ^ A r A z(+) T (") >

+ (T j°  - T j b))rArAp +
f  IJ1 (o ) r p  ( i)  'N

"  +/,rz rz

P » z  =

+

2 r

(r<»>TJ a)- r^T„m) | (T^+)- T ^ )  [ - Tzz(b))

r ArAzAp

rAr
(T ^  j _ T ^  
v  rz rz )

2 r

rAp Az

+  f z
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Simulation Equation for vv (Equation 6.3)

1) JJjpv ipr drdzdcp

2)

3) pv tprArAzA(p

4)

dTr. . 1 dT™ . dT« . 2
dr r d<p dz r

+—Tr9+ f9- X f J
= (r Trf dzd(p + + Tzlprdrd(p)

+ \ \ i z Tr v + f v \ drdzd(p

r drdzd(p

y
= (rwr «  -r">r»)AzA«,+ ( C  -r«)ArAz

+ ( C  + + / ,  W * A « >
vr y

/ „ ( o ) t ( » )  _ j . ( O t ( ‘ ) \  / ' T ' ( 0  _  j , ( * ) ' v
V  rg> rtp / . \ tptp (pq> ) . \  ztp ztp )

+

rAr
( rr(°) i
V r p  rtp )

rÂ >
2$? 2̂7

Az

+ /«

Simulation Equation for T„ (Equation 6.4) 

^  Wfinrdrdzdtp = jjjj^ (A + 2p)^~-  + A 

2)

vr 1 dv dvz
—  + ------------  + — -
r r d(p dz

w
r drdzdcp

J  J

-  r|^(A + 2fi)vrdzd(p-\— v^drdz + Avzdrd<p

A—  r  drdzdcp

3)

4)

TrrrArAzA(p = (^  + 2//)(r(o)v ^  -  r (0v<°)AzA«p + A(v™ -  )ArAz,(+)

+ - vf^)rArA(p +
(  v(o)+ v(i)  ̂

A r '
2r

rArAzAcp

- _ r < v > ) + J _ ( v «  -v<->)
rAr rÂ >

+ ^ -(v ? , - v ™ ) + i( v ;" ’ +v;0)
Az 2r
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Simulation Equation for T„ (Equation 6.5)

^  If!^ /d rd zd p  = JJJl (A + 2//)

2)

3)

4)

—  +  ■
r r dp

+ X
dvr dvz 
— -  + — -
dr dz

r drdzdcp

■■ ((A + 2fi)vf drdz + Avrrdzdp + Avzrdrdp)

J J jfd  + 2 ^
r j

T^rArAzAp = + 2/0(v£+) -  v(f })ArAz + A(r'c°)v'0) -  r (i,v '°)AzA<p

r drdzdp

r
+ A fy^ -  v\b) )rArAp + (A + 2ju)

lr
rArAzAp

+

(A + 2 /i)(v(„ _ v„ )+  J _ (rMvM _ r mvci>) + J . (vco _
rAp rAr Az

(A + 2/S) (v(0) + yCo)
2r

Simulation Equation for Tzz (Equation 6.6)

^  \\\Tzzrdrdzdp = JJJj (A + 2/d)-^- + A 

2)

yyr r dp dr 

-  {r(A + 2 fi)vzdrdp + Avtpdrdz + rAvrdzdp)

r drdzdp

n ( ^ }  drdzdp

3) TzzrArAzAp = (& + 2/^Xv^ -  v f ’ )rArAp + A(v<+) -  )ArAz

+ A(r(o)v<o) - r (,y°)A zA p + (  (v^o) + v<°)^
2 r

4)
(A + 2ju)

rArAzAp 

A
Az rA#> rAr

v. - r

A+ ^ (v« +v;») 
2 r
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Simulation Equation for Trv (Equation 6.7)

1 dVr , 9VP 
r d(p dr r J

0  jjjT rrrdrdzdp = + drdzdf,

2) = (jjvrdrdz + r/jvipdzdrp)~ Jj| /i
v  '

r j
r drdzdrp

3) Tr<prArAzArp = M ^ +) -  v<-))ArAz + ^ { r{o)v(fp] - r (i)vf)AzArp

i i ( v(0) + v (0 
2 r 9 9

4) t r = ^ ( v « - v ! - >) + ^ ( r <X l -r<'>v™)-ii(v<">

- f - « ’ +vJ>)rArAzA*>
Lr

rA<p" r rA r" 9 9 ' 2 r '

Simulation Equation for Tn (Equation 6.8)

1} J J f t  rdrdzdtp = drdzdrp

2 ) = (fjv2rdzdrp + juvrrdrdtp)

3) f rzrArAzA<p = /*(r (° Y 0) ~ r (0v f  )AzArp + ft(vrw -  v<b) )rSrArp

4) T„ = J L (rWvw _ r (0v(0) + i i (v(0 _ VW}
rAr Az

Simulation Equation for T z tp  (Equation 6 . 9 )

*> \ \ \ f zrrdrdzd9 = \ \ \ J ^ + ~ ^ d n t d 9

2) = (in /drdrp  + juvzdrdz)

3) t ziprArSzA<p = ^ (vi° “  v? } )rArAp + //(V^ -  v(z~})ArAz

4) K  = - f ( v ? ) -v?>) + - f . ( v « - v « )
Az rA^>
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To recap, our final nine simulation equations are giving below

L  (0)7(0) _  „(0r  (i) 'I (t(+) _  T’(-) 1 ( T (t) _  T (Z>) ) 7(0) . 7(0 _  7(0) _  7(0
• _  V' f  1rr /  ̂ \ x rep ) \J- „ 1 rz J  ̂ rr rr J  <p<p | r

rAr rAcp Az 2r r (6.14)

( r ^ T j o)- r wT„W) . ^  ~ T’S ' )  . ( T j ° - Tzz(b)) (tJ 0) +tJ ° )  . ,
 7 * ----------+— 7Zi— +-------Z  +------ £ ------ + /z (615)

. (r(o% ^ - r (% y )  ( T £ - T £ )  ( 7 f f - T £ )  (7ff + 7ff)
ĴVq> rAr rA<p Az r 9 (6.16)

t  = ( ^ 0 (r(.,vw _ r C0v(0 ) + _ £ _ (v«  _ VH )+J l (v« - v? ) +± i v ?  +v«)
rAr rAq> Az 2 r (6.17)

= H i ^ ( vw _ v(r)) +_ L (r<*y») -vf>) + (^ 2— (v-0) +v<°) 
rA^ v rAr Az 2r (6.18)

t  -v<6>) + -£-(v<+) - v « )  + 4 - < r(0)v̂ +  v«)Az rÂ 7 rAr 2r (6.19)

f  = -£ - (v<+) - v (_)) + - ^ ( r (o)v(o) - r (‘V ° ) - — (v(o) +v(i))
rA^ rAr 2r (6.20)

r„  ( r (o)v̂ o) - r (,V ° )  + — (v?} - v f  )
rArV AzVr (6.21)

T = iL (v (0- v w ) + - ^ - ( v (+)- v (_))zc? * V 0 y a> / k V z z /Az rA$> (6.22)

After having discretized the equations in space using the finite integration 

technique, we approximate the time derivatives using the standard central difference

v w = -v /" “1/2)At (6.23)

y, (»+1/2) _7j_(""1/2) ^  (6.24)
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Here the superscript n represents the time step. This leads to a temporal discretization 

that is staggered in time. With these equations, we can update each value in our 

simulation space based on the neighboring values.

6.4 Modifications for Pipe Bends

To describe elastic waves in pipe bends, we use a modified cylindrical coordinate 

system where the z-axis is shifted and then curved to follow the center of a pipe bend as 

shown in figure 6.2. The only effect this ultimately has on equations (6.1 to 6.9) is that 

dz is now replaced with the following:

dz = r sin(> -0 .5 /r + <pcurvalure) + rcurvalure (6.25)

Here rcurvature is the radius of curvature of the pipe bend and <pCurvature is the angle that 

points towards the inside of the pipe bend.

After making this substitution, we again we use the finite integration technique to 

find our new simulation equations. Our control volume is similar to the one pictured in 

figure 6.2, except that the z-axis is now bent. Now, the size of the volume and its faces 

change depending where on the grid it is located. This requires us to keep track of our 

position on the grid so that we can properly account for the different size volumes. We 

rederive our simulation equations after making the substitution in (6.25) to find the 

following new simulation equations.
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New z axis

Old z axis

Figure 6.2. Curved cylindrical coordinate system. 
The z-axis is shifted and curved to follow the 
middle of a pipe bend.

( r ( « )  ( o ) T ( ° )  _  a )  ( i ) T ( ‘) \  f r W  ( 7 ’ W _ 7 ’ W ' \  j ( ° )  , t ’ ( 0  _  j ( ° )  _ j ( 0
. _  V  L  1 rr ' u 1 rr } , V r<p J  rip ] V ' rz 1 rz I , rr * rr M qxp * <ptp j.

r W c ( c ) A r  r ( c ) A ^  c ( c ) A d  2 r ( c )

(r(o)c(o)TJo) _ r (0c(0TJ 0 ) ( T j+) ~ r „ H ) ( T j ° - T j h)) (T j0)+Trz(i))
r (c)c(c)Ar r (c)Ap c(c) A0 2 r (c)

(rwcwr w - r ^ c P T ^ )  (7£> - t£ > )  ( r f f £ ^ _ + 0  _

PVp r (c)c(c)Ar + r (c)A<p + c(c)A0 + r (c) *

(/L + 2//)(r<°>Ĉ v<°>-r(i)c<-y->) A(v<+) -v<->) A(v<'> -vf>) A(v<a)+v<°)
r (c)c(c)Ar r(c) Aq> c^LO 2 r (c)
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t  (11) (A + 2 / / X v f - v f 1) [ f f A(v<o) + v<° )
c(c)A0 r(c)A^ r (V c)Ar + 2r(c) ( 6 .3 0 )

(A + 2 /0(v^-v<-)) i A(c(o)r (o)v ô) - c (i)r(i,v*i>) , A(v<° - v<4)) , (/L + 2/i)(v^ + v<°) 
r (c)A<p

T — v I I I - . . .
"(C)A m r {c)c ic)Ar c (c)A6> 2rw (6.31)

ju(r(o)c(o)vlo) - r ^ c ^ v f )  M(v ? -v<»>)

r (c)c(c)Ar c(c)A# (632)

• / /(v'+)- v « )  M(r(o)c ^ - r ^ c ^ )  //(v<o)+ v « )

rf r (c)A^ + r (c)c(c)Ar 2r(c) (633)

c<c)A0 r (c)A p (6 3 4 >

Here r(i\  r(c>, and / 0y) are the radial distances measured from the curved z-axis to the 

inside, center, and outside of the control volume. The variables c®, c^ , and </0yi are the 

distances measured from the axis of curvature to the inside, center, and outside of the 

control volume. These values are a function of the current radial position, the radius of 

curvature rcurvature, and the angle pointing towards the inside of the bend (p curvature-

c(0 = (r(0 sin(<p -  0.5^ + <,ocurvalure) + rcunalure) (6.35)

c(c) = ( r (c) sin(^ -  0.5tt + <pcurvattlJ  + rcurvatuJ  (6.36)

c(o) = (r(o) sin(<£> -  0.5;r + (pcurvature) + rcurvature) (6.37)

To simulate a straight pipe section with these equations, we set c(i) = c(c) = c(o> = 1 and A0 

= Az. With these equations, it is straightforward to simulate elastic waves in pipe 

segments containing combinations of straight sections and bends in any direction, 

including multiple out-of-plane bends.
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6.5 Stability Criteria

The spatial discretization in the radial direction is identical to the one derived by 

Schubert in his axially-symmetric cylindrical finite integration technique [5]. We assign 

8 grid points to the smallest wavelength present in the simulation. In elastodynamics, this 

is typically the Rayleigh wave, which is at most 13% slower than the shear wave, so we 

assign 10 grid points to the shear wavelength.

Here, cs is the shear wave speed and f max is the maximum frequency present in the 

simulation. The exact radial step size is adjusted as needed to simulate the correct pipe 

wall thickness. Next, we choose Acp so that the grid spacing on the outer circumference 

of the pipe (routerh(p) is equal or smaller than Ar and that the total number of grid points in 

the <p direction sweeps an angle of exactly 2 k .  First we find the number of grid points in 

the (p-direction N9.

(6.38)

outer
(6.39)

Now we find the exact discretization angle A<p.
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2 nA (p -----
N ,

( 6 .4 0 )

Again, we choose Ad so that the grid spacing on the outside of a bend is equal or less 

than Ar. First we find the number of grid points in the z-direction through the curve that 

sweeps an angle of S.

^ ( f o u le r  ^curve )N a
A r (6.41)

Now we find Ad as

S_
N a=----  (6.42)

If a straight section is being simulated, than we set A d = Az< Ar. The temporal 

discretization is found using the fastest wave speed and the smallest spatial grid sizes. In 

the ^-direction, this is found on the inside circumference of the pipe. In the ^-direction, 

this is found on the outer edge of the pipe on the inside of the pipe-bend. We use the grid 

spacing at these locations to compute our time step At.

At <
1 1

2 +  ( ( r  - r  )A d)2 + (r. A < p)2 (6-42)VV curve r outer / LA'y J v inner )

If a simulation models a pipe segment containing multiple bends of different 

curvatures, then the smallest curvature must be used to determine the temporal step size.
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6.6 Boundary Conditions

Here we derive the stress-free boundary conditions at the surfaces of the pipe. 

Even with added complexity of the frill 3D space and the curved z-axis, we arrive at the 

same boundary conditions as Shubert[5] in the axially symmetric cylindrical case. We 

begin by enforcing that the velocity components be placed on the surface of the pipe. At 

the inner and outer surface of the pipe, we want the stress components Trr, Trz, and Tnp to 

be zero. Since the Trz, and Tr<p stress components are on the surface, we simply set them 

to zero. To enforce that T„ is zero at the surface, we set T j o) = -Trra> at the outer surface 

of the pipe and Trr(i) = - T jo) at the inner surface of the pipe. We then extrapolate to find 

the T̂ tp term that is outside the boundary of the pipe. This leads to the following 

algorithm for finding vr.

At the outer surface o f the pipe (r = rmaz).

W s  c o t  T  =  T  ®  T  ®  T  ( '0  T  = T  =  T  = Av v  g  a o i  i  rr 1 rr > 1 tptp +*1 (ptp 1 (ptp y 1 rr 1 rz 1 rtp

(6.43)

At the inner surface o f the pipe (r = rmi„).

W o  o o f  T  W  =  T  (" )  T  W  =  I T  (° )  T  ( ° ° )  T  = T  =  T  = 0  v v  c  a o i  i  rr rr 9 1 (ptp qxp “  1 <p(p 9 1 rr 1 rz 1 rg>

(6.44)
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The same procedure is carried for the z-velocity components vz equations on the pipe 

ends.

At the ends o f the pipe (z= zmt^.

We set Tzz(h) = -Tzz(t\  Tzz=Trz= Tz<r0.

2t  (6.45)

At the ends o f the pipe (z= zmax).

We set Tzz{,) = -Tzz{b\  Tzz=Trz= TZ(p=0.

2p <b> (6.46)

c(c) A9pv2=-& rz + f 2

6.7 Absorbing Boundary Layers

In most simulations, it is important to eliminate or significantly reduce wave 

reflections from the pipe ends, i.e. when the actual pipe is longer than the simulation 

space allows. This is accomplished by adding absorbing boundary regions to the end(s) 

of the simulated pipe. To do this, the velocities in the absorbing region are computed as 

usual but with a small damping factor. The damping factor is a function of the distance 

from the inside position in the absorbing layer a and the percentage p  in which each layer 

removes from the velocity values. We replace (6.23) with the following equation.
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( 6 .4 7 )

Where the damping factor D is given by

D = (1 -  p *  a) (6.48)

The damping factor is zero at the inside of the region and steadily increases as one 

moves to the outside of the absorbing region as shown in figure 6.3. This technique can 

be used to significantly reduce reflections on all acoustic and elastic finite integration 

methods. For the finite integration technique described in this paper, we found that an 

absorbing region 40-70 nodes thick with a damping percentage of 0.2% (p=0.002) 

worked well for reducing reflections from the artificial pipe ends.

6.8 Parallel Implementation

While some results can be obtained using the 3DCEFIT technique on a standard 

desktop computer, substantial improvements in computational time and model 

complexity are achieved with a parallel implementation. A parallel version of the 

3DCEFIT has been implemented on William and Mary’s high performance 

computational cluster, the SciClone. At the time of this work, the SciClone was 

composed of 311 computer processors with 236 GB of physical memory and 15.1 TB of 

disk capacity, and with a peak performance of 362 billion floating point operations per 

second.
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The parallel algorithm uses a straight forward domain decomposition approach to 

divide the simulation space across many computers. Similar decomposition methods can 

be found in [9]. After every half time step of the simulation, each computer swaps the 

appropriate boundary values with neighboring computers to create a large and seamless 

simulation space. Most, if not all message passing interfaces allow blocking and non- 

blocking routines to send and receive data. We use a combination of these routines to 

achieve the most optimized parallel algorithm. The parallel algorithm is given below.

Parallel Algorithm

1) Compute boundary velocity values

2) Send the new boundary values to appropriate neighboring computers (using a

MPI non-blocking send)

3) Compute the rest of the velocity values

4) Receive the boundary velocity values from neighbors (using a MPI blocking

receive)

5) Repeat these 4 steps with the stress values.

Simulations that take many hours to complete on a single high-end desktop PC take just 

minutes using this parallel implementation.
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6.9 Conclusions

In this chapter, we have presented all the necessary equations and stability and 

boundary conditions to simulate elastic waves in pipes. In the following chapter, we will 

validate this simulation method by comparing simulation results directly to experimental 

data and to results from a commercial finite-element simulation package. We will also 

present several applied examples of how this simulation technique can be used to solve 

real-world problems in hardware and signal processing design.
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Chapter VII

Applied Simulations: Guided Waves in Complex Piping Geometries

7.1 Introduction

Ultrasonic guided waves have been used successfully for nondestructive 

evaluation of a wide variety of structures [1-3]. Using ultrasonic guided wave methods to 

inspect piping systems hold great promise [4-8] but to successfully develop an ultrasonic 

guided wave system for remotely inspecting beyond pipe elbows it is first necessary to 

understand in detail how elastic waves propagate through and beyond pipe bends. With 

sufficient computational resources, this can be accomplished efficiently using 3D 

numerical simulations.

The 3DPCEFIT method allows us to accurately and systematically simulate the 

interaction of guided elastic waves with arbitrary flaws in complex piping structures in 

order to optimize ultrasonic guided wave pipe inspection protocols. In this Chapter we 

validate the 3DPCEFIT technique by directly comparing simulation and experimental 

results for a straight pipe. We then present several techniques for focusing guided waves 

on a pipe. For pipe bends, we compare simulation results directly to results obtained 

using a commercial finite element software package.
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Figure 7.1. A photograph of the experimental apparatus. The steel pipe segment 
is 3 feet long, has an inner diameter of 4 inches, and a wall thickness of 0.25 
inches.
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Figure 7.2. Line diagram showing the major components and 
connections of the experimental apparatus.
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7.2. Comparison with Experimental Data

To validate this simulation method, we compared simulated and experimental 

ultrasonic guided waveforms. This was done by performing pitch-catch measurements 

and corresponding simulations on a straight pipe section mounted in a laboratory scanner 

[9-12] as shown in figure 7.1 and figure 7.2. A-line waveforms were directly compared 

for three different catch transducer locations located at 0°, 90°, and 180° and at a 

separation distance of 60cm from the pitch transducers. The longitudinal contact 

transducers are 3cm in diameter and the pitch transducer is driven with a short 200 kHz 

toneburst. Figure 7.3 shows several snapshots in time from this simulation. The gray­

scale intensity of these plots is proportional to the radial displacement on the outer 

surface of the pipe. Absorbing boundary conditions were not included in this simulation 

in order to closely match the experimental set-up, i.e. a short segment of pipe. It can be 

seen from this figure how the presence of multiple modes, end reflections, and wrap 

around waves can make signal interpretation quite difficult. Figure 7.4 shows normalized 

A-line waveforms from the simulation and experiment plotted together. The A-lines 

waveforms match well at all three locations which gives us confidence that our 

simulation is accurately describing guided wave propagation in pipe-like structures.
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Figure 7.3. Snapshots of a three dimensional 200 kHz pipe 
simulation. A single 3cm transducer is driven with a short 
200kHz tone-burst. The gray scale color intensity is 
proportional to the radial displacement on the outer surface of 
the pipe.
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90°

180°

Figure 7.4. Comparison between the simulated (gray) 
and the experimental (black) A-line data recorded at 
three different locations on the pipe showing very 
good agreement.

7.3 Guided Wave Scattering From Flaws

We next present simulation results from a pipe segment with a small thinning area 

located in the center of the pipe. The pipe dimensions are identical to the pipe simulated 

in the previous section. Figure 7.5 shows several snapshots from the simulation, while 

figure 7.6 shows two recorded A-lines taken from a clean and flawed pipe segment, 

respectively. The differences in the two A-lines are apparent at the beginning of the 

signals where one of the guided wave modes has shifted in time and changed amplitude. 

A systematic study of the interaction of guided waves with flaws and the resulting 

changes in the recorded A-line measurements would greatly benefit the development of 

automatic flaw detection algorithms.
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Figure 7.6 demonstrates how small the differences are in the recorded waveforms 

between a corrosive-type flaw and unflawed pipe sample. Corrosive flaws are gradual 

thinnings that do not reflect strongly compared to other types of flaws such as saw cuts or 

flat-bottomed holes. The problem is compounded if the flaw is small and located in a 

hard to reach area such as underground or beyond pipe bends. For these reasons, it is 

advantageous to be able to focus guided wave energy at long distances and beyond pipe 

bends. The focal spot can then be walked about the circumference of the pipe and down 

the axis to inspect the structure completely for flaws.

Figure 7.5. Snapshots of a three 
dimensional pipe simulation with a small 
thinning flaw located in the center of the 
pipe. The color is proportional to the radial 
displacement on the outer surface of the pipe.
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time

Figure 7.6. Comparison of A-line data from a clean 
(black) and flawed (gray) pipe segment. The circled 
region shows where one of the guided wave modes 
has shifted and changed in amplitude because of the 
interaction with the flaw.

7.4 Focusing Techniques

7.4.1. Focusing with Hardware: Phased Array Transducer Belts

Guided wave focusing in pipes is typically done with phased array transducer 

belts [13]. The timing and amplitude of each excitation waveform are adjusted such that 

the desired guided-wave mode from each transducer arrives at the focal spot at the same 

time. The delay of each transducer d  can be found given the velocity v of the desired 

guided wave mode and the shortest distance s between the given transducer and focal 

point. The delay d  is given by the following equation

For a straight pipe section, the shortest distance between the transducer and the focal 

point is given by
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s = J J J T y r 2 (7.2)

where f z is the axial distance between the transducer and the focal point, r is the radius of 

the pipe, and y is the smallest angle between the transducer and focal point. This angle y 

is given by the following equation

Here, a(p and f p are the angles in radians of the transducer and the focal point, 

respectively. The following simulation demonstrates phased array focusing on a straight 

pipe section. A phased array of thirty-two 1cm diameter normal-incidence contact 

transducers evenly spaced along the circumference of a 4” inner diameter steel pipe with 

a wall thickness of 0.25” is simulated. All the transducers are driven with the same 

200kHz tone-burst excitation except they are delayed according to equation (7.1) such 

that the desired guided wave mode arrives at the focal point, 1 meter from the transducer 

belt, at the same time. Figure 7.7 shows several snapshots from this simulation. Figure

7.8 compares the energy distribution on the circumference of the pipe at one meter for the 

focused simulation (black) and an axially-symmetric wave (gray). The energy of the 

axially-symmetric wave is evenly distributed across the circumference while in the 

focused simulation, the energy is concentrated at 180°.

( a y - f y + l T V )

y  = minj ( a ^ - f ^ ) 2

0 f 9 - 2 n f (7.3)
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Figure 7.7. Snapshots of a three dimensional 200 kHz pipe 
simulation. A transducer belt containing 32 omni-directional 
transducers. The transducers fire out of phase such that the desired 
guided wave becomes focused one meter from the transducer belt.
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Figure 7.8. Polar plot comparing the 
energy distribution on the 
circumference of the pipe at one meter 
for an axial symmetric wave (gray 
circle) and the focused wave (black). 
For an axial symmetric wave, the 
energy is uniformly distributed around 
the pipe. Using a phased array 
transducer belt and the focusing 
algorithm, the energy becomes 
concentrated at 180 degrees.

7.4.2. Focusing in Software: The Synthetic Aperture Focusing Technique (SAFT)

The Synthetic Aperture Focusing Technique (SAFT) is a numerical method for 

focusing wave fields. SAFT was originally developed for radar applications and has been 

adapted by the NDE community for improving lateral resolution and imaging quality 

[14]. The SAFT technique has been used successfully with Lamb waves for locating and 

identifying flaws in plate-like structures [15]. Here we implement a time-domain SAFT 

technique for focusing Lamb waves in pipe structures.

One of the advantages of this technique is that no complicated phased array 

hardware is required. Instead, each transducer in the array fires individually while A- 

lines are recorded at each of the catch transducer locations. These A-lines are stored and 

then later combined using the SAFT algorithm to synthetically focus the ultrasound 

waves onto any location on the pipe. The A-line waveforms are shifted in time and 

summed up such that the guided waves arrived at the focal point at the same time. The 

time shift of each waveform is identical to the time shift we previously used for phased
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array focusing. The following equation produces a new A-line Ac at a given transducer 

location c by combining all the A-lines recorded at that location.

N
SAc{t) = Y , A^  + d) (7.4)

n=1

Here N  is the number of pitch transducers, SAc(t) is the new SAFT constructed A-line at 

catch transducer location c, A„iC(t) is the recorded A-line from catch transducer c when 

the pitch transducer n fired, and d  is the same delay we computed in equation (7.1). It 

should be noted that there are frequency domain versions of the SAFT algorithm that are 

more computationally efficient [14]. A simulation was performed to validate the SAFT 

algorithm, using a one meter pipe with 32 pitch and 32 catch transducers separated by 60 

centimeters was simulated. Each pitch transducer fires individually while all 32 catch 

transducers record the radial pipe displacements over time (A-lines). This creates 32 A- 

lines recorded at each catch transducer location with 1024 A-lines in total. Figure 7.9 

shows SAFT A-lines where the focal point was chosen to be at the location of one of the 

catch transducers. The focused guided wave mode is clearly visible in the new A-line 

data.

The SAFT technique also works well with experimental data. The same set-up as 

described above was performed experimentally. The same pitch and catch transducer 

locations were recorded experimentally so that the results could be compared to the 

simulation results. Figure 7.9 shows the SAFT results with the experimental A-lines. 

Figure 7.10 shows a polar plot comparing the energy distribution on the pipe for the 

simulated and experimental data. In these examples, the focal point was chosen to be
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located along the catch transducer ring. In practice, the focal point would be swept 

across the entire surface of the pipe or sections of interest to image the pipe for flaws.

There is good agreement between the experimental and simulation results, and thus 

gives an example of how simulations of this type can be used to develop signal 

processing techniques that may be difficult to refine using experimental data alone. With 

the SAFT algorithm, the focal point can be swept along the pipe in software to inspect it 

for flaws, which can substantially reduce the cost and complexity of the experimental 

apparatus.

Simulated A-Lines Experimental A-Lines

Figure 7.9. A-lines from produced by SAFT with the focal point 
at the catch transducer located at 180 degrees. Results are shown 
for simulated data (left) and experimental data (right). In both 
cases, the So mode is focused at 180.
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Figure 7.10. Polar plot showing the energy 
distribution on the circumference of the pipe at the 
focal point using the SAFT algorithm. There is 
very good agreement between the experimental 
(black) and simulated (gray) results.

7.5 Pipe Bend Simulations

Most piping systems contain bends which make inspecting them problematic. The 

3DCEFIT technique as described above can simulate elastic guided waves propagation in 

piping systems that contain combinations of bends of various curvature and in any 

direction. Figure 7.11 shows snapshots from an initially axial-symmetric 50 kHz guided 

wave propagating through a 90 degree pipe bend with radius of curvature of 6 inches.

The axi-symmetric wave was created with a transducer belt consisting of 32 omni­

directional 1cm diameter transducers. As expected, the guided waves naturally focus at 

the back of the pipe bend.
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To validate the simulation method for pipes with bends, we compare our 

simulation results directly to results obtained with the commercial finite element software 

package COMSOL. The pipe is symmetrically excited with 5 cycle 100kHz shear 

transducer on the outer radius of the pipe. The pipe segment contains a 90 degree bend of 

the same dimensions as the previous example, located 1.5 meters from the transducer 

belt. The shear displacement on the outer surface of the pipe on the end of the bend 

opposite the transducer belt was recorded over time. The shear displacements obtained 

using COMSOL and 3DCEFIT at two time instances are shown in figure 7.12 and reveal 

very good agreement. For comparison, this simulation took roughly 18 hours to run 

using COMSOL on a high end desktop computer. The 3DCEFIT simulation took 7 

minutes on a 64 node parallel computer (650 MHz processor per node). Similarities have 

also been observed between simulation and experimental results. The pipe segment used 

to obtain experimental results contained multiple welds which complicated the 

comparison so they will not be presented here.

Figure 7.13 shows a 100 kHz guided wave propagating through an S-bend and 

figure 7.14 shows a 100 kHz guided wave propagating through a series of 3D pipe bends. 

These figures demonstrate the ability to simulate complex piping systems containing 

multiple bends. This simulation method can also be used to simulate guided waves in 

pipe coils that are routinely found in heating and cooling systems and power plants.
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Figure 7.11. A 50 kHz guided elastic wave propagates 
through a 90 degree pipe bend. The guided waves 
naturally focus at the back of the bend.

\ - ! 0

m\

Figure 7.12. Polar plots of the sheer displacements obtained from a 
COMSOL finite element simulation (black) and a 3DCEFIT 
simulation (gray). The sheer displacements were recorded at 361pS 
(left) and 390pS (right) from the initial transducer excitation.
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Figure 7.13. A 100 kHz guided elastic wave propagates through 
a pipe S-bend.

Figure 7.14. A 100 kHz guided elastic wave propagates through many 3D pipe 
bends. The simulations provide a way to predict the path of the guided waves in 
complicated piping systems.

189

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



7.6 3DCEFIT Conclusions

We have developed and implemented a 3D simulation method based on the finite 

integration technique for modeling guided elastic waves in pipe-like structures including 

pipe bends. Comparisons show agreement between simulated and experimental data, and 

we have shown that the finite integration technique is well suited for modeling elastic 

wave propagation and interactions with flaws. This simulation method can be used as a 

design tool for developing complicated inspection hardware and signal processing 

algorithms. Future work will focus on systematically studying guided wave interaction 

with varying flaw types and sizes. Discretizing the material parameters will also allow 

one to model piping systems which contain coatings and welds. Overall, the 3DCEFIT 

technique provides an accurate method for simulating guided elastic waves in complex 

piping systems.
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Chapter VIII 

Conclusions

In this dissertation, we have presented two parallelized simulation techniques for 

three-dimensional acoustic and elastic wave propagation. We have demonstrated their 

usefulness in solving real-world problems with examples in the three very different areas 

of nondestructive evaluation, medical imaging, and security screening. More precisely, 

these include concealed weapons detection, periodontal ultrasography, and guided wave 

inspection of complex piping systems. In addition to this, we have also presented a novel 

experimental study of air-coupled nonlinear sound beam scattering from complex targets 

(Chapter 3) with very interesting and promising results.

The 3D parallel acoustic finite integration technique (3DPAFIT) can be used to 

study acoustic interactions with objects and layers in large and realistic geometries. We 

employed this technique along with a nonlinear finite-difference method to study 

nonlinear acoustic beams and their interaction with complex shaped objects. These 

objects included material layers, a human model, and an RPG model to assist in the 

development of nonlinear acoustic concealed weapons detector. We also performed a 

novel experiment to study air-coupled nonlinear sound beam scattering from objects.

This study included the design of a robust signal processing technique to extract useful 

information about an object from backscattered acoustic energy. We used this 

experiment to validate the 3DPAFIT simulation technique.
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The 3DPAFIT technique was also used to support the development of an 

ultrasonographic periodontal probe. A sophisticated software system was created to 

automatically define the intricate three-dimensional geometry of tissues in the periodontal 

region at the base to the tooth. Systematic simulations were performed to provide a large 

dataset to assist in the development of signal processing techniques to automatically 

determine the depth of the periodontal pocket from ultrasonic pulse-echo measurements.

We also presented a three-dimensional parallel cylindrical finite integration 

technique (3DPCFIT). This simulation method is ideal for modeling elastic waves in 

piping systems. In the derivation of the 3DPCFIT method, we introduce a coordinate 

transform to allow for the simulation of piping systems which include bends and twists. 

We validated this simulation technique by comparing simulation results directly to 

experimental measurements and to results from a commercial finite-element simulation 

package. This simulation method was employed to study guided elastic wave inspection 

of complex piping geometries and assisted in the development of both hardware 

configurations and signal processing algorithms.

8.1 Suggestions for Future Work

Both simulation methods presented in this dissertation use a structured grid of 

Cartesian (3DPAFIT) or curved cylindrical (3DPCEFIT) grid cells. One possible 

improvement would be the introduction of a non-structured grid that is not confined to 

regular grid shapes. This could possibly improve the accuracy of the simulations when 

complex geometries are being modeled. One downfall to this adaptation will be the 

increases the computation resources needed to model complex acoustic and elastic wave
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interactions. The volume and surface areas of the cells will vary over the computational 

space and thus require more memory to store these variables and require more 

computations to update the individual simulation values.

There are several directions that can be pursued to further develop the Nonlinear 

Acoustic Concealed Weapons Detector (NACWD). With the simulation code fully 

functional, the first objective may be to systematically explore acoustic wave interactions 

from people, clothing layers, and weapons. This would provide a large dataset of 

simulated measurements to further refine the signal processing algorithms to 

automatically identify concealed weapons. The pulse-compression technique described 

in chapter 3 may be able to identify subtle features in the frequency backscatter 

measurements to identify concealed weapons. This technique may also have applications 

in other fields of nondestructive evaluation and robotics.

For the Ultrasonic Periodontal Probe, the geometry of the periodontal region can 

be adapted to represent different tooth structures which vary from patient to patient and at 

each probing site. Additional anatomical features can be placed into the model such as 

cementum pearls, which form under the gum line and could possibly influence the 

ultrasound measurements. Further systematic simulations will account for a broad range 

of tooth and tissue geometries. This large data set could further enhance the signal 

processing algorithms responsible for the automatic determination of the depth of the 

periodontal pocket. Additional simulation studies can be performed to further optimize 

the design of the tip geometry and to study elastic waves in the hard tooth tissue for the 

detection of cavities and micro-cracks.
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The 3DCEFIT simulations presented in this dissertation can model homogenous 

and isotropic materials such as solid pipes made of one material. In some situations, pipe 

systems can contain coatings or be composed of anisotropic materials such as 

composites. The material parameters in the simulations software can be discretized to 

allow for the simulation of piping systems composed of more complicated materials.

This modification would allow the simulations of

In this dissertation, we have shown that parallel simulation methods for acoustic 

and elastic waves have a wide application range. We presented several applied examples 

where we used 3D parallel simulations to explore very difficult problems. There is 

potential to apply the simulation methods presented in this dissertation to new application 

areas. These application areas can include medical ultrasound, underwater acoustics, 

geoacoustics (seismic modeling), and additional areas of nondestructive evaluation.
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Appendix A1

Determining Parameters of the Nonlinear KZK Simulation Code

A finite difference method used in Chapter 3 is presented here for simulating nonlinear 

acoustic beams. This code package was written at the College of William and Mary and 

is based on an existing and freely available algorithm and code package developed at the 

University of Texas Austin [1-3]. The code presented here includes several 

improvements over the Texas KZK code that improves computational efficiency and 

usability.
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Example results from the KZK nonlinear computer simulations. Shown are a confocal 
pressure waveform snapshot (a), waveforms from a parametric source (initial waveform 
(b) and the resulting waveform after propagating over some distance (c)), and an energy 
distribution plot (d) for a 2ft focused transducer emitting a 50kHz pulse into air.
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A l.l. Overview of the KZK Simulation Algorithm

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is a nonlinear parabolic 

wave equation that accounts for the combined effects of diffraction, absorption, and 

nonlinearity in finite amplitude sound beams.

d2p  _ c, 
dzdt' 1

d p  1 dp 
v dr2 r dr

2 _2

2cl d f  2pac\ dt'2 (1)

Approximations are made in the term that account for diffraction because the sound is 

assumed to be confined to a narrow beam. This approximation introduces small errors at 

locations far from the beam axis (more than 20°) and close to the source (within several 

source radii of a piston).

Lee and Hamilton developed a finite difference technique to simulate nonlinear 

acoustic propagation for axial symmetric sources in the time domain (often referred to as 

the Texas KZK code) [1 - 3]. The core of the KZK simulation code written at the 

College of William and Mary is based entirely on Lee and Hamilton’s algorithm.

The initial pressure field is specified by the user at the face of the transducer. 

Then using a finite difference method, the waveform propagates away from the source 

over small spatial steps. The algorithm first uses an Implicit Backward Finite Difference 

(IBFD) method near the source of the transducer to minimize numerical error. Then the 

algorithm switches to a Crank-Nicolson Finite Difference (CNFD) method which allows
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for a larger spatial step size to improve computational efficiency. Details of the finite 

difference derivations can be found in [1 -  2].

As the pressure waves propagate away from the transducer, a waveform at any 

spatial location can be recorded. A series of individual waveforms will reveal the 

evolution of the waveform as it propagates away from the transducer. Additional 

processing techniques can be employed to quantitatively study and describe acoustic 

emissions from axial symmetric transducers and transducer arrays.

Al.1.1. Improvements made the Texas KZK Code.

The core of the KZK simulation code written at the College of William and Mary 

is based entirely on the Texas KZK Code. Several improvements were included in the 

new KZK simulation code. The new KZK code was completely re-written in the freely 

available Java programming language with an end goal of improving the computational 

efficiency of the algorithm and usability of the code.

The largest improvement was the addition of absorbing boundary conditions. 

With the Texas KZK code, the simulation space had to be made much larger than needed 

to avoid non-physical reflections from the boundaries interfering with the acoustic beam. 

By adding absorbing boundary conditions, the simulation space can be made at least four 

times smaller while achieving the same results (if not better) than with the Texas KZK 

code. This allows the simulations to run much faster and requires far less computer 

memory. Several other smaller improvements were made to improve the computational 

efficiency of the algorithm. For example, the same data structures are used in computing
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the solutions in the absorption and diffraction steps. This lowers the memory 

requirements of the algorithm.

Another goal of rewriting the KZK simulation code was to improve usability. 

MATLAB scripts were created to set-up, execute, and display results from the KZK 

simulations from within the MATLAB environment. This allows simulation space 

parameters such as transducer dimensions and waveform frequency of the initial pressure 

waveform to be easily changed. A MATLAB script was also created to read in the 

results of the simulation directly into the MATLAB environment for further analysis.

A1.2. KZK Simulation Files. Installation and Execution

All the files needed to execute, record, and view simulation results are included in 

the wmkzk.zip file. The contents of the wmkzk.zip file are described below.

kzk.java - Java source code for the KZK simulation. 
kzkclass - Compiled KZK simulation code (Windows OS). 

runkzkparametric.m - Example MATLAB interface file to set-up and
run a KZK simulation.

ReadWaves.m - Example MATLAB file to read in the waveforms 
from a KZK simulation. 

KZKSimulationDoc_Verl.doc - This document.

Al.2.1 Installation

The contents of the wmkzk.zip should be placed into a new directory where 

simulations will be performed. The KZK simulations have been developed and tested on 

the Sun Microsystems’s Java 1.4 platform. This can easily and freely be downloaded 

from Sun’s website at http://java.sun.eom/j2se/l.4.2/ja/download.html. This java
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platform will need to be installed before continuing with the remaining of the installation 

process.

After java has been installed, the appropriate CLASSPATH environmental 

variable must be set. This variable will direct the java environment to the location of the 

KZK simulation code. This can be done in Windows XP by first clicking on the Start 

Menu and then the Control Panel icon. Once in the Control Panel, make sure you are in 

classic view by clicking the top left link which says “switch to classic view”. Now 

double click on the System icon, click the Advanced tab, and then the Environmental 

Variables button to open a new window. In this window, add a new system variable 

called CLASSPATH. Assign it a value of the path of the directory that holds the 

kzk.class file. Now exit this window and the control panel. Instructions for setting the 

CLASSPATH variable in other operating systems can be found on Sun’s Java Website 

(http://java.sim.com).

MATLAB will be required to use the interface files provided with the KZK 

simulation code. MATLAB Version 6.1 was used to execute and test the KZK 

simulation code. MATLAB is not required to execute the KZK simulations but is highly 

recommended for execution and analysis of the results.

Al.2.2. Executing a KZK Simulation from MATLAB Example

The file runkzkparametric. m is a MATLAB file that computes all the appropriate 

parameters, initial pressure field, creates an input file, and then executes the KZK 

simulation. It simulates a 2 ft diameter parametric array that emits a short burst that
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contains two frequencies: 45 kHz and 55 kHz. The waveforms are recorded every 0.1 m 

from the face of the transducer to 10 m.

Once the runkzkparametric command is run from MATLAB, a file selection 

window will prompt the user where to save the input file to be passed to the KZK 

simulation. As the simulation runs, it will output the waveforms into an ASCII file 

named waves.txt. This file will be placed in the same directory that the input file was 

saved. The MATLAB function ReadWaves.m can then be used to import the waveforms 

into the MATLAB environment. The MATLAB command sequence to execute this 

example simulation and plot the waveform from the beam axis 5m from the transducer is 

shown below.

>> runkzkparametric
== Starting KZK simulation == Version 1.0

number outputs in r-direction = 7.0 
number outputs in z-direction = 101.0 

number of t points = 1 2  03
== Starting with IBFD Method == ds is now: 0.0010 
current step: 50/675 
current step: 100/675 

== Switching to CNFD Method == ds is now: 0.0020 
current step: 150/675 
current step: 200/675 
current step: 250/675 
current step: 300/675 
current step: 350/675 
current step: 400/675 
current step: 450/675 
current step: 500/675 
current step: 550/675 
current step: 600/675 
current step: 650/675 

== Done with KZK simulation ==
>> w = ReadWaves('waves.txt1);
>> plot(reshape(w(1,50,:),1,1203));

A1.3. Description of the KZK Simulation Parameters
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The KZK simulation code requires many simulation parameters to be specified 

that describe the transducer configuration, propagation medium, and details about the 

simulation space. These parameters are passed to the KZK simulation with an input file. 

The MATLAB file called runkzkparametric.m shows how to create this input file and 

execute a KZK simulation. This section will give the specifics for finding some of 

simulation parameters.

Al.3.1. Unit-less Simulation Parameters

The KZK simulation requires three unit-less simulation parameters which 

describe the degree of nonlinearity, absorption, and diffraction used in the simulation.

Al.3.1.1 Nonlinearity Coefficient

The unit-less nonlinear coefficient is found by the following equation.

v  2 ndffloP*
A A 3 (2)

Where d  is the geometrical focal distance of the transducer in meters, /? is the coefficient 

of nonlinearity of propagation medium,^ is the center frequency of the initial waveform 

in Hertz, po is the initial sound pressure amplitude in Pascals (Pa), po is the density of the 

propagation medium (kg/mA3), and co is the small amplitude speed of sound in the 

propagation medium (m/s). For air, the coefficient of nonlineaxity ft is 1.2 [4], the density 

po is 1.15 kg/mA3, and the speed of sound is 330 m/s2.
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Al.3.1.2 Absorption Coefficient

The unit-less Absorption coefficient is found by equation 3.

A=2naod  (3)

Where d  is the geometrical focal distance of the transducer and ao is the absorption 

parameter in units of nepers/meter. For air, the absorption parameter is dependent on the 

temperature of the air, the relative humidity of the air, and the frequency of the pressure 

wave. The absorption parameter of air ao and related quantities are given in [Ref 5-6] 

and can be found in equations 4-8.

f  rr, A
a n = con \ 1.84x10

T

f  rr, V 5/2
+

- 2 2 3 9 .1  IT , - 3 3 5 2 / 7 '

0.01275-
F„„+r»0 !F„

+ 0.1068-
Fm +co0 !Fn (4)

Where a>o is the frequency of the wave, To is the reference atmospheric temperature of air 

(293.15 K), T is the temperature of the air in Kelvins, and Fro and Frn are the relaxation 

frequencies of oxygen and nitrogen, respectively. These relaxation frequencies are 

dependent on the air temperature T and the absolute value of humidity of the air h, and 

are given in equations 5 and 6.

= 24 + 4.04x10*h4, 0.02 + h
0.391 + A

(5)
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_

Tv o ; (6)

The absolute humidity h can be found from the relative humidity hr by equation 7.

h = KP, (7)

Where psat is the saturation vapor pressure which is given by equation 8.

f
f  r j i  \ 1 .2 6 1  A

10A -  6.8346 1 Q \ + 4.6151
V

[ t J (8)

Where Toi = 273.16K is the triple-point isotherm temperature. These equations are valid 

when the ambient pressure level is 1 atm. Refer to [Ref 5] for finding absorption values 

when the ambient pressure level is not 1 atm.

Al.3.1.3 Diffraction/Gain Coefficient

The unit-less Diffraction/Gain coefficient is found by equation 9.

2 c0d (9)
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Where fo is the center frequency of the waveform, a is the radius of the transducer in 

meters, Co is the small amplitude speed of sound in the propagation medium (m/s), and d 

is the geometrical focus distance of the transducer in meters.

Al.3.2. Other Simulation Parameters

The remaining simulation parameters describe the simulation space, transducer 

configuration, initial pressure field, and output parameters. The runkzkparametric.m 

MATLAB file shows how to set these parameters and execute a KZK simulation. 

Following is a brief description of the parameters of the KZK simulation using the same 

variable names as used in the runkzksimulation.m file.

Simulation Control Parameters
isNon -  Boolean Variable to instruct the KZK simulations to include the effects of 

Nonlinearity. (1 = include, 0 = do not include) 
isDon -  Boolean Variable to instruct the KZK simulations to include the effects 

of Diffraction. (1 = include, 0 = do not include) 
isAon -  Boolean Variable to instruct the KZK simulations to include the effects of 

Absorption. (1 = include, 0 = do not include) 
isABCon -  Boolean Variable to instruct the KZK simulations to include the 

Absorbing Boundary Conditions. (1 = include, 0 = do not include)

Unit less Simulation Parameters (see section 3.11
N  -  Unit-less nonlinear coefficient of the simulation.
G -  Unit-less diffraction/gain coefficient of the simulation.
A -  Unit-less absorption coefficient of the simulation.

Transducer Parameters
radius -  Radius of transducer in meters.
focald-  Transducer geometrical focal distance in meters.

Initial Waveform Parameters
wo -  Center frequency of the simulation. The initial waveform is normalized to 

this center frequency.
FI -  First frequency component of the initial waveform.
F2 -  Second frequency component of the initial waveform.
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taumin -  Minimum of the time range. 
taumax -  Maximum of the time range. 
numtaupercycle -  Number of time diversions per time cycle.
Zpadby -  Amount of zero padding to include on the edges of the initial waveform 

(in percent: 0 - 1 )
tukeya -  Alpha of the Tukey window used to envelope the initial waveform 

(Range from 0 -  1).

Simulation Space Parameters
maxr -  Maximum number of steps in the radial direction. 
ntrans -  Number of radial points across the transducer.
IBFDds -  Sigma (z) step size of IB finite difference method.
CNFDds -  Sigma (z) step size of CN finite difference method.
rabc -  Thickness of the absorbing boundary layer in the radial direction.
tabc -  Thickness of the absorbing boundary layer in the time direction.

Output Parameters (in meters)
outstartz -  Output waveforms starting at this z.
outbyz -  Output waveforms at every interval of this z step.
outendz -  Output waveforms ending at this z.
outstartr -  Output waveforms starting at this r.
outbyr -  Output waveforms at every interval of this r step.
outendr -  Output waveforms ending at this r.

A1.4. References
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Appendix A2 
Source Code for Simulation Techniques

A2.1 - 3D Parallel Acoustic Finite Integration Technique 

A2.1.1 - Main Parallel Simulation Code

The following code initializes the simulation space and distrbutes the simulation 
parameters. It uses the Massage Passing Interface (MPI) to communicate between the 
nodes.
♦include <mpi.h>
♦include <iostream>
♦include <fstream>
♦include <string>
♦include <sstream>
♦include "acousticrect.h"
♦include "time.h"

using namespace std;

//♦include <time.h>
//♦include <mpi.h>

int maxt, outputevery, totalz, m2m3; 
int rank, numworkers;

int whohasaline = 0; 
int recordalineat = 2;

void master{); 
void inputnode(); 
void slave ();
void DistributeSimulationParameters(); 
void dumpP(acousticrect sar, int t); 
void dumpTopPlate (int t);
void addArbReflector(acousticrect ar, double filenumber, double si, double s2, int s3, double dd, double rc);

int main(int argc, char *argv[]){
MPI_Init(Sargc, Sargv);
MPI_Comm_rank(MPr_COMM_WORLD, firank);
MPI_Comm_size(MPI_COMM_WORLD, finumworkers); /* get number of nodes */

numworkers = numworkers-2; //numworkers--; changed for inputnode

if (rank == 0)
master(); 

else if (rank == numworkers+1) 
inputnode () ;

else
slave () ;

MPI_Finalize(); 

return 0;
}

// This Runs on Master Node 
void master (){

MPI_Status status; 
time_t start,end; 
time (&start);

cout << "master node is online! \n”;

DistributeSimulationParameters (); 

double al=0;
ofstream outFile ("alineout.ascii", ios::out);

for (int t=0; t<maxt; t++)
{

MPI_Recv (Sal, 1, MPI_DOUBLE, whohasaline, 858, MPI_COMM_WORLD, Sstatus); 
outFile «  al << "

if (t%outputevery == 0 )
{

dumpTopPlate(t);
cout «  "Collecting Slices at time: " «  t «  "\n”;

}

}
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outFile.close (); 
time (Send);
printf ("Total Run Time: %.21f seconds\n", difftime (end,start) ); 
return;

// This runs on all the slave nodes 
void slave(){ // -----------------------------------------------------------------------

// -- Receive Initial Data From Master
MPI_Status status; MPI_Request request[2]; 
double simparams[11] ;

MPI_Recv(Ssimparams, 11, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD, Sstatus);

acousticrect ar; 
ar.numl = simparams[0]+2; 
ar.num2 = simparams[1]; 
ar.num3 = simparams[2]; 
ar.ds = simparams[3]; 
ar.dt « simparams[4]; 
ar.den = simparams[5]; 
ar.cc = simparams[9]; 

maxt = simparams[6];
outputevery = simparams[7]; 
ar.zbeg = simparams[8]; 
ar.totalz = simparams[10]; 
m2m3 = ar.num2*ar.num3;

if (rank == 1) ar.type = 1;
else if (rank == numworkers) ar.type = 3; 
else ar.type = 2;

a r .Init ();

// ------------------------------------------------------------------------
// —  Receive Drive Function 

if (rank==l){
double *drive = new double[maxt];

MPI_Recv{Sdrive[0], maxt, MPI_DOUBLE, 0, 202, MPI_COMM_WORLD, Sstatus); 
ar.df = drive;

}

// ------------------------------------------------------------------------
// —  Receive Reflectors
int nr; double *rpars = new double [8];
MPI_Recv(&nr, maxt, MPI_INT, 0, 203, MPI_COMM_WORLD, Sstatus); 
for (int i = 0; i < nr; i++)
{

MPI_Recv(Srpars[0], 8, MPI_DOUBLE, 0, 204, MPI_COMM_WORLD, Sstatus); 
if (rpars[0] - -  101) 

addArbReflector(ar, rpars[5],rpars[1],rpars[2],rpars[3],rpars[6],rpars[7]); 
else

ar.addReflector(rpars[0],rpars[1],rpars[2],rpars[3],rpars[4],rpars[5],rpars[6],rpars[7]);
//cout «  ” 6";}

/ / ------------------------------------------------------------------------
// —  Run Simulation
//douple *tosend = new double[m2m3*ar.numl];; 
double al;
for (int t = 0; t < maxt; t++){

if (rank == 1) cout «  " time: " «  t «  " " «ar.numl<<", "« a r . n u m 2 « " , "«ar.num3 << endl;

if ((recordalineat >= ar.zbeg) && (recordalineat < (ar.zbeg+ar.numl-1))){
al - ar.pp.val(recordalineat-ar.zbeg,100,100);

MPI_Isend(Sal, 1, MPI_DOUBLE, 0, 858, MPI_COMM_WORLD, request);
}

if (t%outputevery “  0){
//tosend - ar.pp;

int len = ar.pp.GetEvenVolLen(ar.zbeg); 
double *x = new double[len];

x = ar.pp.GetEvenVol(ar.zbeg);

MPI_Isend(Slen, 1, MPI_INT, 0, 1101, MPI_COMM_WORLD, request);
MPI_Isend(&x[0], len, MPI_DOUBLE, 0, 1102, MPI_COMM_WORLD, request);

}
ar.time = t; 

ar.UpdatePs(1,1);
if (rank > 1) MPI_Isend(&ar.pp.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 301, MPI_COMM_WORLD, request); 
ar.UpdatePs(2,ar.numl-2);
if (rank < numworkers) MPI_Recv(&ar.p p .a [(ar.numl-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 301,

MPI_COMM_WORLD, Sstatus);

//if (rank>l) a r .doBackABCs(totalz);
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// if rank ™  1 receive input from input node
if (rank == 1) MPI_Recv(&ar.pp.a[m2m3], m2m3, MPI_DOUBLE, (numworkers + 1) , 303, MPI_CQMM_WORLD, Sstatus); 

ar.UpdateVs(ar.numl-2,ar.numl-2);
if (rank < numworkers) MPI_Isend(&ar.vl.a[(ar.numl-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 302, MPI_COMM_WORLD, 

request);
ar.UpdateVs (l,ar.numl-3);
if (rank > 1) MPI_Recv(Sar.vl.a[0], m2m3, MPI_DOUBLE, (rank-1), 302, MPI_COMM_WORLD, Sstatus); 

a r .doDriveFunction ();

}
void DistributeSimulationParameters(){

char inputFilename[] = "in.file"; 
ifstream inFile;
inFile.open ("in.file", ios::in);

if (!inFile) {
cerr «  "Can't open input file " «  inputFilename << endl; 
exit (1);}

double *simparams = new double[11]; 

inFile »  simparams[0]; //maxi
inFile »  simparams[1] 
inFile »  simparams[2] 
inFile »  simparams[3] 
inFile »  simparams[4] 
inFile »  simparams[5

//max2 
//max3 
//ds 
//dt

. .. //default den
inFile »  simparams[9]; //default speed of sound

inFile »  simparams[6]; //maxt
inFile »  simparams[7]; //outevery

maxt = simparams[6];
outputevery = simparams[7];

m2m3 = simparamsfl]*simparams[2];
totalz = simparams[0];
simparams[10] = totalz;

// send initial data to each node

int div, divaccum = 0;
for (int n = 1; n <= numworkers; n++)

/* divide space along xl direstion */
div » (totalz/(numworkers)); if ({n-l)<= (totalz%(numworkers))) div++; 
simparams[0] = div;
simparams[8] = divaccum; // tells the worker where its starting z location is 
MPI_Send(Ssimparams[0], 11, MPI_DOUBLE, n, 201, MPI_COMM_WORLD); 
divaccum = divaccum+div;
if ((whohasaline==0)& & (divaccum>=recordalineat)) whohasaline=n;

}
// send simparams to input node 

MPI_Send(Ssimparams[0], 10, MPI_DOUBLE, numworkers+1, 201, MPI_COMM_WORLD);

cout «  "whohasaline = " «  whohasaline «  "\n";
// read in DF and send to worker number 1
/ / ---------------------------------------------------------------------

double *drive * new double[maxt];
for (int i - 0; icmaxt; i++) 
inFile »  drive[i];

MPI_Send(Sdrive[0], maxt, MPI_DOUBLE, 1, 202, MPI_COMM_WORLD);

// read in reflectors and distribute to all workers
// ---------------------------------------------------------------------
int numref; inFile >> numref; 
double *rpars = new double[8];
cout « "  Number of reflectors: " «  numref << endl;

for (int n = 1; n <= numworkers; n++)
MPI_Send(Snumref, 1, MPI_INT, n, 203, MPI_COMM_WORLD);

for (int i = 0; i < numref; i++)

inFile » rpars[0]; // reflector type
inFile » rpars[1]; // reflector position in xl
inFile » rpars[2]; // reflector position in x2
inFile » rpars[3]; // reflector position in x3
inFile » rpars[4]; // reflector position in x3

rpars[5] ;; // refector radius
inFile » rpars[6]; // refector density

(start for cylinder) 
(end for cylinder)

inFile »  rpars[7]; // refector speed of sound
for (int n = 1; n <= numworkers; n++)

MPI_Send(Srpars[0], 8, MPI_DOUBLE, n, 204, MPI_COMM_WORLD); 
cout << " " << rpars[6] «  " " «  rpars[7] << "\n";

inFile.close(); 
return;
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}

void dumpSlice(int t){
MPI_Status status; 

double *topplate; 
int len;

stringstream strm; strm «  t;
string fname = "toplate_at_t" +strm.str() + ".ascii"; 

ofstream outFile(fname.c_str(), ios::out);

for (int n = 1; n <= numworkers; n++){
MPI_Recv(&len, 1, MPI_INT, n, 1101, MPI_COMM_WORLD, Sstatus); 
if (n==l) topplate = new double[len];

MPI_Recv(&topplate[0], len, MPI_DOUBLE, n, 1102, MPI_COMM_WORLD, Sstatus);

for (int i = 0; i < len; i++)
outFile «  topplate[i] «  " ";

}
delete topplate;

outFile.close(); 
return;

// dump 3D Pressure Values
void dumpP(acousticrect &ar, int t){

stringstream strm; strm << t;
string fname = "Pat" +strm.str()+ ".ascii";

ofstream outFile(fname.c_str(), ios::out);

outFile << ar.numl-2 << " " «  ar.num2 «  " " «  ar.num3 «  " "; 
for (int i3=0; i3 < ar.num3; i3++) 

for (int i2=0; 12 < ar.num2; i2++) 
for (int il=l; il < ar.numl-1; il++)

outFile «  ar.pp.val(il,i2,13) «  " ";

outFile.close(); 
return;}

// Do the input!! 
void inputnode(){

printf("InputNODE! ");

int nr, nt, c, x2, x3, rf, r e ­
double r, dir, dit;

MPI__Status status; MPI_Request request [2]; 
double simparams[10];

MPI_Recv(Ssimparams, 10, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD, Sstatus);

acousticrect ar; // just used to hold simulation parameters 
ar.numl = 1; 
ar.num2 = simparams[1]; 
ar.num3 = simparams[2]; 
ar.ds = simparams[3]; 
ar.dt = simparams[4]; 
ar.den = simparams[5]; 

maxt = simparams[6];
int m2m3 = ar.num2*ar.num3;

//int m2m3 = max2*max3; 
int c2 = (ar.num2/2); 
int c3 = (ar.num3/2);

double *p = new double [m2m3]; 
for (int ii = 0; ii<m2m3; ii++) p[ii]=0;

// open file 
ifstream inFile;
inFile.open("KZKwaveform.in", ios::in); 
if {!inFile) { 

cerr << "Can't open KZK input file " «  endl; 
exit (1) ;}

// size of 2D p-array
// find center value in x2 direction
// find center value in x3 direction

// pressure matrix

inFile »  nr; // read number of r steps
inFile »  nt; // read number of t steps
inFile »  dir; // read size of r step
inFile »  dit; // read size of t step (should be same as simulation dt)

double *pin “ new double[nr]; // allocate array to hold p values along r at each time step

for (int tt=l;tt<=maxt;++tt){
if (tt < nt)
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for (int i=0; i < nr; ++i) 
inFile >> pin[i]; // read in p values for this time step

for (x2 = 1; x2<ar.num2-l; ++x2)
for (x3 - 1; x3<ar.num3-l; ++x3) // loop over 2d plane interpolating p-wave onto it.{

r = fabs(sqrt( (double)((x2-c2)* (x2-c2) + (x3-c3)* (x3-c3)) ))*(ar.ds/dir);

rf = floor(r); // compute floor of r
rc = ceil(r); // compute ceiling of r

c=(x2*ar.num3)+x3;

if (rc < nr)
p(c] = pin[rf] + (r-rf) * (pin[rc]-pin(rf]);

// interpolate pressure wave onto cartesian grid 
//p[c] = p in[0];

MPI_Send(& p [0], (m2m3), MPI_DOUBLE, 1, 303, MPI_COMM_WORLD); //Send ps to node 2
}

inFile.close(); 

return;

void addArbReflector(acousticrect ar, double filenumber, double si, double s2, int s3, double dd, double rc){
//cout «  "arb!";

stringstream strm; strm «  filenumber;
string fname = strm.str()+ ".ArbSimulationObject";

ifstream inFile;
inFile.open(fname.c_str(), ios::in); 

if (linFile) {
cerr << "Can't open input file " << fname.c_str() << endl; 
exit (1);

}

int nl, n2, n3, w ;

inFile » nl; // read number of steps in xl
inFile » n2; // read number of steps in x2
inFile » n3; // read number of steps in x3

for (int il = 0; ilcnl; il++) 
for (int i2 « 0; i2<n2; i2++) 

for (int i3 = 0; 13<n3; i3++){
inFile »  vv; // read in volume value (1 or 0)

if ( ( w  == 1) && ( (sl + il)>=ar.zbeg) && ((sl+il)< (ar.numl+ar.zbeg-1)) )// && ( (s2+i2)< (ar.num2)) && 
((s3 + i3)< (ar.num3)) ) {

if ((rc -1) && (dd —  -1)){
a r .B .set (sl+il-ar.zbeg+1,s2 + i2,s3+i3,2);}

else {
ar.c.set (sl+il-ar.zbeg+1,s2+i2,s3+i3,rc); 
a r .d.set (sl+il-ar.zbeg+1,s2+i2,s3+i3,dd);}}}

inFile.close();
}

A2.1.2 -  Acoustic Simulation Code (AcousticRect.h)

This code is where the actual simulation is performed. Each slave node gets a slice of the 
continous simulation space and the individual pressure and velocity values are updated 
here.
finclude <iostream>
#include "array3D.h" 
finclude "array3D_int.h"
//finclude "transducer.h"

#define min(a,b) ({(a)< (b))?(a): (b))
#define max(a,b) (((a)> (b))?(a): (b) )

class acousticrect
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{

public:
acousticrect{) { }

~acousticrect () { }

int numl; // number of grid points in r direction
int num2; // number of grid points in z direction
int num3; // number of grid points in p direction
int totalz; //

int abc; // number of abc points on each end

double ds; // spatial step size in r and z direction (meters)
double dt; // time step size (seconds)

double den; // density (kg/mA3)
double cc; // default speed of sound

int zbeg; // z start position (meters)

int type; // type -> 1 = left end , 2 = middle, 3 = right end

array3D vl; / / I  - velocities
array3D v2; // 2 - velocities

array3D v3; // 3 - velocities
array3D pp; // pressures

array3D c; // speed of sound
array3D d; // density

array3D_int B; // Boundary Array

int time;

double *df;

//transducer *trans;
//int numtrans;

//int numreflectors;
//int *rftype; // reflector type 0 - sphere, 1 = cylinder
//double *rxl;
//double *rx2;
//int *rx3start;
//int *rx3end;
//double *rrad;

private:

double dtods; 
//double dtods;

int il,i2,i3;

public:

void Init(){
v l .Init(numl,num2,num3);

v 2 .Init(numl,num2,num3); 
v 3 .Init(numl,num2,num3); 
pp.Init(numl,num2,num3);

c.Init (numl,num2,num3,cc);
d.Init(numl,num2,num3,den); 

B.Init (numl,num2,num3, type);

dtods = dt/ds;

time = 0; 
abc = 40;}

void UpdatePs(int zs, int zend){
//for (il = 1; il < numl-1; il++) // changed numl -> numl-1

for (il =» zs; il <= zend; il++)// changed numl -> numl-1 
for (i2 = 1; i2 < num2-l; i2++)

{
pp.setindx(il,12,1); v l .setindx(il,i2,1); v 2 .setindx(il,i2,1); 

v3.setindx(il,i2,1);d.setindx(il,i2,1);c.setindx(il,i2,1);
for (13 = 1; i3 < num3-l; i3++){

pp. sv ( pp. v () -dtods *d. v () *c.v()*c.v()*( (vl. v() -vl. vlm()) + (v2 . v () -v2 . v2m () ) + (v3 . v () -v3 . v3m () ) ) ) ; 
pp.incindx(); v l .incindx(); v 2 .incindx(); v 3 .incindx(); d.incindx(); c.incindx();

}}
//plane - bcs

//for (il - 1; il < numl; il++)
for (il = zs; il <= zend; il++){
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pp.set {il,0,0, pp.val(il,0,0)-dtods*d.val(il,0,0)*c.val(il,0,0)*c.val(il,0,0)*(vl.val(il,0,0)-vl.val(il—
1, 0, 0) ) ) ;

p p . set (il, 0, num3-l, p p . val (il, 0, num3-l) -dtods*d. val (il, 0, num3-l) *c. val (il, 0, num3-l) *c .val (il, 0 , num3- 
1) * (vl.val(il, 0, num3-l)-vl.val(il —1,0,num3-l)));

pp . set (il, num2-l, num3-l, p p . val (il, num2-l, num3-l) - dtods*d. val (il, nurri2-l, nun3-l) *c. val (il, num2-l, num3- 
1) *c.val (il,num2-l,num3-l) * (vl .val (il, num2-l, num3-l) -vl.val (il— 1, nuiri2-l, nutn3-l)) ) ;

pp. set (il, num2-l, 0, pp. val (il, num2-l, 0) -dtods*d. val (il,num2-l, 0) *c.val (il, num2-l, 0) *c.val (il, num2- 
1,0)*(vl.val(il,num2-l,0)-vl.val(il-1,num2-l,0)));

for (i2 = 1/ i2 < num2-l; i2++){
pp.set (il,i2,0, pp.val(il,12,0)-dtods*d.val(il,i2,0)*c.val(il,i2,0)*c.val(il,i2,0)*((vl.val(il,i2,0)- 

vl.val (il-1,i2,0)) + (v2.val(il,i2,0)-v2.val(il,i2-l,0))));
pp.set(il,i2,num3-l, pp.val(il,i2,num3-l)-dtods*d.val(il,i2,num3-l)*c.val (il,i2,num3- 

1) *c .val (il, i2, num3-l) * ( (vl.val (il, i2, nuin3-l) - vl .val (il-1, i2, num3-l)) + (v2.val (il, i2, num3-l) -v2 .val (il, i2—1, num3-l))));}
for (i3 = 1; i3 < num3-l; i3++)

{
pp.set (il,0,i3, pp.val(il,0,i3)-dtods*d.val(il,0,i3)*c.val(il,0,i3) *c.val(il,0,i3)*((vl.val(il,0,i3) —

v l .val(il-l,0,i3)) + (v3.val(il,0,i3)-v3.val(il,0,i3-l))));
pp.set (il,num2-l,i3, pp.val(il,num2-l,i3)-dtods*d.val(il,num2-l,i3)*c.val(il, num2-l, i3)*c.val(il,num2- 

1,i3)*((vl.v a l (il,num2-l,i3)-vl.val(il-1,num2-l,i3)) + (v3.v a l (il,num2-l,i3)-v3.val(il,num2-l,i3-l))));}}

void UpdateVs(int zs, int zend){
//for (il = 1; il < numl-2; il++)

for (il = zs; il <= zend; il++) 
for (i2 = 0; i2 < num2-l; i2++){

pp.setindx(il,i2,0); v l .setindx (il,i2,0); v 2 .setindx(il,i2,0); v 3 .setindx(il,i2,0);d.setindx(il,i2,1); 
for (i3 = 0; i3 < nuin3-l; i3++){

vl.sv( vl.v() - 2*dtods/(d. v ( )+d. vlp () ) * (pp.vlp ()-pp. v () ) );
v2.sv( v2.v() - 2*dtods/(d. v {)+d. v2p () ) * (pp. v2p ()-pp. v () ) );
v3.sv( v3.v() - 2*dtods/(d. v{)+d. v3p () ) * (pp. v3p ()-pp. v () ) );

pp.incindx{); v l .incindx(); v 2 .incindx(); v 3 .incindx(); d.incindx();} }
//'for (il = 1; il < numl-2; il + +)

for (il = zs; il <= zend; il++)(
for (i2 = 0; i2 < num2; i2++) // changed num.2-1 -> num2

v l . set (il, i2, num3-l, v l .val (il, i2, num3-l) - 2*dtods/ (d. val (i 1+1, i2, num3-l) +d. val (il, i2,num3- 
1))*(pp.val(il+1,i2,num3-l)-pp.val(il,i2,num3-l))) ; 

for (i3 = 0; i3 < num3; i3++)
v l . set (il, nuin2-l, i3, v l . val (il, num2-l, i3) - 2*dtods/ (d.val (il+1, num2-l, i3) +d.val (il,num2- 

1, i3)) * (pp. val (il+1, num2-l, i3) -pp.val (il, num2-l, i3)) );
}

// Rigid Reflectors!

//for (il = 1; il < numl-2; il++)
for (il = zs; il <= zend; il++) 

for (i2 = 0; i2 < num2-l; i2++){
B .setindx(il,i2,0); v l .setindx(il,i2,0); v 2 .setindx(il,i2,0); v 3 .setindx(il,i2,0); 

for (i3 « 0; i3 < num3-l; i3++){
if (B.v() == 2){

if (B.vlp () == 2) vl.sv(O) ;
if (B.v2p () == 2) v2 . sv (0) ;
if (B.v3p() == 2) v3.sv{0);

}

B.incindx (); v l .incindx(); v 2 .incindx (); v 3 .incindx();}}
doABCs () ;
doBackABCs(totalz);

}

void doABCs ()
{

int aabc = 25; 
double per;

for (il = 2; il< numl-2; il++) 
for (i2 = 0; i2<num2; i2++)

for(i3 =1; i3 < aabc; i3++){
per = (1-.002*(aabc-i3));
v l .setindx (il,i2,i3); v 2 .setindx(il,i2,i3); v 3 .setindx(il,i2,i3); 

v l . sv (vl. v () *per) ; v 2 . sv (v2. v () *per) ; v 3 . sv (v3. v () *per) ;

v l .setindx(il,i2,num3-i3-l); v 2 .setindx(il,i2,num3-i3-l);
v3.setindx(il,i2,num3-i3-l);

vl .sv (vl. v {) *per) ;v2. sv (v2 .v () *per); v 3 . sv (v3. v ( ) *per);}
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12—1,13);

for (il =» 2; il< numl-2; il++)
for {12 = 1; 12<aabc; i2++)

for(i3 =aabc; 13 < num3-aabc; i3++)
{

per = (1-.002* (aabc-i2));
v l .setindx (il,12,13); v 2 .setindx(il,i2,13); v 3 .setindx (il,i2,i3); 

v l .sv(vl.v()*per);v2.sv(v2.v()*per);v3 .sv(v3.v ()*per);

v l .setindx(il,num2-i2-l,i3); v l .setindx(il,num2-i2-l,13); v l .setindx(il,num2-

vl .sv (vl. v {) *per) ;v2. sv (v2. v {) *per) ; v 3 . sv (v3. v () *per);}
}
void doBackABCs(int TotalZ) //ABC on the backside of the space (maxi)
{

int aabc « 25; 
double per;

for (il = max(TotalZ-aabc-1,zbeg); { (il >= zbeg) & (il< (zbeg+numl-1)) ); il + + ){
v l .setindx (il-zbeg,0,0); v 2 .setindx (il-zbeg,0,0); v 3 .setindx(il-zbeg,0,0); 

per = (1+.002* (—i1+ (TotalZ-aabc-1)));
//std:;cout << ”, " «  il <<", " << per«'\n';
//if (pipetype==3) std::cout «  il «  ”, " «  il-zbeg «  ”, " «  per«'\n';
for (i2 = 1 ;  12 < num2; i2++)

for (i3 = 1; i3 < nura3; i3++){
v l .setindx(il-zbeg,12,13); v 2 .setindx(il-zbeg,i2,i3); v 3 .setindx(il-zbeg,i2,i3); 
v l . sv (vl. v () *per) ; v2 .sv (v2. v () *per) ; v3 . sv(v3 . v () *per) ;

//vl.incindx(); v2.incindx(); v3.incindx();}}}
void doDriveFunction(){

if (type == 1)(
vl .setindx(0,0,0); 
for (i2 = 0 ;  i2 < num2; i2++) 

for (13 = 0; i3 < num3; i3++){
v l . sv ( v l .v () -

2*dtods/(d.val(1,i2,13)+d.val(0,i2,i3))*(pp.val(1,12,i3)-pp.val(0,12,13)+ df[time]) );
v l .incindx();}

}

}

void addReflector(double typ, double pi, double p2, int start3, int end3, double rad, double dd, double rc)
{

if (typ == 0) //sphere(
for (il = 0; il < numl; il++) 

for (i2 = 0; i2 < num2; i2++) 
for (13 « 0; 13 < num3; i3++)

if (((il+zbeg-l-pl)* (il+zbeg-l-pl) + (i2-p2)* (i2—p2) + (i3-start3)*{i3 —
start3)) < rad*rad)

if ( (rc == -1) && (dd «  -1))
(
B.set(il,i2,i3, 2) ;}

else{
c. set (il, 12, i3, rc);
d.set(il,i2,13,dd);}}

else if (typ == 1) //cylinder (
for (il = 0; il < numl; il++) 

for (i2 = 0; i2 < num2; i2++)
if (((il + zbeg-l-pl)* (il + zbeg-l-pl) + (i2-p2)* (i2-p2)) < rad*rad) 

for (13 = start3; 13 <- end3; i3++)
if ((rc —  -1) && (dd -- -1))(

B .set(il,i2,i3,2);}
else{

c.set(il,12,i3,rc);
d. set (il, i2,13, dd) ;}

}
else if (typ =“ 2) //rectangle{

for (il = 0; il < numl; il++)
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for (i2 = 0; L2 < num2; i2++) 
for (i3 = 0; i3 < num3; i3++)

if ({il+zbeg-1 >= start3) && (il+zbeg-1 <= end3)) 
if ((rc == -1) && (dd == -1))
{

B.set(il, i2,i3,2) ;
}
else{

c.set(il,i2,13,rc);
d.set(il,i2,i3,dd);}

A2.1.3 - 3D Array

Object that mimics 3D array of doubles with fast access methods.

♦include <iostream>

class array3D {
private:

int ci; // current index
int ci3; // current i3 index (used for contenous Boundary)
int L2L3; // max2*max3

public:
double *a; 

int lenl; // number of grid points in r direction
int len2; // number of grid points in z direction
int len3; // number of grid points m P direction

// Blank Constructer 
array3D() {}

// Blank Deconstructor 
~array3D{) {}

/ /  = = = == = : == = = = == = == = = = = == === = = == = = = = = = ==== = = = = ==== = = = ==== = == = == =

// Init - defines the array and its dimensions - MUST 3E CALLED BEFORE USING 
void Init (int ml, int m2, int m3)
{ Init(ml,m2,m3,0)? } 

void Init (int ml, int m2, int m3, double def){
lenl = ml; len2 = m2; len3 = m3;
L2L3 = m2*m3; 
a - new double[ml*m2*m3]; 

clear (def); 
return;}

// Return value at il, i2, i3 
double val(int il, int 12, int i3)
{

return a [ (il*L2L3) +{i2*len3)+i3] ;

/ /        —---
// Set value at il, 12, 13
void set (int il, int 12, int i3, double val){

a [(il*L2L3) + (i2*len3)+i3] - val; 
return;}

/  /      = = = = =  —       = = = = = =    = = = = =  = = = =  
// quick access methods 

void setindx(int il, int i2, int 13) { ci = (il*L2L3) + (i2*len3)+i3; ci3 = i3; }
void incindx{)

{ ci = ci+1; ci3 = ci3+l;
if (ci3==len3) ci3=0;}

void sv(double x) { a[ci] = x; } // set value at ci
double v() { return a[ci]; } // equiv of a (il][12][i3]
double vlp() { return a[ci+L2L3]; } // equiv of a[il-1][12][13]
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double vlm() { return a[ci-L2L3]; } // equiv of a[il+l][i2][i3]
double v2p() { return a[ci+len3]; } // equiv of a[il][i2+l][i3J

double v2p2() { return a[ci+2*len3]; } // equiv of a[il][i2+2]
double v2m() { return a[ci-len3]; } // equiv of a[il][i2-l][i3]
double v3p() {// return a[ci+l]; } // equiv c

if (ci3 -- len3-l)
return a [ci-len3+l];

else

[ i 3 ]
f a [il] [

return a[ci+l]

double v3m() { //return a[ci-l]; }
if {ci3 == 0)

return a[ci+len3-l]

// equiv of a[il][i2][i3-l]

return a[ci-l]

f l           ======
// clear - sets all values - 0; 

void clear(double def){
for (int i « 0; i< L2L3*lenl; i++) 

a[i) = def;}
/ /          --
// returns 2D slice through 3D array at fixed index 2 

double* slice_fix2 (int i2){
double *x = new double[(lenl-2)*len3]; 
x [0] - (lenl-2)*len3;

int c - 0;
for (int il = 1; ilclenl-l; il++) // does not return ends

for (int i3 - 0; i3<len3; i3++){
x[c]=val(il, i2, i3);
C++;}

return x;}
int slice__f ix2_count () { return (lenl-2) *len3; }

n =====     --
// returns 3D volume returning only the even indexes 

double* GetEvenVol(int start){
int len = GetEvenVolLen(start); 
double *x - new double[len];

int c == 0;
for (int il = l+(start%2); il<lenl-l; il=il+2) // does not return ends 

for (int i2 = 0; i2<len2; i2=i2+2) 
for (int i3 = 0; i3<len2; i3=i3+2){

x[c] = (val(il-1, i2, i3)+val(il, i2, i3))/2;
C++;}

//std::cout << len << " " << c-1 «  ”\n";

return x;}
int GetEvenVolLen(int start){

int len;
if (start%2 == 0)

len - (lenl-1)/2*(len2/2)* (len3/2);
else

len = (lenl-2)/2*(len2/2)* (len3/2); 
return len;}};

A2.1.3 - 3D Array of integers

Object that mimics 3D array of Integers with fast access methods.

class array3D_int{
private s

int *a;
int ci; // current index

int L2L3; // max2*max3
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int endtype;

public:

int lenl; // number of grid points in z direction
int len2; // number of grid points in r direction
int len3; // number of grid points in P direction

// Blank Constructer 
array3D_int () {}

// Deconstructor 
~array3D_int() {}

// Init - defines the array and its dimensions - MUST BE CALLED BEFORE USING 
void Init (int ml, int m2, int m3, int type){

lenl = ml; len2 = m2; len3 = m3;
L2L3 = m2*m3; 
a = new int[ml*m2*m3]; 

endtype = type; 
clear (); 
return;}

// Return value at il, i2, i3 
int val(int il, int 12, int 13){

return a [(il*L2L3)+ (i2*len3)+i3];
}
// Set value at il, i2, i3 
void set(int il, int i2, int 13, int val) 
{

a [(il*L2L3)+ (i2*len3)+i3] -va l ;  
return;}

// quick access methods 
void setindx(int il, int i2, int i3) { 

void incindx() { ci == ci+1; }
ci = (il*L2L3)+ (12*len3)+i3;

int v() [ return a[ci]; // equiv of a [il] [12][13]
int vlp () ; return a[ci+L2L3]; // equiv of a [il- n  [i2 j [i3
int vim () ; return a[ci-L2L3]; // equiv of a [il+ 1] [12] (13
int v2p () ; return a[ci+len3]; // equiv of a [il) [12+1][13
int v2m () ■ return a(ci-len3]; // equiv of a [il] [12-1][13
int v3p() [ return a[ci+1]; // equiv of a [il] [12][13+1
int v3m () { return a[ci-l]; // equiv of a [il] [12](13-1

// clear - sets all values = 0; 
void clear()

//std::cout «  
for (int i = 0,

"type " «  endtype «  "\n";
i< L2L3*lenl; i++)

= 0;
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A2.2 KZK Nonlinear Sound Beam Simulations

A2.2.1 Java KZK source code (kzLjava)
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ ///////////////////////

kzk.java - March 2005 Kevin Rudd kerudd®wm.edu

This code solves the KZK equation for focused axial symetric sources. The core algorithim
was developed at the University of Texas at Austin. It includes the effects of nonlinearity,
absorption, and diffraction. More details of the code can be found in the following refrences.

[1] Yang Sub-Lee, "Numerical solution of the KZK equation for pulsed finite- 
amplitude sound beams in thermoviecous fluids", Ph D dissertation,
The University of Texas at Austin, December 1993.

[2] Yang Sub-Lee and Mark P. Hamilton, "Time-domain modeling of finite-
amplitude beams", J. Acoust. Soc. Am. 97, 906-917 (1995).

This java version was written to be easily interfaced with MATLAB. It also includes absorbing 
boundary conditions which allow the simulations to run much quicker because the simulation 
space can be reduced. Any questions and comments about this code can be 
directed to ...

Kevin Rudd
The Nondestructive Evaluation Laboratory 
The Applied Science Department 
The College of William and Mary 
kerudd®wm.edu

import java.util.*; 
import java.io.*; 
import j ava.1ang.Math.*;

public class kzk

public static double G = 0; //
public static double A = 0; //
public static double N = 0; //
public static int isNon = 0; //
public static int isAon = 0; //
public static int isDon = 0; //
public static int isABCon = 0; //

public static int maxr = 0; //
public static int IBFDzsteps = 100; //
public static int totalzsteps = 0; //

public static int maxt = 0; //
public static int rabc = 50; //
public static int tabc = 50; //

public static double dt = 0; //
public static double tstart = 0; //
public static double dr = 0; //
public static double ds = 0; //
public static double IBFDds = 0; //
public static double CNFDds = 0; //

public static int t = 1; //
public static double sigma = 0; //

public static double [] [] p; //
public static doublet]!] LHSDiff; //
public static doublet] [] LHSAbso; //

is Nonlinarity on? (to be read in) 
is Absortion on? (to be read in) 
is Diffraction on? (to be read in)

r-direction (to be read in) 
-direction for IBPD 
s in z-direction (to be read in)

t ac (both ends) (to be read in)

size (to be read in) 
ep size (to be read in)

// pressure matrix

public static int ors = 0; public static int orb = 0; 
public static int ore = 0; public static double ozs = 0; 
public static double ozb = 0; public static double oze = 0;

// which waveforms to output 
// s = start, b = skip by 
// e = end (to be read in)

public static String workdir // working directory

// - - ......
//  temp vars - I know this is bad programming, but it speeds up computations ----
public static int i; public static int ii; public static int j; public static int j j;
public static double!] sumP;
public static doublet] rhs;
public static doublet] beta;
public static doublet] gamma;
public static doublet] sol;
public static double R; public static double Ro2; public static double Ro4;//R for Diff 
public static double Ro8;public static double S; public static double So2;//S for Absorb 
public static double dDisto; public static double dDeltaPmax; //for Nonlinear
public static double dDeltaPdt; public static int k; 
public static doublet] TauDisto; public static doublet] pold;
// - - - ........
public static void main(String[Jargs) throws IOException {

initVars(args); // Initialize Variables from input file
ds = IBFDds; // Set the z-step size to the CNFD ds
initLHS__IBFD() ; // Initialize LHS matricies for the IBPD method

// Set up outputfile
BufferedWriter outfile=new BufferedWriter (new FileWriter(workdir + "waves.txt"));

System.out.println( 
System.out.println( 
System.out.println( 
System.out.println( 
System.out.println( 
System.out.println(

== Starting KZK simulation == Version 1.0")") ;
number outputs in r-direction 
number outputs in z-direction 

number of t points") ;
(Math.floor{(ore-ors)/orb)+1) 
(Math.floor((oze-ozs)/ozb)+1) 
(maxt+1) + " ");
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ds is now: " + IBFDds );

L

// do the IBFD Diffraction Step
// do the IBFD Absorption Step
// do the Nonlinear Step
// do the Absorbing Boundaries Step
// Output waveform?

OutputWaveforms(outfile); // Output initial waveform?

System.out.println("== Starting with IBFD Me 
for (t=l;t<=IBFDzsteps;t++)

sigma = t*ds; // set current sigma

if (isDon==l) IBFDDiffractionO;
if (isAon==l) IBFDAbsorptionO;
if (isNon==l) NonlinearO;
if (isABCon==l) DoABCs();
OutputWaveforms(outfile);

if (t% (50) == 0) System.out,println(" current step: "+t+"/"+totalzsteps);

System.out.println("== Switching to CNFD Method == ds is now: " + CNFDds ); 
ds = CNFDds; // Set the z-step size to the CNFD ds
initLHS_CNFD(); // Initialize LHS matricies for the CNFD method

for (t=t;t<=totalzsteps;t++){
sigma = (t-IBFDzsteps)*CNFDds+(IBFDzsteps)*IBFDds; // set current sigma

if (isDon==l) CNFDDiffraction(); // do the CNFD Diffraction Step
if (isAon==l) CNFDAbsorption(); // do the CNFD Absorption Step
if (isNon==l) NonlinearO; // do the Nonlinear Step
if (isABCon==l) DoABCsO; // do the Absorbing Boundaries Step
OutputWaveforms(outfile)? // Output waveform?

if (t%(50) == 0) System.o ut.println(" current step: "+t+"/"+totalzsteps);

outfile.close();

System.out.println("== Done with KZK simulation ==");
}

/ /  -  ----------------------------------------------------------------------------------
// IBFDDiffraction - Implicit Backward Finite Difference Method for the diffraction term in the KZK//  - -     - ----------------------
public static void IBFDDiffractionO {

for (j=l; j<=maxr-l; j++)
{ sumP[j] = 0; sol[j] = 0 ;  }

for (i=l; i<maxt-l; i++){ for (j = 0; j< =maxr-l; j++)
sumP[j] = sumP[j] + p[i-l] [j] ; 

rhs[0] * p[i][0] + R* (sumP [1]-sumP [0] ) ; 
for (j=l; j<maxr-2; j++)

rhs [j] = p[i] [ j j + (1-1/ (2* j ) ) * (Ro4) *sumP [j -1] - (Ro2) *sumP [j]+(l+l/(2*j) )* (Ro4) *sumP t j+1] ; 
rhs[maxr-l] = p[i][maxr-l] + (1-1/(2*(maxr-1)))*(Ro4)*sump [maxr-2]- (Ro2)*sumP[maxr-1];

tridiagDiff(LHSDiff, rhs, 0, maxr-1); 
for (j = 0;j <=maxr-1;j ++) 

p[i] Ejj = sol [j] ;

}
/ / ---------------------------------------------------------------------------------------
// CNFDDiffraction - Crank-Nicolson Finite Difference Method for the diffraction term in the KZK
// -  -   - ------------------------------------
public static void CNFDDiffractionO

for (j=0; j<=maxr-l; j++)
{ sumPEj] a 0; sol[j] = 0 ;  }

for (i«l; i<maxt-l; i++){
for (j=0 ; j<=maxr-l; j++)

sumPtj] = sumPEj] + sol[j]j 
rhs[0] = 2*p [i ] [ 0] + Ro2* (sumP [1] -sumP [0] ) ; 
for (jsl; j<maxr-2; j++)

rhs [jj =2*p[i][j] + (l-l/(2*j))* (Ro8) *sumP [j -1] - (Ro4) *sumP [j] + (l+l/(2*j))* (Ro8) *sumP [j +1] ; 
rhs[maxr-l] = 2*p[i] [maxr-1] + (1-1/(2*(maxr-1)))*(Ro8)*sumP[maxr-2]- (Ro4)*sumP[maxr-1];

tridiagDiff(LHSDiff, rhs, 0, maxr-1); 
for {j=0;j<=maxr-l;j++)

p [i] Cj] = sol [j ] -p [i] [j];

} }
/ /  -  ---------------------------------------------------------------
// IBFDAbsorption - Implicit Backward Finite Difference Method for the absorption term in the KZK
//  - -  ------------------------------------------
public static void IBFDAbsorptionO

for (j = 0; j<=maxr-l; j++)

for (i=l; i<=maxt-l; i++)
rhs[i]=p[i] [j] ; 

tridiagDiff(LHSAbso, rhs, 1, maxt-1); 
for (i=l; i<=maxt-l; i++)

 ̂ p[i] [j]=sol [i] ;

//     ----
// CNFDAbsorption - Crank-Nicolson Finite Difference Method for the absorption term in the KZK// -   -------------
public static void CNFDAbsorption0
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for (j = 0; j<=maxr-l; j+ + )

for (i=l; i<=maxt-l; i++)
rhs [i] = {So2) *p[i-1] [j ] + (1-S) *p [i] [j] +{So2) *p [i + 1] [j ] ; 

tridiagDiff(LHSAbso, rhs, 1, maxt-1); 
for (i=l; i<=maxt-l; i++) 

p [ i ] [j]=sol[i];

} 1
/ /     —  —    -
// Nonlinear - nonlinear term in the KZK
//      ------
public static void NonlinearO throws lOException

for (j=0; jcmaxr; j++){
pold[0] = 0; pold[maxt] = 0; 
for (i = l; i<=maxt-l; i++){

if (p [i] [j ] >=0)
pold [i] = p [i] [j ] / (1-N* (p [i+1] [j] -p[i] [j]) *ds) ; 

else
 ̂ pold [i] = p [i] [j] / (1-N* (p[i] [ j] -p[i-l] [j] ) *ds) ;

for (i=0; i<=maxt; i++) 
p [i] [ j ] = pold [i] ;

// -    ---------
// DoABCs - Attenuates the pressure values at the boundaries to reduce reflections
//        --------
public static void DoABCs()

for (i = 1; i <=rabc; i++) 
for (j = 1; j <= rnaxt; j++)

p[j] [maxr-rabc+i] = (1-.005*i)*p [ j] [maxr-rabc+i]; 
for (i = 1; i <=maxr; i++) 
for (j = 1 ;  j <= tabc; j++)

p[maxt-tabc+j] [i] = (1-.005*j)*p[maxt-tabc] [i]; 
p[tabc-j][i] = (1-.005*j)*p [tabc] [i];

//       -  .........
// tridiagDiff - Solves the tridiagonal system for the <LHS> coeficients for a given <rhs> 
// The solution is left in variable sol. This is the Thomas algorithim./ /      -...........
public static void tridiagDiff(double[][] LHS, doublet] rhs, int start, int end)

beta [start] = LHS[1] [start];
gamma[start] = rhs[start] / beta[start];
for (ii=start+l;ii<=end;ii++>

beta [ii] = LHS[l][ii] - LHS [0] [ii] *LHS [2 J [ii-1]/beta [ii-1] ; 
gamma [ii] = (rhs[ii] - LHS [0] [ii] *gamma [ii-1] )/beta [ii] ;

sol [end] = gamma [end] ;
for (ii=end-l; ii>=start; ii--)

sol[ii] = gamma [ii] - LHS [2] [ii]*sol [ii+1]/beta[ii] ;

//     --------
// initLHS_IBFD - Initialize LHS matrix Coefficients for the IBFD method
//       ----------
public static void initLHS_IBFD()

//== Initialize left hand side diffraction Coefficients == 
LHSDiff = new double[3][maxr+1];
R=dt*ds/(G*dr*dr); Ro2 = R/2; Ro4 = R/4; Ro8 = R/8;

LHSDiff[0] [0] = 0; LHSDiff[0] [maxr-1] = (-1 + 1/(2*(maxr-1)))
LHSDiff[1] [0] = 1+Ro2; LHSDiff[1] [maxr-1] = l+Ro4;
LHSDiff[2] [0] = -Ro2; LHSDiff[2] [maxr-1] = 0;
for(j=l; j<=maxr-2; j++)

LHSDiff[0][j] = (-1+1/(2*j))*Ro8;
LHSDiff [1] [j] = l+Ro4;
LHSDiff [2] [j ] = - (1+1/(2*j ) ) *Ro8 ;

//== Initialize left hand side absorption Coefficients == 
LHSAbso = new double[3][maxt+1];
S=A*ds/(dt*dt); So2 = S/2;

LHSAbso[0][1] = 0; LHSAbso[0][maxt-1] = -S;
LHSAbso[1][1] = 1+S; LHSAbso[1][maxt-1] = 1+2*S;
LHSAbso[2][1] = -S; LHSAbso[2][maxt-1] = 0; 
for(j=l; j<=maxt-l; j++){
LHSAbso [0] [j] = -S;

LHSAbso[l] [j] = (1+2*S);
LHSAbso[2][j] = -S;

} 1
//      ---------
// initLHS_CNFD - Initialize LHS matrix Coefficients for the CNFD method//      --------------------
public static void initLHS_CNFD{)

I I - -  Initialize left hand side diffraction Coefficients = 
R=dt*ds/(G*dr*dr); Ro2 = R/2; Ro4 = R/4; Ro8 = R/8;
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LHSDiff [0] [maxr-1] 
LHSDiff[1] [maxr-lj 
LHSDiff [2] [maxr-1]

= (-1 + 1 / ( 2 -* 
= I+R0 8 ;
= 0 ;

LHSDiff[0][0] = 0;
LHSDiff[1][0] = l+Ro4;
LHSDiff [2] [0] = -Ro4; 
for(j=l; j<=maxr-2 ; j++)

LHSDiff[0] [j] = (-1+1/(2*j))*R/16;
LHSDiff [1] [j] = I+R0 8 ;
LHSDiff [2] [j] = - (l+l/(2*j))*R/16;}

//== Initialize left hand side absorption Coefficients == 
S=A*ds/(dt*dt); So2 = S/2;

LHSAbso[0][1] = 0; LHSAbso[0][maxt-1] = -So2;
LHSAbso[1][1] = 1+S; LHSAbso[1][maxt-1] = 1+S;
LHSAbso[2] [1] = -So2; LHSAbso[2] [maxt-1] = 0;
for(j=l; j<=maxt-l; j++)

LHSAbso [0] [j] = -So2;
LHSAbso [1] [j] = (1+S);
LHSAbso [2] [j] = - So2 ;

(maxr-1)))*R/16;

//               ......
// initP - Reads in initial configuration from file//      -
public static void initVars(String[] args) throws lOException {

if (args.length != 1)
System.o ut.println(" You must specify initial waveform file! ");

BufferedReader infile=new BufferedReader (new FileReader(args[0])); // open waveform file
StringTokenizer st = new StringTokenizer(infile.readLine()); // read it all in as a

Tokenizer
infile.close() ;

N = Double.parseDouble(st.nextToken()); // N
G = Double.parseDouble(st.nextToken()); // G
A  = Double.parseDouble(st.nextToken()); / / A

maxr = Integer.parselnt(st.nextToken());
IBFDds = Double.parseDouble(st.nextToken());

CNFDds = Double.parseDouble(st.nextToken()); 
rabc = Integer.parselnt(st.nextToken{)) 
tabc = Integer.parseInt(s t .nextToken()) 
isNon = Integer.parselnt(st.nextToken()) 
isDon = Integer.parselnt(st.nextToken()) 
isAon = Integer.parseInt(s t .nextToken(})
isABCon= Integer.parseInt(s t .nextToken())

// maxr
// IBFD spatial step 

// CNFD spatial step 
// # r abc 
// # t abc 
// is N on?
// is D on?
// is A on?
// is ABC on?

int nrpiston = Integer.parselnt(st.nextToken{)); // number of elements across piston 
maxt = Integer.parselnt{s t .nextToken())+1; // number of t steps

dt = Double.parseDouble(st.nextToken()); // time step size
tstart a Double.parseDouble(st.nextToken()); // start time
dr = Double.parseDouble(st.nextToken()); // r step size

p = new double[maxt+1 ] [maxr+1 ] ; // initialize p matrix to correct size

for (int r = 0 ; rcnrpiston; r++)
for (int t = 0 ; tcmaxt; t++)

p[t] [r] = Double.parseDouble(st.nextToken0);

// read in the waveforms

for (int r = nrpiston; rcmaxr; r++) 
for (int t = 0; t<maxt; t++) 

p(t] [r] = 0;

// output stuff
totalzsteps = Integer.parselnt(st.nextToken()); 
ors = Integer.parseInt(s t .nextToken() ) ; 
orb = Integer.parselnt(st.nextToken()} 
ore = Integer.parselnt(st.nextToken()) 
ozs = Double.parseDouble(st.nextToken()) 
ozb = Double.parseDouble(st.nextToken()) 
oze = Double.parseDouble(st.nextToken())

workdir = s t .nextToken();

int s = Math.max(maxt,maxr);
// init some other vars while we are at it 
rhs = new double [s+1];
beta = new double [s+1];

gamma = new double[s+1 ] ;
sol = new double [s+1] ;
TauDisto = new double[s+1];
pold = new double[s+1];
sumP = new double[s+1];

// set the rest of the values to zero

// total z ;steps
// out wave position - start rho
i i out wave position - skip rho
i i out wave position - end rho
i i out wave position - start sigma
i i out wave position - skip sigma
i i out wave position - end sigma

// —-      ...........
// OutputWaveforms -//    - ............................................
public static void OutputWaveforms(BufferedWriter outfile) throws lOException

if( (ozs <= sigma)

for (int r - ors; r<= ore; r+=orb) 
writeWave(outfile, r);

ozs += ozb;
if (ozs > oze) ors = 999999;

i i  ........................................ -...........
i i  writeWave - Writes current waveform at r to outfile
i i --------- ----------- -------------------------------------
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public static void writeWave(BufferedWriter outfile, int r) throws lOException
//System.out.println{"Writing wave to file at sigma: " + sigmat" r:" +r + " step: "+t); 
for (int t=1; t<= maxt; t++) 
outfile.write( p[t][r]+" '* ); 

outfile.newLine();}
//   - .....................................
// writeP - Writes current pressure field to outfile//
public static void writeP(BufferedWriter outfile) throws lOException

for (int r=0; r<=199; r++){
for (int t=l; t<= maxt; t++) 

outfile .write ( p[tj[r]+” " ); 
outfile.newLine();

>>

A2.2.2 MATLAB KZK setup and execution script (runkzkparametric.m)
function [ output_args ] = runkzkparametric( input_args )
%KZKPARAMETRIC -- Runs KZK simulation for a parametric source

% =================================================================================
% KZK Simulation Settings 
% = = === = = === = = = = == = = = = = = === = = = = = = === = = = = = = = := = = = = = = := = = = =: = = = = = = = := = = = = = = = = = = = = = = := = == = =

i sNon = 1;
i sDon = 1;
i sAon = 1?
isABCon - 1;

% =====
radius
focald

= 0.230 
= 0.094 
= 0.860

= 50000;
= 55000/wo;
= 45000/w o ;
= -30;
= 30;

numtaupercycle = 20; 
Zpadby - .1; 
tukeya = 0.5;

FI
F2
taumin
taumax

maxr = 3 00; 
ntrans = 100; 
IBFDds = 0.001; 
CNFDds = 0.002; 
rabc = 40; 
tabc - 40;

% Effects to include in Simulation (1 = on, 0 = off)
% Nonlinearity 
% Diffraction 
% Absorption
% Absorbing Boundary Conditions

% Main Coefficients of Simulation 
% Nonlinear Coefficient 
% Diffraction/Gain Coefficient 
% Absorption Coefficient

% Transducer Configuration
% Transducer Radius in meters 
% Focal length in meters

% Waveform Parameters
% Center Frequency (normalized to this one)
% First frequency component 
% Second frequency component 
% time range - min 
% time range - max
% number of time points per wo cycle 
% Zero pad percent 
% Tukey Window Alpha (0-1)

% Simulation Space Parameters
% Maximum number of steps in the radial direction 
% Number of points across the transducer 
% Step Size of IB finite difference
% Step Size of CN finite difference
% Number of absorbing boundary layers in the radial direction
% Number of absorbing boundary layers in the time direction

% ================= % Where to record the Waveforms (in Meters)
outstartz
outbyz
outendz
outstartr
outbyr
outendr

0 ;
0 . 1 ;
1 0 ?
0 ;
0 . 1 ;
0 . 6 6 ;

% Output to start at outstartz 
% Output by every outbyz 
% Output to end at outendz 
% Output to start at outstartr 
% Output by every outbyr 
% Output to end at outendr

> In the z-Direction/\
> In the r-Direction

% s s s s = = = 3 s a s - ::- s = = = = = s - s - - - = = = = - - = s s - - = - = - = = = = = - 3 = = = - - - - = = -  = = :::===; = = - - ==== =  = = : ; - - = ::= :

% Create inital waveform - change this is you want another type of initial waveform 
% =======3SS===3S=======::=======- =- s ==a = = = = -=- === = ====a - = = = s=::a = a - 3a== ======= = =;3=3=:
Ntau=ceil{(taumax-taumin)*numtaupercycle); 
t aumi n= t aumi n; 
t aumax= t aumax;
Dtau=(taumax-taumin)/Ntau; 
tau= [taumin:Dtau:taumax];
Mintau = min(tau)?
Ntau = length(tau);
Drho=l/(ntrans-1); 
rho= [0:Drho:1];
middle = ceil( (1-2*Zpadby)*Ntau)+1; 
midstart = floor(Zpadby*Ntau); 
zeropad(l:midstart) = 0;
for jj=l:ntrans
dum=tau+G*(jj-1).A2*Drho.* 2 ;
dumm = dum{midstart:midstart+middle-1);
p = tukeywin(middle,tukeya)'.*(sin(dumm.*Fl*2*pi)+sin(dumm.*F2*2*pi)); 
p = [zeropad p zeropad];
Ps(jj,:)=p; 

end
Ps = Ps./max(max(Ps));
%====3===============3========= 333========= 333========3 =3 ==========================:
% Write Inputfile for KZK simulation - do not change the order of this!
% = = = = ===== ==== = = = = == = = = == ==== = = = = === = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = == = = :
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[fname,pname] = uiputfile(1 user.cfg', 'Save Configuration'); 
fp=fopen([pname '\' fname],'w');

fprintf{fp, %15.6f ’ , N) ; % Nonlinear Coefficient
fprintf(fp, %15.6f ’ , G) ; % Diffraction/Gain Coefficient
fprintf(fp, %15.Sf ' , A) ; % Absorption
fprintf(fp, %15.Of ', maxr) ; % maxr
fprintf(fp, %15.6f ', IBFDds); % IBFD ds
fprintf(fp, %15.6f ', CNFDds); % CNFD ds
fprintf(fp, %15.Of ' , rabc) ; % # r abc
fprintf(fp, %1S.Of ', tabc); % # t abc
fprintf(fp, %15.Of ', isNon); % is N on?
fprintf(fp, %15.Of ', isDon); % is D on?
fprintf(fp, %15.Of ', isAon); % is A on?
fprintf(fp, %15.Of ', isABCon) ; % is Absorbing Boundary on?
fprintf(fp, % 8 .Of ' , ntrans); % number of points across transducer
fprintf(fp, % 8 .Of ' , Ntau) ; % total number of time points
fprintf(fp, %15.8f ', Dtau); % time step size
fprintf(fp, %15.8f ', Mintau); % minimum time
fprintf(fp, %15.8f ', Drho) ; % rho step size
fprintf(fp, %15.8f Ps'); % initial pressure field
fprintf(fp, %15.Of ', ceil{(outendz-IBFDds*focald*100)/(CNFDds*focald))
fprintf(fp, %15.Of ', outstartr/radius*ntrans); % out waves start r
fprintf(fp, %15.Of ', outbyr/radius*ntrans); % out waves by r
fprintf(fp, %15.Of ', outendr/radius*ntrans); % out waves end r
fprintf(fp, %15.4f ', outstartz/focald); % out waves start z
fprintf(fp, %15.4f ', outbyz/focald); % out waves by z
fprintf(fp, %15.4f ', outendz/focald); % out waves end z

fprintf(fp, %s , [ pname ]); % working directory
fclose(fp);

% total z steps

% Run the KZK simulation 
%========================
dos(['java -Xmx500m kzk 1 pname '\ ' fname]);

A2.2.3 MATLAB read data output script (ReadWaves.m)

The following code is used to read in the KZK results and plot the wave field as the 
sound propagates away from the source.

function [ w ] = ReadWaves{ fn ) 

in = textread(fn); 

nz = 101;
nr = length(in{:,1))/nz; 
nt = length(i n {1,:));

w (1:n r ,1:n z ,1:n t ) = 0;

C = 1 ;

for r = l:nr
for z = l:nz

for t = 1 :nt
w(r,z,t) = i n ((r-1)*nr+z,t); 
c = c+1;

end
end

end

A2.2.4 MATLAB GUI to setup a nonlinear KZK simulation

This is a graphical user interface to automatically determine simulation parameters, save 
the configuration files, and run the KZK nonlinear acoustic simulations.

GUI Screenshot
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GUI Sourcecode
function varargout = setupKZK(varargin)
% SETUPKZK Application M-file for setupKZK.fig 
% FIG = SETUPKZK launch setupKZK GUI.
% SETUPKZK('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 05-Aug-2005 11:51:23 

if nargin == 0 % LAUNCH GUI

fig = openfig (mfilename,'reuse');

% Generate a structure of handles to pass to callbacks, and store it. 
handles = guihandles(fig); 
guidata(fig, handles)?

if nargout > 0
varargout{1} = fig?

end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try
if (nargout)

[varargout{l:nargout}] = feval(varargin{:}); % FEVAL switchyard
else

feval(vararginf:}); % FEVAL switchyard
end

catch
disp (lasterr);

end

% This function automatically determines the simulation parameters 
function [A,N,G,shock,raydist,a] - getANG(handles)

den = str2num(get(handles.editDensity, 'string'))?
= str2num(get(handles.editSos, 'string'))?
= str2num(get(handles.editBoA, 'string'))? 

hr = str2num(get(handles.editRH, 'string'))? 
r * str2num (get(handles.editRadius, 'string'))? 
wo = str2num (get(handles.editFreq, 'string'));
P = str2nuin (get (handles, editlntensity, 'string'))? 
d = str2num(get(handles.editFocal, 'string'));

B

dens ity 
speed of sound 
B/A - nonlinearity 
relative humidity 
radius of* source 
center frequency 
max pressure at source 
focal length

B (l+B/2)?

% —  find shock formation distance
Ppa = 0.00002*10A (P/20); % convert db to pascals
shock = (den*cA3)/ (B*wo*2*pi*Ppa)?
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% == find rayleigh distance 
raydist = (2*pi*wo*rA2)/ (2*c);

% == find ao - absortion coefficient

To = 293.15/ % kelvin - Reference (room temp)
T = 293.15; % Temperature - room temp

psat = 10A (-6.8346* (273.16/T)A (1.261)+4.6151); 
h = hr*(psat);

Fro = 24+4.04*10A4 *h*( (0.02+h)/ (0.391+h));
Frn = sqrt(To/T)*(9+280*h*exp(-4.17 * ( (To/T)A (1/3)-1)));

a = (woA2)* (1.84*10A (-11)*sqrt(T/To) + (T/To)A (-5/2)*(0.01275*exp (-2239.1/T)/ (Frc+woA2/Fro)+0.1068*exp (- 
3352/T)/ (Frn+woA2/Frn)));

% == find NAG

A = a*d*(2*pi); 
N » d/shock;
G = raydist/d;

% Creates the initial waveform
function [Ps, Nrho, Ntau, Dtau, Mintau, Drho] = getlnitialWaveforms(handles, G) 

% new! - re-normalize initial waveform

rf = str2num(get(handles.editRealFocus, 'string'))/ % real focal length
d = str2num(get(handles.editFocal, 'string')); % old focal length (normalized)
G = G*d;
G - G/rf;

wo = str2num(get(handles.editFreq, 'string')); 
FI = str2num(get (handles.editFl, 'string'))/wo;
F2 = str2num (get(handles.editF2, 'string'))/wo;
F3 = str2num(get(handles.editF3, 1 string'))/wo;
F4 = str2num(get(handles.editF4, 'string'))/wo;

% center frequency
% first frequency component
% second frequency component
% third frequency component
% forth frequency component

% min tau 
% max tau
% num tau per center frequency cycle 
% Zero pad percent 
% Tukey Window Alpha

Ntau=ceil((taumax-taumin)*numtaupercycle);
taumin=taumin*2*pi;
taumax=taumax* 2*pi;
Dtau=(taumax-taumin)/Ntau 
tau=[taumin:Dtau:taumax];
Mintau * min(tau);
Ntau = length(tau);

taumin = str2num(get(handles.edittaumin, 'string')); 
taumax - str2num (get(handles.edittaumax, 'string')); 
numtaupercycle = str2num(get(handles.editNumtaupercycle, 'string')); 
Zpadby = str2num(get(handles.editZeropadpercent, 'string'))./100; 
tukeya = str2num(get(handles.edittukeyalpha, 'string'));

Nrho=str2num(get(handles.editnumrsource, 'string')); % Number of cells across source (in r-direction) 
Drho=l/(Nrho-1); 
rho=[0:Drho:1];

middle = ceil((l-2*Zpadby)*Ntau)+1; 
midstart = floor(Zpadby*Ntau); 
zeropad(1:midstart) = 0;

%if (G == 0) Nrho » 1; end 
for jj=l:Nrho

dum=tau+(G)* (jj-1).A2*Drho.A2;
dumm - dum(midstart:midstart+middle-l);
p = tukeywin(middle,tukeya)'.*(sin(dumm.*F1)+sin(dumm.*F2)+sin(dumm.*F3)+sin(dumm.*F4)); 
p = [zeropad p zeropad];
Ps (j j , :) =p; 

end

Ps — Ps./max(max(Ps));

function varargout = buttonShowDetails_Callback(h, eventdata, handles, varargin)

[A,N,G,shock,raydist,a] - getANG(handles);
ibfdds = str2num(get(handles.editlBFDds, 'string'))*str2num(get(handles.editFocal, 'string')); 
cnfdds = str2num(get(handles.editCNFDds, 'string'))*str2num(get(handles.editFocal, 'string')); 
totalsteps = ceil((str2num(get(handles.editEndDistance, 'string'))-ibfdds*10Q)/cnfdds)+100; 
dr = str2num(get(handles.editRadius, 'string'))/str2num(get(handles.editnumrsource, 'string'));

m =
m = strvcat(m, 
m = strvcat(m, 
m = strvcat(m, 
m = strvcat(m, 
m - strvcat(m, 
m = strvcat(m, 
m - strvcat(m, 
m = strvcat(m,

Detail Variables for Simulation'];-*]) ;
Shockwave Formation Distance: ', num2str(shock), • 
Rayleigh Distance: ', num2str(raydist), '_m']); 
Absortion Coef: ', num2str(a), '_Napiers/(m*HzA2) -*]);
Onitless Variables for Simulation ']);-’]);
Gain (G): ', num2str (G), ]);
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in = strvcat(m, ['Absorprion (A): ', num2str(A), ]);
m = strvcat(m, ['Nonlinearity (N): ', num2str(N), ]);
m = strvcat(m, [*— *]);
m = strvcat(m, ['Real spatial step sizes ']);
m ■ strvcat(m,
m * strvcat(m, ['z (IBFD): ', num2str(ibfdds), 1_m ']);
m = strvcat(m, ['z (CNFD): ', num2str(cnfdds), 1_m ']);
m = strvcat(m, ['r : ', num2str(dr), ' m ' ]);
m = strvcat(m, ['Total simulation Steps : num2str(totalsteps)]);

msgbox(m ,' Details')

function varargout = buttonShowWaveform_Callback(h, eventdata, handles, varargin)
% Plot the Initial Waveform
[Ps] = getlnitialWaveforms(handles, 0);
figure; plot(Ps(1,:)); axis tight;

function varargout = buttonShowWaveField_Callback(h, eventdata, handles, varargin) 
[A,N,G] = getANG(handles);
[Ps] = getlnitialWaveforms(handles, G);
figure; h = pcolor(Ps); set (h,'l i n e s t y l e n o n e ');

function varargout = buttonLoadConfiguration_Callback(h, eventdata, handles, varargin)

[fname,pname] = uigetfile ('*.kzkcfg', 
n=load([pname '\' fname]);

'Open Configuration1);

set(handles.editDensity, * string', num2str(n(1)));
set (handles.editSos, 'string', num2str(n(2)));
set(handles.editBoA, 'string ' ,  num2str(n(3)));
set(handles.editRH, 'string', num2str (n (4)));
set(handles.editRadius, 'string', num2str (n (5)));
set(handles.editFreq, 'string', num2str (n (6)));
set(handles.editlntensity, 'string', num2str(n(7)));
set(handles.editFocal, 'string', num2str(n(8)));
set(handles.editFreq, 'string', num2str (n (9)));
set(handles.editFl, 'string*, num2str (n (10)));
set(handles,editF2, 'string', num2str (n (11)));
set (handles.editF3, 'string', num2str(n (12)));
set(handles.editF4, 'string', num2str (n (13)));
set (handles.edittaumin, 'string', num2str (n(14)));
set (handles.edittaumax, 'string', num2str (n(15)));
set (handles.editNumtaupercycle, 'string', num2str (n(16)));
set(handles.editZeropadpercent, 'string', num2str(n(17)));
set (handles.edittukeyalpha, 'string', num2str(n (18)));
set(handles.editnumrsource, 'string', num2str(n (19)));
set(handles.editmaxr, 'string*, num2str (n (20)));
set(handles.editlBFDds, 'string*, num2str (n(21)));
set (handles.editCNFDds, 'string*, num2str (n(22)));
set (handles.editrabc, 'string', num2str (n(23)));
set(handles.edittabc, 'string', num2str (n (24)));
set(handles.radiobuttonN, 'value', (n(25)));
set (handles.radiobuttonD, 'value', (n(26)));
set (handles.radiobuttonA, 'value', (n(27)));
set (handles.radiobuttonABC, 'value', (n(28)));
set(handles.editEndDistance, 'string', (n(29)));
set(handles.checkboxOutWaves, 'value', (n(30)));
set (handles.editowstartr, 'string', num2str(n(31)));
set (handles.editowbyr, 'string*, num2str(n(32)));
set(handles.editowendr, 'string*, num2str (n (33)));
set(handles.editowstartz, 'string*, num2str(n(34)));
set (handles.editowbyz, 'string', num2str(n(35)));
set (handles.editowendz, 'string', num2str(n(36)));
set (handles.checkboxOutTotalP, 'value', (n(37)));

component
component
component
component

density 
speed of sound 
B/A - nonlinearity 
relative humidity 
radius of source 
center frequency 
max pressure at souro 
focal length 
center frequency 
first frequency ; 
second frequency 
third frequency 
forth frequency 
min tau 
max tau
nun tau per center frequency cycle
Zero pad percent
Tukey Window Alpha
Number Cells across Source (r-dir)
maxr
IBFD sigma step size 
CNFD sigma step size
# r abc
# t abc 
is N on? 
is D on 
is A on'
is Absorbing Boundary on? 
end z distance 
output Waves? 
out waves start r 
out waves by r 
out waves end r 
out waves start z 
out waves by z 
out waves end z 
output total?

function varargout = buttonSaveConf iguration__Callback (h, eventdata, handles, varargin)

[fname,pname] = uiputfile('test.kzkcfg', 'Save Configuration'); 
fp=fopen([pname '\* fname],*w');

fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp,

%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
%15.4f 
*15.4f 
%15.4f 
%15.6f

str2num(get(handles.editDensity, 'string'))); 
str2num(get(handles.editSos, 'string1))); 
str2num(get(handles.editBoA, 1 string1))); 
str2num(get(handles.editRH, 'string’))); 
str2num(get(handles.editRadius, 'string'))); 
str2num(get(handles.editFreq, 1 string1))); 
str2num(get(handles.editlntensity, 'string'))); 
str2num(get(handles.editFocal, 'string'))); 
str2num(get(handles.editFreq, 'string'))); 
str2num(get(handles.editFl, 'string'))); 
str2num(get(handles.editF2, 'string'))); 
str2num(get(handles.editF3, 'string'))); 
str2num(get(handles.editF4, 'string'))); 
str2num(get(handles.edittaumin, 1 string1))); 
str2num(get(handles.edittaumax, 'string'))); 
str2num(get(handles.editNumtaupercycle, 'string'))); 
str2num(get(handles.editZeropadpercent, 'string'))); 
str2num(get(handles.edittukeyalpha, 'string'))); 
str2num(get(handles.editnumrsource, 'string'))); 
str2num(get(handles.editmaxr, 'string'))); 
str2num(get(handles.editlBFDds, 1 string')));

% density 
% speed of sound 
% 3/A - nonlinearity 
% relative humidity 
% radius of source 
% center frequency 
% max pressure at source 
% focal length 
% center frequency 
% first frequency component 
% second frequency component 
% third frequency component 
% forth frequency component 
% min tau 
% max tau
% num tau per center frequency cycle 
% Zero pad percent 
% Tukey Window Alpha
% Number Cells across Source (r-dir) 
% maxr
% IBFD sigma step size
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fprintf(fp, %15 6f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fprintf(fp, %15 4f
fclose(fp);

str2num(get(handles.editCNFDds, 'string'))); 
str2num(get(handles.editrabc, 'string'))); 
str2num(get (handles.edittabc, 'string' ) ) ) ;
(get (handles.radiobuttonN, 'value 1)));
(get(handles.radiobuttonD, 'value 1)));
(get (handles.radiobuttonA, 'value')));
(get(handles.radiobuttonABC, 'value 1))); 
str2num(get(handles.editEndDistance, 'string'))) 
(get(handles.checkboxOutWaves, 'value'))); 
str2nuin (get (handles. editowstartr, ' string') ) ) ; 
str2num (get(handles.editowbyr, 'string'))); 
str2num (get(handles.editowendr, 'string'))); 
str2num (get(handles.editowstartz, 'stringr))); 
str2num(get(handles.editowbyz, ‘string1))); 
str2num(get(handles.editowendz, 'string')));
(get(handles.checkboxOutTotalP, 'value'))); %

% CNFD sigma step size 
# r abe 

% # t abc 
% is N on?
% is D on?
% is A on?
% is Absorbing Boundary on? 

; % end z distance
% output Waves?
% out waves start r 
% out waves by r 
% out waves end r 
% out waves start z 
% out waves by z 
% out waves end z 

output totalP?

function varargout = buttonMakeKZKFile_Callback(h, eventdata, handles, varargin) 

[A,N,G] = getANG(handles);
[Ps, Nrho, Ntau, Dtau, Mintau, Drho) = getlnitialWaveforms(handles, 0);% WAG G

[fname,pname] = uiputfile ('user.cfg', 'Save Configuration'); 
fp=fopen ([pname * \ • fname],'w1);

fprintf(fp, 
fprintf(fp, 
fprintf(fp,

fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp,

%15.6f
%15.6f
%15.6f

%15.Of 
%15.6f 
%15.6f 
%15.Of 
%15.Of 
%15.Of 
%15.Of 
%15.Of 
%15.Of

% Nonlinear Coefficient 
% Diffraction/Gain Coefficient 
% Absorption

str2num(get(handles.editmaxr, 'string'))); 
str2num(get(handles.editlBFDds, 'string'))); 
str2num(get(handles.editCNFDds, 'string'))); 
str2num(get(handles.editrabc, 'string'))); 
str2num(get(handles.edittabc, 'string'))); 
(get(handles.radiobuttonN, 'value1)));
(get(handles.radiobuttonD, 'value')));
(get(handles.radiobuttonA, 'value')));
(get(handles.radiobuttonABC, ’value’)));

maxr 
IBFD ds 
CNFD ds
# r abc
# t abc 
is N on 
is D on 
is A on 
is Absorbing Boundary on?

% Waveform a 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp,

%8. Of
%8.Of '
%15.8f
%15.8f
%15.8f
%15.8f

parameters 
Nrho); 
Ntau); 
Dtau); 
Mintau); 
Drho);
Ps ') ;

% output stuff
d = str2num(get(handles.editFocal, 'string'));
ibfdds = str2num(get(handles.editlBFDds, 'string'))*d;
cnfdds - str2num(get(handles.editCNFDds, 'string'))*d;

ed = str2num(get (handles.editEndDistance, 'string')); 
totalsteps = ceil((ed-ibfdds*10Q)/cnfdds)+100;

a = str2num(get(handles.editRadius, 'string')); 
ns = str2num(get (handles.editnumrsource, 'string'));

fprintf(fp, ' %15.Of 
round(str2num(get

fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp, 
fprintf(fp,

%15.Of 
%15.Of 
%15.Of 
%15.4f 
%15.4f 
%15.4f

', totalsteps); % total z steps
(handles.editowbyr, 'string'))/a*ns)
', round(str2num(get(handles.editowstartr, 'string'))/a*ns)) 
', round(str2num(get(handles.editowbyr, 'string'))/a*ns));
', round(str2num(get(handles.editowendr, 'string'))/a*ns));
', str2num(get(handles.editowstartz, 'string'))/d);
', str2num(get(handles.editowbyz, 1 string'))/d);
', str2num(get(handles.editowendz, 'string'))/d);

% out waves start 
% out waves by r 
% out waves end r 
% out waves start 
% out waves by z 
% out waves end z

fprintf(fp, [ pname ]) % working directory

fclose(fp);

function varargout = ButtonRunKZK(h, eventdata, handles, varargin)

[fname,pname] * uigetfile{'*.cfg', 'Open Configuration');
% n=load([pname *\' fnamej); 
c = ['java -Xmx500m kzk ' pname '\ * fname] 
dos(['java -Xmx500m kzk ' pname '\* fname]);
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A2.3 Periodontal Acoustic Simulation Code

A2.3.1 Main Structure of Parallel Simulation Code

This code reads in the input files that define the simulation space geometry and 
distributes these values to all the nodes.

#include <mpi.h>
♦include <iostream>
♦include <fstream>
♦include <string>
♦include <sstream>
♦include <cmath>
♦include "acousticrect.h"
♦include "time.h"

using namespace std;

int maxt, outputevery, totalz, m2m3; 
int rank, numworkers;

double originl; //origin of simulation 
double origin3; //

void master () ;
void slave();
void syncnodes_master();
void DistributeSimulationParameters{);
void dumpP(acousticrect sar, int t);
void createCurvedDomain(acousticrect ar);
void drop_pAcum (acousticrect ar, int time);
void sendslicefix3_slave(acousticrect ar, int fix3);
void collectslices_master(int t);
acousticrect addTip(acousticrect ar);

int main(int argc, char *argv[]){
MPI_Init(Sargc, Sargv);
MPI_Comm_rank(MPI_COMM_WORLD, Srank);
MPI_Comm_size(MPI_COMM_WORLD, Snumworkers); /* get number of nodes */
numworkers--;

if (rank == 0)
master{);

else
slave () ;

MPI_Finalize(); 

return 0;}
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void master {){
MPI_Status status2; 
time_t start,end; 
time (fistart);

cout «  "master node is online! \n"; 

DistributeSimulationParameters(); 

syncnodes__master () ;

for (int t=0; tcmaxt; t++)//maxt{
if (t%outputevery == 0 ){

collectslices_master(t);
cout «  "Collecting Slices at time: " «  t «  "\n";

}

// receive aline 

double al_, tal_;
ofstream outFile ("aline.ascii", ios::out);

for (int t=0; t<maxt; t++)
{

al_ = 0;
for (int n = 1; n <= numworkers; n++){

MPI_Recv (&tal_, 1, MPI_DOUBLE, n, 858, MPI__COMM_WORLD, &status2); 
al_=al_+tal_;}

//cout << al << ” ”; 
outFile «  al_ «  " ";}

outFile.close() ; 
time (fiend);
printf ("Total Run Time: %.21f seconds\n", difftime (end,start) ); 
return;

void slave(){
// ----------------------------------------------------------------------

// —  Receive Initial Data From Master
MPI_Status status; MPI_Request request[2];
MPI_Request request2[2]; 
double simparams[10];

MPI_Recv(fisimparams, 10, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD, fistatus);

acousticrect ar; 
ar.numl * simparams[0]+2;
ar.num2 = simparams[1];
ar.num3 = simparams[2];
ar.ds = simparams[3];
ar.dt = simparams[4];
ar.den = 1000; // Default=water simparams[5];
ar.cc = 1490; // simparams [9];

maxt = simparams[5];
outputevery = simparams[6];

ar.zbeg = simparams[7]; 
ar.totalz = simparams[8];

m2m3 * ar.num2*ar.num3;

if (rank =»= 1) ar.type = 1;
else if (rank == numworkers) ar.type - 3; 
else ar.type = 2;

ar. Init () ;

// Get Drive Function from master
MPI__Recv(£ar.drivelen, 1, MPI_INT, 0, 208, MPI_COMM_WORLD, fistatus); 
double *drive » new double[ar.drivelen];
MPI_Rec v (fidrive [ 0 ] , ar.drivelen, MPI_DOUBLE, 0, 209, MPI__COMM_WORLD, fistatus); 

ar.df = drive;

// Create Curved Perio Geom 
createCurvedDomain(ar);

// Now add the Tip and Transducer 
ar “ addTip(ar); 
ar.preFindBoundaries();

// SYNC nodes!
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int temps = rank;
MPI_Send(&temps, 1, MPI_INT, 0, 744, MPI_COMM_WORLD); 

MPT_Recv(fitemps, 1, MPI_INT, 0, 745, MPI_COMM_WORLD, Sstatus);

double *a line = new double[maxt];

// Run Simulation!
for (int t = 0; t < maxt; t++)//maxt {

// Send Aline
a line[t]=ar.getAline();

// Send Slice
if (t%outputevery == 0 )

sendslicefix3_slave(ar, (int)(ar.num3/2));

if (rank —  1) cout «  " time: " «  t «  "/" << maxt «  " " « a r . n u m l « " ,  " « a r . n u m 2 « " ,  "«ar.num3 <<
endl;

ar.time = t; 

ar.UpdatePs(1,1);
if (rank > 1) MPI_Isend(&ar.pp.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 301, MPI_COMM_WORLD, request); 
ar.UpdatePs(2,ar.numl-2);
if (rank < numworkers) MPI_Recv(Sar.pp.a[(ar.numl-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 301, 

MPI_COMM_WORLD, Sstatus);
ar.doDriveFunction {);

ar.UpdateVs(ar.numl-2,ar.numl-2);
if (rank < numworkers) MPI_Isend(Sar.vl.a [(ar.numl-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 302, MPI_COMM_WORLD, 

request);
ar.UpdateVs(l,ar.numl-3);
if (rank > 1) MPI_Recv (Sar. v l . a [ 0 ] , m2m3, MPI_DOUBLE, (rank-1), 302, MPI_COMM_WORLD, fistatus);

//if (t==2500) drop__pAcum (ar, t) ;
//if (t— *3000) drop_pAcum (ar, t) ;

for (int t=0; t<maxt; t++)
MPI_Send(&a line[t], 1, MPI_DOUBLE, 0, 858, MPI_COMM_WORLD);

}
void syncnodes_master(){

int len;MPI_Status status; 
cout «  " sync nodes - "; 

for (int n = 1; n <= numworkers; n++){
MPI_Recv (Slen, 1, MPI_INT, n, 744, MPI_COMM:_WORLD, Sstatus); 
cout << n << " ";}

for (int n = 1; n <= numworkers; n++)
MPI_Send(Slen, 1, MPIJENT, n, 745, MPI_COMM_WORLD);

}
void DistributeSimulationParameters(){

char inputFilename[] = "perioin.ascii"; 
ifstream inFile;
//inFile.open ("perioin.ascii", ios::in); 

inFile.open(inputFilename, ios::in);

if (!inFile) {
cerr «  "Can't open input file ” «  inputFilename << endl; 
exit (1);

}

double *simparams = new double [10];

inFile »  simparams[1]; //max2 Switched these to divide along longest direction
inFile »  simparams[0 
inFile »  simparams(2 
inFile »  simparams[3] 
inFile »  simparams[4] 
inFile »  simparams[5] 
inFile »  simparams[6]

//maxi 
//max3 
//ds 
//dt 
//maxt 
//outevery

maxt = simparams[5];
outputevery =■ simparams [ 6] ;

m2m3 = simparams[1]*simparams[2];
totalz = simparams[0];
simparams[8]= totalz;

// send initial data to each node// ----------------------------------------
int div, divaccum = 0;
for (int n = 1; n <*= numworkers; n++)

{
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div «* (totalz/(numworkers)); if ((n-l)<= (totalz%(numworkers))) div++; /* divide space along
direstion */

simparams[03 “ div;
simparams[7] = divaccum; // tells the worker where its starting z location is 

MPI_Send (&simparams[0] , 10, MPI_DOUBLE, n, 201, MPI_COMM_WORLD); 
divaccum = divaccum+div;}

// read in drive function and send to all nodes 
int dlen; 
inFile »  dlen;
double *drivefun = new double[dlen];
//cout << " < " << dlen << " > ”; 
for (int i = 0; i <= dlen; i++) 

inFile »  drivefunfi];

for (int n = 1; n <= numworkers; n++){
MPI_Send(Sdlen, 1, MPI_INT, n, 208, MPI_C0MM_W0RLD);
MPI_Send(Sdrivefun[0], dlen, MPI_DOUBLE, n, 209, MPI_C0MM_W0RLD);

}

inFile.close(); 
return;

// dump topplate
void dumpP(acousticrect &ar, int t)(

stringstream strm; strm «  t;
string fname = "Pat" +strm.str()+ ".ascii";

ofstream outFile(fname.c_str(), ios::out);

outFile << ar.numl-2 << " " «  ar.num2 << ” " << ar.num3 << " "; 
for (int i3=0; i3 < ar.num3; i3++) 

for (int i2=0; i2 < ar.num2; i2++) 
for (int il-1; il < ar.numl-1; il++) 

outFile «  a r .p p .val(il,i2,i3) << "

outFile.close(); 
return;}

void createCurvedDomain(acousticrect ar){
double curve;

double num2dl; 
double num2d3; 
int numzones;

// read in 2D domain
char inputFilename[] = "2DPerioGeom.ascii"; 
ifstream inFile;
inFile.open(inputFilename, ios::in); 

inFile »  curve; //if (rank==l) cout « c u r v e  «  ” ";
inFile »  origin3; //if (rank==l) cout «origin3/ar.ds «  " "; GLOBAL
inFile »  originl; //if (rank==l) cout <<originl/ar.ds << " "; GLOBAL
inFile »  num2dl; //if (rank==l) ccut « num2dl «  " ";
inFile »  num2d3; //if (rank==l) cout « num2d3 «  " ";

inFile »  numzones;

// read in zone info
double *zonedensities = new double(numzones]; 

double *zonespeedofsounds = new double[numzones]; 
for (int il=0; iKnumzones; il++){

inFile »  zonedensities[il]; 
inFile »  zonespeedofsounds[il];
//if (rank~l) cout «zonedensities [ il] «  ” ” «  zcnespeedof sounds [ il] « "  / ”;}

// read in 2d data 
int len = num2dl*num2d3; 

double *y = new double[len];
for (int il = 0; il<num2dl;il++)

for (int i2 = 0; i2<num2d3; i2++)
inFile »  y [((il)* (int)num2d3)+i2];

// now sweep the 2D domain to create a 3D one 
double mid3 = ar.num3/2-.5; 
double d;

int zonenumber; 
int tmpvar;

for (int i2=0; i2<ar.num2;i2++ )(
for (int i3=0; i3<ar.num3; i3++ )(

d = sqrt((i2+curve/ar.ds)* (i2+curve/ar.ds)+ (i3-mid3)* (i3-mid3)); //sqrt this!
d = d-curve/ar.ds;
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for {int il = 0; il<ar.numl;il++)
{

tmpvar = (int) (ar.zbeg+(il-0)+originl/ar.ds); 

zonenumber = y[tmpvar*(int)num2d3+(int) (d+origin3/ar.ds)];

if (zonenumber =- 0) (
//just keep as default 
ar.B.set (il,i2,i3,2);}

else if (zonespeedofsounds[zonenumber-1] == -1) //rigid zone (
ar.B.set (il,i2,i3,2);}

else{
ar.c.set(il,i2,i3,zonespeedofsounds[zonenumber-1]); 

ar.d.set(il,i2,i3,zonedensities[zonenumber-1]);
ar.B.set(il,i2,i3,0);

}

}
return;}

void sendslicefix3_slave(acousticrect ar, int fix3){
MPI_Status status; MPI_Request request[2]; 
int len * (ar.numl-2)*ar.num2; 
double *x = new double[len];
MPI_Isend(slen, 1, MPI_INT, 0, 1151, MPI_COMM_WORLD, request);

for (int il-1; il<(ar.numl-1);il++ ) 
for (int i2=0; i2<ar.num2; i2++ )(

x[ ( (il-1)*ar.num2)+12]=ar.p p .val(il,i2,fix3);
//x[((il-1)*ar.num2)+12]=ar.B.val(il,i2,fix3);}

MPI_Isend(& x [0], len, MPI_DOUBLE, 0, 1152, MPI_COMM_WORLD,request);

//delete(x); <--- BIG NoNo
return;}

void collectslices_master(int t){
MPI_Status status; 

double *topplate; 
int len;

stringstream strm; strm «  t;
string fname = ”Slice_M +strm.str()+ ".ascii";

ofstream outFile (fname.c_str{), ios::out);

for (int n = 1; n <= numworkers; n++){
MPI_Recv(Slen, 1, MPI_INT, n, 1151, MPI_COMM_WORLD, Sstatus); 
if (n==“l) topplate = new double [len];

MPI_Recv (Stopplate [ 0] , len, MPI_DOUBLE, n, 1152, MPI__COMM_WORLD, Sstatus);

for (int i = 0; i < len; i++)(
outFile «  topplate [i] «  " ";

}

delete topplate;
outFile.close (); 
return;}

void drop_pAcum(acousticrect ar, int time){
stringstream strm; strm «  rank; 

stringstream strmt; strmt << time;
string fname = ”PAccum_" +strm.str()+ "_t" + strmt. str ()+".ascii"; 
ofstream outFile(fname.c_str(), ios::out);

outFile << ar.numl << " M << ar.num2 << " " << ar.num3 << n ";

for (int nl = 1; nl < ar.numl; nl++)
for (int n2 = 0; n2 < ar.num2; n2++)

for (int n3 = 0; n3 < ar.num3; n3++)
outFile «  ar.pAcum.val(nl,n2,n3) << " ";

outFile. close () ;
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acousticrect addTip(acousticrect ar)
{

string fname = "2DTipGeom.ascii"; 
ifstream inFile;
inFile.open(fname.c_str(), ios:2in); 

if (!inFile) {
cerr «  "Can't open input file " «  fname.c_str() << endl; 
exit (1);}

double ol, o2, o3, dl, d2, d3, scalef; // o=origin, d=vect pointing down tip, u = vect pointing up 
double num2dl, num2d2;

inFile »  ol; // tip origin
inFile »  o2; //
inFile »  o3; //

inFile »  dl 
inFile »  d2 
inFile »  d3

inFile »  scalef;

// orentation
// vector pointing down the tip!//

inFile »  num2dl; // image dimensions 
inFile »  num2d2; //

int len = num2dl*num2d2; //
double *y = new double[len]; //

for (int il - 0; il<num2dl;il++) // Read in tip image
for (int i2 = 0; i2<num2d2; 12++) //

inFile »  y [ ( (il)* (int)num2d2)+i2]; //

double mid3 = ar.num3/2-.5; // find mid point in 3
int il, i2;
double PV1, PV2, PV3, PVmag, A;

for (int n2=0; n2<ar.num2;n2++ )
for (int n3=0; n3<ar.num3; n3++ ) 

for (int nl = 0; n K a r . numl; nl + + ){
PV1 = nl + ar.zbeg - (o2/ar.ds - originl/ar.ds); // find vector pointing from tip
PV2 = n2 - (ol/ar.ds - origin3/ar.ds); // origin to point of interest
PV3 = n3 - (o3/ar.ds + mid3);

PVmag = sqrt(PV1*PV1+PV2*PV2+PV3*PV3); // Mag of pointing vector
PV1 = PVl/PVmag; PV2 = PV2/PVmag; PV3 = PV3/PVmag; // normalize poting vector

A = acos(PVl*d2+PV2*dl+PV3*d3); // angle between pointing vector, and down vector

i2 = (int) (cos(A)*PVmag*s cale f+.5); 
il = (int)(sin(A)*PVmag*scalef+.5);

if (( il<num2dl) && (il>=0) && { i2<num2d2) && (i2>=0)){
//cout << " " «  (int)(jl-ar.zbeg+1) << "

if (y[((il)* (int)num2d2)+12] == 1) // tip{
ar.B.set ( nl,n2,n3,2);}

else if (y[((il)* (int)num2d2)+i2] == 2) // transducer {
ar.addTpoint(nl,n2,n3); 
ar.B.set( nl,n2,n3,0);
//ar.B.set( nl,n2,n3,3);}

else if (y[((il)* (int)num2d2)+i2] == 3) // water{
a r .d .set(nl,n2,n3,998); // Default=water

a r .c .set(nl,n2,n3, 1482) ; //
ar.B.set(nl,n2,n3,0);}

inFile.close();
return ar;}
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A3 - 3DPCEFIT -  Cylindrical Elastic Wave Source Code

♦include <mpi.h>
♦include <iostream> 
finclude <fstream> 
finclude <string> 
finclude <sstream> 
finclude <time.h> 
finclude "spipe.h"

using namespace std; 
const int syncevery - 100;

void master (); 
void slave();
int* DistributeSimulationParameters(); // sends out simulation params to workers
void DistributeTransducers(int *zposs); // distributes transducers to the appropriate workers
void dumpTopPlate(int t);
void collectAlines();
void SyncNodes();

int rank, numworkers;

int maxt, maxz, m2m3; // max number of time steps
int outputevery; // output every
int numtransducers; // 
int main(int argc, char *argv[])
{
MPI_Init(&argc, sargv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI__Comm_size (MPI_COMM_WORLD, Snumworkers); /* get number of nodes */
numworkers— ;

if (rank == 0)
master {);

else
slave () ;

MPI_Finalize (); 
return 0;}

// master node! —  distribures simulation space and receives data for output

void master (){
time_t start,end; 
time (Sstart);

int rank, div, n, i, maxz;
int *zstartpos - new int[numworkers];

MPI_Status status;
cout «  "master node is online! \nM;
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//----------------------------------------------------------
/* Send out initialization messages to each node */

zstartpos = DistributeSimulationParameters{); 
DistributeTransducers(zstartpos);

for (int t=0; tcmaxt; t++){
if (t%outputevery == 0 ){

dumpTopPlate(t);
cout «  "Collecting Slices at time: " «  t «  "\n”;

}
//if (t%syncevery == 0)

// SyncNodes{);}
cout «  "Collecting A-lines! \n";
collectAlines ();

time (Send);
printf ("Total Run Time: %.21f seconds\n", difftime (end,start) ); 
return;

//             —  =======
// slave node! —  Does the grunt work
/ / -—  ,        ===   ======--------------
void slave(){ // ---------------------------------------------------------------

// receive simulation parameters from master and initialize pipe secti 
MPI__Status status; MPI_Request request[2]; 
double simparams[15];

MPI_Recv(fisimparams, 15, MPI_DOOBLE, 0, 201, MPI_COMM_WORLD, fistatus);

spipe pxpe;
pipe.numr = simparams[0];

pipe.numz = simparams[1]+2; //
pipe nump = s imparams[2]; //
pipe.ds = simparams[3]; //
pipe.dp = simparams[4]; //
pipe.dt = simparams[5]; //
pipe.den - simparams[6]; //
pipe.lm - simparams[7]; //
pipe.mu = simparams[8]; //
pipe rbeg = simparams[10]; //
pipe zbeg = simparams[11]; I !
maxt = simparams[12]; //

// number of nodes in r direction 
mber of nodes in z direction

step size in r and z (meters)

er of time steps 
outputevery = simparams(13]; // output every time steps
maxz = simparams[14]; // total number of z across entire simulation
m2m3 = simparams[0]*simparams[2];

if (rank == 1) pipe.pipetype = 1;
else if (rank == numworkers) pipe.pipetype = 3;
else pipe.pipetype = 2;

// receive curve data 
int numz = pipe.numz-2;
double *curveparamsl = new double[numz];
double *curveparams2 * new double[numz];
double *curveparams3 = new double[numz];
MPI_Recv(ficurveparamsl[0], numz, MPI_DOUBLE, 0, 231, MPI_COMM_WORLD, fistatus); 
pipe.curvem - curveparamsl;
if (rank==numworkers) cout<<pipe. curvem[0 ] «  " " << pipe.curvem[numz-l] «"\n";
//pipe.curvem - new double[numz];

MPI_Recv(ficurveparams2[0], numz, MPI_DOUBLE, 0, 232, MPI_COMM_WORLD, fistatus); 
pipe.dtheta = curveparams2;
MPI_Recv(&curveparams3[0], numz, MPI_DOUBLE, 0, 233, MPI_COMM_WORLD, fistatus); 

pipe.anglem = curveparams3;

//cout << pipe.numr << " " << pipe.numz << ” " << pipe.nump << " " << pipe. curvem [ 1 ] <<" 99 \ntf 
pipe.Init ();

n ---------------------------------------------------------------
// receive transducer parameters from master and add them to the pipe 

double tparams[6]; 
bool done = false;

while (done == false){
MPI_Recv(fitparams, 6, MPI_DOUBLE, 0, 211, MPI_COMM_WORLD, fistatus);
//cout << " " «  tparams[5] << " " «  rank << " \n";
if (tparams[0] == -1) done - true;
else{

transducer t(tparams[0],tparams[1],tparams[2],tparams[3],tparams[5],maxt); 
//transducer t(tparams[0],5,tparams[2],tparams[3],(int)tparams[5] , maxt); 
if (tparams[4] > 0){

double *drive = new double(tparams[4]];
MPI_Recv(fidrive[0], tparams[4], MPI_DOUBLE, 0, 212, MPI_COMM_WORLD, fistatus); 

t .setDriveFunction(tparams[4],drive);}
pipe.addTransducer(t);

236

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



//stream outFile; if {pipe.zbeg <= 471 && pipe.zbeg+pipe.numz >= 471)//{
// ofstream outFile("aalines", ios::out};/
// c out«"I got it: "<<ran)«<’, " «  pipe.zbeg «"\n";// }

// ---------------------------------------------------------------
// perform simulation 
double *toplate; int len; 
for (int t - 0; tcmaxt; t++){

//if (pipe.zbeg <= 471 && pipe.zbeg+pipe.numz >= 471)//{ //
// stringstream strm; strm << t;
// string fname = "alines_at_t,, +strm.str()+ ".ascii";

// ofstream outFile(fname.c_str(), ios::out);

//for (int y=0; ycpipe.nump; y++)
// outFile << pipe.vr.val(471-pipe.zbeg+1,pipe.numr-1,y) << " ";

//outFile.close ();
/ / }

if (rank == 1 && t%10==0) cout «  "timestep: " << t << " " «  pipe.numz «  " " «  pipe.numr «  " " << pipe.nump«"\n";
pipe.time=t; 

pipe.UpdateTransducers(t);

/ / -------- Send Output to M a s t e r --------------
if (t%outputevery =* 0){

len = pipe. vr. slice_fix2__count () ;
toplate = new double[len];
toplate = pipe.vr.slice_fix2(pipe.numr-1);
MPI_Send(Slen, 1, MPI_INT, 0, 401, MPI_COMM_WORLD);
MPI_Send(Stoplate[0], len, MPI_DOUBLE, 0, 402, MPI_COMM_WORLD); 
delete toplate;

/ / ------  Update V ' s --------------
pipe.UpdateVs (1,1) ; // tJpdate left boundary
pipe.UpdateVs(pipe.numz-2,pipe.numz-2); // Update right boundary

if (rank>l) // send vz left
MPI_Isend(&pipe.vz.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 301, MPI_COMM_WORLD, request); 

if (rankcnumworkers) // send vr, vp right{
MPI_Isend(Spipe.vr.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 302,

MPI_COMM_WORLD, request);
MPI_Isend(&pipe.vp.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 303, MPI_COMM_WORLD,

request); }
pipe.UpdateVs(2,pipe.numz-3); // update inner nodes

if (rankcnumworkers) // reveive vz from right{
MPI_Recv(&pipe.vz.a[(pipe.numz-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 301, MPI_COMM_WORLD,

&status); }
if (rank>l) // receive vr, vp from left{

MPI__Recv(Spipe.v r .a [0] , m2m3, MPI_DOUBLE, (rank-1), 302, MPI_C0MM_W0RLD, Sstatus);
MPI_Recv(Spipe.v p .a [0], m2m3, MPI_DOUBLE, (rank-1), 303, MPI_COMM_WORLD, Sstatus);}

pipe.doABCs(maxz);

/ / ------  Update T ' s ----------------
pipe.UpdateTs(1,1); // Update left boundary
pipe.UpdateTs(pipe.numz-2,pipe.numz-2); // Update right boundary

if (rank>l) // send Trz, Tzp left{
MPI_Isend(Spipe.Trz.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 311, MPI_COMM_WORLD, request); 
MPI_Isend(Spipe.Tzp.a[m2m3], m2m3, MPI_DOUBLE, (rank-1), 312, MPI_COMM_WORLD, request);}

if (rankcnumworkers) // send Tzz, Trp right{
MPI_Isend(£pipe.Tzz.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 313,

MPI_COMM_WORLD, request);
MPI_Isend(Spipe.Trp.a[(pipe.numz-2)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 314, MPI_C0MM_W0RLD,

request); }
pipe.UpdateTs(2,pipe.numz-3); // update inner nodes
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if (rankcnumworkers) // reveive Trz, Tzp from right
{

MPI_Recv(Spipe.Trz.a[(pipe.numz-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1) , 311, MPI_COMM_WORLD, Sstatus); 
MPI_Recv(Spipe.Tzp.a ((pipe.numz-1)*m2m3], m2m3, MPI_DOUBLE, (rank+1), 312, MPI_COMM_WORLD, Sstatus); 

}
if (rank>l) // receive Tzz, Trp from left
{

MPI_Recv(Spipe.Tzz.a [0], m2m3, MPI_DOUBLE, (rank-1), 313, MPI_COMM_WORLD, Sstatus);
MPI_Recv(Spipe.Trp.a [0], m2m3, MPI_DOUBLE, (rank-1), 314, MPI_COMM_WORLD, Sstatus);}

// Send A-line Data to master
MPI_Send(Spipe.numtrans, 1, MPI_INT, 0, 501, MPI_COMM_WORLD) ; 
for (int tr = 0; tr < pipe.numtrans; tr++){

tparams[0] = pipe.trans[tr].posil*pipe.ds; // transducer z position (meters) 
tparams[l] = pipe.trans[tr].posi2*pipe.ds; // transducer r position (meters)

tparams[2] = pipe.trans[tr].posi3*pipe.dp; // transducer p position (radians) 
tparams[3] = pipe.trans[tr].radius*pipe.ds; // transducer radius (meters)

MPI_Send(Spipe.trans[tr].transID , 1, MPI_INT, 0, 502, MPI_COMM_WORLD);
MPI_Send(Stparams[0] , 4, MPI_DOUBLE, 0, 503, MPI_COMM_WORLD);

MPI_Send(Spipe.trans[tr].record[0], maxt, MPI_DOUBLE, 0, 504, MPIJOOMMJWORLD);}
return;

// Reads in parameter file and distributes parameters to all workers. This is also 
// where the simulation space is divided up.

int* DistributeSimulationParameters(){
char inputFilename[] = "in.file"; 
ifstream inFile;
inFile.open("in.file", ios::in); 

if (!inFile) {
cerr << "Can't open input file " << inputFilename «  endl; 
exit (1) ;}

double *simparams = new double[15];

inFile »  simparams[0]; //pipe.numr; // number of nodes in r direction
inFile » simparams[1]
inFile » simparams[2]
inFile » simparams[3]
inFile » simparams[4] •
inFile » simparams[5]
inFile » simparams[6]
inFile » simparams[7]
inFile » simparams[8]
inFile » simparams[10
inFile » maxt;
inFile » outputevery;
simparams[12] - maxt; simparams[13] 

simparams[14] = simparams[1]; 
m2m3 *» simparams [0] *simparams [2] ;

//pipe.numz; // number of nodes in z direction
//pipe.nump; // number of nodes in p direction
//pipe.ds; // spatial step size in r and z (meters)
//pipe.dp; // spatial step size in phi (radians)
//pipe.dt; // time step size (seconds)
//pipe.den; // density
//pipe.lm; // Lame constant - lambda
//pipe.mu; // Lame constant - mu
//pipe.rbeg; // pipe inner radius (in ds units)
// number of time steps
I f  number of nodes in x3 direction 

outputevery;

maxz = simparams[1];
double *cur = new double[maxz]; for(int i = 0; icmaxz; i++)
double *dth = new double[maxz]; for(int i = 0; icmaxz; i++)
double *ang = new double[maxz]; for(int i = 0; icmaxz; i++)

inFile »  cur[i]; 
inFile »  dth[i]; 
inFile »  ang[i];

// send initial data to each node 
int div, divaccum = 0; 
int* zpos - new int[numworkers]; 

for (int n “ 1; n c= numworkers; n++){
div » (maxz/(numworkers)); if ((n-l)C (maxz%(numworkers))) div++; /* divide space along xl direstion 
simparams[1] = div;

simparams[11] = divaccum; // tells the worker where its starting z location is 
MPI_Send(Ssimparams[0], 15, MPI_DOUBLE, n, 201, MPI_COMM_WORLD);

MPI_Send(&cur[divaccum], div, MPI_DOUBLE, n, 231, MPI_COMM_WORLD)
MPI~Send(&dth[divaccum], div, MPI_DOUBLE, n, 232, MPI_COMM_WORLD)
MPI_Send(&ang[divaccum], div, MPI_DOUBLE, n, 233, MPI_COMM_WORLD)

zpos[n-l] * simparams[11]; divaccum = divaccum+div;}

inFile.close (); 
return zpos;

>
// Reads in transducer file and distributes transducers to the correct workers.
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void DistributeTransducers (int *zposs){
double *drive;
double tparams[6];
int drivelen, numtrans, worker;

char inputFilename[] = "trans.file"; 
ifstream inFile;
inFile.open("trans.file", ios::in);

if {!inFile) {
cerr << "Can’t open input file ” << inputFilename << endl; 
exit (1) ;

}

inFile »  numtrans;
cout «  " number of transducers; " «  numtrans «  endl; 
numtransducers = numtrans;

for (int tr = 0; tr<numtrans; tr++){
inFile »  tparams[0]; // tposz; // transducer z location

inFile »  tparams[1]; // tposr; // transducer r location
inFile »  tparams[2]; // tposp; // transducer p location
inFile »  tparams[3]; // trad; // transducer radius

inFile »  tparams[4]; // drivelen; // len of drive function
tparams[5] = tr;

if (tparams[4]>0){
drive = new double[tparams[4] 

for (int i = 0; i<tparams[4]; i++) 
inFile »  drive[i];

}

// find which worker gets the transducer 
worker = 0;
for (int tosend = 1; tosend<numworkers; tosend++)

if (tparams[0] >= zposs[tosend-1] && tparams[0] < zposs[tosend]) worker = tosend;
if (tparams[0] >= zposs[numworkers-1] £& tparams[0] < maxz) worker = numworkers;

else if (worker —  0) cout «  "error: transducer postion not found: zpos - ” << tparams[0] «  ”, " «
zposs[numworkers-1] «  ", " «  maxz «  endl;

// send the transducer info to worker 
if (worker > 1) 

if ( (tparams[0] - tparams[3]) <= zposs[worker]){
MPI_Send(fitparams[0], 6, MPI_DOUBLE, worker-1, 211, MPI_COMM_WORLD); 

if (tparams [4] >0) MPI__Send (fidrive [ 0] , tparams [4], MPI_DOUBLE, worker-1, 212, MPI_COMM_WORLD);

MPI_Send(Stparams[0], 6, MPI_DOUBLE, worker, 211, MPI_COMM_WORLD);
if (tparams[4]>0) MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, worker, 212, MPI_COMM_WORLD);

if (worker < numworkers) 
if ({tparams[0] + tparams[3]) >= zposs[worker+1]){

MPI_Send(Stparams[0], 6, MPI_DOUBLE, worker+1, 211, MPI_COMM_WORLD); 
if (tparams[4]>0) MPI_Send(fidrive[0], tparams[4], MPI_DOUBLE, worker+1, 212, MPI_COMM_WORLD);}

}

// send all workers a message letting them know we are done distributing transducers
tparams[0] = -1;tparams[1] = -1;tparams[2] - -1;tparams[3] = -1;tparams[4] = -1;tparams[5] “ -1;
for (int n = 1; n <= numworkers; n++)

MPI_Send(Stparams[0], 5, MPI_DOUBLE, n, 211, MPI_COMM_WORLD);

inFile.close (); 
delete drive;

return;

void SyncNodes()
{

int s; MPI_Status status;
for (int n « 1; n <= numworkers; n++)

MPI_Recv(&s, 1, MPI_INT, n, 721, MPI_COMM_WORLD, fistatus); 
for (int n =■ 1; n <= numworkers; n++)

MPI_Send(fin, 1, MPI_INT, n, 722, MPI_COMM_WORLD); 
cout «  " nodes synced \n";

// dump topplate 
void dumpTopPlate(int t){

MPI_Status status; 
double *topplate; 
int len;

stringstream strm; strm «  t;
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string fname = "toplate_at_t" +strm.str()+ ".ascii”; 
ofstream outFile{fname.c_str(), ios::out);

for {int n = 1; n <= numworkers; n++)
{

MPI_Recv(filen, 1, MPI_INT, n, 401, MPI_COMM_WORLD, fistatus); 
topplate = new double[len];
MPI_Recv(fitopplate[0], len, MPI_DOUBLE, n, 402, MPI_COMM_WORLD, fistatus);

//cout «  " «  " << h[0] «  "\n"; 
for {int i = 1; i <= len; i++)

outFile << topplate[i] «  " ";
}

outFile.close(); 
delete topplate; 
return;

void collectAlines()
{

MPl_Status status; 

array3D alines;
alines.Init(1,numtransducers,maxt+4) ;

int numts, ct; 
double tparams[4]; 
double *rec = new double[maxt];

for {int n = 1; n <= numworkers; n++)
{

MPI_Recv(finumts, 1, MPI_INT, n, 501, MPI_C0MM_W0RLD, fistatus);

for (int i = 0; i < numts; i++)
{

MPI_Recv(fict, 1, MPI_INT, n, 502, MPI_COMM_WORLD, fistatus); 
//cout «  n «  " l\n";

MPI_Recv{fitparams, 4, MPI_DOUBLE, n, 503, MPI_COMM_WORLD, fistatus);
//cout «  n << ” 2\n”;

MPI_Recv(firec[0], maxt, MPI_DOUBLE, n, 504, MPI_COMM_WORLD, fistatus); 
//cout «  n «  " 3\n”;

alines.s et(0,ct,0,tparams[0]); // trans zpos
alines.set{0,ct,1,tparams[1]); /axines . ser tu, cr, i, rparams 1.1 j j ; // trans rpos
alines.set(0,ct,2,tparams[2]); // trans ppos
alines.set(0,ct,3,tparams[3]); // trans radius

for (int t = 0; t < maxt; t++) 
alines.set(0,ct,4+t,(alines.v a l (0,ct,4+t) + rec[t]));

string fname = "alines.ascii";
ofstream outFile (fname.c_str(), ios::out);

for (int n = 0; n < numtransducers; n++){
for (int i = 0; i < (maxt+4); i++)

outFile «  alines.va l (0,n,i) «  " "; 
outFile «  "\n” ;

}

outFile.close(); 
return;}

♦include <iostream>
♦include "array3D.h"
♦include "array3D_int.h”
♦include "transducer.h"

♦define min(a,b) (((a)< (b))? (a): (b) )
♦define max(a,b) (((a)> (b)) ? (a): (b))

class spipe {
public:

spipe () 
-spipe () ( }

int numr; // number of grid points in r direction
int numz; // number of grid points in z direction
int nump; // number of grid points in P direction

ibc; // number of abc points on each end

double ds; // spatial step size in r and z direction (meters)
double dp; // angular step size in p direction (radians)
double dt; // time step size (seconds)

double den; // density {kg/m,'3)
double lm; // lame constant - lamda
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double mu; // lame constant - mu

double *curvem; 
double *anglem; 
double *dtheta;

double zbeg; // z start position (meters)
double rbeg? // r start position (meters) !inner pipe radius!

int pipetype; // pipe type 1 = left end , 2 = middle, 3 = right end

array3D vr; // r - velocities
array3D vz; // z velocities

array3D vp; // p - velocities
array3D Trr; // rr - normal stress
array3D Tzz; // zz - normal stress
array3D Tpp; // pp - normal stress
array3D Trz; // rz - sheer stress
array3D Trp; // rp - sheer stress
array3D Tzp; // zp - sheer stress

array3D int B; // Boundary Array

int time;

transducer *trans;
int numtrans;

private:

double dtodsp; 
double lmdtods; 
double 12mdtods; 
double mdtods;

int r,z,p,ppl,pml; 
double ro,ri,rr,co,ci, cc;

double PIo2;

public:

void Init(){
vr.Init(numz,numr,nump);

v z .Init(numz,numr,nump); 
vp.Init(numz,numr,nump);
Trr.Init(numz,numr,nump);
Tzz.Init(numz,numr,nump);
Tpp.Init(numz,numr,nump);
Trz.Init(numz,numr,nump);
Trp.Init(numz,numr,nump);
Tzp.Init(numz,numr,nump);
B .Init(numz+2,numr+2,nump+2, pipetype);

dtodsp = (dt)/ (den*ds); 
lmdtods = (lm*dt)/ds;
12mdtods = ((lm+2*mu)*dt)/ds; 
mdtods = (mu*dt)/ds;

PIo2 = 3.14159265358979/2;

numtrans=0; 
time = 0; 
abc = 80;

}

void UpdateVs(int zs, int zend){

for (z = zs; z <= zend; z++)
{
vr.setindx (z,0,0); vz.setindx(z,0,0); vp.setindx(z,0,0);
Trr.setindx (z,0,0); Tzz.setindx(z,0,0); Tpp.setindx(z,0,0);

Trz.setindx(z,0,0); Trp.setindx (z,0,0); Tzp.setindx (z,0,0);

for (r = 0 ;  r < numr; r++){
B.setindx(z+1,r+1,1);

for (p = 0; p < nump; p++){
rr = r+rbeg; 
ro = (rr+0.5); 
ri » (rr-0.5);

if (curvem(z-1]>0){
ci = (ri*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-l]); 

cc = (rr*ds*sin (p*dp-PIo2-anglem[z-1])+curvem[z-1]);
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co = (ro*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]);}
else { ci = 1; cc « 1; co = 1; }

ri = ri*ci;
ro = ro*co;
//if {z==numz-2 && r— 0 && p==10 && pipetype— 2) std::cout << Tpp.vO << " " «Tpp.v2m()<< "\n";

if (B.v()-=0) vr.sv( vr.v() + dtodsp* ( (1/(rr*cc) )* (ro*Trr.v2p{)-
ri*Trr.v{) ) + (1/ (rr*dp) ) * (Trp.v () -Trp. v 3 m ()) + (ds/ (cc*dtheta[z-l] ) ) * (Trz . vlp {) -Trz. v()) + (1/ (2*rr) ) * (Trr. v2p () +Trr.v () - 
Tpp. v2p()-Tpp.v () )) ) ;

else if (B.v()==2 | B . v l p O — 2 | B.v3m()==2) {}
//else if (B.v2p()==2 & B. v () >-1000) vr.sv( vr.v{) - dtodsp*(trans[B.v()-1000].drivef(time)+2*Trr.v ()

+ ( (1/(2* (rr) ) )* (3*Tpp.v()-Tpp.v2m() )) ) >;
//vr.svf vr.v() + dtodsp* (trans [B .v () - 

1000].drivef(time)+ (1/rr)*((1/(2*(rr)))*(3*Tpp.v()-Tpp.v2m()))) );
else if (B.v2p()==2) vr.svf vr.v() - dtodsp* (2*Trr. v () + ( (1/(2 * (rr) ) ) * (3*Tpp. v ()

Tpp.v 2 m {))) ) );
else if (B.v2m()==2) vr.sv( vr.v() + dtodsp* (2*Trr.v2p() +( (1/(2*(rr)))*(3*Tpp.v 2 p ()-

Tpp. v2p2 () ) ) ) ) ;
else vr.svf vr.v{) + dtodsp* ( (1/(rr*cc) )* (ro*Trr.v2p ()-

ri*Trr.v () ) + (1/ (rr*dp) )* (Trp.vf) -Trp. v 3 m ()) + (ds/ (cc*dtheta[z-l] ) ) * (Trz.vlp () -Trz. v ()) + (1/ (2*rr) ) * (Trr. v2p () +Trr. v {) - 
Tpp.v 2 p ()-Tpp.v ())) );

rr = r+rbeg-0.5; 
ro = (rr+0.5); 
ri « (rr-0.5);

if (curvem(z-l]>0){
ci = (ri*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]); 

cc = (rr*ds*sin(p*dp-PIo2-anglem[z-1])+curvem(z-1]); 
co = (ro*ds*sin(p*dp-PIo2-anglem[z-1])tcurvem[z-1]);}

else { ci = 1; cc = ci; co = ci; } 
ri = ri*ci;

ro = ro*co;

// v z -----------
if (B.v()==0) vz . sv { vz.v() + dtodsp* ( (1/(rr*cc) )* (ro*Trz . v ()-

ri *Trz . v2m () ) + (1/ (rr*dp) ) * (Tzp. v () -Tzp. v3m () ) + (ds / (cc*dtheta [z-1] ) ) *(Tzz.v()-Tzz. vim () ) + (1/ (2*rr) ) * (Trz . v () +Trz . v2m () ) )
) ;

else if (B.v()~2 I B.v2m()==2 | B.v3m()— 2) {}
else if (B.v2p()==2 & B.v()>=1000) vz.sv{ vz.vf) - dtodsp* (trans [B.v{) - 

1000].drivef(time)+2*Tzz.vim()) );
else if {B.vlpO— 2) vz.sv( vz.v() - dtodsp* (2*Tzz.vlm()) ); 

else if (B.vlm () ““2) vz.sv( vz.v() + dtodsp* (2*Tzz.v()) );
else vz.sv( vz.v() + dtodsp* {(1/(rr*cc) )* (ro*Trz.v() -

ri*Trz .v2m {) ) + (1/ (rr*dp) ) * (Tzp.v () -Tzp. v3m () ) + (ds/ (cc*dtheta[ z-1] ) ) * (Tzz .v () -Tzz. vln ()) + (1/ (2*rr))*(Trz.v() +Trz .v2m () ) ) ) ;
// v p -----------

if (B.v()==0) vp.sv( vp.v() + dtodsp* ( (1/ (rr*cc) )* (ro*Trp.v () -
ri*Trp.v2m () ) + (!/ (rr*dp) ) * (Tpp.v3p () -Tpp. v () )+ (ds/ (cc*dtheta[z-l] )) * (Tzp.vlp () -Tzp. v ()) + (1/rr) * (Trp. v{) +Trp. v2m (} )) ) ; 

else if (B.v()==2 | B.v2m()==2 | B . v l p O — 2) {}
else if (B.v3p()==2) vp.sv( vp.v() - dtodsp*2*Tpp. v () );
else if (B.v3m()==2) vp.sv( vp.v() + dtodsp* (2*Tpp. v3p () ) );
else vp.sv( vp.v() + dtodsp* ( (1/(rr*cc) )* (ro*Trp.v() -

ri*Trp.v2m()) + (1/ (rr*dp) ) * (Tpp. v3p () -Tpp. v () ) + (ds/ (cc*dtheta [ z-1 ] ) ) * (Tzp. vlp {) -Tzp. v () ) + (1/rr) * (Trp. v() +Trp.v2m () ) ) );

B. incindx () ; vr. incindx () ; vz . incindx () ; vp. incindx () ;
Trr. incindx () ; Tzz. incindx () ; Tpp. incindx () ; Trz. incindx () ; Trp. incindx () ; Tzp. incindx () ;

}
} }

}

void UpdateTs(int zs, int zend){
for (z = zs; z o  zend; z ++)

{
vr.setindx(z,0,0); vz.setindx(z,0,0); vp.setindx(z,0,0);
Trr.setindx(z,0,0); Tzz.setindx(z,0,0); Tpp.setindx(z,0,0);

Trz.setindx(z,0,0); Trp.setindx(z,0,0); Tzp.setindx (z,0,0);

for (r = 0; r < numr; r++)(
B.setindx(z+1,r+1,1);

for (p = 0; p < nump; p++){
//rr = r+rbeg-.5;

rr = r+rbeg;
ro = (rr+0.5); 
ri = (rr-0.5);

if (curvem[z-1]>0){
ci = (ri*ds*sin (p*dp-PIo2-anglem(z-1])+curvem[z-1]); 

cc = (rr*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]); 
co - (ro*ds*sin(p*dp-PIo2-anglem[z-l])+curvem[z-1]);

}
else { ci = 1; cc = 1; co ■ 1; }
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ro = ro*co?

// Tii
if (B . v O — 2 | B.v2m() - - 2  \ B.v3m()==2 | B.vlp()~2) {} 
else

{
Trr.sv( Trr.v() + (12mdtods/(rr*cc)) * (ro*vr.v ()-ri*vr.v 2 m ()) + Imdtods*((1/(rr*dp)) * (vp.v ()- 

vp.v3m () ) + {ds / {cc*dtheta [z-1] ) ) * (vz .vlp () -vz.v ()) + (l/(2*rr))* (vr. v () +vr. v2m ()) ) ) ;
Tpp.sv( Tpp.v() + 12mdtods*((1/(rr*dp))*(vp.v()- 

vp. v3m {) ) + (1/ (2*rr) )*(vr.v{) +vr.v2m () ) ) +Imdtods* ({1/ (rr*cc) ) * (ro*vr.v() -ri*vr. v2m {) ) + (ds / (cc*dtheta [ z-1]) ) * {vz . vlp () - 
v z .v ())) );

Tzz.sv( Tzz.vO + 12mdtods* (ds/(cc*dtheta[z-1]))*(vz.v l p ()- 
vz . v {) ) +Imdtods* ( (1/ (rr*dp) ) * (vp. v () - vp. v3m () ) + (1/ (cc*rr) ) * (ro*vr. v () -ri*vr. v2m () ) + (1/ (2*rr) ) * (vr. v () +vr. v2m () ) ) ) ;

}

// Tzp
if (B.v()~2 I B . vlp () ==2 1 B . v l m O — 2 [ B.v3p()==2 | B.v3m()==2 ] B.v2m()==2) {}
else Tzp.sv( Tzp.v() + mdtods* ( (ds/(cc*dtheta[z-1]))* (vp.v()-vp.vim())+1/(rr*dp)* (vz.v 3 p {)-vz.v ())) );

//z] [p] - Tzp[p] + mdtods* ( (ds/(cc*dtheta[z])*(vp[r][z][p]-vp[r][z- 
1 ] [p])+1/(rr*dp)* (vz[r][z][ppl]-vz[r][z][pi)) );

rr = r+rbeg;
ro - (rr+0.5)? 
ri - (rr-0.5);

if (curvem[z-1]>0){
ci - (ri*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-l]); 

cc « (rr*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-l]); 
co = (ro*ds*sin(p*dp-PIo2-anglem[z-1])+curvem[z-1]);}

else { ci = 1; cc = ci; co « ci; } 
ri = ri*ci;

ro - ro*co;

// Trp
if (B . v O — 2 I B.v2p()==2 I B.v2m()==2 | B.v3p()==2 | B.v3m()==2 I B . v l p O — 2) {} 
else Trp. sv { Trp. v() + (mdtods/rr) * ( (1/dp) * (vr.v3p () -vr.v () ) + (1/cc) * (ro*vp.v2p () -ri*vp.v{) ) - 

(1/2) * (vp.v2p () +vp.v() ) ) ) ;

// Trz
if (B. v () - —2 1 B.v2p()==2 ! B.v2m()==2 | B.vlp()— 2 | B.vlm()==2 I B.v3m()==2) {}
else Trz.sv( Trz.vO + mdtods* ( (1/(cc*rr) ) * (ro*vz . v2p ()-ri*vz. v () ) + (ds/(cc*dtheta( z-1] )) * (vr. v { )-

vr.vlm () )) );

B.incindx (); v r .incindx(); v z .incindx(); vp.incindx();
Trr.incindx(); Tzz.incindx (); Tpp.incindx (); Tr z .incindx(); Trp.incindx(); Tzp.incindx();

}} }}
void doABCs(int TotalZ){

double per;
for (int il = min(abc+1,zbeg+numz-1); ( il>=zbeg); il— )
{

per = (1-.0015* (abc-il));
vr.setindx(il-zbeg,0,0); v z .setindx(il-zbeg,0,0); vp.setindx(il-zbeg,0,0); 
for (int i2 = 0; i2 <numr; i2++)

for (int i3 = 0; i3 < nump; i3++){
v z .sv(vz.v ()*per);v r .sv(vr.v ()*per);vp.sv(vp.v()*per);

v r .incindx(); vz.incindx{); vp.incindx() ;
}}

for (int il = max(TotalZ-abc-1,zbeg); ( (il >= zbeg) & (il< (zbeg+numz-1)) ); il++){
vr.setindx(il-zbeg,0,0); vz.setindx(il-zbeg,0,0); vp.setindx(il-zbeg, 0,0); 

per = (1+.0015*{—il+(TotalZ-abc-1)));
//st.d: scout << time <<", ’’ << il « " ,  " << p e r « ’\ri';
//if (pipeti,pe==3) stdsscout «  il «  ”, " «  il-zbeg «  ", " «  per«'\n';
for (int i2 ■* 0; i2 <numr; i2++)

for (int i3 = 0; i3 < nump; i3++){
v z . sv (vz. v () *per); vr .sv (vr. v () *per); vp. sv(vp. v () *per);

vr.incindx (); vz.incindx(); vp.incindx();}}}

void UpdateTransducers(int t){
int tr;

for (int il = 1; il<numz-l; il++) 
for (int i3 = 0; i3<nump; i3++)

if (B.val(il+l,numr,i3+l) >= 1000) 
{
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tr = B.val{il+1,numr,13+1)-1000;
trans[tr].record[t] = trans[tr].record[t] + v z .v a l {il,numr-1,i3);

void addTransducer(transducer t)
{

numtrans = numtrans+1;
transducer *temp = new transducer[numtrans]; 
for (int i = 0; i<numtrans-l; i++) 

temp[i] = trans[i]; 
temp[numtrans-1] = t; 
trans = temp; 

int nnodes = 0 ;
//if (trans[numtrans-1].driven) 

for (int il = 1; il<numz-l; il++) 
for (int i3 = 0; i3<nump; i3++)

if {((trans[numtrans-1].posil-zbeg-il)* (trans[numtrans-1].posil-zbeg-il)+ (trans[numtrans- 
1].posi3-i3)* (t.posi3-i3)) <=(trans[numtrans-1].radius*trans[numtrans-1].radius)){

B.set(il+1,t.posi2+l,i3+l, 1000+numtrans-l); 
nnodes++;}

//if (t.posil-zbeg+1 >0) B.set (t.posil-zbeg+1,t.posi2+l,t.posi3+l,1000+numtrans-l);

temp[numtrans-1].numnodes = nnodes;
}

class transducer {
private:

double *drive; // array that holds drive function 

int dflen; // length of drivefunc

public:

double posil; // transducer center (r-direction) - meters
double posi2; // transducer center (z-direction) - meters
double posi3; // transducer center (p-direction) - angle

double radius; // transducer radius - meters
bool driven; // driven = true - active (pitch or pitch/catch)

// = false - passive (catch)
int transID;

int numnodes; // number of nodes in simulation space

double *record; // array that holds recorded value

// Blank Constructer 
transducer() {driven = false;}

//
transducer(double xl, double x2, double x3, double rad, int tID, int maxt){

posil = xl; 
posi2 = x2; 
posi3 = x3; 
radius = rad; 
transID = tID; 
driven = false;

dflen=0;

record = new double[maxt];
for (int i = 0; i< maxt; i++) record[i] = 0;

}

// Blank Deconstructor 
-transducer() {}

// Init - defines the array and its dimensions - MUST BE CALLED BEFORE USING 
void setDriveFunction(int len, double df[])

{
//drive - new double[len]; 

drive = df;
dflen = len;

driven = true; 
return;

}

double drivef(int t)
{

if (tkdflen)
return drive[t];

else
return 0;

}
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