643 research outputs found

    Vibration suppression using fractional-order disturbance observer based adaptive grey predictive controller

    Get PDF
    A novel control strategy is proposed for vibration suppression using an integration of a fractional-order disturbance observer (FDOB) and an adaptive grey predictive controller (AGPC). AGPC is utilized to realize outer loop control for better transient performance by predicting system outputs ahead with metabolic GM(1,1) model, and an adaptive step switching module is adopted for the grey predictor in AGPC. FDOB is used to obtain disturbance estimate and generate compensation signal, and as the order of Q-filter is expanded to real-number domain, FDOB has a wider range to select a suitable tradeoff between robustness and vibration suppression. For implementation of the fractional order Q-filter, broken-line approximation method is introduced. The proposed control strategy is simple in control-law derivation, and its effectiveness is validated by numerical simulations

    An optimized fractional order PID controller for suppressing vibration of AC motor

    Get PDF
    Fractional order Proportional-Integral-Derivative (PID) controller is composed of a number of integer order PID controllers. It is more accurate to control the complex system than the traditional integer order PID controller. The values of parameters of the fractional order PID controller play a decisive role for the control effect. Because the fractional order PID controller added two adjustable parameters than the traditional PID controller, it is very difficult to tune parameters. So the Back Propagation (BP) neural network is selected to optimize the parameters of the fractional order PID controller in order to obtain the high performance. Then the optimized fractional order PID controller and the traditional PID controller are used to control AC motor speed governing system. And the vibration spectrum and stator current spectrum under different rotating speeds are compared and analyzed in detail. The results show that the optimized fractional order PID controller has better vibration suppression performance than the traditional PID controller. The reason is that the optimized fractional order PID controller changed the stator current component, and further changed the frequency components and the amplitude of the vibration signal of the motor

    Control and Automation

    Get PDF
    Control and automation systems are at the heart of our every day lives. This book is a collection of novel ideas and findings in these fields, published as part of the Special Issue on Control and Automation. The core focus of this issue was original ideas and potential contributions for both theory and practice. It received a total number of 21 submissions, out of which 7 were accepted. These published manuscripts tackle some novel approaches in control, including fractional order control systems, with applications in robotics, biomedical engineering, electrical engineering, vibratory systems, and wastewater treatment plants. This Special Issue has gathered a selection of novel research results regarding control systems in several distinct research areas. We hope that these papers will evoke new ideas, concepts, and further developments in the field

    High-Performance Tracking for Piezoelectric Actuators Using Super-Twisting Algorithm Based on Artificial Neural Networks

    Get PDF
    Piezoelectric actuators (PEA) are frequently employed in applications where nano-Micr-odisplacement is required because of their high-precision performance. However, the positioning is affected substantially by the hysteresis which resembles in an nonlinear effect. In addition, hysteresis mathematical models own deficiencies that can influence on the reference following performance. The objective of this study was to enhance the tracking accuracy of a commercial PEA stack actuator with the implementation of a novel approach which consists in the use of a Super-Twisting Algorithm (STA) combined with artificial neural networks (ANN). A Lyapunov stability proof is bestowed to explain the theoretical solution. Experimental results of the proposed method were compared with a proportional-integral-derivative (PID) controller. The outcomes in a real PEA reported that the novel structure is stable as it was proved theoretically, and the experiments provided a significant error reduction in contrast with the PID.This research was funded by Basque Government and UPV/EHU projects

    State-Space Speed Control of Two-Mass Mechanical Systems: Analytical Tuning and Experimental Evaluation

    Full text link

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Decoupled Fractional Super-Twisting Stabilization of Interconnected Mobile Robot Under Harsh Terrain Conditions

    Get PDF
    The four-wheel omnidirectional mobile robot usually suffers disturbed or unstable lateral motion under harsh terrain conditions (such as uneven or oiled ground). Generally for such a challenging situation, the lumped disturbances and interconnected states render available coupling solutions difficult to achieve demand-satisfied performance. This paper proposes a novel decoupled fractional super-twisting sliding mode control (FST-SMC) method by (i) constructing an inverse system-based decoupling to form a pseudolinear composition system; (ii) presenting an enhanced nominal sliding law for chattering mitigation and (iii) designing an unbiased multi-layer fuzzy estimator with gain-learning capacity to compensate for the lumped disturbances actively. Given that the identified disturbances can be directly reflected in the FST-SMC law, this method guarantees an accurate and robust control without causing gain overestimation. Theoretical analysis is offered to verify the asymptotic stability. Under harsh terrain conditions, experimental results validate the effectiveness of the proposed FST-SMC method

    Control en cascada clásico y borroso para el seguimiento de trayectorias. Apuntes para un estudio.

    Get PDF
    Los nuevos procesos de microfabricación imponen nuevos requisitos de precisión y robustez en los sistemas de control de posición y trayectoria, lo que abre nuevas líneas de investigación en el campo del modelado y el control, y la necesidad de evaluar técnicas de control inteligente tales como el control borroso. En este trabajo, se presenta por una parte el modelado clásico de partes eléctricas y mecánicas consideradas como un sistema de múltiples masas acopladas mediante una transmisión elástica y amortiguamiento, en presencia de la fricción y la holgura, dos no linealidades duras. Además, se muestra el diseño de un controlador a partir de un modelo paramétrico dependiente de la frecuencia de resonancia y del amortiguamiento. Como paso inicial del estudio, se diseña un sistema de control en cascada dotado de componentes anticipativas que es el esquema más utilizado en la industria. Con vistas a evaluar el alcance de las no linealidades en la ley de control, se sintetiza un control borroso en cascada equivalente a partir del método propuesto por Matia et al. 1992. Para evaluar el comportamiento del sistema de control, se consideraron incertidumbres en parámetros tales como la frecuencia de resonancia, el amortiguamiento y el ancho de la zona muerta de la holgura y se realizaron simulaciones considerando trayectorias circulares. Algunas cifras de mérito tales como la integral del valor absoluto del error en el tiempo (ITAE), el error máximo absoluto (MAE) y la integral del valor absoluto de la señal de control (IAU) se utilizaron en el estudio comparativo de ambos controladores en cascada. El estudio permitió comprobar que no hay diferencias significativas en el comportamiento de ambos sistemas de control (cascada clásico y cascada borroso)
    corecore