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Preface to ”Control and Automation”

Control and automation systems are at the heart of our everyday lives. This book is a collection

of novel ideas and findings in these fields, published as part of the Special Issue on Control and

Automation. The core focus of this issue was original ideas and potential contributions for both

theory and practice. It received a total number of 21 submissions, out of which 7 were accepted. These

published manuscripts tackle some novel approaches in control, including fractional order control

systems, with applications in robotics, biomedical engineering, electrical engineering, vibratory

systems, and wastewater treatment plants.

One of these papers presents a synchronous co-simulation of a six degree of freedom (6DOF)

ball and plate platform, and its 3D computer model intended to simulate the actual dynamics of

a rendezvous between a cargo vehicle, such as the Falcon 9 from SpaceX and the International

Space Station (ISS). A supervisory action is required for initiating the docking mechanism. The

novelty of the manuscript consists of an adaptive fractional order control solution. The tuning

method is easy, and the control strategy is implemented and validated based on a laboratory

benchmark. The results demonstrate that such an approach is suitable to meet the performance

specifications, despite the large variability in the system dynamics. Vibratory systems and an

efficient control for these processes are addressed in two of the published papers. One of these

tackles the idea of using a fractional order differential equation to model such a process, based

on its viscoelastic nature. Then, a fractional order linear quadratic regulator (LQR) is designed.

To solve the Riccati equation of the LQR method, an iteration-based approach is proposed. Next,

to estimate the states originating from the fractional-order derivative term, a fractional-order state

observer is constructed. To demonstrate the efficiency of the proposed control algorithm, numerical

simulations are presented, showing that vibrations are indeed suppressed. The second paper, which

deals with vibratory systems, uses a smart beam to validate an experimental tuning approach for

fractional order proportional–integral–derivative (PID) controllers. The tuning method is based on

shaping the Bode magnitude plot to decrease the resonant peak. There is no need for a process

model; only several experimental tests are required to obtain the necessary process information

at different frequencies. Experimental results are provided to demonstrate the efficiency of the

proposed approach. Both of the abovementioned algorithms use concepts from fractional calculus. To

implement such fractional order controllers, digital realizations are often required, which use sample

and hold (S&H) circuits to perform the conversion from analog to digital and vice versa. An excellent

review of these S&H systems, as well as a new fractional order design of such systems, is presented in

this issue. The proposed approach models these systems both in the time and Laplace domains and

is a generalization of the classical devices, enabling a better understanding of the possibilities and

limitations of S&H systems.

The field of biomedical engineering is currently receiving tremendous attention from the

research community, especially regarding personalized and optimized medicine. Such a topic is

addressed regarding carcinoma models and adequate chemotherapeutic treatment. The core problem

in the delivery of a carcinoma model suitable for developing an optimized therapy consists of a

limited number of measurable physiological signals—state variables—and the knowledge of model

parameters. The proposed solution refers to the use of observers. A moving horizon estimation

(MHE)-based observer is developed that uses a third-order tumor growth model. The performance

of the observer is compared to that of an optimized extended Kalman filter (EKF). Results show that

ix



the proposed MHE is designed to be suitable for closed-loop applications and yields simultaneous

state and parameter estimation.

Novel ideas in the field of optimal battery charging are also presented in this Special Issue. A

battery model, designed for automotive battery management systems applications, is used to design

charging controllers in an optimal charging strategy. The standard model is altered to produce

a non-linear electro-thermal battery aging model, which is linearized at several operating points.

An optimal charging strategy is then designed for the simultaneous minimization of charging time

and maximization of battery lifetime. An optimization problem that minimizes aging is solved to

determine an appropriate charging trajectory. The CRONE methodology is then used to take into

account the resulting linear model family. Several simulations are employed to show the efficiency of

the resulting charge controller.

The Special Issue contains a seventh paper dealing with a weather-based prediction strategy

inside the proactive historian with application in wastewater treatment plants. The authors propose a

software reference architecture for the proactive historian, alongside a data dependency identification

strategy and several applications for energy efficiency improvements in the water industry. However,

complex research is required in order to offer a complete solution for real industrial processes. Part of

this reference architecture that predicts the future evolution of the monitored system is developed in

one of the papers of this Special Issue. The design is based on weather dependency and forecasting.

In this way, the approach paves the way towards achieving a fully functional, real-world, tested,

and validated proactive historian application, with potential to bring significant direct benefits to the

water industry.

This Special Issue has gathered a selection of novel research results regarding control systems in

several distinct research areas. We hope that these papers will evoke new ideas, concepts, and further

developments in the field.

We wish to thank the authors for considering this Special Issue as a suitable way to disseminate

their results. Additionally, we thank the reviewers for the extra effort put into reviewing the

manuscripts. Finally, we thank the dedicated editorial team of Applied Sciences, especially assistant

editor Wing Wang, the Special Issue Managing Editor, who provided help enormously with managing

the papers.

Cristina I. Muresan, Eva H. Dulf

Editors
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1. Introduction

A wide range of ongoing research in the areas of controller design and information
engineering reveals that the pace of technological change in this domain seems to be
accelerating. The primary focus is on futuristic segments ranging from robotics and
genomics to chemical feedstock and electrical storage.

The main objective of this Special Issue was to provide a forum for researchers and
practitioners to exchange their latest theoretical and technological achievements and to
identify critical issues and challenges for future investigation on topics regarding advanced
automation and control techniques based on information system technologies.

2. Novel Ideas for Control

The Special Issue focused on original ideas and potential contributions for theory and
practice, at the same time. It received a total number of 21 submissions, among which 7 were
accepted. These published manuscripts tackle some novel approaches in control, including
fractional order control systems, with applications in robotics, biomedical engineering,
electrical engineering, vibratory systems, waste water treatment plants.

One of these papers [1] presents a synchronous co-simulation of a 6DOF (six degrees
of freedom) ball and plate platform and its 3D computer model intended to simulate
the actual dynamics of a rendezvous between a cargo vehicle such as the Falcon 9 from
SpaceX and the ISS (International Space Station). A supervisory action is required for
initiating the docking mechanism. The novelty of the manuscript consists of an adaptive
fractional order control solution. The tuning method is easy and the control strategy is
implemented and validated on a laboratory benchmark. The results demonstrate that such
an approach is suitable to meet the performance specifications despite the large variability
in the system dynamics.

Vibratory systems and an efficient control for these processes are addressed in two of
the published papers. One of these [2] tackles the idea of using a fractional order differential
equation to model such a process, based on its viscoelastic nature. Then, a fractional order
Linear Quadratic Regulator (LQR) is designed. To solve the Riccati equation of the LQR
method, an iteration-based approach is proposed. Next, to estimate the states originating
from the fractional-order derivative term, a fractional-order state observer is constructed.
To demonstrate the efficiency of the proposed control algorithm, numerical simulations
are presented showing that vibrations are indeed suppressed. The second paper that deals
with vibratory systems uses a smart beam to validate an experimental tuning approach for
fractional order proportional–integral–derivative (PID) controllers [3]. The tuning method
is based on shaping the Bode magnitude plot, such that the resonant peak is decreased.
There is no need for a process model, only several experimental tests are required to
obtain the necessary process information at different frequencies. Experimental results are
provided to demonstrate the efficiency of the proposed approach.

Both of the algorithms in [2,3] use concepts from fractional calculus. To implement
such fractional order controllers, digital realizations are often required which use sample
and hold (S&H) circuits to perform the conversion from analog to digital and vice versa.

Appl. Sci. 2021, 11, 5005. https://doi.org/10.3390/app11115005 https://www.mdpi.com/journal/applsci
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An excellent review of these S&H systems, as well as a new fractional order design of such
systems, is presented in [4]. The proposed approach models these systems both in the
time and Laplace domains and is a generalization of the classical devices, enabling a better
understanding of the possibilities and limitations of S&H systems.

The field of biomedical engineering is currently receiving tremendous attention from
the research community, especially regarding personalized and optimized medicine. In [5],
such a topic is addressed regarding carcinoma models and adequate chemotherapeutic
treatment. The core problem in delivering a carcinoma model suitable for developing an
optimized therapy consists of the limited number of measurable physiological signals—
state variables—and the knowledge of model parameters. The solution proposed in [5]
refers to the use of observers. A moving horizon estimation (MHE)-based observer is
developed that uses a third-order tumor growth model. The performance of the observer is
compared to that of an optimized extended Kalman filter (EKF). Results show that proposed
MHE is designed to be suitable for closed-loop applications and yields simultaneous state
and parameter estimation.

Novel ideas in the field of optimal battery charging are presented in [6]. A battery
model, designed for automotive battery management systems applications, is used to
design charging controllers in an optimal charging strategy. The standard model is altered
to produce a nonlinear electro-thermal battery aging model, which is linearized in sev-
eral operating points. An optimal charging strategy is then designed for simultaneous
minimization of charging time and maximization of battery lifetime. An optimization prob-
lem that minimizes aging is solved to determine an appropriate charging trajectory. The
CRONE methodology is then used to take into account the resulting linear model family.
Several simulations are employed to show the efficiency of the resulting charge controller.

The Special Issue contains a seventh paper dealing with a weather-based prediction
strategy inside the proactive historian with application in wastewater treatment plants [7].
The authors propose a software reference architecture for such a proactive Historian, along
with a data dependency identification strategy and some obtained recipes for energy
efficiency improvements in the water industry. However, complex research is required
in order to offer a complete solution for real industrial processes. Part of this reference
architecture that predicts the future evolution of the monitored system is developed in [7].
The design is based on weather dependency and forecast. In this way, the approach
paves the way towards achieving a fully functional, real-world, tested and validated
proactive Historian application, with potential to bring significant direct benefits to the
water industry.

3. Conclusions

This Special Issue has gathered a selection of novel research results regarding control
systems in several distinct research areas. We hope that these papers will raise new ideas,
concepts and further developments in the field.

We wish to thank the authors for considering this Special Issue as a proper way to
disseminate their results. Additionally, we thank the reviewers for the extra effort put
into reviewing the manuscripts. Last, but not least, we thank the dedicated editorial team
of Applied Sciences, especially to assistant editor Wing Wang, the Special Issue Managing
Editor who provided a lot of help with managing the papers.

Author Contributions: Conceptualization, C.-I.M. and E.H.D.; writing—review and editing, C.-I.M.
and E.H.D. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grant of the Ministry of Research, Innovation and Digitization,
CNCS/CCCDI–UEFISCDI, project number PN-III-P1-1.1-TE-2019-0745, within PNCDI III.
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Abstract: In this work, we present a synchronous co-simulation of a 6DOF (six degree of freedom)
ball and plate platform and its 3D computer model. The co-simulation in the virtual environment is
intended to mimic the rendezvous between a cargo vehicle such as the Falcon 9 from SpaceX and the
ISS (International Space Station). The visual feedback sensing of the position of the 6DOF platform is
implemented using a Kinect RGB-D device. The human in the loop acts as supervisory control for
initiating the docking mechanism. This paper delivers an adaptive fractional order control solution
which is easily tunable, implementable and validated on a laboratory benchmark. The results indicate
that fractional order control can tackle large variability in the system dynamics and deliver specified
performance at all times.

Keywords: mechatronic system; 6DOF platform; co-simulation platform; robust control; fractional
order PID control; linear parameter varying system

1. Introduction

There are many possible applications for the six degree of freedom (6DOF) ball and
plate platform, ranging from flight simulators, gaming and mimicking space rendezvous
for docking and berthing mechanisms. Space engineering applications have increased
degrees of LPV (linear parameter varying) dynamics due to their size, relative position,
remote location and high instrumentation complexity [1]. The mechanical design of such
systems may not be optimal from a control point of view, but rather from a practical point of
view (e.g., remote access, testing, validation protocols, etc.). Thus, the control task becomes
more challenging within the limitations imposed by the hardware and context [2–4].

Space rendezvous missions are characterized by a high degree of uncertainty in
relative inertial load and relative mass distribution depending on the angles of contact
between the meeting parts. For example, a leg has to put less effort into accelerating the
platform in a vertical translation when the platform is at maximal height than when the
platform is at its lowest level. Since the experienced loads do not correspond to tangible
masses, the experienced load is referred to as a reflected mass. Therefore, the load on
top of an LEMA (linear electro-mechanical actuator) is a non-fixed parameter. Since the
dynamic models corresponding to these variable reflected masses change significantly,
the variation of the dynamics should be taken into the consideration during the controller
tuning process. A specific application is introduced in this paper, as it has the advantage to
mimic real-life conditions in a lab scale environment. The challenge of model uncertainty

Appl. Sci. 2021, 11, 3658. https://doi.org/10.3390/app11083658 https://www.mdpi.com/journal/applsci
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has been addressed previously with a model-based control scheduling scheme and a robust
control algorithm [5–7].

This paper presents a co-simulation between a real world model and a virtual world
model of a Stewart platform simulator. The purpose is to combine real-world parts (a
6DOF platform) with a virtual model (an equivalent docking 6DOF platform) and mimic a
space rendezvous. There is no one-controller-fits-all solution available due to the various
orders of magnitude of the difference between dynamic values of the system operation.
An adaptive control algorithm ensures the system can abide to aforementioned performance
specifications in the presence of high LPV conditions.

The paper is organized as follows. The real world and virtual environment setup,
afferent software and hardware facilities and the mimicking co-simulation of the virtual-
reality part of the system are described in Section 2. Next, an adaptive controller is proposed
in Section 3, allowing human-in-the-loop interaction. The results and discussion are given
in Section 4, and Section 5 presents the conclusions and summarizes the main outcome of
this work.

2. Real and Virtual Setup Description

The Berthing Docking Mechanism (BDM) is a mechatronic system that is capable of
performing successful rendezvous/contact operations via either docking or berthing. It
is designed for the low-impact docking of a spacecraft by actively reducing the impact
forces on the platform during progressive contact. The structural design of the BDM
is a 6DOF parallel manipulator, based on the Stewart–Gough platform [8,9]. Lab-scale
6DOF Stewart systems controlled with robust integer-order controllers have already been
presented in [10–13]. However, the main difference to the lab-scale application is that
BDM structures have high LPV dynamic properties. Since the leg’s dynamics depend on
the experienced inertial load, each relative mass corresponds to a model with different
dynamics. In other words, each model represents the dynamics of a particular leg in a
particular pose when a certain force is exerted on the platform’s upper ring. Since every
executable trajectory of the platform can be seen as a succession of different states, it is
clear that the LEMA dynamics change constantly during spacecraft docking. How they
become active during the contact process is briefly described as follows. During docking,
the mechanism consists of an active and a passive module, as illustrated in Figure 1, which
can be viewed as two sub-systems with an interaction when in contact.

Figure 1. Illustration of the active and passive modules for space IBDM (International Berthing and
Docking Mechanism) rendezvous/contact. In the context described in our methodological approach,
each module is a dynamic sub-system.

The ring-shaped interfaces of the active module can be moved with 6DOF by means of
six telescopic extensible legs. The length of the legs is controlled for each leg individually by

6
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a brushless DC motor, based on the force signals measured by the load cells. Considering
the platform’s 6DOF, the net power the legs have to deliver in order to move the spacecraft
in a certain direction might differ, depending on the pose of the platform. When the
actuator is oriented in the direction in which the platform has to be accelerated, the legs
will experience low-load behavior, which is less demanding in terms of actuator effort.
The variations in the load are referred to as the reflected mass. From an LPV perspective,
this 6DOF platform has to be controlled with respect to a varying-load system conditions.

The real picture of the platform is depicted in Figure 2a, while the coordinate system of
the virtual and real platform is illustrated in Figure 2b. In this figure, the Ovw is the origin
of the virtual world, the Ovwp is the central coordinate of the virtual platform and Orw
and Orwp represent the coordinates of the real world and of the real platform, respectively.
Hrp = Hvp = 50 cm represents the height of the platform, D = 10 cm is the distance
between the real ad the virtual platform, and the diameter of the platform plate is 70 cm.
The real 6DOF platform from Figure 2a represents the first part of the co-simulation setup
system and is considered to be the active module of the BMD setup. It uses the position
control of each leg (Figure 3a) to achieve global positioning and determine the angle of
the platform.

(a) (b)

Figure 2. (a) Real world six degree of freedom (6DOF) platform for co-simulation, including a
frame and Kinect IR-camera; (b) Relation between coordinate systems of the real world and the
virtual world.

Given that the position of the platform is known, the position of each connection
C(xc, yc, zc) is also known (as specified by the controller). The position of the servo
A(xa, ya, za) and its orientation θ are determined by the motion platform construction.
The connection of the servo lever and the vertical rod is indicated as B(xb, yb, zb). Let r be
the length of the servo arm (AB) while BC is the shaft that connects the servo arm with the
platform in the point C and has the length �. The absolute distance between point A and C
is denoted by �1. The inverse kinematic model is described as

ϕ = ± arccos
(

M√
K2 + N2

)
+ arctan

(
N
K

)
+ kπ, ∀k ∈ Z, (1)

7
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where
M = �2 − �2

1 − r2

K = 2(xa − xc)r cos θ + xa + 2(ya − yc)r sin θ + ya
N = 2(za − zc)r

. (2)

The inverse kinematic model from (1) has four solutions:

ϕ1 = arccos
(

M√
K2+N2

)
+ arctan

(
N
K

)
+ π

ϕ2 = − arccos
(

M√
K2+N2

)
+ arctan

(
N
K

)
+ π

ϕ3 = arccos
(

M√
K2+N2

)
+ arctan

(
N
K

)
ϕ4 = − arccos

(
M√

K2+N2

)
+ arctan

(
N
K

)
. (3)

which are illustrated in Figure 3b. Due to the employed mathematical method, a second
point C′ is found; thus, solutions |varphi3 and ϕ4 (for points B3 and B4) are discarded.
Solution ϕ1 and ϕ2 (for points B1 and B2) brings the connection C to its desired position.
As the servo position is restricted between ±90◦, solution ϕ1 (point B1) is selected as the
unique feasible solution. The closed loop control uses classical visual feedback control
based on camera vision information, as described in [14].

(a) (b)

Figure 3. (a) Local coordinate frame for a servo control unit; (b) mapping of possible solutions for (1).

There are many possibilities for mapping a 3D environment, ranging from very
expensive and accurate technologies to low-cost devices which are available for consumers.
The Microsoft Kinect is a perfect example of such a low-cost sensor, and this has had a
huge impact on recent research in computer vision as well as in robotics. Here, a Kinect v2
sensor is used as it was available in the laboratory. The Kinect v2 sensor holds two cameras
(a RGB and an infrared (IR) camera), an IR emitter and a microphone bar, as shown in
Figure 4a. The Kinect software maps the depth data to the coordinate system, as shown in
Figure 4a, with its origin located at the center of the IR sensor. Note that this is a right-
handed coordinate system with the orientation of the y-axis depending on the tilt of the
camera and one unit representing one meter. Kinect v2 uses optical time-of-flight (ToF)
technology in order to retrieve the depth data with the infrared (IR) camera. The basic
principle of ToF is to measure the time difference between an emitted light ray and its
collection after reflection from an object (Figure 4b). The RGB-camera within the Kinect
sensor has a resolution of 1920 × 1080 pixels with a field of view of 70.6 × 60 degrees, while
the IR-camera resolution is 512 × 424 pixels and the field of view is 84.1 × 53.8 degrees.
The operative measuring range of the Kinect sensor is between 0.5 and 4.5 m and the frame
rate is 30 fps.
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(a) (b)

Figure 4. (a) The coordinate system of the Kinect v2 camera and the location of the sensors [15];
(b) time-of-flight (ToF) principle used in the Kinect sensor. The sent and received signal are compared
to each other in order to determine the phase change and calculate the distance.

The intrinsic parameters of the depth camera of the Kinect, the focal length and the
principal point, can be acquired using the Kinect For Windows SDK while the intrinsic
parameters of the RGB camera can be acquired with the Camera Calibration Toolbox
for MATLAB.

Next, the virtual model was constructed with a Siemens NX12.0 based on the existing
6DOF model of the platform [10–13]. Combining the NX12.0 Motion environment and
the inverse kinematics calculations programmed in VisualBasic.Net, a simulation of the
virtual world model was executed. Finally, a connection between the LabVIEW program
and the NXOpen program was created using registry keys in the Windows Registry, as this
allowed for the continuous monitoring of the keys without hindering access to the key
from other processes.

In total, 13 VIs were generated to provide the necessary library for communication and
the real-time operation of the real world platform and the virtual platform for mimicking
a rendezvous. The LabVIEW platform provides the following features for the real-world
6DOF platform:

• Communication with the 6DOF platform;
• Kinematic calculations of the 6DOF platform;
• A pinhole camera model;
• Kinect data acquisition;
• Visual data processing;
• Calculations of the platform orientation;
• The combination of the 6DOF platform communication and visual data.

NXOpen is a tool which is mainly used for computer-aided engineering (CAE)-
purposes, and it allows the user to operate several functions of NX from a centralized
location. In this case, NXOpen is used to allow the control of orientation of the platform in
all its degrees of freedom, to set the duration of the simulation and to perform a static and
dynamic analysis of the motion of the platform. Apart from taking the user input to control
its position, it also allows the direct control of the servo angles and it permits the user to
import data from the motion of the real-world platform in order to adapt to its orientation.
It also starts the LabVIEW application when the simulation method is chosen.

The code behind this graphical user interface (GUI) was written in VB.NET and
consists of roughly five parts, with the result given in Figure 5:

• A part that is responsible for maintaining the GUI;
• An object class to do the necessary calculations;
• A method to export the values retrieved from the virtual sensors in the form of a

.csv file;
• A component to configure the motion functions of the servomotors;
• A part that regulates the communication with LabVIEW through the use of reg-

istry keys.
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Figure 5. The NXOpen interface with all three tabs visible—here, the user can specify supervisory
setpoint values to position the platform before docking.

As observed in Figure 5, the user interface is divided inti three tabs:

• Export motion is used to configure the attitude and position of the virtual platform.
The ids values of servomotors are written in the text box besides the imaginary angles
while filling in the values for the platform orientation—this makes it so that the values
can still be adjusted before starting the solution. The simulation time defines the
duration of the simulation;

• Import motion: In this mode, a sequence of motion of the real-world-platform is
imported and transformed to angles of the servomotors using the inverse kinematics,
and then every point is plotted to form a motion-function. This motion function is
then used as the driving function for the servo drivers;

• Manual override is used to configure the angles of the individual servomotors. This
function is primarily provided for testing purposes and has no influence on the
real-world simulator.

The overview of these three operating modes is illustrated in the flowchart in
Figure 6, where the red path represents the manual override mode, the blue path rep-
resents the import motion mode and the green path represents the export motion mode.
The purple dash arrows represent the registry keys (SimStart, PathReady, LVMode, Im-
portPath) that are used to communicate with the LabVIEW application and ensure that
the LabVIEW program does not skip steps the next time it executes. The overview of
the working application (Figure 6) shows the main steps in the communication and data
processing parts necessary to allow the real-time co-simulation of the real world and virtual
world platform setups as part of the docking mechanism.

10
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Figure 6. Flowchart of the operational procedures in the VisualBasic application (red path represents
the manual override mode, the blue path represents the import motion mode and the green path
represents the export motion mode). LV is the abbreviation of LabVIEW.

2.1. Co-Simulation Procedure

The previous section gave a brief overview of both the LabVIEW and the VB.NET
applications, while this section explains the cooperation between both applications. Both
applications have the ability to influence each other, but only at specific points during the
execution of the code, by reading and writing registry keys and by creating intermediary
files to transfer large amounts of data. The communication via the registry keys is simply
used as a confirmation and allows one application to know which part of the code the
other application is executing. It can be said that the communication between LabVIEW
and the VB.NET-application is a two-way communication process, but it is however not a
simultaneous or continuous type of communication. Larger amounts of data are transferred
between applications using both .csv-files and .txt-files, which results in another type of
indirect communication. The motion sequence is recorded by six virtual sensors that are
positioned at the center of the upper surface of the virtual platform. These sensors measure
the displacement in three directions as well as the angular displacement around three axes.
NX outputs the measurement data of the sensors as a binary file. These data are used as an
input by LabVIEW to match the motion sequence of the real-world platform to that of the
virtual platform. Because the data of the virtual sensors are used as a function of the virtual
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world coordinate system, this data have to be transformed to the real world-platform
coordinate system using the principle illustrated in Figure 4b. The real-world-platform
motion-sequence is recorded by the Kinect sensor, which returns the platform orientation
data. The data consist of three markers on the plate, which are detected by the visual sensor
and are further used to calculate the platform position and attitude. The initial locations
for each of these points is known, thus enabling us to calculate the transformation matrix
between the initial location and the current location.

This co-simulation consists of two types of simulations:

1. The real-world simulation is in itself a real-time simulator: values that are changed
on the front panel of the LabVIEW-app have an immediate effect on the orientation
of the real-world platform;

2. The virtual-world simulation, however, is a slower-than-real-time-simulation be-
cause this application solves the entirety of the sequence at once before starting the
animation.

The program mode that most closely resembles a synchronous simulation is the auto-
mode. It records small motion-sequences with a step duration of approximately one 60th
of a second, sends them to the virtual-world simulator and animates the simulation.

2.2. Simplified Model

The variation in the reflected mass for a single LEMA has been generated from real-
life simulators and the data analyzed thoroughly in collaboration with QINETIC Space
Kruibeke, Belgium (a confidentiality agreement is in place). To illustrate the high LPV
degree in this berthing and docking mechanism system, we introduce a linear model
approximation for the extreme cases. Since the leg positions must be controlled, these
models capturing the leg dynamics can be approximated in the form indicated bellow:

P(s) =
K(s + z0)(s + z1)(s + z∗1)

(s + p0)(s + p1)(s + p2)(s + p∗2)
(4)

where K is the gain, z0 is a real zero, z∗1 denotes the complex comprised of z1, p0, p1 real
poles and p∗2 denotes the complex comprised of p2. This form of the transfer function has
LPV parameter dynamics; i.e., changes in the z1 and p1 values. In order to illustrate the
variability of the system, two extreme cases have been considered. The assumed linear
model for case 1 is

P1(s) = 2500
(s + 625)(s + (1.95 + 13.4i))(s + (1.95 − 13.4i))

(s + 53)(s + 0.1)(s + (294 + 334i))(s + (294 − 334i))
(5)

The other extreme (case 2) of LPV dynamics is expressed by the system transfer function:

P2(s) = 2500
(s + 628)(s + (5 · 10−4 + 0.2i))(s + (5 · 10−4 − 0.2i))

(s + 53)(s + 3 · 10−5)(s + (292 + 322i))(s + (292 − 322i))
(6)

In this form of the models, the variations in pole/zero locations are clearly visible.

3. Adaptive Control

Originally, the controller used for this level was a single PI (proportional–integral)
controller with feedforward action. An integer PI-cascaded controller has been outper-
formed in terms of robustness for maintaining closed loop specifications by a fractional
order PI controller while being validated on the real-life simulator for European Space
Agency at QINETIQ nva Antwerp, Belgium [16]. A robust fractional order PI controller
has been proposed and simulated in [6]. Here, we use the adaptive robust fractional order
PI (FOPI) control design described in [5]. It has already been shown that fractional order
control is a good candidate for the robust control of DC motor components [17–19].
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The FOPI described hereafter has the form:

CFOPI(s) = Kp(1 +
Ki
sμ ) (7)

where Kp and Ki are the proportional and integral gains and μ ∈ (0, 1) the fractional order
of integration. Note that the traditional PI controller is obtained for the special case when
μ = 1. The fractional order PI controller in (7) is thus a generalization of the integer order
PI controller. The advantages of the fractional order PI controller stem from the extra
tuning parameter μ, which can be used to enhance the robustness of the controller. Since
there are three tuning parameters in the fractional order PI controller, three performance
specifications are used. These three performance criteria lead to the typical tuning rules
for fractional order controllers. and they are based on the relationship between time-
domain performance specifications and corresponding frequency domain specifications.
We enumerate here the most commonly used specifications:

• Gain cross over frequency ωgc, which is related to the settling time of the closed loop
system—large values will yield smaller settling times at the cost of higher control
efforts;

• Phase margin (PM), which is stability related and an indicator of the closed loop
overshoot percentage—usual values are within the 45–65

◦
interval [20];

• The iso-damping property, which is a condition ensuring robustness to gain changes
such that overshoot remains constant within a certain gain variation range.

To ensure a constant overshoot, a constant phase margin needs to be maintained
around the desired gain crossover frequency, which ultimately implies that the phase of the
open-loop system must be kept constant around the specified gain cross-over frequency.
In other words, the derivative of the phase with respect to frequency around the gain cross
over frequency must be (almost) null. The three performance specifications mentioned
above are mathematically expressed as

|Hopen−loop(jωgc)| = 1 (8)

∠Hopen−loop(jωgc) = −π + PM (9)

d(∠Hopen−loop(jω))

dω
|ω=ωgc (10)

where Hopen−loop(s) = CFOPI(s)P(s) stands for the open loop transfer function and P(s) is
the system to be controlled. Equations (8)–(10) require the magnitude, phase and derivative
of the phase for both the FOPI controller and P(s). The modulus and phase of the FOPI
controller are given by

|CFOPI(jω)| = Kp

√
1 + 2Kiω

−μ cos πμ
2 + K2

i ω−2μ

∠CFOPI = − arctan
(

Kiω
−μ sin πμ

2
1+Kiω

−μ cos πμ
2

) (11)

To determine analytically the derivative of the phase of the FOPI controller, the phase
equation in (11) is used, resulting in

μKiω
−μ−1
gc sin πμ

2

1 + 2Kiω
−μ
gc cos πμ

2 + K2
i ω

−2μ
gc

= 0 (12)

Equations (8)–(10) also use the magnitude, phase and derivative of the phase of P(s).
The values for the modulus, phase and phase slope of the process should be known a priori
at the gain cross over frequency ωgc. These can be obtained analytically based on a model
of P(s). Assuming a process model is given by Equation (5), the magnitude, phase and
derivative of the phase of P(s) are computed as
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|P(jωgc)| = K ·
√

ω2
gc+z2

0·
√

ω2
gc+z2

1·
√

ω2
gc+z∗2

1√
ω2

gc+p2
0·
√

ω2
gc+p2

1·
√

ω2
gc+p2

2·
√

ω2
gc+p∗2

2

∠P(jωgc) = tan−1
(

ωgc
z0

)
+ tan−1

(
ωgc
z1

)
+ tan−1

(
ωgc
z∗1

)
− tan−1

(
ωgc
p0

)
− tan−1

(
ωgc
p1

)
− tan−1

(
ωgc
p2

)
− tan−1

(
ωgc
p∗2

)

d∠P
dωgc

= z0
ω2

gc+z2
0
+ z1

ω2
gc+z2

1
+

z∗1
ω2

gc+z∗2
1
− p0

ω2
gc+p2

0
− p1

ω2
gc+p2

1
− p2

ω2
gc+p2

2
− p∗2

ω2
gc+p∗2

2

(13)

To mimic a space rendezvous, the relative mass on each leg of the 6DOF platform can
be varied at times during the simulation. In practice, the relative mass can be estimated
continuously from the measured position and velocity of the platform. However, a contin-
uous adaptation of controller parameters is not necessary and significantly increases the
computational burden of the deployed system operation. Instead, using the standard per-
formance index, a tolerance interval of ±10% is introduced in the overshoot (OS% < 20%)
and settling time (Ts < 0.1s) values.

The relations in (13) are easily computed online from previous samples’ reflected mass
estimation. However, an additional condition of the violation of the tolerance interval is
implemented to prevent the sluggish and unnecessary adaptation of controller parameters
and consequently discretization and deployment on real-life emulator. The latter steps are
performed solely when the threshold of tolerance interval is exceeded. Then, replacing (11)
and (12) in (8)–(10) leads to

Kp

√
1 + 2Kiω

−μ
gc cos

πμ

2
+ K2

i ω
−2μ
gc =

1
|P(jωgc)| (14)

Kiω
−μ
gc sin πμ

2

1 + Kiω
−μ
gc cos πμ

2

= tan(π − PM +∠P(jωgc))

μKiω
−μ−1
gc sin πμ

2

1 + 2Kiω
−μ
gc cos πμ

2 + K2
i ω

−2μ
gc

+
d∠P(jω)

dω
|ω=ωgc = 0

With respect to the digital implementation of this controller, two more parameters are
practically relevant: the degree of approximation and the user-specified ω-range in which
the desired behavior should be obtained, and tuning rules are given in [21] (includes the
Matlab function code provided in the paper).

4. Results and Discussion

The controller parameter solution for the isodamping property is achieved fora gain
crossover frequency ωgc of 150 rad/s and phase margin (PM) of 50◦. The assumed linear
model is (5) and the resulting controller is

CFOPI(s) = 0.065
(

1 +
1.15 · 104

s1.656

)
(15)

The parameters of the FOPI controller in (15) were obtained by solving the set of
nonlinear equations in (14). First of all, the Ki parameter was estimated as a function
of the fractional order μ, using the phase margin and the iso-damping, according to the
second and third equations in (7). The two functions were then plotted as indicated in
Figure 7a. The intersection of the two functions gives the two control parameters that
ensure both a certain phase margin and the iso-damping property. According to Figure 7a,
the intersection point yields Ki = 1.15 ∗ 104 and μ = 1.656. Once these two parameters are
computed, the proportional gain is estimated from the magnitude from the (first) equation
in (14) as Kp = 0.065. Figure 7b presents the Bode diagram for the controller and the two
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systems denoting two extreme cases (P1 and P2) of LPV values (i.e., a variation of 250% in
the reflected mass value in the 6DOF platform simulator).
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Figure 7. (a) The cross-section point of the phase margin and iso-damping criteria; (b) a Bode diagram
of the open loop system in the two extreme cases.

The discretization scheme proposed in [21] has been employed to obtain a discretized
version of pole–zero pairs. This scheme is particularly efficient at delivering stable, low-
order approximations of the non-rational function of the FOPI into a proper filter form,
and for our study case, it delivers a fifth order rational transfer function.

An example of a co-simulation interface and real-time tracking between the 6DOF
platform and virtual model is illustrated in Figure 8. In this figure, the real world platform
can be observed, including the active part of the BDM system (label 1), the front panel of
the LabVIEW application (label 2) and the 3D model of the simulated platform (label 3).

Figure 8. Example of co-simulation interface and real-time tracking between the 6DOF platform and
virtual model.

The adaptive controller maintains the same specifications in closed loop performance
for the two variations in the reflected mass parameters, with the step response for three
platform legs (the other are similar) given in Figure 9. It can be observed that the controller
maintains performance despite the great variability in system parameters mimicking the
reflected mass for one leg with or without contact at docking.
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Figure 9. Step responses for the adaptive controller for three legs for the first case, P1(s) (left), and the second case,
P2(s) (right).

5. Conclusions

In this paper, we presented a co-simulation framework for a real-world and virtual-
world 6DOF platform to mimic the dynamic variability in a docking mechanism for a
space rendezvous. The problem of controlling a challenging LPV system using a single
type of controller in all operational zones has been addressed. A new approach has
been introduced by using fractional order controllers, and a rationale for a generalized
approach for LPV systems has been proposed. The simulation results indicate that the
proposed approach works satisfactorily and supports the claim that fractional order control
is an appealing solution to complex control problems. Further analysis of the control
performance in the presence of unknown varying time delays can be evaluated in terms of
tele-operation delays for maintenance, failure emergency cases, etc.
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Abstract: One challenging aspect of therapy optimization and application of control algorithms in
the field of tumor growth modeling is the limited number of measurable physiological signals—state
variables—and the knowledge of model parameters. A possible solution to provide such information
is the application of observer or state estimator. One of the most widely applied estimators for
nonlinear problems is the extended Kalman filter (EKF). In this study, a moving horizon estimation
(MHE)-based observer is developed and compared to an optimized EKF. The observers utilize a
third-order tumor growth model. The performance of the observers is tested on measurements
gathered from a laboratory mice trial using chemotherapeutic drug. The proposed MHE is designed
to be suitable for closed-loop applications and yields simultaneous state and parameter estimation.

Keywords: moving horizon estimation; Kalman filter; parameter estimation; tumor
growth estimation

1. Introduction

Cancer treatment and its related fields are intensively studied subjects, since cancer is a major
cause of death globally. It is estimated that there will be 21.4 million cases annually by 2030 [1,2].
The application of modern control algorithms for cancer treatment has much potential—especially in
the adjustment of the dosages—however, there are difficulties as well [3]. The article investigates a facet
of a larger project. The larger project aims to minimize the amount of administered chemotherapeutic
drug—while retaining its effect—by applying personalized treatments. Lower amount of doses
expected to reduce side effects and potentially postpone the emergence of tumor resistance.
One approach is the utilization of feedback control, where the controller (which decides about the drug
administration scheme) adapts to the patient. Based on mathematical models accurately describing
the underlying physiological processes the professionals have the possibility to define appropriate
therapies. System engineers thrive to provide a proper description of the tumor growth, however,
the inter- and intrapatient variability and the effects of different drugs are cumbersome to model.
Several models were introduced over the years [4–9]. In particular, we are concerned with the use of a
third-order model. The model describes the dynamics of the living and dead tumor cells, as well as
drug concentration [7]. The output of the system is the total tumor volume (sum of the living and the
dead tumor volumes).

In tumor growth modeling there are variables that cannot be measured, or are not feasible to
measure in practice on a day-to-day basis. Such variables in this particular case are the individual
volume of the living and dead tumor cells and drug concentration or the model parameters
characterizing the patient variability. A mathematical model gives the general behavior of the system.
The general structure can be tailored to each individual by the model parameters. For instance, there is
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a parameter that corresponds to the clearence of the drug, which can vary from patient to patient.
Although they cannot be measured, they play an important role in describing the dynamics of the
system and are often required for specific therapy optimization or closed-loop algorithms. In order
to extract those unmeasurable variables, usually, an observer is applied. The goal of an observer is
to provide information about the inner state variables or parameters based on the measurements.
The most common algorithm is the Kalman filter (KF) [10], however, other approaches like sliding
mode observer, particle filter [11], linear observer [12] or moving horizon estimation (MHE) [13] are
also employed. The latter one is an optimization-based approach, where the name suggests that
the optimization is performed on a moving window. The window makes it possible to take into
account a series of measurements, and the optimization makes it possible to define application-specific
constraints and penalizations. In this paper, an MHE is developed and its performance is compared to
an optimized extended Kalman filter (EKF). Often, the drawback of the studies, e.g., [10–13] is that
they are performed on simulated data which is favorable from several aspects. In contrast, this study is
evaluated on laboratory measurements, where noise, irregular sampling times and most importantly,
structural mismatch are present.

The paper is structured as follows. Section 2.2 describes the utilized third-order tumor
growth model and previously identified parameter sets. In Sections 2.3 and 2.4 first theoretical,
general description for the EKF and MHE based observers are given. Thereafter the observers are
applied to the specific tumor growth model. Measurement noise is characterized in Section 2.3.1.
Sections describing the observers end with the tuning methods. In Section 3 the results are summarized.
The observers are evaluated based on their capabilities following the trends of the measurements.
During the assessment, the fluctuations of the parameters are taken into account too. Furthermore,
different window lengths of the MHE are investigated as well. Finally, in Sections 4 and 5 the paper
is concluded.

2. Materials and Methods

2.1. Experimental Data

The experiments were conducted by the Membrane Protein Research Group of the Research Centre
for Natural Sciences published in [14]. The mice are identified with the “PLD” acronym, indicating that
the injected chemotherapeutic drug was the pegylated liposomal doxorubicin (PLD) during the
experiments. In this trial tumor pieces from a Brca1-/-;p53-/- mouse tumor were transplanted
orthotopically to syngenic FVB mice to reduce the time of tumor formation. The tumor volume was
measured by calipers every 1–5 days. The treatment protocol was a dynamic reactive approach which
was defined as follows. The mice were treated based on the decision of the professionals. The injection
could be granted if the tumor volume reached 200 [mm3] and at least 10 days past since the last
treatment. The injected drug was the maximum tolerable dose 8 [mg/kg] every time. The experiment
focused on the elimination of the primary tumor. The experiment was stopped when the tumor volume
grew above the 2000 [mm3] threshold.

In Figure 1, an example is given of the trial. The raw caliper measurements are represented with
black circles, the treatment threshold is plotted with a dashed grey line and the solid green line is a
linear interpolation between the measurements. It can be seen that the particular mouse responded
well to the treatment, since the volume decreased after the injections. However, some mice develop
resistance and the drug stops taking effect (meaning continuously growing volume regardless of the
presence of the drug). Those who developed resistance are not taken into account in this study as
the applied model does not consider resistance. As a result, data from mice PLD1, PLD2 and PLD8
from [14] are not used in this study.
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Figure 1. Scheme of the experiment from [14].

2.2. The Applied Tumor Growth Model

The investigated tumor growth model is a third-order nonlinear ordinary differential equation.
The model differentiates between living and dead tumor cell volumes by introducing separate state
variables: x1 [mm3] and x2 [mm3], respectively. The third variable x3 [mg/kg] describes the drug
concentration in the host. The dynamics is described by the equations given in [6,7] at time t as

ẋ1(t) = (a − n)x1(t)− b
x1(t)x3(t)

ED50 + x3(t)
, (1)

ẋ2(t) = nx1(t) + b
x1(t)x3(t)

ED50 + x3(t)
− wx2(t), (2)

ẋ3(t) = −c
x3(t)

KB + x3(t)
− bk

x1(t)x3(t)
ED50 + x3(t)

+ u(t), (3)

where a describes the proliferation rate of the living tumor cells, n is the tumor cell necrosis rate, w is
the dead tumor cell washout rate, c is the drug depletion rate. The pharmacodynamics is affected by
the b and ED50 (median effective dose) parameters. The effect of the drug and the depletion of the
drug is characeterized by equations following the dynamics of Michaelis–Menten kinetics, thus ED50

and KB are Michelis–Menten parameters. Resistance is not modeled explicitly, but the ineffectiveness
of the drug appears as a specific combination of the parameters. When the difference a − b − n > 0,
the drug is not able to shrink the volume, it only decreases the growth rate. Qualitative analysis of the
model has been previously done in [15]. The values of the parameters for the mice identified based on
a mixed-effect model [7] are given in Table 1.

Table 1. The identified parameters of the mice from experiment specified in [14] using a mixed-effect
model [7], along with the mean values and standart deiations for each parameter.

Parameter PLD1 PLD2 PLD3 PLD4 PLD5 PLD6 PLD8 PLD9 Nominal SD

a [1/day] 0.333 0.307 0.307 0.310 0.289 0.299 0.308 0.311 0.306 0.0186
b [1/day] 0.116 0.169 0.198 0.180 0.163 0.184 0.174 0.167 0.166 0.0302
c [1/day] 0.235 0.297 0.304 0.272 0.312 0.365 0.187 0.161 0.257 0.0820
n [1/day] 0.115 0.148 0.153 0.173 0.134 0.161 0.133 0.145 0.144 0.0235

bk

[
10−7mg

kg·day·mm3

]
6.15 6.05 6.02 6.10 6.19 6.16 6.17 6.11 6.12 0.404

KB [mg/kg] 0.367 0.361 0.342 0.230 0.362 0.374 0.515 0.400 0.36 0.1242
ED50 [10−5mg/kg] 8.89 9.03 10.4 13.3 8.64 7.91 7.79 8.94 9.71 1.48

w [1/day] 0.346 0.344 0.331 0.341 0.341 0.339 0.336 0.342 0.34 0.0253
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2.3. Extended Kalman Filter

For nonlinear systems one of the most widely applied observer is the EKF. First, assume a general
system given in the form of:

ẋ(t) = f (x(t), u(t)) + w(t), (4)

y(t) = h(x(t), u(t)) + v(t), (5)

where f describes the nonlinear system dynamics, h is the output equation, w is the additive process
noise or disturbance and v is the measurement noise. Equation (4) is generalized further with the
augmentation of system parameters x := [xs xp]ᵀ s.t. ẋp = 0, where xs is the original state vector and
xp is the parameter vector.

Since the measurements are done only at discrete times, continuous-discrete EKF has been applied.
In the prediction step the model and covariances are propagated using the forward Euler method with
shorter sampling times. The equations of the prediction step in time instant t are defined as

ẋ(t) = f (x(t), u(t)), (6)

y(t) = h(x(t), u(t)), (7)

Ṗ(t) = F(t)P(t) + P(t)Fᵀ(t) + Q, (8)

F(t) =
∂ f
∂x

∣∣∣
x(t),u(t)

(9)

where P is the error covariance matrix, F is the Jacobian matrix of the system and Q is the process
noise covariance matrix. The update step in the k-th discrete step is defined by

K[k] = P[k′]Hᵀ[k]
(
H[k]P[k′]Hᵀ[k] + R

)−1, (10)

x[k] = x[k′] + K[k]
(
z[k]− h(x[k′])

)
, (11)

P[k] =
(
I − K[k]H[k]

)
P[k′], (12)

H[k] =
∂h
∂x

∣∣∣
x[k′ ]

(13)

where K is the Kalman gain, H is the Jacobian of the h output equation, z is the measurement, R is the
measurement noise covariance matrix and the aposthrope k′ indicates the a priori values of the update
step. The transition from the continuous time domain to the discrete is given by: x[k′] = x(tk).

The EKF structure has been implemented using the model (1)–(3), extended with parameter
estimation. The estimated parameters were selected in accordance with a previous sensitivity and
identifiability analysis [16]. The results of the analysis indicate that the most sensitive parameters are a,
b, n andw, thus xp := [a, b, n, w]ᵀ. The identifiability analysis with the subset of parameters resulted in
a structurally locally identifiable [17] system. This indicates that there is a finite number of parameter
sets producing the same trajectories. For the developments of the observers the following assumption
is used: w = [ws wp]ᵀ s.t. ws = 0. Practically speaking, it is assumed that the mismatch between the
measurements and the model rises only from measurement noise and parameter uncertainty. With the
augmented state vector the Jacobians are given as:
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F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4 − x5 − x6x3
ED50+x3

0 −x6
x1ED50

(ED50+x3)2 x1 −x1 − x1x3
ED50+x3

0

x5 +
x6x3

ED50+x3
x7 x6

x1ED50
(ED50+x3)2 0 x1

x1x3
ED50+x3

−x2

−bk
x3

ED50+x3
0 −c KB

(KB+x3)2 − bkx1ED50
(ED50+x3)2 0 0 0 0

0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

H =
[
1 1 0 0 0 0 0

]
. (15)

2.3.1. Measurement Noise Characteristics

The noise characteristics of the measurements are quantified by calculating the standard deviation
of the difference between the raw and filtered measurements. The filtered values are calculated by
applying a second-order low-pass Butterworth filter in zero-phase setting. The resulting standard
deviation σ = 31.39 is used for the R = σ2 measurement variance. In Figure 2 the measured and
filtered pairs are shown on a logarithmic scale to better visualize the deviations at small volumes.
Zero measured values are shifted to 0.1 [mm3], which was chosen arbitrarily for visualizing reasons.

The tumor volumes are measured using calipers and the actual volumes are approximated.
This method is less accurate and reliable when smaller volumes are being measured. Data of
measurements under 50 [mm3] are rather scarce too, usually from a measured zero volume at the next
sampling, the volume jumps instantly to the proximity of 50 [mm3].

10-1 100 101 102
10-1

100

101

102

Figure 2. Difference between the raw and filtered measurements.

2.3.2. Kalman Filter Tuning

One critical aspect of comparing the performance of different observers is the tuning. In order
to extract the most performance, the elements of the Q and P[0] covariance matrix were determined
during an optimization. The goal of the optimization was to minimize the root-mean-square error
(RMSE) between the measured trajectories and the predicted ones:

min
Q,P[0]

N

∑
i=1

RMSE(z(i) − y(i)), (16)
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where N is the number of treated mice, z is the vector of measured values of the i-th mouse and y

is the output of the system. The optimized parameters were in the main diagonal corresponding to
the estimated parameters and the first element of the P[0] matrix to guarantee quicker convergence.
The optimization is done by the f mincon function of the MATLAB environment from 100 initial points
generated by the Latin Hypercube Sampling [18]. The optimized matrices are given as:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 2.976 × 10−6 0 0 0
0 0 0 0 4.022 × 10−5 0 0
0 0 0 0 0 1.103 × 10−9 0
0 0 0 0 0 0 1.437 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

P[0] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.125 · 103 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 4.946 × 10−8 0 0 0
0 0 0 0 1.502 × 10−5 0 0
0 0 0 0 0 8.990 × 10−4 0
0 0 0 0 0 0 2.755 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

2.4. Moving Horizon Estimation

The MHE is an optimization-based method, where the minimization of a developed cost function
is done on a moving window. A moving window of one step can coincide with the widely applied
EKF. However, using a longer window and introducing some application-specific terms or constraints
can be beneficial in several cases. Taking into account more measurements can result in an estimator
more robust to external disturbances or delays.

The cost function can be formulated in several ways, depending on the application. General
arguments and terms are summarized in Table 2, where the notations are given according to (4) and (5).
The Wi matrices provide weighting between the terms of the cost function, their subscripts indicates
the analogy between the EKF and MHE. The weighting matrices are analogous to the inverses of the
covariance matrices (8), (10). The xol vector function is the open-loop trajectory from the initial state
of the current window, the arrival cost is calculated in the k−M-th step, where M is the length of the
horizon. The difference between the current parameters and the previous window is denoted by Δp.
Following the assumption that the mismatch between the model and measurements are caused by
parameter uncertainty, intrapatient variability and measurement noise, the parameters p = [a, b, n, w]

are optimized, similarly to the EKF design. Given the arguments, the MHE problem can be generarly
formulated as follows:

min
x[k−m],p

||x̂[k−m]− x[k−m]||2WP
+

k

∑
i=k−M

||z − h(x(p))||2WR
+ ||Δp||2WQ

. (19)

Table 2. Moving horizon estimation (MHE) cost function formulations.

Penalization
Arguments

State Disturbance Parameter

Measurement difference ||z − h(x)||2WR
||z − h(x(w))||2WR

||z − h(x(p))||2WR

Modification ||x − xol ||2WQ
||w||2WQ

||Δp||2WQ

Arrival cost ||x̂ − x||2WP
||x̂ − x||2WP

||x̂ − x||2WP
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Compared to the general formulation, three modifications are implemented. First, as a worst
case scenario the initial state of the horizon is set to the last estimated state. Secondly, the differences
are normalized in order to make the weighting between the measurements and modifications easier,
scaling the errors to the same order of magnitude. Division with zero is avoided: when the tumor
volumes could not be exactly measured due to their small volumes, 1 [mm3] is assigned to their
measured value. Unit volume ensures numerical stability and is physiologically more relevant as the
tumors are not completely eliminated. The charactheristics of the model is in agreement with this,
as in ideal condition the volume converges to zero, but it is bound to be positive. Thirdly, a rational
function (23) was introduced, which penalizes the difference less, when the measured tumor volumes
are small. Justification for the second and third point is more detialed in Section 2.3.1. Considering these
modifications the cost function in the k-th step is defined as

min
p

J[k] =
k

∑
i=k−M

∣∣∣∣∣∣ z[i]−y[i]
z[i]

∣∣∣∣∣∣2
WR [i]

+
∣∣∣∣∣∣ Δp

p[k−1]

∣∣∣∣∣∣2
WQ [k]

, (20)

subject to WR[i] =
1
M

ω(i), (21)

WQ[k] =
1

3Ts[k]
diag(0, 1, 1, 1), (22)

ω(i) =
( z[i]

50 + z[i]

)2
, (23)

p ∈ [lb, ub], (24)

where Ts is the sampling time of the measurements which is irregular; it varies between 1 and 5 days.
This means that the sliding window shall also be irregular, so that when the new measurement is made,
the window is adjusted to the time interval which is the closest to the predefined window length.
Since the parameters are only modified when new measurements are made, the penalization of the
change in parameter values can be different from time to time. In order to counteract this phenomenon,
the parameter change penalization is normalized with the last sampling time. The upper and lower
bounds for the parameters are defined as lb := [0.01, 0.2, 0.1, 0.1] and ub := [2, 1, 1, 1]. The bounds
were introduced to be large to avoid saturation of variables during the simulation. According to our
previous investigations, all four parameters remain in these regions during the model fitting regardless
the measured volumes.

For the minimization of the cost function, the inbuilt f mincon function of the MATLAB software
was applied. In each step, the initial values for the optimization were the estimates of the previous
step which is often called hot start. In the first step, the initial values of the parameters are set to
the nominal identified values from Table 1. Furthermore, the implementation of the cost function is
extended with stopping criteria, rendering the optimization quicker or feasible at all. The intrinsic
property of the model is that the tumor can grow even in cases when it is under treatment. It can
occur that the optimizer selects parameter combinations which results in unrealistically large tumor
volumes, thus making the solution of the differential equations unstable. To avoid such situations the
propagation of such trajectories are stopped and penalized. The stopping threshold is based on clinical
protocol, since the experiment has to be stopped, when the tumor volume grows larger 2000 [mm3].
The cost is defined to be dependent on the volume, since otherwise assigning a constant value or
infinity can make the optimizer stuck due to constant gradients of the object function. The change of
parameter a is not penalized as it can be seen in (22). The reason behind this is that the tumor growth
is dependent on the ax1(t) term. In the case of small tumor volumes, the model could not describe
quickly varying tumor growth, unless more sudden changes are allowed for the a parameter. In the
case of non-estimated parameters the nominal values were assigned from Table 1.
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3. Results

The observers were evaluated on the data described in Section 2.1. As mentioned each mouse
is labeled with PLD followed by an ID number. Estimation horizons of the MHE were tested in the
7–35 days range, however for better visibility only the 14 day version is shown beside the EKF.

Table 3 compares the RMSE of the measured and estimated volumes between the EKF and the
investigated MHEs, given for each investigated mouse. When comparing the results two points must
be emphasized. First, the assumptions made during the design of the observers. Secondly, the worst
case scenario is investigated, in the sense that the EKF was tuned based on an optimization, where all
the mice were taken into account. On the other hand, the weights of the MHE was not optimized
only a penalizing function was introduced and applied instead of other tuning process. The RMSE
indicates that for horizons shorter than 20 days the MHE can achieve better approximations on average.
At horizon length of 28 days the results are varying from patient to patient. Only at 35 days the EKF
has a clear edge over the MHE. Increasing the horizon of the MHE deteriorated the approximations as
the actual parameter set had to describe longer sections, where structural mismatch and/or parameter
variation occurs due to the change in the physiology of the tumor. At this point, it has to be emphasized
again that while the MHE takes into account a series of measurements, the EKF works from sample to
sample, thus various horizon lengths cannot be adapted.

Table 3. RMSE between the measured and estimated volumes.

EKF MHE 7 Days MHE 14 Days MHE 21 Days MHE 28 Days MHE 35 Days

PLD3 121.6 114.6 115.5 121.5 121.4 169.5
PLD4 72.12 32.82 48.96 59.33 60.33 103.9
PLD5 74.53 28.68 40.48 52.16 61.89 88.76
PLD6 97.93 43.46 50.15 65.97 88.49 146.1
PLD9 59.55 49.05 55.67 61.77 72.52 86.39

MEAN 85.14 53.73 62.16 72.16 80.94 118.9

Figure 3 depicts the comparison of the time horizons using different measures. Three measures,
namely mean absolute error (MAE), “noise” and standard deviation (SD) of each estimated parameter
were selected in order to assess the performance of the observers and horizons. The MAE describes
the general accuracy with respect to the measurements, the “noise” term quantifies the smoothness
of the estimation by calculating the number of direction changes along the trajectory. The SD of each
estimated parameter gives information about the range in which the parameter had to vary in order to
provide an optimized fit. One can inspect that the MAE increases in a quasi-linear way with respect
to the horizon. The smoothest trajectory is achieved by using 14-day-long horizon and the SD of
parameter a is the lowest around 21 days. Concerning the penalized parameters b, w, n the lowest SD
is achieved by using the 7-day-long horizon. The main difference between the EKF and MHE is that
the optimization of the EKF resulted in very small gains for parameters a and n. This is anticipated as
those parameters directly affect the tumor growth, with larger gains it may be possible to achieve better
approximation for one patient, but it could lead to bigger divergence for a population. The divergence
is avoided by the MHE as the optimization is constrained, parameter sets producing trajectories that
reach 2000 [mm3] are neglected.
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Figure 3. Comparison of the investigated observers.

In Figure 4, an example (PLD ID:5) is given about the effect of the rational penalizing function.
The function was introduced in (21). The two estimated trajectories, denoted by with ω(·) and
without ω(·) are the output of the MHE with 14 days of horizon length. For visualization only the
14 day scenario is given, however, the effect is similar in the other cases, and the delay is more
pronounced towards the longer horizons. It can be seen that without this weighting in the case of
small volumes there is a significant delay in the response of the observer. The dashed purple lines
show the value of the function with respect to time (ω(t), left subfigure) and the measured volume
(ω(x), right subfigure).
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Figure 4. Effect of the rational penalizing function.

In the following explanatory examples we address the problem of intrapatient variability, and how
the observers were able to overcome it. Figures 5–14. showcase the state and parameter estimations
separately. The black circles denote the measurements, however, it is important to note that only the
total tumor volume is measured, i.e., y = x1 + x2. The dashed magenta lines are the results from a
Stochastic Approximation of Expectation-Maximization identification of the same model [6,7]. In the
case of the x3, the three curves overlap, because parameters corresponding to (3) are not modified,
hence nominal values were used. Those parameters are neglected in accordance with the previous
sensitivity analysis [16]. Compared to the fixed identified parameter set by varying key parameters
of the system, the observers are able to catch additional dynamics and track the measurements more
accurately. This is particularly the case where the first administration of the chemotherapeutic drug
made the tumor to shrink its volume close to zero. In fact, zero volumes were measured–namely,
zero volumes are represented in the data–due to such small volumes cannot be measured accurately
using calipers, albeit after a certain period of time, the tumor began to grow again. This phenomenon
is observed in Figures 5 and 7, where the identified sets could not model the first growth period.
In Figure 9 the first growth occurs, but the discrepancy between the measurements and the model is
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still large. The even-numbered Figures 6–10. show how the observers tackled the problem of tracking
the first growth. It is particularly noticable in the case of the MHE, which started from a high growth
rate (parameter a) and reduced it gradually to be able to maintain the tumor volume close to zero.
Furthermore, it can be seen that the parameter a remains close to the identified value. However,
at distinct time instances, greater divergence can be experienced. These divergences usually occur
when the tumor exhibits a large growth rate. It can be observed that the identified models have a
better fit when the tumor didn’t shrink to zero volumes after initial growth. This phenomena can be
observed in Figures 11 and 13.
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Figure 5. Estimated states of PLD5 mouse.
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Figure 6. Estimated parameters of PLD5 mouse.
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Figure 7. Estimated states of PLD9 mouse.
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Figure 8. Estimated parameters of PLD9 mouse.
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Figure 9. Estimated states of PLD6 mouse.
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Figure 10. Estimated parameters of PLD6 mouse.
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Figure 11. Estimated states of PLD3 mouse.
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Figure 12. Estimated parameters of PLD3 mouse.
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Figure 14. Estimated parameters of PLD4 mouse.
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4. Discussion

The goal was to evaluate the state and parameter estimation capabilities of an MHE and an EKF
which has been applied as a benchmark. In general, state and parameter estimation in the case of
physiological processes have major difficulties which are presented in this study related to tumor
growth estimation as well. Furthermore, the problem formulation makes it even more difficult. In the
model, only the sum of the living and dead tumor volumes can be measured, often inaccurately.
This limited amount of data can easily lead to observability issues mostly coming from the fact that
several state and parameter combinations may result in the same output. In order to limit these issues,
we applied two key components: penalizing the velocity of changing of state variables and estimated
parameters, moreover, we have selected a branch of key parameters to be estimated based on sensitivity
analysis. Namely, the cost function of the MHE made it possible to use additional constraints and
penalize the change of parameters. The penalization was designed to be close to the physiological
rate of changes to be as as realisic as possible. According to the results, we have successfully limited
the set of possible state and parameter sets leading to the same output without a downturn in the
estimation accuracy.

The scenario for the comparison was designed to be biased arbitrary. The results show that
even with optimizing the tuning of the EKF, and not taking into account the initial state of the MHE
as an additional free variable, a moving horizon estimation based observer can still outperform the
former EKF. The MHE-based observers achieved lower RMSE until the horizon length was shorter
than 30 days. Using horizons around 20 days, there can be cases, where the EKF outperforms the
MHE, e.g., the estimation of PLD9. At 7 days the difference in RMSE is around 30 [mm3], and the
MHE has lower RMSE for each mouse. The inferior performance of the EKF can rise from the low
gains for parameters a and n. Since the system is most sensitive to those parameters, having larger
gains could result in divergence in the case of certain patients due to the high interpatient variability.
The estimation accuracy of the MHE deteriorated in a quasilinear manner with respect to the window
length. The increased window lengths resulted in an increased RMSE of the tumor volumes because
the effects of the structural mismatch became dominant. In general, a longer window would mean
that the given parameter set is valid for more data. However, the predictive capabilities are crucial
in therapy optimization, thus the determination of the optimal choice for closed-loop applications is
future work. The runtime of the observers are greatly different. The EKF averages 2.6 ms, while the
MHE ranges from 300 ms to 413 ms depending on the horizon length. However, runtime is not a
cornerstone as the injections and measurements are done once a day at a maximum rate. An important
aspect of the study is that the observers are evaluated on real laboratory data, where two major
difficulties are present: structural mismatch and intrapatient variability.

The results indicate the great importance of applying observers for therapy optimization
algorithms. Without constant feedback about the behavior of the patient the model using only
a single parameter set can introduce large discrepancies. As the tumor shifts phases, and as the
heterogenity of the tumor changes its behavior changes as well. These shifts in physiology can be
tracked with the observers–particularly well with the MHE–. These changes can be interpreted as
trends in the parameters. Additionally, despite the optimized tuning of the EKF the MHE shows
a smoother estimation of the parameters and a more accurate approximation of the measurements.
These attributes facilitate the application of the MHE in closed-loop algorithms.

5. Conclusions

In this paper, an MHE-based observer and an EKF was designed and compared for therapy
optimization and state-feedback kind of control applications. When using time horizons less than
28 days, the MHE based observer had superior performance—compared to the EKF—in tracking the
measurements. Increased horizon length deteriorated the approximations as the actual parameter
set had to describe longer sections, where structural mismatch and/or parameter variation occurs
due to the change in the physiology of the tumor. To evaluate the performance more thoroughly
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advanced measurement technology is needed to distinguish live and dead tumor cells and even drug
concentration. Further improvements can be done on the fine-tuning of the parameters in the cost
function. Future work includes the integration of the MHE into closed-loop systems.
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Abstract: Digital systems require sample and hold (S&H) systems to perform the conversion from analog
to digital and vice versa. Besides the standard zero and first order holds, we find in the literature other
versions, namely the fractional and exponential order holds, involving parameters that can be tuned
to produce a superior performance. This paper reviews the fundamental concepts associated with the
S&H and proposes a new fractional version. The systems are modeled both in the time and Laplace
domains. The new S&H stemming from fractional calculus generalizes these devices. The different
S&H systems are compared in the frequency domain and their relationships visualized by means of
hierarchical clustering and multidimensional scaling representations. The novel strategy allows a better
understanding of the possibilities and limitations of S&H systems.

Keywords: sample and hold; fractional calculus; hierarchical clustering; multidimensional scaling; distances

1. Introduction

Fractional calculus (FC) generalizes the classical theory of differential calculus by including the
concept of integrals and derivatives of real or complex order [1,2]. Many systems in physics and engineering
can be generalized in the light of the FC concepts. However, a number of applications still remain to
be fully explored under the light of FC. The areas of signal processing, dynamical systems and control
has received considerable attention and the results show that the adoption of FC is clearly a fruitful
research strategy [3–6].

Sample and hold (S&H) systems are commonly applied in mix analog/digital systems, being the
standard procedure in discrete time systems to adopt zero-order holds (S&H-0) [7–10]. The devices,
are simple to construct and ‘hold’ the signal sample during one time interval. They are a basic tool of
the analog to digital (A/D) conversion. In the reverse operation (D/A) other types of S&H are used.
For instance, the first-order hold (S&H-1) reconstructs signals as a piecewise linear approximations and
may yield better fit at the price of a higher complexity. Other S&H are the fractional- and exponential- order
holds, abbreviated as S&H-β and S&H-exp, with parameters 0 ≤ β ≤ 1 and τ > 0, respectively, that also
improve the technique at the cost of a slight additional complexity [11–14]. In fact, we can take advantage
of the extra parameter β and τ by tuning their values for a particular application. Nonetheless, we observe
the introduction of high frequency artifacts, that may pose difficulties in some applications. We can reduce
this kind of distortion by using a modification of some of the above S&H systems. This change consists
in introducing a delay of one sampling interval until a new sample appears. Therefore, instead of an
extrapolation, as above, we are doing an interpolation [10,15]. Such procedures are very important in
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control [16,17] and telecommunications [9,18]. These topics are often neglected in practical applications.
On one hand, the difference between theoretical and engineering implementations, due to physical
restrictions, are overlooked. On the other hand, the possibilities for further improving the S&H systems,
particularly when considering FC, remain to be explored.

This paper starts by reviewing the fundamental concepts associated with the S&H systems and
proposes one generalization in the perspective of FC. The classical and fractional S&H are then compared
based on their frequency responses. For that purpose we adopt the Euclidean and Canberra distances [19].
The distinct realizations of S&H are then represented using the Hierarchical Clustering (HC) and
multidimensional scaling (MDS) computational tools [20–23]. Both schemes rely on constructing graphical
representations of the items under study so that users can visualized their relationships. Items are ‘leafs’
of structures such as dendrogram or trees, for the HC, and as points in some abstract space, for the MDS.
In both cases similar items are represented closely and vice-versa.

Bearing these ideas in mind the manuscript is organized as follows. Section 2 introduces the
fundamental concepts concerning S&H. Section 3 discusses real-world implementations of S&H systems
and proposes a fractional-order generalization. Section 4 analyses the transfer functions of the S&H
systems under discussion. Finally, Section 5 outlines the conclusions.

2. Fundamental Concepts

With present day digital computer systems, and in areas such as signal processing and control,
the conversion of an analog signal into a digital version requires sampling and quantisation. This action is
called the A/D conversion (analog to digital conversion) and its inverse is the D/A conversion. In general,
there are infinite continuous signals that can generate a given discrete signal. However, when the signals
are bandlimited, meaning that they are of bounded support in the frequency domain, we can recover the
original signal.

Definition 1. The process of associating a discrete signal to a continuous one such that

1. the domain of the discrete signal is a discrete subset of the domain of the continuous signal,
2. the range of the discrete signal is also a discrete subset of the range of the continuous signal,
3. both signals, discrete and continuous, assume the same values at the intersection domains,

is named sampling [6].

The inverse operation, that is, the calculation of intermediate continuous values based on the discrete
samples, is called interpolation or reconstruction. Ideally, the sampling operation is performed by the
delta comb that we introduce in the follow-up.

Definition 2. Let F and T = 1
F be two positive real constants. We define an almost linear time scale (ALTS) by [24]

tn = n · T + τn, T = 1/F, n ∈ Z, (1)

where τn a zero mean sequence such that

0 ≤ |τn| < T
4

. (2)

The constant F is called sampling frequency , or density of the time scale, while its inverse T is the average
graininess or sampling interval [25].

Remark 1. In some applications, we prefer a half sampling interval delayed sequence tn = (n + 1/2) · T + τn.
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Definition 3. On the above ALTS (1) we define a uniform (in amplitude) almost periodic delta comb by

p(t) =
+∞

∑
n=−∞

δ(t − tn), t ∈ R, (3)

that is considered as the ideal sampler, since its multiplication by any signal, y(t), gives its sampled version

yp(t) = y(t)p(t) =
+∞

∑
n=−∞

y(tn)δ(t − tn), t ∈ R. (4)

This distribution has the Fourier transform (FT)

Yp(ω) =
+∞

∑
n=−∞

y(tn)e−jωtn , ω ∈ R, (5)

where j =
√−1 and

Yp(ω) =
∫ ∞

−∞
yp(t)e−jωtdt.

Theorem 1. Let Ω ∈ R+ be the density of an odd ALTS, that is, so that ωn = −ω−n, given by ωn = nΩ + νn,
with |νn| < Ω/4, n ∈ Z. The FT of the comb (3) in the time domain is another comb [24] in the frequency domain
given by:

C(ω) = 2π
+∞

∑
n=−∞

Cnδ (ω − ωn) , (6)

where the coefficients,

Ck =
1
T

lim
N→∞

1
2N + 1

N

∑
n=−N

e−jωktn ,

form a bounded sequence and
ΩT
2π

= 1. (7)

This has as consequence that

Yp(ω) =
+∞

∑
n=−∞

CnY(ω − ωn), (8)

showing that Yp(ω) is an almost periodic function that results from the almost periodic repetition of Y(ω).
Therefore, if y(t) is not bandlimited, or if Ω is not high enough, then two consecutive repeated images of
Y(ω) may overlap (phenomenon called aliasing) and it is not possible to recover the original signal by
low-pass filtering. Unless something else is specified, we will assume that our signals are bandlimited in
the follow-up. If the bandwidth is W, then we conclude that 2W < Ω − Ω/4 < ω1. Otherwise, if we allow
a spectral superposition, 2W > ω1, then we cannot recover the original signal by low-pass filtering.

In the uniform sampling case tn = nT and ωn = nΩ, and we must have 2W < Ω, stating the well
known Nyquist rule: the sampling interval must be less than one half on the inverse of the higher frequency
of the signal. The relation (7) shows that reducing the average distance between the impulses in the time
domain (4) corresponds to increasing the distances between the replicas in the frequency domain (8).
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Theorem 2. Let x(t) be a continuous-time bandlimited signal with Fourier transform, X(ω), that is null outside
the band |ω| < W ∈ R+. We can recover x(t) from its samples x(tn) with a low-pass filtering provided that the
filter frequency response is constant in the band of the signal. In the case of an ideal low-pass filter with bandwidth
W, the output reads [24]

x(t) =
∞

∑
n=−∞

x (tn)
sin [W (t − tn)]

(Ω/2) (t − tn)
. (9)

This theorem constitutes a generalization of the classical sampling theorem. This results deserves an
interpretation in terms of linear systems. Let us consider that

g(t) =
sin(Wt)
(Ω/2)t

, t ∈ R, (10)

is the impulse response of a low-pass linear system and that the input to such system is

xp(t) =
+∞

∑
n=−∞

x(tn)δ(t − tn).

Then the output will be given by the expression in (9). The signal g(t) is called the interpolating
function and its FT is a rectangle which gives a justification to its name of ‘ideal low-pass filter’.

If the tn sequence is uniform, that is, if τn ≡ 0, then

x(t) =
∞

∑
n=−∞

x(nT)
sin

[
WT

( t
T − n

)]
π
( t

T − n
) , (11)

that states the usual sampling theorem, where WT < π.

3. Sampling and Reconstruction

We reviewed the ideal sampling having as base the comb. In practice, we cannot implement the ideal
Dirac impulses, but we can approximate them by narrow high rectangular pulses, r(t), with area equal
to 1. Nonetheless, we are interested in having the values x(tn), rather than x(tn)δ(t − tn) or its realistic
version x(tn)r(t − tn). Therefore, we need to adopt a system that keeps, i.e. ‘memorizes’, the value x(tn)

during a sufficient time for the computer system to be able to read the value.
The standard sampling is performed by a zero order hold. This scheme transforms the signal x(t) in a

sequence of rectangles with height equal to x(tn) and width less or equal to the sampling interval. This
procedure, called pulse amplitude modulation (usually abbreviated as PAM) in telecommunications [18],
introduces an amplitude distortion and increases of the bandwidth that are corrected by a lowpass
equalizer filter. However, there are several distinct ways of implementing the reconstruction and we
review a few in the sequel.

3.1. The S&H Reconstruction by Extrapolation

Equation (9), is important from the mathematical point of view, but it is not of practical usefulness,
since it requires the knowledge of all the signal values x(tn), both at the past and future. This is a
consequence of the fact that g(t) is not the impulse response of a causal system. To avoid such difficulty
we use causal approximations generically called S&H systems. The most known are the zero- and one-
order, but we can mention also the exponential hold. Let us analyze several approaches.
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3.1.1. The Zero Order Sample and Hold

The output signal of a zero-order hold (S&H-0) has a zero slope between two consecutive sampling
instants. Therefore, the S&H-0 circuit retains the measured value for a sampling instant at that level until
the next sampling instant. The impulse response is a rectangle:

x̂(t) = x(tn) [u(t − tn)− u(t − tn+1)] ,

for tn ≤ t < tn+1, where u(t) is the Heaviside unit step.

3.1.2. The First-Order Sample and Hold

The first-order hold (S&H-1) exhibits an impulse response that has a constant slope between two
consecutive sampling instants. This slope is the incremental ratio determined by the values of the two
preceding samples. Thus, the first-order-hold predicts the response over the sampling interval from tn

to tn+1 as a ramp with the slope determined by the signal values at the two consecutive time instants.
The impulse response is

x̂(t) = x(tn) [u(t − tn)− u(t − tn+1)] + (t − tn)
x(tn)− x(tn−1)

(tn − tn−1)
[u(t − tn)− u(t − tn+1)] ,

for tn ≤ t < tn+1.

3.1.3. The Fractional-Order Sample and Hold

If we calculate the the arithmetic average between the S&H-0 and S&H-1, with weight factors 1 − β

and β, 0 ≤ β ≤ 1, respectively, then we obtain the fractional-hold (S&H-β) [12–14].
The impulse response of the S&H-β is:

x̂(t) = x(tn) [u(t − tn)− u(t − tn+1)] + β(t − tn)
x(tn)− x(tn−1)

(tn − tn−1)
[u(t − tn)− u(t − tn+1)] ,

for tn ≤ t < tn+1. Therefore, we obtain the S&H-0 and S&H-1 for β = 0 and β = 1, respectively.

3.1.4. The exponential order sample and hold

The exponential order hold S&H-exp is interesting because it has a simple electrical implementation
based on an RC low-pass circuit [11]. The impulse response of the S&H-exp is:

x̂(t) = x(tn) [u(t − tn)− u(t − tn+1)] +

[
1 − e−

(t−tn)
τ

]
x(tn)− x(tn−1)

(tn − tn−1)
[u(t − tn)− u(t − tn+1)] ,

for tn ≤ t < tn+1, where τ is the time constant. This expression is slightly different from the one presented
in [11]. However, the previous expression is preferable because gives the S&H-0 when τ → ∞.

3.1.5. The α-Order Sample and Hold

Given the expressions for the S&H-0 and S&H-1 we can propose a generalization as follows.

Definition 4. The α-order (S&H-α) is formulated as:

x̂(t) = x(tn) + (t − tn)
α x(tn)− x(tn−1)

(tn − tn−1)
α , (12)
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for tn ≤ t < tn+1, where α ∈ R+.

The impulse response is given by:

x̂(t) = x(tn) [u(t − tn)− u(t − tn+1)] + (t − tn)
α x(tn)− x(tn−1)

(tn − tn−1)
α [u(t − tn)− u(t − tn+1)] , (13)

for tn ≤ t < tn+1.

3.2. The S&H Reconstruction by Interpolation

The S&H tools presented in the previous sub-section have a drawback, since they may lead to a
discontinuous signal. The presence of discontinuities transforms the original bandlimited signal into
fullband as we can observe in Figure 1. We can avoid this difficulty by implementing some kind of
interpolation instead of having an extrapolation. However, this strategy has a price, since it involves the
problem of a one sample delay. In many applications this delay has no visible effect. For example, in speech
processing, with a sampling interval equal to 125 μs, the effect of such delay is negligible. Nevertheless,
not all the S&H techniques discussed above can be used. In fact, the S&H-0 leads always to discontinuities.
The exponential hold has also that problem, unless we modify the parameter τ from sample to sample,
which is not easily implementable. This problem does not happen with the proposed general S&H-α,
where we only have to make a slight modification.

Definition 5. The α-order (S&H-α) with delay is expressed as:

x̂(t) = x(tn) + (t − tn)
α x(tn+1)− x(tn)

(tn+1 − tn)
α , tn ≤ t ≤ tn+1. (14)

The impulse response is given by:

x̂(t) = x(tn) [u(t − tn)− u(t − tn+1)] + (t − tn)
α x(tn+1)− x(tn)

(tn+1 − tn)
α [u(t − tn)− u(t − tn+1)] . (15)

The S&H-α with delay (14) leads to a continuous signal, having as consequence that the amplitude
spectrum decreases, at least, as fast as ω−2 when ω → ∞.

Example 1. On the left of Figure 2 we depict the extrapolations obtained with the S&H-0, S&H-α (with α = 0.3
and α = 0.7), S&H-1 and S&H-exp (with τ = 200). On the right, we show the interpolations resulting from the
S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.

The difference between the two kinds of procedures is clear, as well as their distinct behavior.
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Figure 1. Frequency response of the extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7),
S&H-1 and S&H-exp (with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and
the S&H-1.

Figure 2. Time response of the extrapolations of the S&H-0 , S&H-α (with α = 0.3 and α = 0.7), S&H-1 and
S&H-exp (with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.

4. The Transfer Functions of the S&H

In the previous section we introduced several S&H and presented the corresponding impulse
responses. These have a general form

x̂(t) = ar(t) + bg(t), (16)
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where a and b are real constants, r(t) = u(t − tn) − u(t − tn+1) and g(t) is a short duration signal
(i.e., a pulse). The first term in (16) is a rectangle and its Laplace transform is

L [r(t)] =
e−stn − e−stn+1

s
, s ∈ C, (17)

where L and s denote the Laplace operator and variable, respectively.
In the case of a uniform time scale, tn = nT,

r(t) = u(t − nT)− u(t − (n + 1)T),

Equation (17) gives

L [r(t)] =
e−snT − e−s(n+1)T

s
, s ∈ C. (18)

The second term in (16) depends on the S&H method. For the fractional case (that includes α = 1),
that is, for relations, (13) and (15), we obtain

L [(t − tn)
αr(t)] = e−stn

∫ tn+1−tn

0
tαe−stdt, s ∈ C. (19)

Let us introduce the lower incomplete gamma function defined as:

γ(α, v) =
∫ v

0
τα−1e−τdτ, α, v > 0,

that verifies the relation
γ(α + 1, v) = αγ(α, v)− vαe−v.

We can write
∫ tn+1−tn

0
tαe−stdt = α

γ(α, (tn+1 − tn)s)
sα+1 − tn+1 − tn

s
e−(tn+1−tn)s, Re(s) > 0,

that leads to

L [(t − tn)
αr(t)] = α

γ(α, (tn+1 − tn)s)
sα+1 e−stn − tn+1 − tn

s
e−stn+1 , Re(s) > 0. (20)

For a uniform time scale Equation (20) yields

L [(t − nT)αr(t)] = α
γ(α, Ts)

sα+1 e−snT − T
s

e−s(n+1)T , Re(s) > 0. (21)

In the particular case of α = 1, we obtain γ(1, v) =
∫ v

0 e−τdτ = 1 − e−v, resulting

L [(t − tn)r(t)] =
e−stn − e−stn+1

s2 − tn+1 − tn

s
e−stn+1 , Re(s) > 0, (22)

and, therefore, to

L [(t − nT)r(t)] = e−snT
[

1 − e−sT

s2 − T
s

e−sT
]

, Re(s) > 0. (23)
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Remark 2. The choice of

g(t) = L−1
[

e−stn − e−stn+1

sα

]

is not of relevance, because it is not a function with finite support.

Let us recall the example discussed in the previous section. Figure 2 depicts the responses in the
frequency domain.

We can compare the distinct items by means of the HC and MDS schemes. These clustering techniques
allow the comparison and visualization of high dimensional data [26–29], such as in the case of controlling
nonlinear systems [30].

In our case, the i-th item corresponds to the response in the frequency domain, Gi ( f ), that is
represented by a numerical array of m points. A set of N items is then compared by means of suitable
distances [31]. We adopt the Euclidean and Canberra distances given by:

dE
ij =

√
m

∑
n=1

(
Gi ( f )− Gj ( f )

)2, (24a)

dC
ij =

m

∑
n=1

∣∣Gi ( f )− Gj ( f )
∣∣

|Gi ( f )|+ ∣∣Gj ( f )
∣∣ , (24b)

where i, j = 1, . . . , N, so that N denotes the total number of items under comparison.
The first distance, dE, follows the standard logic of Euclidean spaces, while the second, dC,

distinguishes more clearly values close to zero and in general is more robust to data sets including
large and small values. The MDS computational recursive algorithm requires the input of a matrix of all
item-to-item distances (i.e., a N dimensional square and symmetric matrix with main diagonal of zeros)
and tries to reproduce approximately that matrix by mean a plot in a mMDS < m dimensional space where
items consist of points. Therefore, similar items lead to close points and, inversely, very different items
produce points very far apart. Usually, the dimensions mMDS = 2 or mMDS = 3 are used, because they
allow a straightforward visualization [32,33].

In our case, the N = 9 items consist of the frequency responses G ( f ) described numerically in
n f = 104 sample frequencies. The frequency responses characterize the original signal as well as the
S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and S&H-exp (with τ = 200) and interpolations with
S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.

Figures 3 and 4 show the HC tree and 3-dimensional MDS plots, respectively, when we compare the
the frequency response of the extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and
S&H-exp (with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1,
using the Euclidean and Canberra distances.

We verify that extrapolations and interpolations (marked in red and blue, respectively) produce
two distinct clusters. The extrapolation cluster is more concentrated than the interpolation, showing the
behavioral in practical applications is almost independent of the adopted method, because they introduce
similar discontinuities. However, in the interpolation case we see clearly an improvement when varying
the parameter α.

This paper has not addressed the electronic implementation of such devices (interested readers can
refer to [34–40] and references therein). Therefore, an open issue is the design of hardware systems capable
of S&H advanced systems. Studies on the use of S&H-β in control systems report relevant results for
improving the overall performance [41–46]. In this perspective, the construction of low cost general S&H
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may be a valuable option for obtaining equipment more friendly to the environment while not posing
significant financial requirements.

Figure 3. The HC trees using the Euclidean and Canberra distances, for the frequency response of the
extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and S&H-exp (with τ = 200) and
interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.

46



Appl. Sci. 2020, 10, 7360

Figure 4. The MDS 3-dimensional plots using the Euclidean and Canberra distances, for the frequency
response of the extrapolations of the S&H-0, S&H-α (with α = 0.3 and α = 0.7), S&H-1 and S&H-exp
(with τ = 200) and interpolations with S&H-α (with α = 0.3 and α = 0.7) and the S&H-1.
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5. Conclusions

S&H systems are a fundamental part of present-day digital systems. In spite of their widespread use,
often their characteristic are neglected and, therefore, the possibility of improving the overall performance
by using advanced S&H devices is not taken into account when designing signal discrete-time processing
or control systems. This paper reviewed the main mathematical ideas associated with S&H systems.
The main types of S&H systems were analyzed both in the time and Laplace domains. A generalization
of S&H in the viewpoint of FC was formulated so that the additional degree of freedom provided by
the fractional order can be tuned for each particular application. This strategy allows designers to take
advantage of a more advanced system for improving the performance of systems posing considerable
dynamical challenges and requiring that all sub-system are fully optimized. Furthermore, the HC and
MDS clustering techniques were used to better verify the S&H characteristics. These tools allow a novel
viewpoint for the quantitative comparison between multidimensional data sets. In particular, they can be
applied also for improving the real-time performance of complex control systems.
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The following abbreviations are used in this manuscript:

BLT bilateral Laplace transform
FT Fourier transform
HC Hierarchical clustering
LT Laplace transform
MDS Multidimensional scaling
S&H Sample and hold
S&H-0 Zero order sample and hold
S&H-1 First-order sample and hold
S&H-β Fractional-order sample and hold
S&H-exp Exponential order sample and hold
S&H-α α-order sample and hold
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Abstract: This paper deals with optimal charging versus aging minimization for lithium-ion batteries.
The optimal charging strategy proposed involves charging controllers whose design relies on a battery
model. The model, especially designed for automotive battery management systems applications,
is recalled in this paper. It provides the voltage response of a cell to an input current. It also models side
reactions that produce degradation mechanisms and thus decrease battery performance. Side reaction
modelling involves taking into account the temperature cell variations, which are thus also modelled.
The association of the three above-mentioned sub-models leads to an electro-thermal battery aging
model used to design an optimal charging strategy that simultaneously takes into account the
minimization of charging time and maximization of battery lifetime. Thus, to achieve a charging
controller that manages battery health, an appropriate charging trajectory was computed by solving
an optimization problem minimizing aging. Then, a charge control loop was designed. The nonlinear
behavior of the battery was taken into account through the linearization of the electro-thermal aging
model in different operating conditions. To take into account the resulting linear model family,
the CRONE design methodology was used. The principles of this methodology are recapped and the
design of the charging control loop is explained. The efficiency of the resulting charge controller is
illustrated by several simulations.

Keywords: lithium-ion batteries; fast charging; battery ageing

1. Introduction

A long lifetime is a very important requirement for the design of electric and hybrid-electric vehicles.
To meet this requirement, battery lifetime must be optimized. Discharge phases are not considered
here, as they mainly depend on user demands. However, during charging it is simultaneously possible
to optimize the charging time and the battery degradation. It is crucial to monitor battery degradation
during charging, as hard charging profiles are usually used to quickly arrive at the desired State
of Charge (SOC). With such charging profiles, battery internal temperatures, and thus the rate of
unwanted side reactions, increase. Lithium ions are consumed by side reactions and can thus no
longer participate in the intercalation process. This process causes the aging of the battery and hence
poor performance.

A fast charging controller can be implemented to deal with this problem. Using information on the
battery state, through direct measurement and using a model for some internal variables that cannot
be measured, the charging controller can be used to adjust operating limitation to prevent ageing.

Appl. Sci. 2020, 10, 4038; doi:10.3390/app10114038 www.mdpi.com/journal/applsci51
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The battery model solves the compromise between accuracy (predominant electrochemical phenomena
must be taken into account) and parsimony (efforts for model parameterization and simulation must
be limited).

Such a compromise can be reached using the single particle fractional model that was introduced
in [1], or in [2,3] for simplified versions. These models involve fractional transfer functions that are
particularly efficient at modelling the diffusion phenomena that take place in batteries [2] and also
in several other electrochemical devices. Several papers have demonstrated the efficiency of these
models [3–5], particularly when they are used for charge estimation. Extensions of these models to
take into account cell aging and cell thermal behaviour can be found in [6]. Compared to other models
proposed in the literature, the model in [6] is a physics-based model that takes into account degradation
mechanisms in terms of temperature, SOC and C-rate (discharge or charge current normalised by the
cell capacity), thus capturing experimental measures well.

Several control strategies have been proposed for fast charging control taking battery state into
account. The strategies can be classified into two categories: open-loop and closed-loop strategies.

Model based open-loop optimal control has been considered in several papers. In [7], a Taguchi
type algorithm was used to compute an optimal charging profile that minimises a cost function
involving energy efficiency, charging time and temperature variation. In this approach, the model
used is an Equivalent Circuit Model (ECM), which does not take cell degradations into account. In [8],
an optimal open loop current profile, analytically defined, was computed using an optimization
problem that minimizes a multi-objective function involving energy loss, temperature rise and charging
time to charge. Such an approach is also based on an ECM. In [9], a more complex battery ECM that
takes into account aging and thermal behavior was implemented. It was used to solve an open-loop
multi-objective optimization problem based on a weighted sum of charging time and aging.

The open-loop approaches previously discussed suffer from a high sensitivity to parametric
uncertainties coming from the approximations made to derive a battery model. To overcome these
modelling errors, a closed loop approach is required.

Some closed-loop optimal charging strategies have been proposed in the literature. In [10],
charging time was minimised using a feedback controller. Excessive anode surface concentration
and the increase of temperature were assumed to be the reason for aging, and were thus considered
as optimisation constraints. A physics-based electro-thermal model was used for the battery state
estimation, but suffered from a poor state model state observability (mainly for the estimation of the
electrodes’ solid-phase concentrations).

Extensive work has been performed to address optimal charging for aging minimization with
Model Predictive Control (MPC) for various application fields. An aging-aware predictive control
strategy of PV-battery was presented in [11]. In this work, a convex MPC problem was solved to seek
the optimal balance between the building utility cost and the battery life-cycle cost. In [12], a MPC
scheme based on a linearized version of a Pseudo-two Dimensional (P2D) model was proposed in
order to track a reference value of the SOC, while taking into account the aging dynamics of the
system, as well as temperature and voltage constraints. Ref. [13] presents an MPC application to
minimize the charging time of a lithium-ion battery subject to electrochemical and thermal constraints.
The satisfaction of these constraints ensures that the battery degradation is minimized, or at least
mitigated. A new methodology for battery charging control enabling an optimal tradeoff between
the charging time and battery state-of-health (SOH) was also proposed in [14]. Using a model
reduction approach, a physics-based low-order battery model was first proposed and used to formulate
a model-based charging strategy. The optimal fast charging problem was formulated in the framework
of tracking MPC.

In [15], a state-feedback nonlinear MPC approach was introduced, with the objective of minimising
charging time. Constraints on the temperature and on the Solid Electrolyte Interphase (SEI) overpotential
(assumed to be the causes of aging) were also taken into account. An MPC strategy was also used in [16] for
charging control. A genetic algorithm was combined with MPC for charging time minimisation and to
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keep the battery temperature above a fixed limit to reduce aging. In [17], a nonlinear MPC was used for the
energy management of a power-split hybrid electric vehicle to improve battery aging while maintaining the
fuel economy at a reasonable level.

In all these closed loop charging strategies, in spite of their valuable contribution, the MPC
approach does not ensure robustness with respect to rapid variations in state variables (for instance,
anode potential). As a battery is a highly nonlinear system, any linear approximation depends strongly
on the signal levels (states and inputs). With MPC, the model parameters can be time-varying. However,
the control design is based on the nominal plant and needs information on the system disturbances
and on the exact dynamic behaviour in each control sequence. This leads to a lack of efficiency in
relation to uncertainties and disturbances.

Fast charging closed loop strategies also suffer from another defect. No study considers the battery
aging produced by the magnitude of the charging current applied. This magnitude is, however, known
to greatly aggravate battery aging.

Referring to this state of the art in the field of lithium-ion fast charging strategies and using
a physics-based model of the cell, this paper addresses the following main challenges:

• the design of a charging strategy that permits fast charging and a minimisation of aging resulting
from battery temperature increase and large current magnitude,

• the robustness of the strategy with respect to large dynamic behaviour variations.

The paper is organized as follows. Section 2 describes the electro-thermal aging model that will be
used in the sequel for the design of an optimal fast charging strategy. The optimal charging problem
for a Li-ion battery of PHEVs (Plug-in Hybrid Electric Vehicles) is formulated in Section 3. An example
of an optimal current profile and the corresponding battery model response are described in Section 4.
The optimal charging problem formulated in Section 3 is solved in Section 5 with two imbricated
control loops that involve robust controllers. The design of these controllers is based on a family of
models that capture the nonlinear behaviour of the cell around several operating points. This family of
models is computed in Section 4.2.

2. Cell Modelling

A detailed description of the lithium-ion cell model used in this work is given in [6]. It comprises
three parts:

• an electrochemical part,
• a thermal part,
• an aging part.

The validation of this model and of all its parts is proposed in [6]. This paper only gives the
main equations.

2.1. Description of the Electrochemical Part of the Model

The equations given in [18,19] were used to define the electrochemical part of the model.
These equations result in Newman’s modelling approach [20], which leads to a pseudo 2D model and
assumes that each electrode of a cell is replaced by a single spherical particle in which the Li+ ions are
inserted. In the resulting particle, and through several simplifications that are given in [3], the lithium
ions’ concentration gradient is described by the following diffusion equation:

∂cs

∂t
=

Ds

r2
∂
∂r

(
r2 ∂cs

∂r

) ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂cs
∂t

∣∣∣∣
r=0

= 0

Ds
∂cs
∂r

∣∣∣∣
r=Rs

= − jLi
mean
asF

(1)
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In Relation (1), JLi
mean is the average of the electrode current density, r is the sphere radius and Ds

is the diffusion coefficient. Resolution of the differential Equation (1) leads to the following transfer
function linking the lithium concentration at the surface of the particle denoted Cs(r = Rs) to JLi

mean:

G(s) =
Cs(r = Rs)

JLi
mean

= − RS

FDsas

(√
s

Ds
coth
(√

s
Ds

RS

)
− 1
) (2)

The transfer function (2) cannot be easily simulated due to the coth function. As demonstrated
in [3], it can be approximated by the transfer

H(s) =
K1

s

(
1 +

s
ωcs

)0.5
(3)

where the parameters K1 and ωcs are functions of the coefficients of the diffusion Equation (1) (see [3]).
For a consistent initialization of the model, and also to make the variable SOC appear, the transfer

function H(s) can be split into two transfer functions, such that

H(s) = Havg(s) + Hpart(s) (4)

with

Havg(s) =
Cs,avg

jLi
mean

=
K1

s
(5)

and

Hpart(s) =
ΔCs

jLi
mean

= H(s) −Havg(s) =
K1

s

((
1 +

s
ωcs

)0.5
− 1
)

(6)

In Relation (4), Havg(s) represents the average concentration (from the centre to the surface of the
particle) and Hpart(s) is the partial gradient of ion concentration on the particle surface.

For the implementation of the battery model in a vehicle control unit, a discrete form of the
transfer functions Havg(s) and Hpart(s) can be computed, as shown in [6]. Also, a polynomial can be
used to link the lithium concentration at the surface of the particles, denoted SOCsurf, to the cell Open
Circuit Potential (OCP), denoted Un and Up respectively for the anode and the cathode. If the charge
transfer resistance is denoted Rct (Rct can be deduced from the Butler–Volmer equation linearization),
the resulting electrochemical sub-model is represented by Figure 1.

 
Figure 1. Coupled electro-aging thermal model designed.
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2.2. Description of the Thermal Part of the Model

The kinetics of charge transfer during the intercalation process depends in particular on cell
temperature. Cell temperature also has an impact on the kinetics of the side reactions. It is thus
essential to associate a thermal model to the electrochemical sub-model. In this work, the efficient and
simple thermal model presented in [21] was used to estimate the cell temperature. This thermal model
results from a heat balance within the cell, and is described by

mCp
dT(t)

dt
= Qgen(t) −Qloss(t) (7)

The thermal parameters associated to Relation (7) are given in Table 1. The generated heat is
defined by

Qgen(t) = Upol(t)I(t) + R f I(t)2 (8)

In Relation (8), Upol(t) is the irreversible heat generation due to electrode polarization. R f I(t)2

models heat losses over the internal resistor of R f .

Table 1. Parameters of the thermal model.

Symbol Parameter Unit

m Mass of the cell kg
Cp Specific heat capacity J·kg−1·K−1

Upol Polarization voltage V

R f
High frequency

resistance Ω

I Input current A
α Heat transfer coefficient W·m−2·K
A Cell surface area m2

Tamb Ambient temperature K

The convective heat exchanged with the environment is:

Qloss(t) = αA(T(t) − Tamb) (9)

2.3. Description of the Aging Part of the Model

Depending on the intended application, fast charging or battery cycling until End of Life (EOL),
a short-term or a long-term model is required. In this work, the developed model is devoted to
designing fast charging algorithms, and aging is considered to be mainly caused by the growth of
a Solid Electrolyte Interphase (SEI) layer on the anode. This degradation mostly happens during
short to middle-term battery usage during fast charging cycles. The aging model used is based on
the equations proposed in [22] and, following the observations from post-mortem analysis of the
investigated cells, aging is only considered on the anode electrode. For a constant temperature T,
the current produced by the side reaction leading to the undesired reduction of Li ions is defined by
the Tafel equation

jsr = −an
s j0,seiexp

(
−nFαn

RT
ηsei

)
(10)

If ϕen, Rsei and Ure f
sei denote respectively the anode potential, the inner resistance of the SEI layer

and the reference potential of SEI formation (assumed to be 0.4 V), the SEI overpotential is given by
the relation

ηsei = ϕen −RseiI −Ure f
sei (11)
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in which the anode potential ϕen is defined by

ϕen = ηn + Un + RseiI (12)

According to [23], ηn is deduced from the Butler–Volmer equation which defines the kinetics of Li
ion intercalation, and can be approximated by

ηn =
2RT

F
log

⎛⎜⎜⎜⎜⎜⎜⎝
(

jI
2an

s jn0

)
+

√(
jI

2an
s jn0

)2
+ 1

⎞⎟⎟⎟⎟⎟⎟⎠ (13)

for an easier implementation. The electrochemical parameters associated with Relations (10) to (13)
are defined in Table 2. Some parameters are taken from [22]. The others were estimated using
measurements on the cell under investigation.

The increase in temperature resulting from fast charging operation has a large impact on the side
reaction rate. Thus, Relation (10) must be modified to take into account the Arrhenius dependency of
the side reaction current on the temperature variation. The modified Equation (10) is thus given by

jsr = −an
s j0,seiexp

(
Ea

R

(
1

Tre f
− 1

T

))
exp
(
−nFαn

RT
ηsei

)
(14)

The SEI thickness (δsei) and resistance (Rsei) can be computed by the following Relations [22]:

∂δsei
∂t

=
Msei
2Fρ

jsr (15)

Rp(t) =
δsei
κsei

(16)

Rsei(t) = Rsei,init + Rp(t) (17)

Table 2. Aging sub-model parameters.

Symbol Parameter Unit

an
s Specific surface area m−1

j0,sei Exchange current density A·m−2

αn Symmetry factor -
n Number of transferred electrons -
Ea Activation Energy kJ·mol−1

δsei SEI layer thickness m
Msei Molar mass of SEI layer kg·mol−1

ρ Density of SEI layer kg·m−3

κsei SEI layer conductivity S·m−1

Rsei,init Initial resistance of SEI layer Ω·m2

Rp
Resistance of side reaction

product Ω·m2

Ich Charging current A

Experimental observations [24] have shown that, after a primary formation and after some cycles,
the SEI layer thickness growth at the surface of the electrode decreases. To model such a behavior,
an exponential function was associated to Relation (18), which becomes

jsr = −an
s j0,seiexp(−λδsei)exp

(
Ea

R

(
1

Tre f
− 1

T

))
exp
(
−nFαn

RT
ηsei

)
(18)
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where λ is the SEI decay rate constant (m−1). To obtain this coefficient, it is assumed that, after some
cycles, the SEI thickness stabilizes.

To guarantee an efficient fast charging strategy, the aging sub-model must also reproduce with good
accuracy the higher capacity loss that has been observed at higher charging C-rates. This requirement is
not permitted with Relation (18). Thus, to scale the inverse Butler-Volmer overpotential ηn, a coefficient
Kη is introduced in Equation (18), which thus becomes

jsr = −an
s j0,seiexp(−λδsei)exp

(
Ea

R

(
1

Tre f
− 1

T

))
exp
(−nFαn

RT

(
Kηηn + Un −Ure f

sei

))
(19)

with CT = −an
s j0,seiexp

(
nFαn
RT Ure f

sei

)
exp
(

Ea
RTre f

)
.

In Relation (19), it can be noticed that the time-dependent (calendar) aging effects and current-
dependent (cycling) aging effects are decoupled. This offers the possibility of better interpreting the
influence of each mechanism on cell aging, and of emphasizing the influence of the C-rate on the
decrease in capacity during cycling and in particular rapid charges.

To the best knowledge of the authors, the physics-based battery model proposed in this study,
which takes into account degradation mechanisms as a function of SOC, temperature and C rate,
is unprecedented in the literature. These characteristics also allow a very good correspondence between
the response of the model and the measurements.

2.4. Whole Cell Model

The electro-thermal aging model described in the previous paragraphs can be represented by
the block diagram of Figure 1. In this figure, the sub-models denoted ‘Anode’ and ‘Cathode’ are
deduced from the description performed in Section 2.1. The thermal model of Section 2.2 provides
the cell temperature information from the current applied to the aging model described in Section 2.3.
This model has been validated by several tests, as described in [6].

Regarding the tuning of the parameters associated with this model, it can be partially accomplished
using information provided by the battery manufacturer. Tests are required to tune the remaining
parameters. The tuning methodology is described in [5], and needs to be applied for each new type of
battery. As no feedback exists between the aging model and the electrochemical sub-models, the model
can fit the behaviour of the battery only within a given aging range (this is enough to get the battery
state estimation during a charge). The Model of Figure 1 must be adjusted (on board) periodically
to take into account the impact of aging on some parameters of these sub-models (OCP functions,
charge transfer resistance, . . . ).

Further studies can be conducted (see [3]) to include the electrolyte dynamics in the anode and
cathode electrochemical sub-models. Considering the ion diffusion phenomenon inside the electrolyte
would increase the model accuracy in estimation of the terminal voltage, but would also increase the
model’s complexity.

3. Trajectory Planning

The fast charging strategy developed in this paper, which can be integrated in a battery management
system (BMS), is described globally by Figure 2. In this diagram, the model presented in Section 2
is used in the battery observer to simulate the battery behavior under various operating conditions.
Using measures of the cell current ICharge, voltage Ucell and temperature Tcell, this observer estimates
(among other information) the cell capacity fade ΔC f ade. This information is used by a fast charging
controller that adapts the charge current magnitude to follow a charge profile Ire f while reducing the
cell capacity fade during recharge.
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Figure 2. Description of the implementation of the fast charging functions in a battery management
system (BMS).

The function of the charging controller is to determine the optimal charging current profile
imposed on the battery. The optimal current is that which minimizes the recharging time (therefore the
highest possible) while limiting a variable upper limit on the current. This makes it possible to meet
a rapid recharging target without increasing battery aging too much. The strategy adopted in this work
to determine the optimal charging profile thus consists in computing offline the side reaction current
before battery charging. The side reaction current changes over time and is a function of the SOC and
of the charging current. If the charging process is split into a finite number of time slots, a lookup
table can provide the limit on the side reaction current on each interval as a function of SOC. The side
reaction current limit provided on each slot defines the side reaction current trajectory. The controller
thus computes the corresponding charging current and defines in real time the optimal profile of the
charging current to meet the calculated side reaction current trajectory.

In practice, to acheive the optimal charging trajectory, the capacity loss during a fixed charging
time tf of twenty minutes is minimised under the following constraints:

• bounds on the charging current (Ich), in order to avoid exceeding the maximum charge current
limits (3.5 C) for safety reasons,

• an increase in the SOC from 5% to 80% (but other ranges of SOC variation can be defined).

Denoted in the sequel is a Multi-stage Constant Current (MCC) of duration t f , a charge current
profile made of a series of N pulses (or slots) of the same duration (t f /N), in which each pulse can
have a different magnitude (thus N degree of freedom in the current profile that can be optimised).
An example of an MCC profile is represented in Figure 3. It is used for its flexibility in the definition of
a profile in order to maximize energy efficiency and to improve battery life during fast charging [25].
The optimal control problem can thus be analytically defined by

min
Ich(t)

∫ t f

0
ΔCloss(t)dt (20)

subject to
.
x(t) = f (x(t), Ich(t)), x(0) = x0 (21)

1
3600

∫ t f

0
Ich(t)dt ≥ Qtrans (22)

0 ≤ Ich(t) ≤ 3.5C (23)

in which Qtrans denotes the Li-ion charges stored in (Ah), ΔCloss denotes the capacity loss (Ah), and tf
(s) is the charging time. Sequential Quadratic Programming (SQP) is used to solve the optimal control
problem defined by Relations (20) to (23) for various operating conditions.
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Figure 3. An example of a Multi-stage Constant Current (MCC) profile with 6 slots (N = 6). Each value
Ich(k) has to be optimised to find the current optimal profile.

Variations of SOC, anode potential, side reaction and capacity loss variation at 35 ◦C obtained
after optimisation with only 4 slots are shown in Figure 4. These curves are compared to those obtained
with a conventional Constant Current Constant Voltage (CCCV) profile. This kind of charge profile
has been chosen for comparison purposes because it is very commonly used for recharging batteries
(lithium ion or not). This figure shows a decrease in capacity loss close to 15% with the optimal current
profile in comparison with the CCCV profile. The optimisation was performed for various aging levels,
various ambient temperatures (10, 17, 27, 30, 47, and 77 ◦C) and for various states of health from End
of Life (EOL), Middle of Life (MOL) and Beginning of Life (BOL).
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Figure 4. Trajectories computed for a fixed charging time of 20 min, at T = 35 ◦C, for a cell at the
Beginning of Life (BOL) in a State of Charge (SOC) range of 5–80%.
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These results were obtained with a cell whose dynamical behaviour is assumed to be perfectly
known. This is an ideal case that does not exist in practice due to modelling uncertainties, and applying
the optimal charging current profiles obtained does not necessarily minimize aging while reaching
the target SOC. To take into account the modelling uncertainties, a closed loop strategy must be
implemented. As shown in the next section, the side reaction current Jsr that creates aging was defined
as the control signal to control the battery charging due to its high sensitivity to the charging current,
as illustrated by Figure 4.

4. Cell Model Linearization

The interest of closed-loop control for fast charging has been highlighted in Sections 1 and 3.
The design of a linear controller to implement such a loop is thus the objective of this section. The block
diagram of the cell model in Figure 1 suggests that the cell is highly nonlinear. This is confirmed by the
simulations of this model, which show a high sensitivity to temperature, lifetime stage and charging
current level. Such a nonlinear behaviour is taken into account in the approach presented here with
a linearized model set that is computed for a set of operating points (temperature, charging current,
stage of life) and various optimal charging profiles, and thus side reaction current (Jsr) profiles.

4.1. State-Space Model of the Cell Model

The following nonlinear state-space model:

{ .
x(t) = f (x(t), u(t))
y(t) = g(x(t), u(t))

(24)

represents the battery model in which the input u(t) is the charging current Ich(t). The state vector x(t)
and the output vector y(t) are respectively given by

y = [Jsr, Ubat,φen, OCV, T, SOC]T (25)

x =
[
ΔCloss, δSEI, Cavg,n, Cpart,n

1 . . .Cpart,n
5 , Cavg,p, Cpart,p

1 . . .Cpart,p
5

]T
(26)

where the variables that appear in Relations (25) and (26) are defined in Table 3.

Table 3. Variables in the state and output vectors of the nonlinear cell model * I = p (cathode), n (anode).

Symbol Parameter Unit

ΔCloss Capacity loss mAh
δSEI Thickness of SEI layer m

Cavg,i ∗
Electrode average

concentration Ah

Cpart,i ∗
1

Electrode partial concentration Ah
Ubat Battery terminal voltage V
φen Anode potential V

OCV Open Circuit Voltage V

The next section describes the approach used to derive a set of linear models (one model for
a given operating point) for the approximation of the nonlinear cell model.

4.2. Operating Points Definition

The optimal charging profiles computed in Section 3 were used to define the operating points
required for the linearization of the nonlinear model (24). The optimization was performed for various
aging levels and ambient temperatures, with SOC within 5–80%. For all optimal current profiles,
relaxation intervals were added to reach equilibrium conditions during the constant current phases of
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the MCC profile. 432 operating points were finally considered, made up of 18 ambient (and internal)
temperatures, three aging levels and eight operating conditions for each charging profile.

4.3. Uncertain Linear Models Resulting from the Nonlinear Battery Model

The nonlinear model (24) was linearized around operating points using a numerical method
(Matlab linmod command). The Bode diagrams of the resulting set of linear models of the transfer
function Jsr(s)/Ich(s) are shown in Figure 5. Among this set, one was chosen as a nominal model, with the
other linear model thus defining an uncertain linear model. Figure 5 highlights a strong dependence
of the frequency response of the transfer function Jsr(s)/Ich(s) to the operating point. The resulting
gain and phase uncertainty are taken into account in the next section for the design of a fast charging
robust controller.

Figure 5. Tansfer function Jsr(s)/Ich(s) frequency responses for the considered operating points.

5. Design of the Fast Charging Robust Controller

5.1. Closed-Loop Control

The objective was to design a two-degrees of freedom fast charging controller, as illustrated by
Figure 5. In such a control scheme, the feedforward must ensure the initialization of the plant input,
and the robust feedback must permit the desired accurate output tracking. The plant model output
Jsr,traj and input ICh,traj reference signals (optimal trajectories) are known and provided by the optimal
MCC trajectory planning.

As shown in Figure 6, a low pass filter was implemented for the reference current profile smoothing.
With the control scheme of Figure 6, if the battery behaviour fits the one used for the charging profile
optimisation, the charging current ICharge that makes it possible to track the optimal Jsr,traj is equal to
the feedforward current ICh,FF. The feedback controller thus has no effect. Conversely, if the battery
behaviour differs from the behaviour of the model used for the optimisation of the charging profiles,
the feedback loop adapts the charging current. It imposes the computed optimal side reaction current
on the cell. As only cell temperature T, charging current ICharge and voltage Ucell, are measureable
signals, an aging observer using the cell model was designed to estimate the side reaction current.
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Figure 6. Fast charging control closed-loop.

5.2. CRONE Control Methodology for Robust Controller Design

The controller C(s) in Figure 6 was designed using the CRONE control methodology. It uses fractional
differentiation to define high-level design parameters [26] that are tuned in the frequency domain. The third
generation CRONE control was used in this work. It is based on the optimization of the transfer function
βnom(s) parameters (βnom(s) being computed for the nominal plant denoted Gnom) defined by

βnom(s) = βl(s)βm(s)βh(s) (27)

in which βl(s) is an integer proportional integrator of order nl defined by

βl(s) = Cl

(
ωN−

s
+ 1
)nl

(28)

βm(s) groups several band-limited generalized templates

βm(s) =
N+∏

k=−N−
βmk(s) (29)

with

βmk(s) = Ck

⎛⎜⎜⎜⎜⎝αk

1 + s
ωk+1

1 + s
ωk

⎞⎟⎟⎟⎟⎠
ak
⎛⎜⎜⎜⎜⎜⎜⎝�i

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝αk

1 + s
ωk+1

1 + s
ωk

⎞⎟⎟⎟⎟⎠
ibk
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠
−qksign(bk)

(30)

where αk =
(ωk+1
ωk

)0.5
for k � 0, and α0 =

⎛⎜⎜⎜⎜⎜⎜⎝ 1+
(
ωr
ω0

)2
1+
(
ωr
ω1

)2
⎞⎟⎟⎟⎟⎟⎟⎠

0.5

and βh(s) is a low-pass filter of order nh:

βh(s) = Ch

(
s
ωN+

+ 1
)−nh

(31)

Order nl must be adjusted to get the desired controller accuracy. The constants Cl, Ck and Ch are
tuned to ensure a given resonance frequency ωr of the closed loop transfer function Tnom(s) = βnom(s)/(1
+ βnom(s)). Order nh was chosen to ensure a bi-proper or strictly proper controller. The open-loop
parameters are tuned MT, where MT denotes the resonance peak of the complementary sensitivity
function T(s). Such an objective is attained by minimizing the objective function

J = sup
G

MT −MTnom (32)
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in which MTnom denotes a whised value for the closed-loop resonance peak computed with the nominal
plant denoted Gnom. The minimisation of Relation (32) is achieved under the constraints on the four
closed loop sensitivity functions that follows:

in f
G

∣∣∣T( jω)
∣∣∣ ≥ Tl(ω), sup

G

∣∣∣T( jω)
∣∣∣ ≤ Tu(ω)sup

G

∣∣∣S( jω)
∣∣∣ ≤ Su(ω), sup

G

∣∣∣CS( jω)
∣∣∣ ≤ CSu(ω)sup

G

∣∣∣GS( jω)
∣∣∣ ≤ GSu(ω) (33)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
T(s) = G(s)C(s)

1+G(s)C(s) S(s) = 1
1+G(s)C(s)

CS(s) = C(s)
1+G(s)C(s) SG(s) = G(s)

1+G(s)C(s)

(34)

Using the Nichols plot, by minimizing criterion J in Relation (32), the optimal parameters move
the frequency uncertainty domains so that they cover areas of low stability margin as little as possible
around the (−180, 0 dB) critical point on the Nichols chart (as the open-loop frequency response
uncertainty domains are those of the plant). Only a nonlinear optimization method can be used to
compute the optimal parameters as uncertainties are not norm-bounded and taken into account by the
least conservative method. If N+ = N− = 0 in Relation (29), only the independent four parameters ω0,
ω1, ωr and Yr=|β(jωr)|dB need to be optimized in Relation (27). In the Nichols chart, the tangency of
the frequency response βnom(jω) to the desired MTnom circle can be ensured by computing the other
parameters of Relation (27), such as a0 and b0. The optimal open loop transfer function being found,
the controller C(s) can be obtained with the ratio of the optimal open-loop frequency responses by the
nominal plant defined by

CF( jω) =
βnom( jω)
Gnom( jω)

(35)

From this frequency response, a frequency domain system identification method can be used to
obtain the coefficients of an integer transfer function C(s) whose frequency response fits the frequency
response of CF(s). Such a method has the real advantage of producing a controller whose order is
rather low (classically less than 6) whatever the problem.

To conclude, as the over-estimation of plant perturbation is avoided, the CRONE control
methodology permits a non-conservative robust control system, and thus, in the majority of applications,
better performance.

5.3. Design of a CRONE Controller for Fast Charging

The frequency responses of the linear models obtained through the linearization of model (24)
(see Section 4.2) for various operating conditions (temperature, aging, SOC) are shown on Figure 5.
This figure highlights that, in low and high frequencies respectively, the gains of the linear models
are of order 1 and 0. Thus, for a low-pass filter behaviour of the controller in high-frequencies and as
an integrator in low-frequencies, the open-loop orders nl and nh are defined such that nl = 2 and nh = 1.
The minimization of the complementary sensitivity function resonance peak variation according to
Relation (32) is acheived under the design specifications that follows:

• a sensitivity function S(s) resonance peak lower than 6dB to reach a good stability degree;
• a nominal resonance peak MTnom of function T(s) equal to 1.7 dB for a small overshoot of the

nominal response to a step of the reference signal of Jsr;
• a closed loop bandwidth close to 0.2 rad/s;
• a control effort sensitivity less than 10 A (Ich) for a variation of Jsr of 10 μA in high-frequency.

The CRONE control toolbox [27,28] was used to compute the open-loop transfer function optimal
parameters that meet the above specifications. The optimal parameters obtained are the following:
Yr = 3.8 dB, ωr = 1.5 rad·s−1, ω0 = 0.1 rad·s−1 and ω1 = 7.5 rad·s−1, leading to the following values
for the fractional integration orders: a0 = 1.42 and b0 = −0.46. The resulting open loop transfer function
Nichols chart for the nominal behaviour and the associated uncertainty domains is shown in Figure 7.
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The values of ωr, ω0 and ω1 appear on this figure. This figure demonstrates that the closed-loop system
is stable, as all the behaviours are far from the instability point (−180◦, 0 dB) area. Figure 8 shows the
gain diagram of the four sensitivity functions T(s), S(s), GS(s) and CS(s) for the nominal behaviour of the
plant and for two extreme behaviours of the plant. The user defined constraints (dotted lines) are also
represented. As the gain of all the sensitivity functions does not exceed the constraints defined, it can
be concluded that the design specifications are met. The closed loop robustness is also demonstrated
by the small resonance peaks of the functions S(s) andT(s). An order 4 rational controller C(s) is
finally obtained using the method described at the end of Section 5.2. As the controller obtained
contains an integrator, an anti-windup configuration is included in the control system. It cancels the
charge current increase due to the output integrator saturation, thus meeting the current limits for the
considered battery (a safety charge current limit of 3.5 C).

 

Figure 7. Nichols chart of the open loop for the uncertainty domains (green) associated with the
nominal plant (blue) and Nichols abacus (red).

5.4. Analysis of the Control Loop Performance

The fast charging controller previously designed was applied to the model (nonlinear) of the
battery described in Section 2.3. As previously mentioned, this model has a large sensitivity to aging
and temperature, and the closed loop system sensitivity and robustness to these parameters must
be verified. It is achieved by studying the impacts of battery parameters variations on the closed
loop system response. As an example, Figure 9 shows the optimized side reaction profile tracking
(profile computed as in Section 3) for the cell at BOL and for a temperature of 10 ◦C. The simulation
is performed with a model whose parameters defining the cell aging, the initial SEI layer thickness
(nm), the cell high frequency resistance (Ω), the cell capacity (Ah) and the specific surface area of the
anode (m−1) were changed by ∼ ±20%. The Jsr diagram in the figure shows a tracking error close to
2 (μA·m−3). In spite of plant uncertainties, the controller tracking performance is thus guaranteed.
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Figure 8. Gain diagram of the four sensitivity functions (solid line, green for the nominal behaviour,
red and blue for two extreme behaviours of the plant) and user defined constraints (dotted lines).
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Figure 9. Impact of process variations on reference tracking.

5.5. Improvement of the Control Strategy

As it cannot be guaranteed that the final value of the SOC will be reached with the strategy
previously defined, some modifications must be made, and are now proposed to correct the situation.
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As shown in Figure 10, the control scheme of Figure 5 is completed by a loop that rescales the charging
current ICharge and side reaction current Jsr,traj optimal trajectories against SOC.

Variations in some parameters of the battery model, such as electrolyte resistance, initial
temperature and initial SEI layer, were carried out to evaluate the robustness of the modified charging
strategy. The simulations performed with a cell at its BOL, and for an ambient temperature of 10 ◦C, are
shown in Figure 11. This figure proposes a comparison between the current produced by the controller
and the optimal charging current defined by the trajectory planning strategy. It highlights that the
controller output moves away from the optimal current profile to maintain the optimal side reaction
current tracking represented on the second diagram of Figure 10. As shown by the third diagram of
Figure 11, this leads to a negligible tracking error. Using the control scheme of Figure 10, Figure 11
shows that, within the desired charging time of 20 min, the target SOC of 80% is reached.

 
Figure 10. Modified charging controller.
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Figure 11. Validation of the modified control scheme’s proper operation.

In spite of its efficiency, the control loop of Figure 10 cannot be implemented easily in a car
controller. The charging controller indeed requires the computation of the side reaction current and
charge current trajectories. They are obtained after the optimization of a charging profile using the
method described in Section 3. However, this optimization problem involves a large number of
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parameters and requires the implementation of a nonlinear optimization routine. Such an approach is
highly time and resource consuming, and prevents any implementation in a car BMS. This is why the
authors have also designed an efficient profile optimization method, which is patent pending.

6. Conclusions

A solution for lithium-ion battery optimal fast charging was proposed in this paper. Optimality
here relates to battery aging minimization, which is achieved by tracking specific charging and side
reaction current reference trajectories (optimal trajectories) using a feedforward–feedback control loop.
The optimal trajectories are computed using an algorithm involving an electro-thermal battery aging
model recalled in this paper and developed in [6] by the same authors. This electro-thermal battery
aging model also permits the display of dynamic behaviors quite different from a lithium-ion cell
in relation to age and temperature. This sensitivity problem is taken into account in the charging
strategy proposed using a robust CRONE feedback controller. The performance of the closed loop
approach proposed is highlighted by improved side reaction current trajectories tracking, thus leading
to reduced aging during fast charging. To the best knowledge of the authors, this is the first time that
a closed-loop strategy, coupled with an electro-thermal battery aging model for fast charging while
taking into account battery health, has been proposed in the literature.

Most of the proposed algorithms and methods in this thesis were validated by means of simulations.
The evaluation of the internal battery states is not possible using real cells and measurements,
but simulation provides this possibility. However, the importance of experimental validations cannot
be ignored, and thus should be pursued in a future work. Upon the successful validation of the
simulation results presented in this work, the electro-thermal aging battery model and the intelligent
charging strategy can be implemented as a part of a BMS.
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Abstract: The current landscape in the water industry is dominated by legacy technical systems that
are inefficient and unoptimized. In recent years, sustained efforts could be identified, especially under
the guidance of the Industrial Internet of Things (IIoT) paradigm, in order to develop an increased
level of both connectivity and intelligence in the functioning of industrial processes. This led to
the emergence of the data accumulation concept, materialized in the practical sphere by Historian
applications. Although various classic Historian solutions are available, the capability to optimize and
influence the monitored system in a proactive way, resulting in increased efficiency, cost reduction, or
quality indicators improvements, could not be identified to date. Following a proposed software
reference architecture for such a proactive Historian, a data dependency identification strategy and
some obtained recipes for energy efficiency improvements in the water industry were developed.
However, a complete solution for real industrial processes represents complex research. The current
paper contributes to this research effort by developing part of the reference architecture that predicts
the future evolution of the monitored system, based on weather dependency and forecast, thus
sustaining the effort to achieve a fully functional, real-world, tested and validated proactive Historian
application, with potential to bring significant direct benefits to the water industry.

Keywords: industrial internet of things; prediction strategy; proactive historian; water industry

1. Introduction

The technical solutions and processes that are specific to the water industry present a very
heterogeneous characteristic, being simultaneously highly dispersed from a geographical standpoint,
thus contributing to defining a landscape currently prevailed by legacy systems. Although viable
solutions at the time of their implementation, the large majority of legacy systems that can be found
today in the water industry are inefficient by current standards, thus transforming the water industry
into the perfect environment for receiving quality, availability, and efficiency improvements.

The Industrial Internet of Things (IIoT) concept [1–4] groups a wide spectrum of industry-oriented
principles [5,6], aimed at different objectives, most of which can be achieved by developing intelligent
communication between different technical entities. This aspect places the superior and enhanced
connectivity, interoperability, and information exchange at the core of the IIoT paradigm, which
transposes from a practical standpoint to a continuous effort to connect industrial computers, sensors,
and actuators to the internet [7]. The improved communication as a result of the IIoT implementation
opens the way for developing more intelligent and sophisticated future systems, capable of improving
the working characteristics of technical systems (such as availability, cost reduction, safety, productivity),
by applying autonomous optimization techniques to the systems [8].

Appl. Sci. 2020, 10, 3015; doi:10.3390/app10093015 www.mdpi.com/journal/applsci69



Appl. Sci. 2020, 10, 3015

The importance of developing the interoperability between industrial systems is emphasized
in [9], where the authors propose a communication framework that brings both efficiency and
interoperability improvements for service-based architecture. Their work prepares the appropriate
context for implementing future distributed monitoring and control applications. Such advances
in industrial communications have recently led to the emergence of the ideas around bringing both
fog computing and Big Data concepts closer to the industry, in accordance with the IIoT guidelines,
because of the data accumulation phenomenon that occurs. In this direction, Aazam et al. conclude
in [10] that a middleware support is required between the industrial environment and the cloud
services. This middleware can be represented by the fog computing [11], which is capable of providing
local computing support. On the other hand, the large amount of generated data requires Big Data
technologies in the industry, and the paper from [12] presents a survey of the Big Data solutions that
are already integrated into the industry, while [13] focuses on identifying the high performing Big Data
techniques that can be applied to industrial data.

Despite classic Historian applications [14–16] that store the large amounts of generated data into
industrial environments dominated by the IIoT principles are widely available and do not represent a
novelty anymore, the most recent trends in this area are to develop solutions that can make use of the
already-gathered data. The future Historian application will be intelligent and proactive, using the
stored data to identify dependencies and relations between the characteristics of the monitored system,
which, in turn, will be used to predict the future evolution of the technical system, as a starting point
for optimizing the monitored system, in an autonomous, non-invasive, unassisted-by-human manner,
being placed in the fog computing area close to the monitored system. Although such an Historian
application cannot be identified to date, progress is being made toward this development direction.
The study from [17] proposes efficiency improvements to a classic Historian application, while a
distributed and configurable data analytics infrastructure is presented in [18]. Another distributed,
wireless monitoring system is presented in [19], the problem of predictive maintenance is tackled
in [20], and lightweight, Raspberry Pi-based, classic Historian solutions are presented in both [21]
and [22]. In a similar research direction as that followed in this paper, Salvador et al. in [23] aim toward
a proactive Historian by implementing a predictive control strategy of a water distribution network
that is based on Historian gathered data. Although several researches are focusing on this gathered
data capitalization toward industrial systems optimization, a fully functional, real-world, tested and
validated proactive Historian solution has not been achieved to date.

In order to implement a proactive Historian solution, a software reference architecture is primarily
needed and, although [24] presents general reference architectures for IIoT and [25] suggests design
patterns that should be applied in IIoT, the most suitable software architecture option for a proactive
Historian is described in [26]. The architecture proposed by the authors is specifically targeted for a
proactive Historian type of application, dividing the required software modules into three distinct
layers. The architecture is based on an already-existing classic Historian solution, which is capable of
storing chosen working parameters of a technical system and structures the required modules that
need to be added in order to transform a classic solution into a proactive solution. The first layer
of the proposed architecture is responsible for identifying relations and dependencies between the
measured characteristics by using historical stored data and external context data. The identified
relations and dependencies, alongside future context data, are used as input for the second layer of the
reference architecture, which must be capable of predicting the future evolution of the technical system.
The last layer of the reference architecture capitalizes on the results of the previous layer, making use
of the future prediction in order to decide how to influence this predicted future evolution so that
chosen objectives (such as cost reduction, efficiency improvements, substances consumption reduction,
maintenance improvements) are met. Ultimately, the third layer of the reference architecture should
be capable of directly influencing the monitored technical system, through actuators, transferring
the optimizations to the real-world system. Implementing the entire reference architecture would
result in obtaining a closed-loop Historian system, which monitors a technical system, adjusts it for
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optimization, monitors the system reaction to the adjustment, and so on. Besides presenting the
aforementioned reference architecture, the authors also implemented and tested the first level of the
architecture in [26], illustrating test cases from the water industry, with reference to a drinking water
treatment plant.

The current paper picks up the state of the research that was reached in [26] and takes it further
down the long path to implement the entire reference architecture and obtain the first proactive
Historian application capable of optimizing the monitored system without any human assistance.
Achieving the final goal of this research direction demands a considerable research, implementation,
and testing effort, which must be divided into several stages. The initial step was taken in [22], where
the authors developed a classic Historian solution, but in a lightweight and low-cost implementation,
perfectly suited for the industrial requirements. Then, important steps toward the proactive direction
were made in [26], where a reference architecture was proposed, the first level of it also being
implemented and tested in the water industry. The current paper falls in line with this research,
representing the next significant step toward the ultimate goal. The contributions of the current paper
are as follows: Improve the implementation of the first level of the reference architecture described
in [26]; integrate historical weather data into the relations and dependencies identification algorithm
developed in [26]; implement the second level of the reference architecture (which predicts the future
evolution of the monitored system), based on the weather forecast and the results of the first layer.
The unavoidable cybersecurity concerns that naturally arise from developing this type of software
application are considered by the authors as being beyond the scope of the current paper.

In order to test the contributions of the current paper, several test cases are considered from the
water industry, regarding a real wastewater treatment plant. This type of plant was chosen because of the
typical close dependencies that exist between wastewater treatment plants and weather characteristics.

The following section presents the typical processes that take place inside a wastewater treatment
plant, discloses defining problems, and emphasizes the typical weather influence over such plants, as
well as detailing the main contributions of the current paper, regarding both the improvements that
were made to the first level of the reference architecture and the implementation of the second level
of algorithms. Section 3 illustrates the test cases that were used for validating the implementation
described in the previous section in a real wastewater treatment plant environment. Section 4 dissects
and discusses the results of the test cases presented in the previous section, while Section 5 concludes
the paper.

2. Materials and Methods

2.1. Wastewater Treatment Plant Typical Processes

The representative processes that usually take place inside a wastewater treatment plant (WWTP)
are summarized in Figure 1, and further detailed in this section. The treatment process is divided,
from a logical standpoint, into multiple stages: Pretreatment, primary treatment, secondary treatment,
tertiary treatment, and sludge treatment.

The wastewater enters the treatment plant from the wastewater network, where the source of the
water is residential, institutional, commercial, industrial, rain, or a mix of the aforementioned. After
the water enters the treatment plant, the pretreatment processes are initiated. Firstly, odor treatment
can be applied so that the plant surrounding areas are protected from the foul smell that naturally
accompanies wastewater. The odor treatment process may not be necessary at some plants. There
are two distinct methods of odor treatment: Air treatment and liquid treatment. If the air treatment
method is applied, the wastewater is contained in large tanks, which are hermetically covered with
specially designed odor control covers. The air trapped under the cover, inside the tanks, is extracted
by a ventilation system and undergoes treatment before it is released to the environment. Regarding
the liquid treatment method, different chemicals that neutralize the foul smell-producing elements are
introduced in the wastewater. The second process that takes place during pretreatment is screening,
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where the wastewater is passed through filters in order to remove both grit and large objects such as
bottles, plastics, tree branches, sanitary items, and cotton buds. It is very important to remove such
objects early in the process because they can damage the plant equipment if present in future steps of
the treatment process. The removed objects are either incinerated or disposed in landfills.

Figure 1. Typical wastewater treatment plant (WWTP) processes.

After the pretreatment is completed, the wastewater enters the primary treatment stage, where
the remaining solid matter is separated from the wastewater. In this stage, large sedimentation tanks
are used, in which the wastewater clarifies. The sludge settles at the bottom of the tank, while grease
and oil rise to the surface. The sludge is removed and directed to the sludge treatment process, while
the grease and oil can be used for soap making.

After the primary treatment, an optional bypass exists so that the treated water can be sent directly
to the natural environment without entering the secondary and tertiary treatment stages. This bypass
is used during heavy rainfall by plants that receive wastewater from a combined sewer system. In this
case, the secondary and tertiary treatment stages are bypassed in order to protect them from hydraulic
overloading, the mixture of sewage and rainwater receiving only primary treatment before being sent
back to the natural environment. In some plants, the bypass is implemented directly at the inlet, so the
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wastewater is not even screened. In addition, for larger plants without a complete gravitational bypass,
high-energy consumer pumps are used to transfer the untreated water directly into the emissary when
the large amounts of wastewater exceed the capacity of the plant.

The secondary treatment stage objective is to remove the biological matter from the wastewater,
by using a bioreactor tank where both oxygen (introduced with blowers) and a biological floc (bacteria
and microorganisms that consume the remaining organic matter) are inserted into the wastewater.
Before exiting the secondary treatment, wastewater is sent into a clarifier tank, where large particles
settle down at the bottom (sludge) and are extracted for the sludge treatment process. In order to
maintain the optimal process parameters during the biological treatment, a pH adjustment must take
place, involving different chemicals (Ca(OH)2, CaCO3, Na2CO3, NaOH, etc.).

The last stage is the tertiary treatment, which is similar to the drinking water treatment process,
the resulting water quality being close to drinking water quality. Firstly, a chemical compound (usually
alum, Al2(SO4)3, but polyaluminum chloride or ferric chloride, FeCl3, can also be used) is injected
into the wastewater in order to remove the phosphorus. In some plants, the phosphorus removal
can be implemented during different stages, such as the large sedimentation tank, during biological
treatment, or later, in the clarifier tank. If the phosphorus is removed by the biological treatment, the
chemical treatment becomes an auxiliary method. Then, the water passes through a sand filter and a
charcoal filter before entering a disinfection tank, where a mixture of chlorine and sodium hypochlorite
is added. Lastly, the water is sent into the discharge tank where sodium bisulfite is used in order to
chemically dechlorinate the water because residual chlorine is toxic to aquatic species. The water
exiting the tertiary treatment is released into the natural environment in rivers, lakes, or other local
waterways. Another important periodic process that takes place during tertiary treatment is the filters
cleaning, in which the sand and charcoal filters are washed with air and water, the resulting sludge
being sent to the sludge treatment process.

Each of the primary, secondary, and tertiary treatment stages produce sludge, which is also
processed inside the WWTP, during the sludge treatment process. Firstly, the sludge enters the
thickening procedure, which is conducted inside a sludge thickener, an equipment resembling a
clarifier tank with an added stirring mechanism. Then, the sludge goes through the organic matter
digestion process, which reduces the amount of organic matter in the sludge. Three different digestion
options can be used: Aerobic digestion, anaerobic digestion, and composting. The digestion process
can produce biogas (a mixture of CO2 and methane), which can be used at the plant for powering
equipment. The last sludge treatment process is dewatering, in which the sludge is commonly placed
in drying beds. The dried sludge is either burned in incinerators, sent to landfills or used as fertilizer
in agriculture.

2.2. Wastewater Treatment Plant Defining Problems and Weather Dependency

Some of the defining problems that can be identified in a WWTP are:

• Overloading of the plant: This can cause overheating of the blowers, which, in turn, causes a
low-oxygen level in the bioreactor tank, thus reducing the efficiency of the secondary treatment
stage. Plant overloading can also lead to sludge leakage from the settling tank.

• High substances consumption: For instance, the odor treatment process requires continuous
adjustment of the used substances, depending on the input wastewater concentration and content.
The wastewater content is highly dependent on the weather conditions.

• High energy costs: Around 30% of the annual WWTP operation costs is represented by the
electricity consumption. Considering a developed country, an estimate of about 2–3% of the
entire nation’s electrical power is consumed for wastewater treatment. This can be significantly
improved by optimizing the biological treatment processes.

• Equipment and/or algorithmic faults that can lead to various problems.
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• Undersized treatment plants: Most plants were developed 10–20 years ago, becoming undersized
for the current loads since then, leading to the choice of increasing the load and costs in order
to maintain a thorough cleaning process or discharging the partially treated wastewater to the
environment and keeping the costs lower.

A WWTP’s operation is influenced by the weather conditions, the most significant being the
precipitation amount. In case of very heavy rainfall, the WWTP may use the bypass channel, thus
resulting in a high increase in operational costs (electricity and substances usage) or pollution. Even
if the rain amount does not produce wastewater that can be legally sent to the environment after
just primary treatment, the amount of rain highly influences the content and concentration of the
wastewater present in the WWTP, which, in turn, influences the biological treatment that is applied in
the secondary treatment stage and the chemical addition amounts and concentrations in the tertiary
treatment. Besides rain, the temperature can also influence the WWTP, primarily from the odor
treatment process standpoint, but also from the biological treatment in the secondary stage and sludge
dewatering (when outdoor drying beds are used) processes standpoints. In addition, a storm or strong
winds, particularly in the autumn, can generate large quantities of tree branches and leaves that can
clog the screening filter during pretreatment.

Considering the typical processes that take place inside a WWTP, the defining problems and the
usual weather influence on WWTPs that were previously presented, the conclusion emerges that a
WWTP represents the perfect environment that can benefit from a solution capable of identifying the
exact dependencies and relations that exist between the measured characteristics of a WWTP and
meteorological characteristics. Furthermore, using those relations and dependencies for predicting
the future evolution of the plant characteristics can provide a valuable foundation for optimizing the
WWTP in order to reduce costs, lower energy consumption, decrease substance consumption, and
improve maintenance. Due to these considerations, although the implemented solution presented
in the following section represents a generic approach, it was deployed for testing and validating
purposes in a WWTP environment, where the potential to make an impact is considerable.

2.3. The Implemented Solution

As previously mentioned, the solution that was implemented in this paper is based on
the state of the research that was achieved in [26], making use of the already-implemented
both Historian application and the first level of the proactive Historian reference architecture.
This already-available technological state was tested and validated in the water industry as well (results
from the already-implemented first-level algorithms were used in [27] to successfully achieve energy
consumption reduction in a drinking water treatment plant, by 9% for short-term tests and by 30%
for long-term tests using only part of the proposed algorithm), so it represents a reliable platform on
which to build and develop, following the ultimate goal of accomplishing a fully functional proactive
Historian application.

In order to merge the implementation of the second level of the reference architecture into the
constantly developing application, several improvements and changes were required to the solution
already implemented in [26].

First, after long-term tests, a small improvement was made to the first-level algorithm accuracy,
which, in some cases, resulted in impacting differences. The computations were adjusted in order to
achieve more accuracy (in the form of decimals) in relating identified data dependencies.

Another change was made regarding the choice of the reference tag. In [26], the implemented
algorithm required the user to choose a reference from the available tags, and the remaining tags were
analyzed regarding the chosen tag. In order to materialize a broader understanding of all the relations
and dependencies that exist inside the monitored system, the implementation presented in this paper
removed the need for choosing a reference tag. Instead of this approach, each of the monitored tags are
set as a reference, one at a time, and the relations identifying algorithm developed in [26] is run once
for each reference.
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By adopting the aforementioned change related to the reference choice, new data structures
are required for storing the results generated by the first-level algorithm. The relations identifying
algorithm was adjusted in order to build an oriented graph of dependencies, where the results of the
algorithm execution are stored. The built graph is oriented, weighted, and can contain cycles. The
results are modeled using the following convention:

• An arc from node i to node j with weight -N signifies when node i was set as the reference,
• A dependency of node j on node i was identified,
• The measured values of node j evolving inversely proportional (minus sign) to the node i values,

in a quantitative proportion of N% (this percent represents the quantitative result identified by
the analysis; more details regarding this percent is available in [26]).

In the current implementation, the dependencies graph is stored using the adjacency matrix.
Inside the matrix, line i contains the dependency values (please refer to [26] for details) of all nodes j
on the columns when node i is used as a reference. The dependencies graph represents essential input
for the second level of the reference architecture.

The last improvement that was brought to the solution developed in [26] consists of the possibility
to involve the meteorological characteristics in the relations analysis. Historical weather data can
be used in the relations and dependencies identification algorithm (at the first level of the reference
architecture) at user demand. The historical weather data source is the DarkSky online service [28]. If
the user chooses to use historical weather data, the values of the relevant weather characteristics for
the water industry (maximum temperature, minimum temperature, precipitation amount, humidity,
atmospheric pressure, wind speed, and ultraviolet (UV) index) are obtained from [28] for each of the
days in which tags values that are involved in the analysis exist. As a requirement for obtaining the
weather data, the geographical location of the monitored technical system must be provided by the
user. The longitude and latitude of the location that are required for calling the weather application
programming interface (API) are obtained from the user-provided address, using [29]. After having at
disposal the values of each of the 7 meteorological characteristics considered of interest, each of them
is used as a reference, one at a time, in the relations identifying algorithm, which computes only the
dependency of the technical system tags on the weather features. The weather features dependency on
the technical system tags does not make sense, so it is not computed. As a consequence, if the user
chooses to include historical weather data into the first-level algorithm analysis, the adjacency matrix
of the dependencies graph will be deformed, containing i + o lines and i columns (where i signifies the
number of tags from inside the monitored system and o signifies the number of tags from outside the
system, essentially the number of meteorological features), meaning that the graph will not contain
any arcs from a technical system-monitored tag to a weather feature.

The improvements described above have led to the modification of the Historian application
graphical user interface (GUI), where the new interface elements are presented in Figure 2. The user
may enable the Historian to be augmented with the predictive algorithm from the second layer of
the reference architecture. This action is only allowed if the historical weather data are used in the
relations and dependencies identification algorithm, at the first level.

Improvements in the developed solution from [26] were necessary for the second level of the
reference architecture. The section follows with the predictive algorithm development, placed at the
second level in the reference architecture. The algorithm predicts the future evolution of the monitored
technical system, based on the weather forecast and the relations and dependencies identified by the
first-level algorithms.
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Figure 2. The new graphical user interface (GUI) elements of the Historian application.

The execution of the developed prediction algorithm is conditioned by the following prerequisites:

• the dependencies graph generated by the first-level algorithms must be available;
• weather forecast data must be obtained from [28];
• the most recent values of the monitored tags (which are used as initial values in the prediction

process) must be extracted from the database (it is not necessary that they represent the current
values; if the current values are not available, then the most recent ones are used);

Considering the valid prerequisites, the prediction algorithm is launched in execution, and Figure 3
below summarizes an overview of the implemented algorithm.

Figure 3. Summarized overview of the implemented prediction algorithm.

When the predictive algorithm starts predicting values for a new day, it first initializes the
monitored tag values from the technical system. For the first day of prediction, the initial values for
the system tags are the most recent values from the database. For the remaining predicted days, the
initial values are the same as those computed/predicted by the algorithm for the previous day.
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The forecast weather data can be obtained from [28] for a maximum of 7 days (d) ahead, thus
leading to a breadth-first traversal of the dependencies graph for each of the chosen weather features
in each of the 7 d ahead. The standard breadth-first traversal algorithm was adjusted in order to
remember the node from which the traversal arrived at the current node, information required by the
function that processes the current node (process_node function is presented in Figure 3). The root node
of the breadth-first traversals is always a weather feature, meaning that, starting from the weather
features-predicted evolution, the algorithm can predict the evolution of the technical system tags,
based on the identified dependency between the weather features and the system characteristics that
were identified by the first-level algorithm. By executing the breadth-first traversal, all the existing
relations between the technical system tags are considered in a global manner. For instance, if technical
system characteristic A is directly influenced by temperature and technical system characteristic B is
inversely influenced by A, the weather forecast indicating an increase in temperature for the following
day, only computing characteristic A’s new value based on the temperature increase, does not offer an
accurate prediction of the system’s overall evolution, because the increase in A causes a decrease in B
as well. These kinds of cases are fully covered by the implemented algorithm, thus seeking to obtain a
realistic prediction.

The development of the process_node function is based on:

• computing the percent of change in the previous node (the node from which the arc leading to the
current node starts), by comparing the previous node’s current value and the node’s previous
day value.

• computing the sign of change (if the previous node’s value increased or decreased from the
previous day).

• using the percent of change in the previous node and the dependency from the graph, the
predictive algorithm computes the percent of change for the current node (more details regarding
the value of dependency in the graph can be found in [26]).

• the percent of change for the current node is further used alongside the current value of the
current node in order to identify the value of change (in units) for the current node. The value of
change is onwards used together with the current value of the current node, the corresponding
dependency from the graph, and the sign of change for the previous node, in order to compute
the new value of the current node.

The output of the implemented algorithm represents the predicted values for the monitored tags
from the technical system for 7 d of the prediction.

Thus far, the presented research implementation of the second layer follows a generic approach
and can extend the water domain to any industry that relates to weather data. However, in order to
apply and test the algorithm, a specific process is absolutely necessary.

After implementing the second layer of the reference architecture, it became obvious that the
relations and dependencies identification algorithm and the predictive algorithm could both receive a
significant accuracy improvement by capitalizing on different process-specific information, which can
be used during algorithm execution (e.g., knowing that a specific Open Platform Communications
Unified Architecture (OPC UA) tag signifies the ‘fault’ code for a pump can be used during analysis in
order to avoid false-positives identification for dependencies between the pump energy consumption
and other values; knowing that from a process point of view, the aeration process requires a blower
that implicitly consumes energy; knowing process flow of the specific process; etc.). The process-aware
Historian concept is essential for correct predictions, recipes, relevant data dependency analysis, and
constraint and objective function interpretation. To be able to gather and use those process-specific
information, the Historian application received a newly developed software module (Process Editor),
which allows the creation of a model of a monitored process, inside the Historian application. Multiple
processes can be defined, from which only one can be set as the currently used one, thus facilitating an
easy switch between different monitored processes. Therefore, the process-aware Historian will request
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essential data mapping from the user according to the predefined process components characteristics.
A defined process inside the Process Editor contains steps, which, in turn, contains items. There are
multiple predefined item types from which the user can choose (water source, air blower, pump,
flowmeter, water tank, etc.), each item having its own predefined characteristics (example for a
biological basin: Level, set point, oxygen level, NH4 level). For each characteristic, the user can set an
OPC UA tag from the server list, thus assigning a meaning to each monitored OPC UA tag. Figure 4
presents the editing of an item from the Process Editor, while Figure 5 presents a process of a WWTP,
as defined in the Historian Process Editor. Furthermore, the possibility of adding different constraints
to the process was also implemented and is illustrated in Figure 6.

 

Figure 4. Editing an item in the Historian Process Editor.

 
Figure 5. A process of a WWTP, as defined in the Historian Process Editor.

Considering the generic approach of the Historian application, which is intended at not restricting
it only to the water industry, even though predefined item types and characteristics are offered,
the implementation created a generic framework, which makes use of two Java String arrays (containing
all the predefined elements), for both building the required GUI elements and interacting with the
Extensible Markup Language (XML) structure used for storing the process definition. This approach
implies that adding and/or removing items or item characteristics requires just a small change in an
array of Strings (no additional changes are required at GUI elements building or XML interaction),
thus keeping the application suitable for easy expansion toward other industries.
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Figure 6. WWTP process constraints in the Historian Process Editor.

3. Results

With the purpose of testing and validating the newly implemented features described in the
previous section of this paper, multiple test cases were considered in the water industry, regarding a
real WWTP, owned and operated by the local water company.

The tests were conducted by making use of the most recent Historian application version available,
which included the implementation of both level 1 and 2 of the reference architecture, while being
installed on the Raspberry Pi platform.

Figure 7 details the seven test cases that were considered for validating the second level of the
reference architecture implementation. Each test case is covered over a period of time where data are
collected (a set of relevant process data from a WWTP can contain 200–2000 tags, although the total
number of tags from a WWTP can exceed 6000). From the entire set of tags, the monitored tags are
defined as relevant to predict regarding the weather evolution. The number of analyzed tags for value
prediction was 26 in all seven test cases. The 26 tags were chosen by the authors as being the most
relevant and having the most potential of being used in any future optimization, representing mostly
electric current consumptions for different pumps and air blowers and different water volumes inside
the treatment plant and water quality indicators, such as turbidity.

Initially, the Historian application was used to store the measured values of the chosen tags for
the time period presented in Figure 7, a task that did not involve any proactive features and could
have been carried out by any classic Historian application. Afterward, the proactive features were
assessed by executing the predictive algorithm for each test case, using the GUI controls illustrated
in Figure 2 above. The inputs for the test execution included historical weather data alongside the
stored values of the tags from the monitored system and started with the execution of the first level
algorithm (the improved version described in the previous section, deriving from that implemented
in [26]), which generated as output the dependencies graphs (a different one for each test case), such
as the example depicted in Figure 8 (corresponding to test case 7). In building the representation
from Figure 8, only the tags (and their corresponding relations) that were found dependent on at least
one weather characteristic were considered, where a drawing approach containing all the monitored
system tags (and their corresponding relations) made it difficult to follow.
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Figure 7. The 7 test cases considered for validation of the implementation.

Figure 8. The dependencies graph for test case 7.
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The dependencies graphs (such as that shown in Figure 8) were used as input, in addition to
the weather forecast (obtained from [28]) and the latest tags values at the moment of analysis, for the
predictive algorithm described in the previous section. The outcome consisted of the algorithm
successfully computing the predicted values of each of the 26 tags from the monitored system for the
following 7 d starting from the execution date, in each of the seven test cases. Basically, the developed
prediction algorithm accurately estimated the impact the forecasted weather will have on the technical
system, by identifying and understanding (from the historical stored data) the relations that exist
between the weather and the technical system tags. An example of the numerical results of the
algorithm execution (for test case 5) is presented in Figure 9, where the illustrated pdf document has
been exported directly from the Historian application.

 

Figure 9. Prediction algorithm output for test case 5.

4. Discussion

After computing the prediction, the Historian application was left in operation to store the values
of all the monitored tags for a period of 7 d (the prediction is made for 7 d ahead); thus, at the end of
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the 7 d for which predicted values were available, the actual values, recorded from the WWTP, were
also available, facilitating an assessment of the prediction algorithm viability.

For supporting an identification of conclusive aspects, in each of the seven test cases considered,
the predicted values were compared to the actual values; the most significant results, considering
all test cases, regarding the possibility of future optimizations and improvements in the monitored
technical system, as summarized in Figure 10, are displayed in the following more detailed explanation.

 

Figure 10. The most significant results of the test cases.

Figure 10 presents five OPC UA tags (CSF10_Curent, OPCTpH1UA, TGD1_Ep, CSF7_Curent,
and F2_Debit_T), whose values were identified as being related to the evolution of different weather
characteristics. For each of those tags, Figure 10 illustrates the predicted value (blue lines) and the actual
value (green lines) in each of the seven predicted days (the seven columns with headers containing
dates). The error lines (red lines) present the prediction error for each day (computed in percent, using
the following formula: E = (ABS (P – A) * 100) / A, where E = error, P = predicted value, A = actual
value, and ABS = function returning the absolute value). The last column (“Average Error”) represents
the arithmetic mean of the error values computed per day of the respective tag.

In the continuation of this section, the interpretation of the results presented in Figure 10 follows,
with regard to the optimization possibilities of a WWTP.

Tag CSF10_Curent represents the intensity (in amps) of the electric current consumed by a pump,
which is used for the transfer of wastewater from mechanical treatment to biological treatment inside
a WWTP. This pump intensifies in usage as more wastewater enters the system and has a similar
behavior as the bypass pump. Being able to accurately predict the usage of those pumps signifies the
capability to predict the usage amount of the bypass system, which also has a huge impact on both the
overall power consumption of the WWTP and the overall substances consumption of the WWTP. The
usage of the transfer pumps and the bypass system is dependent on rainfall for the majority of the
plants, leading to the conclusion that the prediction algorithm can bring significant added value to
this area.

Tag OPCTpH1UA signifies the water turbidity, measured at the exit of the WWTP, a characteristic
that shows the water quality after receiving the treatment inside the WWTP. This characteristic must
meet legal requirements regarding its limits, and predicting it helps in better estimates of the future
consumption of substances.

Tag TGD1_Ep represents the overall WWTP energy consumption, its accurate prediction being
imperatively needed for any energy-related optimization.

Tag CSF7_Curent represents the intensity (in amps) of the electric current consumed by an air
blower that introduces oxygen into a biological basin. Estimating this value accurately opens the
possibility of understanding and predicting the energy consumption of a biological basin and its weight
in the overall energy consumption.
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Tag F2_Debit_T signifies the water volume at the WWTP entrance, where its correct prediction
allows for an accurate estimate of the overall energy consumption, the overall substances consumption,
and the bypass system usage. The water volume at the WWTP entrance is directly influenced to a
large extent by meteorological characteristics (especially precipitation amount).

The differences between the considered test cases resulted from the various weather characteristics
encountered during each considered period, such that the authors could identify different possible
optimization paths to follow in the future third-level implementation of the reference architecture.

To conclude the results analysis, the seven test cases involved successfully capitalized on real
data recorded from the WWTP, with promising results. Unfortunately, the exact overall accuracy of
the predictive algorithm is very difficult to assess because it is directly influenced by the weather
forecast accuracy. For example, a difference of 1 ◦C between the forecasted temperature and the
actual temperature at a 5◦ value (average temperature during the period when the test cases were
considered) leads to a 20% error that is introduced by the weather forecast accuracy, not by the
implemented algorithm. In addition, analyzing historical data gathered in a period of time in which
certain meteorological phenomena did not occur (for example, it did not rain) could lead to the
situation in which the relations identifying algorithm does not find any dependency between some of
the meteorological characteristics and technical system tags (even if they could exist). This implies that
the algorithm’s overall accuracy could be better evaluated after considering some long-term test cases
(covering multiple months or even years).

Due partly to the exponential growth of the dependencies graph dimensions when a larger
number of variables are involved that makes it infeasible to track by human operators and partly to
the paper space constraints, a test case involving a larger number of variables (over 100) cannot be
presented in this section, by illustrating each step of the analysis, because the section presents examples
from different test cases that are suitable for highlighting the necessary aspects. Nevertheless, taking
into account all the tests performed by the authors, the latest Historian application version can be
considered validated as a solution capable of computing the impact of the weather characteristics over
a technical system from the industry, thus meeting the goals set for the current paper.

5. Conclusions

The state of the art in industrial automation research is focused toward the IIoT principles, guiding
the industry into a more intelligent era, characterized in the incipient phase that is taking place currently
by intelligent communication, improved interoperability, and connectivity. The transition toward this
new era has already begun in recent years and is currently in full swing, where the huge potential is
enabled by the new technologies being recognized by the industry as well. After this initial transition,
the framework and infrastructure will be in place in order to develop the next significant level of
improvements, in the form of intelligent, autonomous, proactive software applications, possessing
the capabilities of analyzing technical systems and optimizing them for maximized performance.
In the industry, a fog-based process-aware proactive Historian concept satisfies these requirements.
The current research is hesitant in offering such solutions.

Addressing the challenge of developing the future generation of proactive Historian applications
has been started by the authors with encouraging results. The current paper sustains this effort and
brings the solution a step closer to the final goal. The presented contributions are bringing both
improvements to the first level of the reference architecture, as well as contributions to the second level
of the reference architecture in the form of predicting process values regarding integrated weather data
as context data. The research is applied in the water industry, particularly for wastewater treatment
plants. The testing is realized using wastewater-specific test cases, and the obtained results are
promising. Although the water industry represents the main target of the current development, the
software solution follows a generic mindset, which does not limit it to any specific industry.

To conclude, the current paper falls in line with a series of research papers in what is already
starting to outline itself as a well-defined research direction, contributing to the efforts of achieving
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the fully functional, tested, validated, proactive Historian solution that will prove its value in
tomorrow’s industry.
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Abstract: Fractional calculus has been used intensely in recent years in control engineering to extend
the capabilities of the classical proportional–integral–derivative (PID) controller, but most tuning
techniques are based on the model of the process. The paper presents an experimental tuning
procedure for fractional-order proportional integral–proportional derivative (PI/PD) and PID-type
controllers that eliminates the need of a mathematical model for the process. The tuning procedure
consists in recreating the Bode magnitude plot using experimental tests and imposing the desired
shape of the closed loop system magnitude. The proposed method is validated in the field of active
vibration suppression by using an experimental set-up consisting of a smart beam.

Keywords: fractional calculus; fractional-order control; experimental tuning; smart beam; vibration
suppression

1. Introduction

When subjected to the task of improving the performance of a physical process, classical control
theory tackles the issue using two steps: mathematically modeling the dynamics of the process and
tuning a suitable controller for the identified model.

Several alternatives have been developed for controller tuning based on information gained from
the experimental response of the process. For most processes, transient and steady-state analysis of
the process offers enough information to obtain a decent controller. However, there is no guarantee
that the obtained controller is the ideal one. Experimental methods such as the well-known Ziegler
Nichols, Kappa–Tau method, Cohen–Coon , Tyreus–Luyben, Ciancone, and Marlin tune classical
proportional–integral–derivative (PID) controllers based on measurements of the different dynamics
of the process response [1–5]. In most cases, the controllers tuned using experimental procedures lead
to a closed loop system with poor robustness performance [6]. Robust autotuning has been proposed
by [7] where the phase and magnitude margins are specified. The problem of autotuning robustness is
also tackled in [8] by imposing the iso-damping property of the closed loop.

An increasing trend in controller design integrates the concept of fractional calculus. A rational
order for the differentiation and integration extends the classical PID controller to a fractional-order
PID. This type of controllers offer increased degrees of freedom and an increased stability as the
number of tuned parameters increases [9,10]. One of the popular methods for tuning fractional-order
controllers is by imposing frequency domain constraints such as the gain crossover frequency, phase
margin, sensitivity, and complementary sensitivity [11]. Other frequency domain tuning procedures
may also impose a flat phase around the gain crossover frequency guaranteeing a certain degree of
robustness to gain variations [12,13]. Optimization techniques have also been used to successfully
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tune fractional-order controllers in the frequency domain [14,15]. Over the years, fractional calculus
proved useful in both identification and control applications. Its numerous advantages have been
successfully tested and validated on a manifold of real-life processes such as flexible transmission [16],
active suspension [17], buck converters [18], hydraulic actuators [19], irrigation canals [20], pneumatic
pressure [21], industrial distributed systems [22], robotic manipulators [23], etc.

The autotuning approach has also been applied in the fractional calculus controller design [24–27].
A fractional-order experimental tuning procedure based on a single experiment has been explored
in [28]. The authors present the tuning of a fractional-order PD controller without using an identified
model for the process [29]. The process is fed by a sinusoidal input and the amplitude and phase shifts
of the output signal are measured. The output signal is then fed to a filter in order to determine the
derivative of the signal. From the obtained information regarding the output amplitude, phase and
the derivative slope, a fractional-order PD controller is determined. The Ziegler–Nichols method has
been extended in order to tune a fractional-order PI controller in [30]. A fractional-order PID controller
is tuned using a relay that takes the system at its stability margin in [31]. For the output signal, the
amplitude and phase are measured and using the derivative of the phase the fractional-order PID
controller is determined.

The presented work consists of joining the advantages of optimal controller tuning and
experimental procedures. An optimal controller tuning in the frequency domain consists of
determining the controller parameters such as the shape of the closed loop satisfies several constraints.
A fractional-order controller is more suitable for the task, as in the frequency domain, the first-order
integration/differentiation introduces a fixed slope of +20/−20 dB/decade and a fixed phase of
+90/−90 degrees. A fractional-order integration/differentiation offers the flexibility of variable
magnitude slope and a variable phase value. Therefore, a fractional controller is more suitable
to honor closed loop frequency domain constraints. The tuning of the fractional-order controller is
based on an optimization routine that considers the frequency response magnitude values obtained
experimentally.

The main application to the developed method is vibration mitigation. This specific field has
gained more popularity in recent years, especially in combination with fractional-order control.
The complexity of control tasks associated to vibration suppression systems requires the usage
of controllers based on more advanced mathematical tools, such as the fractional calculus branch.
Many fractional-order controller tuning methodologies have been developed and tested with the
sole purpose of vibration suppression. A fusion between a fractional-order disturbance observer and
PI fuzzy controller is proposed in [32] to reduce vibration amplitude in an industrial servo system.
Vibrations of an aeroplane wing modeled as a smart beam are suppressed using fractional-order
PID-type controllers in [12,13,33–35]. Structural vibrations of uncertain systems are mitigated using
a fractional-order sliding mode controller in [36]. Residual vibrations are tackled in [37] using
adaptive-predictive fractional-order control strategies, whereas [38] uses optimal fractional-order
controllers for AC motor vibrations.

The previously mentioned works use complex fractional-order tuning strategies, based on
available models of vibration process’ dynamics. The control development is difficult and requires
an advanced fractional-order background of the control engineer. In contrast, the experimental
fractional-order tuning method presented throughout this study does not require any fractional
order background, making the method ideal in industrial applications. From an engineer’s point of
view, the presented fractional-order controller tuning procedure consists of two steps: The first one
implies performing several experiments on the vibration platform, reading the vibration amplitude
and experimental approximation of the resonant peak. The second step requires the choice of new
magnitude values such as to ensure that the magnitude plot around the magnitude peak is flattened.
The ease of application as well as the guaranteed vibration suppression results make the method ideal
for industrial scenarios.
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The novelty of the presented study is asserted in determining optimal fractional-order controller
parameters based solely on the experimental response of the process. The method overcomes
drawbacks encountered in classical auto-tuning practices by imposing the magnitude and phase
of the closed loop system. A certain degree of robustness can also be assured is the phase margin
constraints are imposed to satisfy the iso-damping property. The proposed strategy is appropriate to
tune fractional-order proportional derivative (PD), proportional integral (PI), and PID controllers with
similar tuning effort.

The developed methodology is validated experimentally on a vibration unit consisting of a
smart beam. The movement of the beam is controlled using piezoelectric actuators placed near
the fixed end, whereas the displacement is measured with a strain gauge sensor. The choice of the
experimental platform lies in its versatility: the smart beam can be correlated to physical systems
such as aeroplane wings, helicopter rotors, cantilever beams, suspended platforms, blades of various
heavy-duty machinery, etc.

The paper presents the mathematical background of the proposed tuning procedure in Section 2.
The method is viable to tune fractional-order PI-, PD-, and PID-type of controllers. Section 3 presents
the experimental platform consisting of a smart beam used to prove the efficacy of the proposed
method. A fractional-order PD controller is tuned in Section 4, whereas a fractional-order PID is tuned
in Section 5. The obtained controllers are validated by analyzing disturbance rejection capabilities.

2. Proposed Tuning Method

The proposed tuning procedure is based on experimental tests without the need of a model for
the process. By excluding the model, one can also remove modeling errors and uncertainties, and
it also eliminates the need of using a fractional-order model or a high order model in the case of
more complex processes. The method has its basis in the Bode magnitude plot which can be created
experimentally by feeding the process a series of sine wave signals of a given amplitude Ai and a
given frequency ω. As can be seen in Figure 1, for a sinusoidal input, the output of the process will
be a sinusoidal output of the same given frequency ω, but with a different amplitude Ao and a phase
shift τ.

Figure 1. Sinusoidal input and output.

Performing several sine wave tests recreates part of the magnitude frequency diagram through
points. The method resides solely on measuring the amplitudes of the input and output signals
and computing the corresponding frequency response magnitude values and does not include
measurements regarding the time shift, facilitating its ease in real-life applications. The minimum
number of points needed resides in the type of the desired controller. Every chosen point of
the Bode diagram is part of a system of equations that needs to be solved in order to find the
controller parameters, therefore the minimum number of tests needed is equal to the number of
controller parameters.

After performing the experimental tests and determining several magnitude values at their
corresponding frequencies, the process Bode magnitude plot can be recreated. Next, the shape of the
closed loop can be imposed by analyzing the actual values of the open loop magnitude. Taking as an
example the vibration phenomenon, which exhibits a resonant characteristic, the magnitude at the
resonant frequency should be close to 0, as well as the magnitude at the frequencies near the resonance.
In real-life situations, this results in a diminished amplitude of oscillation with less visible effects.
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Starting from the following values of the process’ magnitude, obtained via the experimental sine
tests as described above, for n different frequencies:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|G(ω1)| = magG1 dB,

|G(ω2)| = magG2 dB,

...

|G(ωn)| = magGn dB.

(1)

The desired magnitude and phase of the closed loop at the chosen frequencies are chosen such as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|H0(ω1)| = magH1 dB, ∠(H0(ω1)) = phaseH1 deg,

|H0(ω2)| = magH2 dB, ∠(H0(ω2)) = phaseH2 deg,

...

|H0(ωn)| = magHn dB, ∠(H0(ωn)) = phaseHn deg.

(2)

Choosing the closed loop design specifications at specific frequencies results in shaping the
closed loop magnitude and phase diagrams. The main focus of the specifications is to guarantee the
disturbance rejection around the resonant frequency by imposing the magnitude value at the resonant
frequency close to 0dB. The other magnitude values are chosen such that the slope of the magnitude
graph is smoother than the uncompensated system implying an increased damping. The phase
constraints are chosen such that the close loop system is stable and a certain degree of robustness is
obtained through the iso-damping property.

The closed loop transfer function written depending on the process and the controller for a
negative feedback system can be written as

H0(s) =
G(s)C(s)

1 + G(s)C(s)
, (3)

from which the open loop can be deduced as being

G(s)C(s) =
H0(s)

1 − H0(s)
. (4)

Mapping the Laplace domain to the frequency domain by replacing s = jω, the frequency domain
open loop equation becomes

G(jω)C(jω) =
H0(jω)

1 − H0(jω)
. (5)

Expressing the magnitude of the closed loop in dB is done by

|G(jω)C(jω)|dB = 20 log10
|H0(jω)|

|1 − H0.(jω)| . (6)

The magnitude of the controller in dB is written as

|C(jω)|dB = |G(jω)C(jω)|dB − |G(jω)|dB. (7)

The magnitude of the open loop, denoted by |G(jω)C(jω)|, can be determined from Equation (5)
if the magnitude of 1 − H0(jω) is determined. In order to do so, the closed loop is written as a sum of
its real and imaginary parts, denoted by A(ω) and B(ω), respectively.

H0(jω) = A(ω) + jB(ω). (8)
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The real and imaginary parts give the magnitude of the open loop

|H0(jω)| =
√

A(ω)2 + B(ω)2 (9)

and the phase

∠H0(jω) = arctan
B(ω)

A(ω)
. (10)

Equation (2) imposes values for the closed loop magnitude and phase such that some design
specifications are met. Equations (9) and (10) form a system of two equations with two unknowns,
A(ω) and B(ω). By solving the system created, the values of the real and imaginary parts are obtained.
Replacing the magnitudes of |1 − H0(jω)| with the values of A(ω) and B(ω) allows the computation
of the values for |G(jω)C(jω)|dB based on Equation (6) and further allows for the estimation of the
values of the magnitude of the controller from Equation (7).

Repeating the steps for n test frequencies leads to a system of n equations where the known
variable is the magnitude of the controller and the unknowns are the controller parameters.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|C(ω1)| = magC1 dB,

|C(ω2)| = magC2 dB,

...

|C(ωn)| = magCn dB.

(11)

Customizing the system of equations for the desired type of controller and solving the system
should lead to the controller parameters. The system should be solved using numerical optimization
routines, such that the best combination of parameters is found. It is highly recommended to take into
consideration the following.

• The minimum number of equations needed, denoted by n, depends on the complexity of the
chosen controller. The minimum n should be greater or equal than the number of parameters that
need to be tuned.

• A constrained routine can be chosen to perform the optimization such that one of the equations
from the system is minimized, while the other equations are regarded as constraints.

• As in any optimization algorithm, the developed solution depends on the chosen starting point
and the initial points should be chosen realistically. For example, in the case of a fractional-order
differentiation, the derivative order belongs to the interval (0, 1].

The proposed tuning method is suitable for tuning classical PID type controllers as well as
their fractional-order extensions. A generalization of the PI/PD controller is characterized by the
following equation,

CFO−PI/PD = kp + kdsμ, (12)

where kp and ki are the proportional and derivative gains, whereas μ gives the type of the controller,

• μ = −1 integer order PI controller
• μ = 1 integer order PD controller
• μ ∈ (−1, 0) fractional-order PI controller
• μ ∈ (0, 1) fractional-order PD controller

Choosing this type of controller for the process requires a minimum of three experimental frequency
domain tests, as there are three parameters that need to be tuned. If the results obtained by the
fractional-order PI/PD controller are not satisfactory, a more complex fractional-order PID may be
required:

CFO−PID = kp + kdsμ +
ki

sλ
, (13)
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where kp, kd, and ki are the proportional, derivative, and integral gains, whereas μ ∈ (0, 1] denotes the
order of the differentiation and λ ∈ [−1, 0) expresses the order of the integration. The fractional PID
requires a minimum number n = 5 of experimental tests in order to develop the system needed for the
controller optimization.

The focus of the method is mitigating vibration. The optimization approach is related to the
frequency domain magnitude and phase. The method guarantees the computation of a viable
fractional-order controller that efficiently suppresses vibration. It is important to emphasize that
the efficiency of the obtained fractional-order controller lies in a stable, robust, closed-loop system that
reduces the effect of the vibration on the process. The tuning methodology is focused on flattening the
resonant peak that causes real-life vibration mitigation, without specific attention to the closed-loop
system’s performance such as settling time.

As the method is an experimental one and does not require a mathematical model for the process,
validating the method will be done on an experimental platform.

3. Experimental Platform

The experimental setup consists of a 250 mm long, 20 mm wide, and 1 mm thick aluminum beam
whose vibration is being measured and controlled. The beam is equipped with 4 piezoelectric DuraAct
P-878 Power Patch PZT patches, placed two on each side, near the fixed end. Figure 2 presents a 3D
model of the set-up. The purpose of two patches from one side is to generate beam oscillations with a
given frequency and amplitude, thus giving the possibility to generate a certain disturbance, whereas
the other two are used for testing the developed controllers. The fractional controllers are evaluated
based on disturbance rejection; the purpose of the controllers being to maintain the free end of the
beam from vibrating.

Figure 2. 3D model of the experimental set-up.

The control signal is computed in real-time using LabVIEWTM and is sent to the beam using the
CompactRIOTM 9014 controller. The NI 9263 output module excites the PZT patches on the beam,
while the NI 9230 input module measures the displacement of the free end using the 120 ohm Omega
Prewired KFG-5-120-C1-11L1M2R strain gauge sensors. An additional E-509.X3 module from Physik
Instrumente amplifies the signal received from the strain gause sensors, while the E-503.00 amplifies
the signal from the PZT patches. A block diagram of the set-up is presented in Figure 3 .

Figure 3. Block diagram of the experimental set-up.
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The position of the patches on the beam and a more detailed view of the real workbench is
provided in Figure 4.

Figure 4. Snapshot of the experimental set-up.

Several experimental tests were performed for different frequencies, and the response of the beam
is presented in the figures below. The frequencies chosen are around the resonant frequency, as for this
frequency the movement of the beam has the greatest amplitude. The first resonant frequency of the
smart beam has been experimentally determined at 14 Hz, as can be seen in Figure 5c.
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(a) Response of the beam to a sine wave of frequency
9 Hz and amplitude 1 V
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(b) Response of the beam to a sine wave of frequency
13 Hz and amplitude 1 V
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(c) Response of the beam to a sine wave of frequency
14 Hz and amplitude 1V
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(d) Response of the beam to a sine wave of frequency
15 Hz and amplitude 1 V

Figure 5. Cont.
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(e) Response of the beam to a sine wave of frequency
17 Hz and amplitude 1 V
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(f) Response of the beam to a sine wave of frequency
18 Hz and amplitude 1 V
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(g) Response of the beam to a sine wave of frequency
25 Hz and amplitude 1 V
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(h) Response of the beam to a sine wave of frequency
40 Hz and amplitude 1 V

Figure 5. Experimental response of the beam to sinusoidal inputs of different frequencies.

The Bode magnitude plot was created from data given in Figure 5. Taking as an example Figure 5c,
where a sine wave of frequency 14 Hz is given as an input, the measured output amplitude is 0.2355
V. Transforming 14 Hz to rad/s with the formula frad/s = fHz ∗ 2 ∗ π gives 87.9645 rad/s, whereas
0.2355V to dB using AdB = 20 ∗ log10 A gives −12.5602 dB, giving one point of the Bode diagram from
Figure 6. Due to the physical limitations of the test, it is impossible to measure the amplitude for
frequencies outside the measured domain because of the low ratio between the measured amplitude
and noise sensitivity.
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Figure 6. Experimental Bode magnitude plot.

4. Controller Tuning

4.1. Optimization Guidelines

The tuning methodology presented in Section 2 is mainly focused on shaping the Bode magnitude
plot. The controller tuning procedure is transformed into a system with multiple nonlinear equations
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composed of the magnitude of the system at various frequencies. The objective is to find an optimal
shape of the magnitude plot that flattens the resonant peak of the system. The optimization can be
realized in programs such as MATLAB using functions such as the fmincon function provided by
the Optimization Toolbox. As in any optimization routine, the starting point for the parameters is
paramount in obtaining a valid solution. The proper choice of the pivot point ensures that the provided
solution avoids the local minima problem.

When dealing with a fractional-order PID controller, there are five parameters that need to be
computed through the optimization procedure: A relevant starting point should be chosen such that
the obtained controller is viable in a real life implementation. The fractional orders of differentiation
and integration span in the [0 1] interval. Therefore, any value inside the interval represents a correct
choice for the initial condition in the optimization.

However, for the case of the proportional, integral, and derivative gains, the choice for the
initial values is more difficult. Illustrating the basic principles on choosing relevant starting points, a
fractional-order PD transfer function is considered:

Hc(s) = kp (1 + Tdsμ) , (14)

where kp is the proportional gain, Td is the derivative time constant, and μ is the fractional order of
differentiation μ ∈ [0 1].

The effect of the fractional-order controller on the magnitude plot will be analyzed further.
The magnitude of Hc(s) can be written as |Hc(jω)| = |kp||1 + Td(jω)μ|. The effects of the magnitude
of Hc(jω) will be analyzed further considering the individual contribution of |kp| and |1 + Td(jω)μ|.

In an open-loop system, Hol(jω) = Hp(jω)Hc(jω), the magnitude representation of Hol(jω) is
realized through graphical addition between the magnitude of Hp(jω) and Hc(jω). The same applies
for the individual terms of Hc(jω). The proportional gain and derivative time constant are computed
based on the assumption that the contribution of every term of the controller is maximum. Looking
at the process magnitude plot in Figure 6, the resonant magnitude should be moved closed to 0 dB,
according to the methodology presented in Section 2. Therefore, the controller should move the process’
magnitude upwards by approximately 15 dB. Assuming that the proportional gain causes the 15 dB
movement, one may write that |kp| = 15dB = 5.62. Therefore, any value close to 5.62 may be chosen
as the optimization starting point of the proportional gain.

Furthermore, the starting point for the derivative time constant can be approximated using the
assumption that |1 + Td(jω)μ| introduces the 15dB magnitude shift. Using de Moivre’s formula, one
may write 1 + Td(jω)μ = 1 + Tdωμ

(
cos μπ

2 + jsin μπ
2
)
. The magnitude of the derivative part can be

written as

|1 + Td(jω)μ| =
√(

1 + Tdωμ cos
μπ

2

)2
+
(

Tdωμsin
μπ

2

)2
. (15)

Opening the brackets and using the trigonometric property sin2 μπ
2 + cos2 μπ

2 = 1 gives

|1 + Td(jω)μ| =
√

1 + 2Tdωμ cos
μπ

2
+ T2

d ω2μ = 15dB. (16)

Replacing ω = ωr = 14Hz = 87.9rad/s, based on Figure 6, leads to

|1 + Td(jωr)
μ| =

√
1 + 2Td87.9μ cos

μπ

2
+ T2

d 87.92μ = 5.62. (17)

Knowing that μ ∈ [0 1] and evaluating the solution of (17) for μ = 0 gives Td1 = −175.37 and
Td2 = 0.1744, whereas for μ = 1, Td = ±0.0629. Note that Td should always be greater than 0.
Therefore, the starting point of Td can be chosen any value around [0.0629 0.1744].
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The guidelines can be extended for the fractional-order PI or PID controller. Note that in the
following subsections the PD controller transfer function is slightly different and the derivative gain
kd = Tdkp interval is kd ∈ [0.3535 0.9801].

4.2. Fractional Order PI/PD Tuning

A fractional-order PD controller is first designed to suppress unwanted vibrations in the smart
beam. As the controller’s transfer function has three parameters that have to be computed: kp, kd, and
μ, three points are computed on the magnitude diagram as follows,⎧⎪⎪⎨

⎪⎪⎩
|G(ω1)| = −51.52 dB, ω1 = 56.55 rad/s,

|G(ω2)| = −41.25 dB, ω2 = 107 rad/s,

|G(ω3)| = −52.55 dB, ω3 = 251.3 rad/s.

(18)

The three frequencies are chosen as follows; ω2 is close to the resonant frequency of the beam;
and ω1 and ω3 are chosen to enclose the resonant frequency, and for the beam case they are chosen as
the smallest/greatest frequency for which the magnitude of the process can be computed due to the
physical limitations of the experimental set-up. The imposed magnitude and phase closed loop values
for the chosen points are

⎧⎪⎪⎨
⎪⎪⎩
|H0(ω1)| = −12 dB, ∠(H0(ω1)) = −0.1 deg,

|H0(ω2)| = −1 dB, ∠(H0(ω2)) = −60 deg,

|H0(ω3)| = −20 dB, ∠(H0(ω3)) = −120 deg.

(19)

The constraints are imposed to ensure a lower resonant peak, larger damping, and a stable closed
loop system. The graphical representation of the chosen constraints can be seen in Figure 7.
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Figure 7. Frequency domain magnitude constraints for fractional-order proportional integral–proportional
derivative (PI/PD) tuning (blue—computed magnitude of the open loop system; red—imposed
magnitude for the closed loop system).

The optimization routine searches the solution of the minimization problem for kp ∈ (0 100),
kd ∈ (0 100), and μ ∈ [−1 1]. The initial points chosen for the parameters are kp = 15, kd = 0.5, and
μ = 0.85. The controller determined that honors the imposed constraints for the closed loop magnitude
and phase is a fractional-order PD controller:

CFO−PI/PD = 8 + 0.8888 s0.7683. (20)

The obtained fractional-order PD controller is approximated to a 6th-order discrete transfer
function using the method in [39], which is based on mapping the time Laplace operator directly into
discrete time. The controller is validated in terms of disturbance rejection.
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First, a sinusoidal input of the resonant frequency, 14 Hz, and an amplitude of 1V is given as a
disturbance and the response of the beam is presented in Figure 8a. The uncompensated response
of the beam leads to an amplitude of 0.25 V. The action of the controller is included at t = 25 s, and
the fractional PD controller reduces the oscillation amplitude by 80% with a settling time of 2.5 s.
The obtained controller is validated on a larger interval by giving a swept sine input with frequencies
between 9 and 90Hz. Two resonant frequencies, representing the first and second flexural modes of
the beam, can be visible at 14 Hz and 83 Hz. Figure 8b presents a test performed with the swept sine
input for the uncompensated system and two more tests with the control action turned on. It can be
seen that the amplitude of the beam is lowered for the entire frequency range.
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(a) Experimental response of the beam when subjected to a sinusoidal disturbance of frequency 14 Hz and
amplitude 1 V.
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(b) Experimental response of the beam when subjected to a swept sine disturbance between 9 Hz and 90 Hz.

Figure 8. Experimental disturbance rejection of the closed loop system with the fractional-order
PD controller.

4.3. Fractional-Order PID Tuning

In the previous section, the experimental method was successfully used to tune a fractional-order
PD controller. The obtained controller proved useful in the case of disturbance rejection making the
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controller suitable for the chosen process. However, to prove the efficacy of the proposed method, a
more complex fractional-order PID controller is tuned. The transfer function of the fractional PID from
(13) has five parameters: kp, ki, kd, λ, and μ. Therefore, a minimum number of five points must be
chosen from the magnitude plot.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|G(ω1)| = −51.52 dB, ω1 = 56.55 rad/s,

|G(ω2)| = −38.87 dB, ω2 = 78.54rad/s,

|G(ω3)| = −12.56 dB, ω3 = 87.96 rad/s,

|G(ω4)| = −41.25 dB, ω4 = 107 rad/s,

|G(ω5)| = −52.55 dB, ω5 = 251.3 rad/s.

(21)

The frequencies from Equation (17) are chosen as follows; ω3 is the resonant frequency of the
beam as can be seen in Figure 6; ω1 and ω5 are lower and upper bounds of the measured frequencies
interval, respectively; and ω2 and ω4 are evenly distributed frequencies between the resonant peak
frequency and the upper and lower bounds, respectively.

The closed loop magnitude and phase are imposed as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|H0(ω1)| = −12 dB, ∠(H0(ω1)) = −0.1 deg,

|H0(ω2)| = −2 dB, ∠(H0(ω2)) = −60 deg,

|H0(ω3)| = −1 dB, ∠(H0(ω3)) = −120 deg,

|H0(ω4)| = −4 dB, ∠(H0(ω4)) = −120 deg,

|H0(ω5)| = −20 dB, ∠(H0(ω5)) = −120 deg.

(22)

Figure 9 presents the chosen values for the magnitude. The magnitude values are chosen in order
to reduce the amplitude of the closed loop system at the resonant frequency, therefore ensuring a
lower damping. The phase values are chosen such that the closed loop system is stable. The advantage
of using a fractional-order PID controller over a fractional-order PD is that robustness can also be
a design specification through the iso-damping property. The phase constraints are imposed to be
∠H0(ω3) = ∠H0(ω4) = ∠H0(ω5) = −120 deg, resulting in a constant phase margin φm = 60 deg
between the frequencies belonging to the interval [ω3, ω5], ensuring a certain robustness to small
gain variations.
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Figure 9. Frequency domain magnitude constraints for fractional-order proportional–integral–
derivative (PID) tuning (blue—experimental magnitude values; red—imposed magnitude values
for the closed loop system).

Initial points have been given for the optimization routine consisting of kp = 15, kd = 0.05,
ki = 0.05, μ = 0.85 and λ = 0.15. The obtained fractional-order PID controller by performing the
minimization for kp ∈ (0, 100), kd ∈ (0, 100), ki ∈ (0, 100), μ ∈ [0, 1], and λ ∈ [0, 1] is given by

CFO−PID = 15.4506 + 0.8278s0.8220 +
0.1

s0.1049 . (23)

The obtained fractional-order PID controller has been approximated using the same complexity,
6th order, and the same settling time, Ts = 0.005 s, as the fractional-order PD controller. Implementing
the PID controller on the experimental unit successfully diminishes the effect of the disturbance, as
can be seen in Figure 10a,b. For a sinusoidal disturbance of 14 Hz and 1V the oscillation amplitude is
reduced by 80% and the settling time is around 3 s. The same tests are performed as in the case of the
fractional-order PD controller, but the results are different because the two controllers were tuned with
different closed loop magnitude and phase constraints. The purpose of tuning the PID controller is
not to outperform the fractional PD, but to prove that the method is applicable to different controllers.
The fractional-order PD and PID are different controllers tuned using the same method and validated
on the same equipment, under the same conditions.
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(a) Experimental response of the beam when subjected to a sinusoidal disturbance of frequency 14 Hz and
amplitude 1 V.
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(b) Experimental response of the beam when subjected to a swept sine disturbance between 9 Hz and 90 Hz.

Figure 10. Experimental disturbance rejection of the closed loop system with the fractional-order PID
controller.

4.4. Robustness Analysis

Robustness to gain variations is indirectly imposed by the constraints for the phase in the interval
comprising the resonant frequency. A straight line for the phase in an interval of frequencies ensure
that, for small gain variations, the phase margin remains unchanged.

The tuning of the fractional-order PID controller ensures robustness by specifying closed loop
phase values in order to honor the iso-damping property. The closed loop phase constraints from
Equation (18) strive to achieve a flat phase between ω3 = 87.96 rad/s and ω5 = 251.3 rad/s, attaining
robustness to small gain variations.

In order to experimentally test the robustness of the obtained controllers from Equations (16) and
(19), weights have been added to the free end of the beam such that the resonant frequency is moved
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from 14 Hz to 12.5 Hz and 11.7 Hz, respectively. Two Neodymium–Iron–Boron permanent magnetic
disks with 10mm diameter, 5 mm height, 30 g weight, and 1kg strength were placed on each side of
the free end of the beam. The magnets were attached at a 3 cm distance to the moving end, centered
with respect to the upper and lower margins of the beam. The tuned fractional-order PD and PID
controllers were tested for sinusoidal disturbances of the new resonant frequency.

Figure 11a,b presents the data obtained using the fractional controllers when the resonant
frequency of the beam is 12.5 Hz. For the fractional-order PD controller, the settling time is 1.5
s, whereas the PID attenuates and the vibration in approximately 1 s. The oscillation amplitude is
reduced by 75% with the fractional-order PD and by 80% with the fractional-order PID controller.
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(a) Experimental response of the beam with the
fractional PD controller when subjected to a sinusoidal
disturbance of frequency 12.5 Hz and amplitude 1 V
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(b) Experimental response of the beam with the
fractional PID controller when subjected to a sinusoidal
disturbance of frequency 12.5 Hz and amplitude 1 V
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(c) Experimental response of the beam with the
fractional PD controller when subjected to a sinusoidal
disturbance of frequency 11.7 Hz and amplitude 1 V
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(d) Experimental response of the beam with the
fractional PID controller when subjected to a sinusoidal
disturbance of frequency 11.7 Hz and amplitude 1 V

Figure 11. Experimental robustness validation when altering the resonant frequency of the beam.

Another test is performed when the resonant frequency of the beam is 11.7 Hz and the
experimental data obtained with the two controllers is represented in Figure 11c,d. The settling time
offered by the fractional-order PD is 2.5 s and the amplitude is reduced by 60%. The fractional-order
PID controller reduces the amplitude by 78% in a settling time less than 2 s.

The fractional-order PID overall performance in terms of oscillation amplitude and settling time
attenuation is better than the fractional-order PD performance, proving experimentally that the PID
controller is more robust. The theoretical explanation is that in the case of the fractional-order PD
controller, as there were three constraints imposed, only one constraint was imposed for the phase
near the resonant frequency being impossible to impose a robustness condition. However, for the
fractional-order PID, three equal phase margin constraints are imposed, leading to a closed loop flat
phase around the resonant frequency making the controller robust.
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5. Conclusions

The paper presents a tuning procedure for optimal fractional-order controllers based on the
frequency domain response. The need of a process model is completely eliminated, making the
method easily applicable to complex processes where a higher order model is needed. By eliminating
the need of knowing the mathematical representation of the process’ dynamics, the tuning procedure
eliminates modeling errors.

Most experimental methods are based on measuring both the amplitude and the time shift of
the output signal. However, for the chosen process, the presented work has the major advantage of
measuring only the output magnitude, completely excluding time shift measurements.

The chosen process for the method validation is a smart beam equipped with piezoelectric
actuators. Two fractional-order controllers are tuned with the purpose of diminishing the effect of
disturbances on the beam. A fractional-order PD controller and a more complex, fractional-order
PID are determined through constrained optimization routines. The tuning process consists first in
determining the process frequency response magnitude as some key frequencies based on experimental
tests. Next, the closed loop frequency response magnitude and phase values are imposed at these
key frequencies, according to some performance specifications. Using these closed loop frequency
response magnitude and phase values, the constrained optimization routine is used to estimate the
fractional-order controller parameters. The tuning effort is the same for any type of fractional-order
controller chosen. The difference between tuning different controllers is the number of chosen points
from the frequency diagram as optimization constraints.

The experimental results prove that the proposed method can be successfully used to tune
fractional-order controllers in the absence of a process model.
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Abstract: The present study uses linear quadratic regulator (LQR) theory to control a vibratory
system modeled by a fractional-order differential equation. First, as an example of such a vibra-
tory system, a viscoelastically damped structure is selected. Second, a fractional-order LQR is
designed for a system in which fractional-order differential terms are contained in the equation of
motion. An iteration-based method for solving the algebraic Riccati equation is proposed in order
to obtain the feedback gains for the fractional-order LQR. Third, a fractional-order state observer
is constructed in order to estimate the states originating from the fractional-order derivative term.
Fourth, numerical simulations are presented using a numerical calculation method correspond-
ing to a fractional-order state equation. Finally, the numerical simulation results demonstrate that
the fractional-order LQR control can suppress vibrations occurring in the vibratory system with
viscoelastic damping.

Keywords: vibration; control; fractional calculus; linear quadratic regulator (LQR); algebraic Riccati
equation; iteration; state observer; viscoelasticity

1. Introduction

Fractional calculus is a form of calculus in which the order of differentiation and
integration is expanded or generalized from an integer number to a non-integer number.
However, fractional calculus is not novel or strange and has a long history that traces
back to Leibniz, who was one of the founders of calculus [1]. During these past 30 years,
fractional calculus has been applied in engineering fields, especially in control engineering.
In control engineering, dynamical systems, which cannot be described sufficiently by
conventional integer-order calculus, have been modeled with fractional calculus, and con-
trollers that use fractional calculus have been designed. In other words, a revolution in the
construction methods of control system has occurred.

Fractional calculus has been introduced into proportional-integral-differential (PID)
control systems as a typical classical control method. Several examples can be cited: PIλDμ

control [2], robust fractional-order PI control using the auto-tuning method [3], the applica-
tion of this fractional-order PI control method to a manipulator robot [4], fractional-order
PD control of a smart beam [5,6], a tuning rule for a fractional-order PD controller for
a second-order system [7], fractional-order PID control for a magnetically levitated sys-
tem [8], fractional-order PD control to suppress vibrations that appear in a three-story struc-
ture [9], a graphical design method for tuning a fractional-order PI or PD controller [10],
a fractional-order PID controller to suppress vibration that occurs in a cantilever beam
using electromagnetic actuators [11], the meaning of the parameters used in fractional-
order PID controllers [12], fractional-order PID control for a pumped storage unit [13],
fractional-order PID load-frequency control for a power system [14], tuning rules for
fractional-order PID controllers [15], PIλDμ control for trajectory tracking by a 3-DOF
parallel manipulator [16], fractional-order PID control for an automatic voltage regulating

Appl. Sci. 2021, 11, 3252. https://doi.org/10.3390/app11073252 https://www.mdpi.com/journal/applsci

105



Appl. Sci. 2021, 11, 3252

system [17], and fractional-order PID control for a hydraulic turbine regulating system [18].
Thus, research examples are too numerous to mention.

Fractional calculus has also been used for linear quadratic regulator (LQR) control as
a typical modern control theory. In the sense that the controller is applicable to controlled
systems with fractional-order dynamics, we use the terminology “fractional-order LQR”
in this paper. Similarly, some examples can be cited: a state-feedback LQR controller for
fractional-order systems [19], an LQR-based PID controller design using a fractional-order
integral performance index [20], a fractional-order LQR [21], a fractional-order LQR control
to suppress vibrations appearing in a three-story building [22], and fractional-order PID
control for time-delay systems [23]. Again, research examples are too numerous to count.
However, it is known that the procedure to derive a fractional-order LQR, as described in a
previous report [21], is too complicated to be practical.

Therefore, in the present paper, a novel iteration-based method is first proposed to
solve the algebraic Riccati equation to derive the fractional-order LQR. Since all states of the
controlled system are fed back in the LQR control scheme, all of the states are assumed to be
detected. However, in reality, it is very difficult to measure the states originating from the
fractional-order derivative terms. A state observer is then established in order to estimate
all of the states, including the fractional-order derivative states. The fractional-order LQR
control system is then constructed using the estimated states. Next, by way of example,
a viscoelastic damper system modeled with a fractional-order differential equation is con-
sidered, and fractional-order LQR control is conducted for the viscoelastic damper system.
The effectiveness of the proposed design method is then confirmed. Finally, the proposed
fractional-order LQR and the fractional-order LQR derived using the method proposed by
Sierociuk and Vinagre [19] are compared with respect to control effects.

The remainder of the present paper is organized as follows. Some basic concepts,
such as stability, controllability, and observability for a fractional-order dynamical system,
are explained in Section 2. After a viscoelastic damper system is selected as a controlled
object in Section 3, the proposed design method for fractional-order LQR control is ex-
plained in Section 4. In Section 5, a fractional-order state observer is constructed in order
to estimate the fractional-order derivative states, which is required for the realization of
fractional-order LQR. A numerical calculation method corresponding to a fractional-order
dynamical system is introduced in Section 6. In Section 7, numerical simulation results
reveal that the fractional-order LQR, from which feedback gains are derived with the
proposed design method, can effectively suppress vibrations that occur in the viscoelastic
damper system. Finally, concluding remarks are summarized in Section 8.

2. Background

2.1. Stability of Fractional-Order Dynamical System

Denoting the differential operator as D, a linear fractional-order autonomous system
can be given as follows:

Dαx(t) = Ax(t), x(0) = x0, (1)

where α is the non-integer order of differentiation, x(t) is the state vector and A is the
system matrix.

The dynamical behavior and stability of a fractional-order dynamical system can
be analyzed by investigating the poles of the system on the complex plane (s-plane).
However, in the case of a fractional-order dynamical system, such as Equation (1), the poles
need to be investigated on a new sα-plane. In the present paper, the sα-plane is called the
ω-plane. Here, ω can be defined as follows:

ω = sα, (2)

where s is given as:
s = reiθ . (3)

106



Appl. Sci. 2021, 11, 3252

Then, the definitions given by Equations (2) and (3) yield the following:

ω = sα =
(

reiθ
)α

= rαeiαθ . (4)

Using Equation (4), lines on the s-plane can be mapped to corresponding lines on the
ω-plane. Practically, let us consider the case in which α = 0.5. The imaginary axis on the
s-plane is expressed as θ = ±π/2, and 0 < r < +∞. Then, the imaginary axis on the
ω-plane can be expressed as follows:

ω = r
1
2 e±i π

4 . (5)

Furthermore, the negative part of the real axis on the s-plane is expressed as θ = ±π, and
0 < r < +∞. Then, the negative part of the real axis on the ω-plane can be expressed as
follows:

ω = r
1
2 e±i π

2 . (6)

Thus, the imaginary axis and the negative part of the real axis can be mapped on the
ω-plane as illustrated in Figure 1.

Figure 1. Imaginary axis (red line) and negative part of real axis (blue line) on ω-plane (α = 1
2 ).

Classification of the dynamical behavior and stability in each region in Figure 1 is
as follows [24]: unstable in region 1©, damped oscillation in region 2©, and overdamping
in region 3©. Therefore, the necessary and sufficient condition for the linear autonomous
system given in Equation (1) to be asymptotically stable for an arbitrary initial value x0
is that the arguments of the eigenvalues λi of the system matrix A satisfy the following
inequality [25,26]:

|arg(λi)| > απ

2
, (i = 1, 2, · · · n), (7)

where n is the order of the system.

2.2. Controllability of Fractional-Order Dynamical System

Next, a linear fractional-order non-autonomous system can be given as follows:

{
Dαx(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
, (8)

where α designates the non-integer order of differentiation, x(t) is the state vector, u(t) is
the input, y(t) is the output, A is the system matrix, B is the input matrix, and C is the
output matrix.

For an arbitrary initial state x(0) = x0, a time t f > 0, and a desired value x f , if an input
u(t) that enables a solution to satisfy x(t f ) = x f exists, then the system described by Equation
(8) is controllable. In addition, the propositions shown below are equivalent [25,26].
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1. A pair of matrices (A, B) is controllable.
2. The rank of the following controllability matrix Nc is n:

Nc =
[
B AB · · · An−1B

]
. (9)

2.3. Observability of Fractional-Order Dynamical System

If the initial state x(0) = x0 can be determined based on the time responses of the
input u(t) and the output y(t) at an arbitrary time t1 > 0, then the system defined by
Equation (8) is observable. In addition, the propositions given below are equivalent [25,26].

1. A pair of matrices (C, A) is observable.
2. The rank of the following observability matrix No is n:

No =

[
CT (CA)T · · ·

(
CAn−1

)T
]T

. (10)

3. Fractional-Order Vibratory System with Viscoelasticity

First, a viscoelastically damped structure is considered as an example of a fractional-
order vibratory system in order to explain LQR control. The equation of motion for forced
vibration of a one degree-of-freedom viscoelastically damped system with a fractional
derivative is: [

mD2 + cDq + kD0
]

x(t) = f (t), (11)

where x(t) is the displacement, m is the mass, c is the viscoelastic damping coefficient,
k is the spring constant, t is time, and f (t) is the external force. Dividing both sides of
Equation (11) by m leads to the following normal form:[

D2 + 2ζωn
2−qDq + ωn

2D0
]

x(t) = u(t), (12)

where ωn
2 = k

m , ζ = c
2mω

2−q
n

and u(t) = 1
m f (t).

It is known that q has a value of approximately 0.5 for most viscoelastic materials [27],
and is therefore fixed at 0.5 in this paper. Consequently, the viscoelastic damping model can
be expressed using a one degree-of-freedom equation of motion known as the generalized
Voigt model [28]: [

D2 + 2ζωn
3
2 D

1
2 + ωn

2D0
]

x(t) = u(t), (13)

where u(t) is the control input.
Next, based on the above equation, a fractional-order state equation is derived. Using a

sequence of fractional differentiations with a difference in order of 1/2, the state vector x(t)
can be defined as follows:

x(t) =
[

x(t) D
1
2 x(t) D

2
2 x(t) D

3
2 x(t)

]T
=
[

x1(t) x2(t) x3(t) x4(t)
]T .

(14)
Consequently, Equations (13) and (14) lead to the following fractional-order state equation:

D
1
2 x(t) = Ax(t) + Bu(t), (15)

where

A =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−ω2
n −2ζω

3
2
n 0 0

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦. (16)
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4. Fractional-Order LQR Method for State Feedback Control

4.1. Design Method for Fractional-Order LQR

In this section, a fractional-order LQR is designed for the fractional-order vibratory
system described in the previous section. The control input is assumed to be given as follows:

u(t) = −Fx(t), (17)

where F designates the feedback-gain matrix.
First, the fractional-order state equation is forced to transform into an integer-order

state equation. Setting the closed-loop system matrix as Acl = A − BF, Equation (17) is
substituted into Equation (15), and the following relation is obtained:

D
1
2 x(t) = Aclx(t). (18)

The operator D
1
2 is applied to both sides of Equation (18) once, and then the following

equation is obtained [29]:
Dx(t) = A2

clx(t). (19)

Second, a quadratic cost function J is considered for the controlled object modeled by
Equation (15):

J =
∫ ∞

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt, (20)

where the weighting matrices Q ∈ Rn×n and R ∈ Rr×r are positive semi-definite and positive
definite, respectively, and the pair of matrices (Q

1
2 , A) is observable. Moreover, Equation (17)

is substituted into Equation (20) in order to obtain the following:

J =
∫ ∞

0
x(t)T

[
Q + FTRF

]
x(t)dt. (21)

Modifying Equation (21) using both Equation (19) and the Lyapunov equation yields the
following equations:

J = x(0)TPx(0), (22)

PA2
cl +

(
A2

cl

)T
P = −Q − FTRF, (23)

where P is a positive-definite symmetric solution that satisfies the algebraic Riccati equa-
tion. Here, using Lagrange’s method for undetermined multipliers, matrices P and F,
which minimize Equation (22), can be obtained under the constraint condition of Equation (23).
If Equation (23) is assumed to be expressed as G(n × n) =

{
gij
}
= 0, then the number of

undetermined multipliers is required to be n2. Therefore, the undetermined multipliers
are arranged in the form of K(n × n) =

{
kij
}

. As a result, the Lagrangian function can be
expressed as follows [29]:

L = J +
n

∑
i=1

n

∑
j=1

kijgij = J + tr
[
KTG

]
= x(0)TPx(0) + tr

[
KT

{
PA2

cl +
(

A2
cl

)T
P + Q + FTRF

}]
, (24)

where tr designates the trace of the matrix.
Third, the Lagrangian function L is differentiated with respect to the matrices F, P,

and K, respectively, in order to obtain each extreme value. Finally, the equations to obtain
the matrices F, P, and K are derived.

However, it has been clarified that the feedback-gain matrix F cannot be obtained
based on the above-mentioned method reported in a previous study [29]. This is because the
equation resulting from differentiation directly with respect to F becomes too complicated
to be appropriate for obtaining the optimal feedback-gain matrix Fopt.
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4.2. Iteration-Based Method for Obtaining Optimal Feedback Gains

Therefore, in order to overcome this difficulty, the approach must be altered to an
iteration-based method in order to obtain the optimal feedback-gain matrix Fopt. To do so,
A2

cl in Equation (24) is expressed as follows:

A2
cl = (A − BF)2 = (A − BFa)(A − BFb). (25)

Here, Fa is properly determined so that all the real parts of the eigenvalues of A2
cl are

negative, and Fb is treated as a variable. By setting Acl_a = A − BFa, Equation (24) can be
rewritten using Equation (25) as follows:

L = x(0)TPx(0) + tr
[
KT

{
PAcl_a(A − BFb) + [Acl_a(A − BFb)]

TP + Q + FT
b RFb

}]
. (26)

As a result, differentiating the above equation with respect to Fb, P, and K, respectively,
produces the following relationships [30]:

∂L
∂P

= K(A − BFb)
TAT

cl_a + Acl_a(A − BFb)K + x(0)x(0)T = 0, (27)

∂L
∂Fb

= −(PAcl_aB)TK − (Acl_aB)TPKT + RTFbK + RFbKT = 0, (28)

∂L
∂K

= PAcl_a(A − BFb) + (A − BFb)
TAT

cl_aP + Q + FT
b RFb = 0. (29)

From Equations (27) and (28), the following equation is obtained because the matrices R, P,
and K are symmetric:

Fb = R−1BTAT
cl_aP. (30)

Next, Equations (29) and (30) generate the following algebraic Riccati equation:

PAcl_aA + (Acl_aA)TP − PAcl_aBR−1BTAT
cl_aP + Q = 0. (31)

In the end, an iterative method to obtain the optimal feedback-gain matrix Fopt can be
explained as follows. Here, P can be obtained from Equation (31), and Fb can be determined
by substituting the obtained P into Equation (30). Next, the determined Fb is treated as a
new Fa, and Equations (25)–(31) are repeatedly calculated until the feedback-gain matrix
converges to Fb = Fa. Eventually, the converged feedback-gain matrix can be considered to
be the optimal feedback-gain matrix Fopt to minimize the quadratic cost function J.

5. Fractional-Order LQR Method for Output Feedback Control

5.1. Necessity of Fractional-Order State Observer

The fractional-order LQR control is a kind of state feedback control. Therefore, estimation of
the states is an important factor in state feedback control. Numerical simulation of the
control may be conducted under the condition that all of the states of the system are
assumed to be detected. However, such a condition is not effective in many real cases.
Even though sensors are present in the controlled system, obtaining all of the states of
the system in most cases is difficult. Furthermore, the viscoelastic damper system, as the
controlled object in the present study, contains a fractional-order derivative term that
cannot be detected with ordinary sensors in general. Therefore, in order to carry out
fractional-order LQR control in practice, it is necessary to estimate the fractional-order
derivative states based on information about the observable states.

Accordingly, a scheme that enables estimation of the remaining states based on the
input signals and the output signals measured by the sensors is called a state observer.
The state observer can be designed as long as the system is observable. If all of the states
of the controlled system are estimated using the state observer, then the state feedback
control can be conducted using the estimated states. Differences between the estimated
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states and the actual states are called estimation errors. When the estimation errors become
zero, the estimated states match the actual states. Therefore, the state observer must be
constructed so that the estimation errors converge to zero.

The estimation errors for the fractional-order system asymptotically go to zero by
means of the following design of the state observer:

Dαx̂(t) = Ax̂(t) + Bu(t) + H(y(t)− Cx̂(t)), (32)

where x̂(t), H, and C are the estimated state vector, the state observer gain, and the output
matrix for the controlled system, respectively. The state observer gain H is selected in order
to satisfy the following inequality [31]:

|arg(λso_i)| > απ

2
, (i = 1, 2, · · · n), (33)

where λso_i designates an eigenvalue of the matrix Aso = A − HC.

5.2. Configuration of Fractional-Order State Observer

Next, using Equation (32), a state observer is configured for the viscoelastic damper
system. First, the viscoelastic damper, as the controlled object, is assumed to be given by
the state equation of Equations (15) and (16). In addition, setting y(t) as the observable,
the output equation for the viscoelastic damper system is assumed to be expressed as
follows:

y(t) = Cx(t), (34)

where
C =

[
c1 c2 c3 c4

]
(35)

in which the values of c1, c2, c3, and c4 are determined by what is observable. Here, if the
pair of matrices (C, A) is observable, then a fractional-order state observer takes the
following form:

D0.5x̂(t) = Ax̂(t) + Bu(t) + H(y(t)− Cx̂(t)), (36)

u(t) = −Fx̂(t). (37)

The subtraction of Equation (15) from Equation (36) yields the fractional-order differential
equation for the estimation error e(t):

D0.5e(t) = (A − HC)e(t), (38)

where
e(t) = x̂(t)− x(t). (39)

From Equation (38), the poles of the matrix (A − HC) can be moved freely by the state
observer gain H, and the convergence characteristics of the estimation error e(t) can be
determined freely using the pole assignment method.

Moreover, Equations (15), (34), (36), (37), and (39) produce the following relationships:

D
1
2 x(t) = Ax(t) + Bu(t) = Ax(t) + B(−Fx̂) = Ax(t)− BF(e(t) + x(t))

= (A − BF)x(t)− BFe(t),
(40)

D
1
2 e(t) = D

1
2 x̂(t)− D

1
2 x(t) = Ax̂(t) + Bu(t) + H(y(t)− Cx̂)− Ax(t)− Bu(t)

= A(x̂(t)− x(t))− H(Cx̂(t)− Cx(t)) = (A − HC)(x̂(t)− x(t))
= (A − HC)e(t).

(41)
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Equations (40) and (41) generate the state equation for the augmented system that includes
the state observer as follows [32]:[

D
1
2 x(t)

D
1
2 e(t)

]
=

[
A − BF −BF

0 A − HC

][
x(t)
e(t)

]
. (42)

Figure 2 is a block diagram of the augmented system, in which the state observer is
incorporated with the feedback control system.

 

Figure 2. Block diagram of augmented system.

6. Numerical Calculation Method for Fractional-Order Dynamical System

6.1. Numerical Solution of Fractional-Order State Equation

Since a fractional-order state equation contains fractional-order derivative terms,
normal numerical calculation methods, such as the Euler method, cannot be used to
simulate this equation. Therefore, several numerical calculation approaches corresponding
to a differential equation and a state equation that include fractional-order derivative
terms have already been proposed [33–36]. One of the numerical calculation methods
corresponding to a fractional-order state equation is introduced in this section [35,36].

First, the Grünwald–Letnikov definition, which is a fractional-order differentiation,
is as follows:

aDq
t f (t) = lim

Δt→0
(Δt)−q

[ t−a
Δt ]

∑
j=0

(−1)j
(

q
j

)
f (t − jΔt), (43)

where Δt is the pitch width, q is the fractional-order of differentiation, [ ] is the integer part

of the argument, and
(

q
j

)
indicates the generalized binomial coefficient. The revised

version of the above definition for the numerical calculation is as follows:

aDq
t f (t) = lim

Δt→0

1
(Δt)q

[ t−a
Δt ]

∑
j=0

w(q)
j f (t − jΔt), (44)

where

w(q)
0 = 1, w(q)

j =

(
1 − q + 1

j

)
w(q)

j−1, j = 1, 2, · · · . (45)

Next, a simple scalar differential equation is considered as follows:

Dqz(tk) = f (tk, z(tk)), (46)
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where the number of calculations is k, and the time is set to tk = kΔt. Applying Equation (44)
to the left-hand side of the above equation yields [36]:

1
(Δt)q

m

∑
j=0

w(q)
j z

(
tk−j

)
=

1
(Δt)q

[
z(tk) +

m

∑
j=1

w(q)
j z

(
tk−j

)]
= f (tk, z(tk)), (47)

where m =
[

tk
Δt

]
= k.

Furthermore, Equation (47) is transformed so that this equation can be solved in terms
of z, and then the following relation is obtained:

z(tk) = (Δt)q f (tk, z(tk))−
m

∑
j=1

w(q)
j z

(
tk−j

)
. (48)

If the pitch width Δt is sufficiently small, then the first term on the right-hand side of
Equation (48) can be approximated as follows [36]:

(Δt)q f (tk, z(tk)) ≈ (Δt)q f (tk, z(tk−1)). (49)

By this approximation, the numerical calculation becomes possible.
Moreover, if each row of the system matrix A of Equation (8) is dealt with as a function

f (t) in Equation (46), then the above-mentioned numerical calculation method can be used
to solve the fractional-order state equation as follows [36]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1(tk) = (Δt)q f1(tk, z1(tk−1), z2(tk−1), · · · , zn(tk−1))−
m
∑

j=1
w(q)

j z1

(
tk−j

)
z2(tk) = (Δt)q f2(tk, z1(tk), z2(tk−1), · · · , zn(tk−1))−

m
∑

j=1
w(q)

j z2

(
tk−j

)
...

zn(tk) = (Δt)q fn(tk, z1(tk), z2(tk), · · · , zn(tk−1))−
m
∑

j=1
w(q)

j zn

(
tk−j

)
. (50)

In the present paper, each state xi(tk) is applied to each zi(tk). In the case that the Caputo
definition is used, because of the relationship between the Caputo definition and the
Grünwald–Letnikov definition, the initial value for each state must be dealt with as follows:

zi(tk) = xi(tk)− xi(0). (51)

Equation (51) is substituted into Equation (50), and then Equation (50) can be rewritten as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(tk) = (Δt)q f1(tk, x1(tk−1), x2(tk−1), · · · , xn(tk−1))−
m
∑

j=1
w(q)

j

{
x1

(
tk−j

)
− x1(0)

}
+ x1(0)

x2(tk) = (Δt)q f2(tk, x1(tk), x2(tk−1), · · · , xn(tk−1))−
m
∑

j=1
w(q)

j

{
x2

(
tk−j

)
− x2(0)

}
+ x2(0)

...

xn(tk) = (Δt)q fn(tk, x1(tk), x2(tk), · · · , xn(tk−1))−
m
∑

j=1
w(q)

j

{
xn

(
tk−j

)
− xn(0)

}
+ xn(0)

. (52)

Moreover, when the amount of past calculation data is large, the calculation of the second
term on the right-hand side of each row in Equation (52) becomes large. Therefore, the pa-
rameter L0, which determines the truncated term in the past calculation data, is introduced
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so that the second term on the right-hand side of each row in Equation (52) is made to be
approximated as follows [36]:

m

∑
j=1

w(q)
j

{
xi

(
tk−j

)
− xi(0)

}
≈

min(L0, k)

∑
j=1

w(q)
j

{
xi

(
tk−j

)
− xi(0)

}
. (53)

Using the numerical calculation method described above, the fractional-order state equation
and the fractional-order state observer can be simulated numerically.

6.2. Comparison between Numerical and Exact Solutions

Next, the solution obtained by the above-mentioned numerical calculation method
is compared with the exact solution. The exact solution of Equation (15) can be given as
follows using the Mittag–Leffler function Ea1, a2 [29,37]:

x(t) = E 1
2 , 1

(
At

1
2

)
x(0) +

∫ t

0
(t − τ)

1
2−1E 1

2 , 1
2

(
A(t − τ)

1
2
)

Bu(τ)dτ, (54)

Ea1, a2(z) =
∞

∑
k=0

zk

Γ(a1k + a2)
, (a1 > 0, a2 > 0). (55)

In addition, the parameters for the viscoelastic damper are set to ζ = 0.1 and ωn = 3.0 rad/s.
The initial conditions for the states are set to x(0) =

[
0 0 1 0

]T . For each state,
the numerical calculation results and the exact solutions obtained under the free vibration
condition are compared in the following figures.

First, Figure 3 shows calculation results for simulation conditions with a larger Δt than
those in Figure 4. The numerical calculations in Figure 4 are more accurate than those in
Figure 3, because the gap between the numerical calculation results and the exact solution in
Figure 4 is smaller than that in Figure 3. Based on this result, it is understood that a smaller
Δt improves the accuracy of numerical calculations. A numerical calculation method that
enables a highly accurate simulation of a state equation that includes fractional-order
derivative terms has thus been clarified.

 
(a)  (b)  

Figure 3. Cont.
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(c)  (d)  

Figure 3. Numerical calculation results (blue lines) and exact solutions (red broken lines) (Δt = 0.001).

 
(a)  (b)  

 
(c)  (d)  

Figure 4. Numerical calculation results (blue lines) and exact solutions (red broken lines) (Δt = 0.0005).
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7. Illustrative Examples

7.1. Fractional-Order LQR Control for Viscoelastic Damper System

In this section, the viscoelastic damper described in Section 3 is set to be the controlled
object. Moreover, the feedback gains of the fractional-order LQR are obtained using the
method explained in Section 4, and the states are estimated with the fractional-order state
observer described in Section 5. In addition, each state is simulated using the numerical
calculation method introduced in Section 6. Another derivation method for the feedback
gains of the fractional-order LQR, which is different from the method proposed herein,
was proposed by Sierociuk and Vinagre [19]. Accordingly, vibration waveforms for the
states controlled by the LQR using the feedback gains obtained with the proposed method
are compared with those obtained using the Sierociuk and Vinagre method.

The parameters for the viscoelastic damper system are set as ζ = 0.1 and ωn = 3.0 rad/s.
The observable is chosen to be the displacement. Therefore, the output matrix C in Equation (35)
is as follows:

C =
[

1 0 0 0
]
. (56)

First, the stability of the viscoelastic damper system expressed by Equation (15) is
investigated. The eigenvalues of the system matrix A are given as:

λ = 1.2263 ± 1.3098i, −1.2263 ± 1.1366i. (57)

Here, the stability of the system is determined using Equation (7):

2
π
|arg(λi)| = 0.5210, 0.5210, 1.5241, 1.5241 > 0.5. (58)

As a result of this inequality, this system can be said to be asymptotically stable.
Next, the controllability and the observability of the viscoelastic damper system are

examined. The ranks of the matrices Nc and No in Equations (9) and (10) can be calculated
as follows:

rank(Nc) = 4, rank(No) = 4. (59)

The pair of matrices (A, B) for the viscoelastic damper system is controllable, and the
pair of matrices (C, A) for the viscoelastic damper system is observable. Based on these
results, the system can be said to be controllable and observable. Therefore, a state feedback
controller and a state observer can be designed for this system.

If the weighting matrices Q and R in the quadratic cost function J are designed
as follows:

Q =

⎡
⎢⎢⎣

10 0 0 0
0 0 0 0
0 0 10 0
0 0 0 0

⎤
⎥⎥⎦, R = 1, (60)

then the optimal feedback-gain matrix Fopt is obtained as follows:

Fopt =
[

0.5394 −0.5520 3.3285 −0.0098
]
. (61)

In this case, the weights in Q are placed only on the integer-order derivative states.
With these feedback gains, the eigenvalues for the closed-loop system-matrix Acl = A − BF
are shown below:

λcl = 0.8475 ± 1.5897i, −0.8426 ± 1.4931i. (62)

From Equation (62), since the poles of the closed-loop system are located in region 2© in
Figure 1, the system is asymptotically stable.

Next, a fractional-order state observer is designed using Equation (36) by the pole-
assignment method. Furthermore, generally, when a state observer and a regulator are used
simultaneously, the state observer must be designed to be able to estimate the states of the
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system faster than the regulator makes the states converge to zeros. Here, the eigenvalues
of the matrix Aso = A − HC are designed as follows:

λso = −10.0, −9.0, −8.0, −7.0. (63)

The stability of these eigenvalues can be determined using Equation (7) as:

2
π
|arg(λcl_i)| = 0.6882, 0.6882, 1.3271, 1.3271 > 0.5, (64)

2
π
|arg(λso_i)| = 2, 2, 2, 2 > 0.5. (65)

The closed-loop system Acl and the state observer Aso are asymptotically stable. Judg-
ing from Equations (62) and (63), the eigenvalues of the matrix Aso are more stable than
those of the matrix Acl . This proves that state estimation by the state observer can be
designed to be faster than state convergence by the regulator. Consequently, the state
observer gain matrix H is obtained as follows:

H = 103 × [
0.0340 0.4310 2.4130 4.9957

]
. (66)

In practice, in the simulation, the initial conditions for the states and those for the
estimated values are assumed to be as follows:

x(0) =
[

0 0 1 0
]T , (67)

x̂(0) =
[

0 0 1.2 0
]T . (68)

In addition, the parameter in the numerical calculation method is set as Δt = 0.0005.
Using the above-mentioned values, whether the fractional-order state observer can

estimate all of the states is first investigated under the free vibration condition. Figure 5
shows each estimation error, and Figure 6 compares each actual state and each estimated
state. As shown in Figure 5, each estimation error converges to zero, although the estimation
error about x4 converges more slowly than other errors. Figure 6 demonstrates that each
state can be estimated successfully by the fractional-order state observer.

Figure 5. Estimation errors for states (e1: blue line, e2: green line, e3: red line, and e4: light blue line).
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(a)  (b)  

 
(c)  (d)  

Figure 6. Results for actual (blue lines) and estimated (red broken lines) states.

Next, fractional-order LQR control is conducted. In comparing the states with control
and those without control, the gaps between the actual states and the estimated values
are shown in Figure 7, and the state evolution is illustrated in Figure 8. The results with
control are obtained with output feedback control using a fractional-order LQR.

Figure 7 confirms that the estimation of the states by the fractional-order state observer
is performed successively. Judging from the results in Figure 8, compared with the no-
control case, good damping effects are confirmed in the case that fractional-order LQR
control is applied.

Consequently, using the feedback gains obtained with the iteration-based method
and the fractional-order state observer, it is proven that fractional-order LQR control can
be carried out for a controlled object that includes fractional-order derivative states in its
state equation.
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(a)  (b)  

 
(c)  (d)  

Figure 7. Difference between actual (blue lines) and estimated (red broken lines) states.

 
(a)  (b)  

Figure 8. Cont.

119



Appl. Sci. 2021, 11, 3252

 
(c)  (d)  

Figure 8. Results for states with/without fractional-order LQR control (with control: blue lines, without control: red bro-
ken lines).

7.2. Comparison between Proposed Method and Sierociuk and Vinagre Method

Moreover, the control results for the fractional-order LQR using the feedback gains
obtained using the proposed method and the fractional-order LQR using the feedback
gains obtained with the Sierociuk and Vinagre method [19] are compared. Using the same
weighting matrices, Q and R in Equation (60), the feedback gains are calculated with the
Sierociuk and Vinagre method as follows:

FSV =
[

0.5394 14.7824 13.0640 5.1116
]
. (69)

The poles of the closed-loop system-matrix A − BFSV are as follows:

Poles =
{ −1.5649 ± 1.5733i

−0.9908 ± 0.9774i
. (70)

These poles are located in region 3© in Figure 1. As a result, the controlled states with
the feedback gains in Equation (61) and the controlled states with the feedback gains in
Equation (69) can be compared, as shown in Figure 9. The results with control are obtained
with output feedback control using a fractional-order LQR.

From Figure 9, it is clear that both feedback gains exhibit good control effects. In par-
ticular, in the vibration waveforms controlled using the feedback gains obtained with
the Sierociuk and Vinagre method, all of the states are confirmed to be overdamped.
However, it is obvious that the convergence of x1 (displacement) to the target value is
considerably slow.

Next, the design of the weighting matrices Q and R in the quadratic cost function J is
modified as follows:

Q =

⎡
⎢⎢⎣

10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

⎤
⎥⎥⎦, R = 1. (71)

In this case, the weights in Q are placed on not only the integer-order derivative states,
but also the fractional-order derivative states. Using weighting matrices Q and R, the feed-
back gain matrix derived using the proposed method is as follows:

F =
[

0.5394 −2.3077 3.7258 −0.9831
]
. (72)
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The poles of the closed-loop system matrix A − BF are as follows:

Poles =
{ −1.0806 ± 1.5848i

−0.5891 ± 1.4985i
. (73)

These poles are located in region 2© in Figure 1. On the other hand, the feedback gain
matrix obtained by the Sierociuk and Vinagre method is as follows:

FSV =
[

0.5394 16.2648 15.1137 6.3425
]
. (74)

The poles of the closed-loop system matrix A − BFSV are as follows:

Poles =
{ −2.3380 ± 0.3989i

−0.8332 ± 1.0007i
. (75)

These poles are located in region 3© in Figure 1. The states controlled with the above-
mentioned feedback-gain matrices are compared in Figure 10. The results with control are
obtained with output feedback control using a fractional-order LQR.

 
(a)  (b)  

 
(c)  (d)  

Figure 9. Results for states with fractional-order LQR control (proposed method: blue lines, Sierociuk and Vinagre method
(S–V method): red broken lines).
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(a)  (b)  

 
(c)  (d)  

Figure 10. Results for states with fractional-order LQR control (proposed method: blue lines, Sierociuk and Vinagre method
(S–V method): red broken lines).

Figure 10 demonstrates that the results of the states are oscillations damped by the
feedback-gain matrix F and are overdamped by the feedback-gain matrix FSV .
Furthermore, the convergence property of x1 in Figure 10 is similar to that in Figure 9.
However, in the proposed method, the vibration suppression effect becomes worse when
the weights in Q are placed on the fractional-order derivative states. On the other hand,
in the Sierociuk and Vinagre method, the weights on the fractional-order derivative states
in Q can play an important role for better vibration control effects.

8. Conclusions

The present study investigated whether the LQR control method could be applied to
a state equation with fractional-order derivative states. A design method for a fractional-
order LQR control system was proposed in order to deal with a controlled object that
included fractional-order derivative terms in the equation of motion.

First, in order to explain the design method, a viscoelastic damper was modeled by
an equation of motion including a fractional-derivative term. The equation of motion was
able to be transformed into a fractional-order state equation.

Second, a fractional-order LQR was applied to control the dynamics of the viscoelasti-
cally damped structure. A design method for fractional-order LQR control was proposed
using the Lyapunov equation and Lagrange’s method for undetermined multipliers. A new
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iteration-based approach to solve the algebraic Riccati equation was established in order to
obtain the feedback gains for the fractional-order LQR.

Third, a fractional-order state observer was constructed in order to estimate the
fractional-order derivative states. All states for the viscoelastic damper system were
successfully estimated using the fractional-order state observer.

Fourth, a numerical calculation algorithm corresponding to a differential equation
containing fractional derivative terms was introduced. The numerical calculation algorithm
was based on the Grünwald–Letnikov definition of fractional differentiation. Numerical cal-
culation results using the introduced method and the exact solution of the viscoelastic
damper model were compared in order to investigate its calculation accuracy.

Finally, using the introduced numerical simulation method, LQR control effect sim-
ulations were carried out. The numerical simulations revealed that the iterative method
was valid for obtaining the feedback gains for the fractional-order LQR. The fractional-
order LQR controller was confirmed to be capable of successfully suppressing vibrations
appearing in a vibratory system with viscoelasticity. Moreover, the fractional-order LQR
obtained by the Sierociuk and Vinagre method and that derived by the proposed method
were compared with respect to their control effects.

However, the fractional-order state observer in the present paper is not optimal,
and therefore needs to be improved. In addition, control effects by a fractional-order
LQR to suppress vibrations appearing in a vibratory system with viscoelasticity must be
compared with control effects by an integer-order LQR.
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