2 research outputs found

    Geodatabase Development to Support Hyperspectral Imagery Exploitation

    Get PDF
    Geodatabase development for coastal studies conducted by the Naval Research Laboratory (NRL) is essential to support the exploitation of hyperspectral imagery (HSI). NRL has found that the remote sensing and mapping science community benefits from coastal classifications that group coastal types based on similar features. Selected features in project geodatabases relate to significant biological and physical forces that shape the coast. The project geodatabases help researchers understand factors that are necessary for imagery post processing, especially those features having a high degree of temporal and spatial variability. NRL project geodatabases include a hierarchy of environmental factors that extend from shallow water bottom types and beach composition to inland soil and vegetation characteristics. These geodatabases developed by NRL allow researchers to compare features among coast types. The project geodatabases may also be used to enhance littoral data archives that are sparse. This paper highlights geodatabase development for recent remote sensing experiments in barrier island, coral, and mangrove coast types

    Very Shallow Water Bathymetry Retrieval from Hyperspectral Imagery at the Virginia Coast Reserve (VCR\u2707) Multi-Sensor Campaign

    Get PDF
    A number of institutions, including the Naval Research Laboratory (NRL), have developed look up tables for remote retrieval of bathymetry and in-water optical properties from hyperspectral imagery (HSI) [6]. For bathymetry retrieval, the lower limit is the very shallow water case (here defined as \u3c 2m), a depth zone which is not well resolved by many existing bathymetric LIDAR sensors, such as SHOALS [4]. The ability to rapidly model these shallow water depths from HSI directly has potential benefits for combined HSI/LIDAR systems such as the Compact Hydrographic Airborne Rapid Total Survey (CHARTS) [10]. In this study, we focused on the validation of a near infra-red feature, corresponding to a local minimum in absorption (and therefore a local peak in reflectance), which can be correlated directly to bathymetry with a high degree of confidence. Compared to other VNIR wavelengths, this particular near-IR feature corresponds to a peak in the correlation with depth in this very shallow water regime, and this is a spectral range where reflectance depends primarily on water depth (water absorption) and bottom type, with suspended constituents playing a secondary role
    corecore