305 research outputs found

    Hardware Design and Testing of SUPERball, A Modular Tensegrity Robot

    Get PDF
    We are developing a system of modular, autonomous "tensegrity end-caps" to enable the rapid exploration of untethered tensegrity robot morphologies and functions. By adopting a self-contained modular approach, different end-caps with various capabilities (such as peak torques, or motor speeds), can be easily combined into new tensegrity robots composed of rods, cables, and actuators of different scale (such as in length, mass, peak loads, etc). As a first step in developing this concept, we are in the process of designing and testing the end-caps for SUPERball (Spherical Underactuated Planetary Exploration Robot), a project at the Dynamic Tensegrity Robotics Lab (DTRL) within NASA Ames's Intelligent Robotics Group. This work discusses the evolving design concepts and test results that have gone into the structural, mechanical, and sensing aspects of SUPERball. This representative tensegrity end-cap design supports robust and repeatable untethered mobility tests of the SUPERball, while providing high force, high displacement actuation, with a low-friction, compliant cabling system

    An Ontology-Based Expert System for the Systematic Design of Humanoid Robots

    Get PDF
    Die Entwicklung humanoider Roboter ist eine zeitaufwendige, komplexe und herausfordernde Aufgabe. Daher stellt diese Thesis einen neuen, systematischen Ansatz vor, der es erlaubt, Expertenwissen zum Entwurf humanoider Roboter zu konservieren, um damit zukünftige Entwicklungen zu unterstützen. Der Ansatz kann in drei aufeinanderfolgende Schritte unterteilt werden. Im ersten Schritt wird Wissen zum Entwurf humanoider Roboter durch die Entwicklung von Roboterkomponenten und die Analyse verwandter Arbeiten gewonnen. Dieses Wissen wird im zweiten Schritt formalisiert und in Form einer ontologischen Wissensbasis gespeichert. Im letzten Schritt wird diese Wissensbasis von einem Expertensystem verwendet, um Lösungsvorschläge zum Entwurf von Roboterkomponenten auf Grundlage von Benutzeranforderungen zu generieren. Der Ansatz wird anhand von Fallstudien zu Komponenten des humanoiden Roboters ARMAR-6 evaluiert: Sensor-Aktor-Controller-Einheiten für Robotergelenke und Roboterhände

    Progettazione e Controllo di Mani Robotiche

    Get PDF
    The application of dexterous robotic hands out of research laboratories has been limited by the intrinsic complexity that these devices present. This is directly reflected as an economically unreasonable cost and a low overall reliability. Within the research reported in this thesis it is shown how the problem of complexity in the design of robotic hands can be tackled, taking advantage of modern technologies (i.e. rapid prototyping), leading to innovative concepts for the design of the mechanical structure, the actuation and sensory systems. The solutions adopted drastically reduce the prototyping and production costs and increase the reliability, reducing the number of parts required and averaging their single reliability factors. In order to get guidelines for the design process, the problem of robotic grasp and manipulation by a dual arm/hand system has been reviewed. In this way, the requirements that should be fulfilled at hardware level to guarantee successful execution of the task has been highlighted. The contribution of this research from the manipulation planning side focuses on the redundancy resolution that arise in the execution of the task in a dexterous arm/hand system. In literature the problem of coordination of arm and hand during manipulation of an object has been widely analyzed in theory but often experimentally demonstrated in simplified robotic setup. Our aim is to cover the lack in the study of this topic and experimentally evaluate it in a complex system as a anthropomorphic arm hand system

    Design and development of robust hands for humanoid robots

    Get PDF
    Design and development of robust hands for humanoid robot

    Mobile Robotics

    Get PDF
    The book is a collection of ten scholarly articles and reports of experiences and perceptions concerning pedagogical practices with mobile robotics.“This work is funded by CIEd – Research Centre on Education, project UID/CED/01661/2019, Institute of Education, University of Minho, through national funds of FCT/MCTES-PT.

    Towards adaptive and autonomous humanoid robots: from vision to actions

    Get PDF
    Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions

    WEHST: Wearable Engine for Human-Mediated Telepresence

    Get PDF
    This dissertation reports on the industrial design of a wearable computational device created to enable better emergency medical intervention for situations where electronic remote assistance is necessary. The design created for this doctoral project, which assists practices by paramedics with mandates for search-and-rescue (SAR) in hazardous environments, contributes to the field of human-mediated teleparamedicine (HMTPM). Ethnographic and industrial design aspects of this research considered the intricate relationships at play in search-and-rescue operations, which lead to the design of the system created for this project known as WEHST: Wearable Engine for Human-Mediated Telepresence. Three case studies of different teams were carried out, each focusing on making improvements to the practices of teams of paramedics and search-and-rescue technicians who use combinations of ambulance, airplane, and helicopter transport in specific chemical, biological, radioactive, nuclear and explosive (CBRNE) scenarios. The three paramedicine groups included are the Canadian Air Force 442 Rescue Squadron, Nelson Search and Rescue, and the British Columbia Ambulance Service Infant Transport Team. Data was gathered over a seven-year period through a variety of methods including observation, interviews, examination of documents, and industrial design. The data collected included physiological, social, technical, and ecological information about the rescuers. Actor-network theory guided the research design, data analysis, and design synthesis. All of this leads to the creation of the WEHST system. As identified, the WEHST design created in this dissertation project addresses the difficulty case-study participants found in using their radios in hazardous settings. As the research identified, a means of controlling these radios without depending on hands, voice, or speech would greatly improve communication, as would wearing sensors and other computing resources better linking operators, radios, and environments. WEHST responds to this need. WEHST is an instance of industrial design for a wearable “engine” for human-situated telepresence that includes eight interoperable families of wearable electronic modules and accompanying textiles. These make up a platform technology for modular, scalable and adaptable toolsets for field practice, pedagogy, or research. This document details the considerations that went into the creation of the WEHST design

    Distributed framework for a multi-purpose household robotic arm

    Get PDF
    Projecte final de carrera fet en col.laboració amb l'Institut de Robòtica i Informàtica IndustrialThe concept of household robotic servants has been in our mind for ages, and domestic appliances are far more robotised than they used to be. At present, manufacturers are starting to introduce small, household human-interactive robots to the market. Any human-interactive device has safety, endurability and simplicity constraints, which are especially strict when it comes to robots. Indeed, we are still far from a multi-purpose intelligent household robot, but human-interactive robots and arti cial intelligence research has evolved considerably, demonstration prototypes are a proof of what can be done. This project contributes to the research in humaninteractive robots, as the robotic arm and hand used are specially designed for human-interactive applications. The present study provides a distributed framework for an arm and a hand devices based on the robotics YARP protocol using the WAMTM arm and the BarrettHandTM as well as a basic modular client application complemented with vision. Firstly, two device drivers and a network interface are designed and implemented to control the WAMTM arm and the BarrettHandTM from the network. The drivers allow abstract access to each device, providing three ports: command requests port, state requests port and asynchronous replies port. Secondly, each driver is then encapsulated by YARP devices publishing realtime monitoring feedback and motion control to the network through what is called a Network wrapper. In particular, the network wrapper for the WAMTM arm and BarrettHandTM provides a state port, command port, Remote Procedure Call (RPC) port and an asynchronous noti cations port. The state port provides the WAMTM position and orientation feedback at 50 Hz, which represents a maximum blindness of one centimetre. This rst part of the project sets the foundations of a distributed, complete robot, whose design enables processing and power payload to be shared by di erent workstations. Moreover, users are able to work with the robot remotely over Ethernet and Wireless through a clear, understandable local interface within YARP. In addition to the distributed robotic framework provided, a client software framework with vision is also supplied. The client framework establishes a general software shell for further development and is organized in the basic, separate robotic branches: control, vision and plani cation. The vision module supports distributed image grabbing on mobile robotics, and shared-memory for xed, local vision. In order to incorporate environment interaction and robot autonomy with the planner, hand-eye transformation matrices have been obtained to perform object grasping and manipulation. The image processing is based on OpenCV libraries and provides object recognition with Scale Invariant Feature Transform (SIFT) features matching, Hough transform and polygon approximation algorithms. Grasping and path planning use pre-de ned grasps which take into account the size, shape and orientation of the target objects. The proof-of-concept applications feature a household robotic arm with the ability to tidy randomly distributed common kitchen objects to speci ed locations, with robot real-time monitoring and basic control. The device modularity introduced in this project philosophy of decoupling communication, device local access and the components, was successful. Thanks to the abstract access and decoupling, the demonstration applications provided were easily deployed to test the arm's performance and its remote control and monitorization. Moreover, both resultant frameworks are arm-independent and the design is currently being adopted by other projects' devices within the IRI

    SYSTEM INTEGRATION OF C-ARM ROBOTIC PROTOTYPE USING MOTION CAPTURE GUIDANCE FOR ACCURATE REPOSITIONING

    Get PDF
    One of the important surgical tools in spinal surgery is the C-Arm X-ray System. The C-Arm is a large “C” shaped and manually maneuvered arm that provides surgeons and X-ray technicians the ability to take quick quality X-rays during surgery. Because of its five degrees of freedom, the C-Arm can be manually maneuvered around the patient to provide many angles and perspectives, ensuring surgical success. This system works fine for most surgical procedures but falls short when the C-Arm must be moved out of the way for complicated surgical procedures. The aim of this thesis is to develop an accurate repositioning method with the use of motion capture technology. This will be a novel approach to creating a repositioning integrated system. To develop a motion capture repositioning integrated system, a set of research tasks needed to be completed. A virtual prototype and a virtual platform were developed that quantified the dynamics of the C-Arm maneuvering. Next, a complete kinematic model of the C-Arm was developed. Third, a fully automatic robotic C-Arm prototype was designed and manufactured to serve as a replacement for the actual C-Arm. Finally, the robotic prototype, the virtual platform, and the kinematic model were all systematically integrated using Vicon motion capture system to perform the automatic repositioning of the C-Arm. Testing of the newly developed repositioning system was completed with successful results
    • …
    corecore