26,106 research outputs found

    A new LED-LED portable CO2 gas sensor based on an interchangeable membrane system for industrial applications

    Get PDF
    A new system for CO2 measurement (0-100%) by based on a paired emitter-detector diode arrangement as a colorimetric detection system is described. Two different configurations were tested: configuration 1 (an opposite side configuration) where a secondary inner-filter effect accounts for CO2 sensitivity. This configuration involves the absorption of the phosphorescence emitted from a CO2-insensitive luminophore by an acid-base indicator and configuration 2 wherein the membrane containing the luminophore is removed, simplifying the sensing membrane that now only contains the acid-base indicator. In addition, two different instrumental configurations have been studied, using a paired emitter-detector diode system, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED as detector, whereas in the second case two identical red LEDs are used as emitter and detector. The system was characterised in terms of sensitivity, dynamic response, reproducibility, stability and temperature influence. We found that configuration 2 presented a better CO2 response in terms of sensitivity

    Function-led design of multifunctional stimuli-responsive superhydrophobic surface based on hierarchical graphene-titania nanocoating

    Full text link
    Multifunctional smart superhydrophobic surface with full-spectrum tunable wettability control is fabricated through the self-assembly of the graphene and titania nanofilm double-layer coating. Advanced microfluidic manipulative functions, including directional water transport, adhesion & spreading controls, droplet storage & transfer, and droplet sensing array, can be readily realized on this smart surface. An in-depth mechanism study regarding the underlying secrets of the tunable wettability and the UV-induced superhydrophilic conversion of anatase titania are also presented

    Versatile spectral imaging with an algorithm-based spectrometer using highly tuneable quantum dot infrared photodetectors

    Get PDF
    We report on the implementation of an algorithm-based spectrometer capable of reconstructing the spectral shape of materials in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) wavelengths using only experimental photocurrent measurements from quantum dot infrared photodetectors (QDIPs). The theory and implementation of the algorithm will be described, followed by an investigation into this algorithmic spectrometer's performance. Compared to the QDIPs utilized in an earlier implementation, the ones used here have highly varying spectral shapes and four spectral peaks across the MWIR and LWIR wavelengths. It has been found that the spectrometer is capable of reconstructing broad spectral features of a range of bandpass infrared filters between wavelengths of 4 and 12 mu m as well as identifying absorption features as narrow as 0.3 mu m in the IR spectrum of a polyethylene sheet

    Active Optical Remote Sensing Sensors and Instrumentation for NASAs Future Earth and Space Science Measurements/Missions

    Get PDF
    AbstractActive optical (Laser/Lidar) measurement techniques are critical for the future National Aeronautics and Space Administration (NASA) Earth, Planetary Science, Exploration, and Aeronautics measurements. The latest science decadal surveys recommend a number of missions requiring active optical systems to meet the science measurement objectives and the aeronautics community continues to use Laser/Lidar technologies to meet the aeronautics measurement objectives. This presentation will provide an overview of NASA efforts in developing and maturing state-of-the-art advanced solid-state flight laser/lidar systems for airborne and space-borne remote sensing measurements. The presentation will also provide details of a strategic approach for active optical technologies and techniques to meet the NASAs future Earth and Space Science measurement ments for space-based applications

    Noise Measurement Setup for Quartz Crystal Microbalance

    Get PDF
    Quartz crystal microbalance (QCM) is a high sensitive chemical sensor which has found widespread spectrum of applications. There are several mechanisms that are related to fluctuation phenomena. Since the aim of our research is oriented to study the sensitivity and influence of different kind of noises on sensor resolution, we modified an existing method to measure the small frequency fluctuation of QCM. The paper describes our measurement setup, in which a quartz crystal oscillator with coated active layers and a reference quartz oscillator are driven by two oscillator circuits. Each one regulates a frequency of a crystal at the minimum impedance which corresponds to the series resonance. A data-acquisition card triggers on the rise-edges of the output signal and stores these corresponding times on which the instantaneous frequency is estimated by own-written software. In comparison to other measurement setups, our approach can acquire immediate change of QCM frequency, thus, chemical processes can be even described on the basis of high-order statistics. The experiments were provided on quartz crystals with the sorption layer of polypyrrole, which is suitable for the construction of QCM humidity sensors

    Ag-Vanadates/GO Nanocomposites by Aerosol-Assisted Spray Pyrolysis: Preparation and Structural and Electrochemical Characterization of a Versatile Material

    Get PDF
    In this article, we describe the deposition by aerosol-assisted spray pyrolysis of different types of silver vanadate nanocomposites with and without graphene oxide (GO) on different substrates (carbon paper (CP) and fluorine-doped tin oxide (FTO)). When deposited on CP, different amounts of GO were added to the Ag and V precursor solution to study the effect of GO on the physicochemical properties of the resulting Ag-vanadate. It is shown that the addition of GO leads mainly to the formation of nanoparticles of the Ag2V4O11 phase, whereas Ag2V4O11 and Ag3VO4 are obtained without the addition of GO. The morphology and chemical properties of the composites were determined by scanning and transmission electron microscopies, X-ray diffraction, X-ray photoemission spectroscopy, and UV\u2013visible and Raman spectroscopies. In addition, the photoelectrochemical (PEC) properties of such composites were studied by CV, linear sweep voltammetry, and electrochemical impedance spectroscopy. The ideal AgxVOy and GO ratio was optimized for obtaining higher photocurrent values and a good stability. The results showed that the presence of GO improves the electrical conductivity of the catalyst layer as well as the electron injection from the oxide to the electrode surface. The deposition of pure Ag2V4O11 on FTO does not lead to samples with stable PEC performances. Samples grown on CP supports showed an efficient electrochemical detection of small amounts of ethylenediamine in water solution

    Scalable Multifunctional Ultra-thin Graphite Sponge: Free-standing, Superporous, Superhydrophobic, Oleophilic Architecture with Ferromagnetic Properties for Environmental Cleaning.

    Get PDF
    Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering material which not only serves this purpose, but can also be altered for other applications to preserve natural resources, a facile template-free process is suggested to fabricate a superporous, superhydrophobic ultra-thin graphite sponge. Moreover, the process is designed to be inexpensive and scalable. The fabricated sponge can be used to clean up different types of oil, organic solvents, toxic and corrosive contaminants. This versatile microstructure can retain its functionality even when pulverized. The sponge is applicable for targeted sorption and collection due to its ferromagnetic properties. We hope that such a cost-effective process can be embraced and implemented widely

    Effect of Hydrodynamic Force on Microcantilever Vibrations: Applications to Liquid-Phase Chemical Sensing

    Get PDF
    At the microscale, cantilever vibrations depend not only on the microstructure’s properties and geometry but also on the properties of the surrounding medium. In fact, when a microcantilever vibrates in a fluid, the fluid offers resistance to the motion of the beam. The study of the influence of the hydrodynamic force on the microcantilever’s vibrational spectrum can be used to either (1) optimize the use of microcantilevers for chemical detection in liquid media or (2) extract the mechanical properties of the fluid. The classical method for application (1) in gas is to operate the microcantilever in the dynamic transverse bending mode for chemical detection. However, the performance of microcantilevers excited in this standard out-of-plane dynamic mode drastically decreases in viscous liquid media. When immersed in liquids, in order to limit the decrease of both the resonant frequency and the quality factor, and improve sensitivity in sensing applications, alternative vibration modes that primarily shear the fluid (rather than involving motion normal to the fluid/beam interface) have been studied and tested: these include in-plane vibration modes (lateral bending mode and elongation mode). For application (2), the classical method to measure the rheological properties of fluids is to use a rheometer. However, such systems require sampling (no in-situ measurements) and a relatively large sample volume (a few milliliters). Moreover, the frequency range is limited to low frequencies (less than 200Hz). To overcome the limitations of this classical method, an alternative method based on the use of silicon microcantilevers is presented. The method, which is based on the use of analytical equations for the hydrodynamic force, permits the measurement of the complex shear modulus of viscoelastic fluids over a wide frequency range
    • 

    corecore