1,721 research outputs found

    Bridging the Nano- and Macro-Worlds: Thermal Property Measurement Using Thermal Microscopy and Photothermal Radiometry – Application to Particle-Irradiation Damage Profile in Zirconium Carbide

    Get PDF
    Multiscaled experimental investigations of heat transfer from nanoscales to macroscales are requisite to progress in energy technologies. In nuclear applications, material properties can undergo significant alteration due to destructive interaction with irradiating particles at microstructural levels that affect bulk properties. Correlating material microstructure to bulk material properties remains a crucial hurdle for obtaining first-principles-based, full-scale material property predictive capability. Ion-irradiated material studies provide valuable insight into material behavior under irradiation conditions that can be correlated to neutron irradiation effects. Through such studies, the need of costly (money and time) studies of neutron interaction with materials can be mitigated significantly. One of the challenges associated with studies of ion-irradiated materials is that the affected layer, or penetration depth, is typically very thin (~0.1-100μm for laboratory accelerators). Few investigations have been reported of ion-irradiation effects on thermal transport properties, in part, due to the challenge associated with measurements at the spatial scales of the zones of interest. This study expands the current knowledge base regarding thermal transport in ion-irradiated materials through the use of a multiscaled experimental approach using thermal wave methods. In a manner not previously explored, four thermal wave methods are used to characterize the proton-irradiated layer in ZrC including scanning thermal microscopy, spatial-scanning front-detection photothermal radiometry (PTR), lock-in IR thermography (lock-in IRT), and tomographic, frequency-based PTR. For the first time, the in-depth thermal conductivity profile of an ion-irradiated sample is measured directly. The profiles obtained by each of the spatial scanning methods are compared to each other and the numerical prediction of the ion-damage profile. The complementary nature of the various techniques validates the measured profile and the measured degradation of thermal conductivity in the ZrC sample showing the viability of such complementary studies

    Addressing the Smart Systems Design Challenge: The SMAC Platform

    Get PDF
    This article presents the concepts, the organization, and the preliminary application results of SMAC, a smart systems co-design platform. The SMAC platform, which has been developed as Integrated Project (IP) of the 7th ICT Call under the Objective 3.2 \u201cSmart components and Smart Systems integration\u201d addresses the challenges of the integration of heterogeneous and conflicting domains that emerge in the design of smart systems. SMAC includes methodologies and EDA tools enabling multi-disciplinary and multi-scale modelling and design, simulation of multidomain systems, subsystems and components at different levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. The article presents the preliminary results obtained by adopting the SMAC platform for the design of a limb tracking smart system

    Frictional behaviour of rubber on ice

    Get PDF

    Infrared Radiation

    Get PDF
    This book represents a collection of scientific articles covering the field of infrared radiation. It offers extensive information about current scientific research and engineering developments in this area. Each chapter has been thoroughly revised and each represents significant contribution to the scientific community interested in this matter. Developers of infrared technique, technicians using infrared equipment and scientist that have interest in infrared radiation and its interaction with medium will comprise the main readership as they search for current studies on the use of infrared radiation. Moreover this book can be useful to students and postgraduates with appropriate specialty and also for multifunctional workers
    corecore