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Abstract

Τhe arising packing density of very large scale integrated (VLSI) circuits has caused the

temperature to become a major issue since it has a strong impact on microelectronic designs,

like the negative effect on the device life and the package reliability, making thermal analysis

crucial for the proper functionality of the device.

Numerical thermal analysis methods require the solution of linear systems of equations

that have extremely long simulation times. Although the construction of the problem for­

mulation is easily done by applying a thermal RC equivalent circuit, the corresponding 3D

equations network involves an undesirably time consuming numerical simulation over many

time­steps.

However, in most cases, temperature does not need to be monitored across the whole

device, but only at some pre­defined hotspots. In these cases, the very large thermal model

can be substituted by a much smaller model with similar behavior at pre­specified points by

applying model order reduction (MOR) techniques.

In this Thesis, and in collaboration with Huawei Technologies and the Electronics Re­

search Lab of University of Thessaly, we constructed a parametric reduced­order model

(ROM) generation tool that can handle large thermal models and generate the correspond­

ing ROM matrices in parametric format. More specifically, we implemented a computation­

ally efficient multi­point moment­matching technique that takes as input realistic discretized

thermal models and can produce parametric reduced matrices with great accuracy and per­

formance, using state­of­the­art sparse direct solvers and parallel techniques. Moreover, the

tool can optimize the ROM for all possible parameter values of the parametric parts of the de­

vice, given a user­defined range. Experimental results demonstrate that the tool may achieve

99.99% order reduction and error deviation less than 5% for a model of 5 million nodes.
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Περίληψη

Η αυξανόμενη πυκνότητα κυκλωμάτων μεγάλης κλίμακας (VLSI) έχει ως συνέπεια τη

δημιουργία προβλημάτων που αφορούν τη θερμοκρασία, η οποία με τη σειρά της οδηγεί

στη μείωση της διάρκειας ζωής των συσκευών και της αξιοπιστίας τους. Αυτό οδηγεί στην

ανάγκη για θερμική ανάλυση.

Οι αριθμητικές μέθοδοι θερμικής ανάλυσης απαιτούν την επίλυση γραμμικών συστη­

μάτων εξισώσεων που έχουν εξαιρετικά μεγάλους χρόνους προσομοίωσης. Παρόλο που η

κατασκευή του θερμικού συστήματος του προβλήματος γίνεται εύκολα εφαρμόζοντας ένα

RC ισοδύναμο κύκλωμα, το αντίστοιχο δίκτυο εξισώσεων τριών διαστάσεων περιλαμβάνει

μία ανεπιθύμητα χρονοβόρα αριθμητική προσομοίωση στη διάρκεια πολλών χρονικών βη­

μάτων.

Ωστόσο, στις περισσότερες περιπτώσεις, η θερμοκρασία δε χρειάζεται να μετρηθεί σε

ολόκληρη τη συσκευή, παρά μόνο σε ορισμένα προκαθορισμένα σημεία έντονου ενδιαφέ­

ροντος (hotspots). Σε αυτές τις περιπτώσεις, το πολύ μεγάλο θερμικό μοντέλο μπορεί να αν­

τικατασταθεί από ένα πολύ μικρότερο μοντέλο με παρόμοια συμπεριφορά στα συγκεκριμένα

σημεία, εφαρμόζοντας τεχνικές μείωσης τάξης μοντέλου (MOR).

Σε αυτή τη διατριβή, και σε συνεργασία με τη Huawei Technologies και το εργαστηρίου

ηλεκτρονικής του Τμήματος, κατασκευάσαμε ένα εργαλείο παραγωγής παραμετρικού μο­

ντέλου μειωμένης τάξης (ROM), το οποίο μπορεί να διαχειριστεί μεγάλα θερμικά μοντέλα

και να παράγει τους πίνακες του ROM σε παραμετρική μορφή. Συγκεκριμένα, υλοποιήσαμε

μία ρουτίνα που δέχεται ως είσοδο πραγματικά διακριτοποιημένα μοντέλα και παρουσιάζει

εξαιρετική απόδοση, χρησιμοποιώντας σύγχρονους παράλληλους επιλυτές. Τέλος, τα πει­

ραματικά αποτελέσματα έδειξαν πως μπορεί να επιτευχθεί μείωση τάξης κατά 99.99% με

απόκλιση σφάλματος λιγότερη του 5% για ένα μοντέλο 5 εκατομμυρίων κόμβων.
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Chapter 1

Introduction

1.1 Motivation

For almost half a century, the semiconductor industry has been followingMoore’s Law [4]

in terms of integrated circuit (IC) planning and setting targets for research and development.

Figure 1.1 shows the trends in the devicemaking from 1970 till themid­2010s [1]. For the first

two decades, trends follow a Dennard­like scaling pattern [5], followed by an acceleration in

the rate of growth from 1990s until around mid­2000s, where it seemingly “hit a wall” and

the rate of improvement in physical dimensions began to decrease. Nonetheless, the future of

the semiconductor industry promises even more improvements on the downscaling and the

package density, following ­ or even going beyond ­ Moore’s law [6, 7, 8, 9].

This means that the technology downscaling will endure and the number of transistors

in future ICs will continue to increase. For example, TSMC[10] has announced that 5nm

technology node delivers ~1.8x times higher logic density to its previous 7nm generation

[11]. This corresponds to higher power densities and die temperature. Figure 1.2 shows the

power density of Intel products over the last 12 years [1]. The trend from 2014 till today

for larger power density is, to a certain extent, due to the remodeling of the ICs into 3D

architectures and the demanding packaging methods that follow, [12, 13, 14, 15, 16], which

leads to higher die temperature and local hotspots.

Rising temperatures have become a major issue in the semiconductor industry as they

contribute to the degradation of the chip’s reliability since they can cause malfunction or even

the destruction of the chip at extreme temperatures. More specifically, some of the problems

that arise are slower devices because of the degradation of carrier mobility as it depends

1



2 Chapter 1. Introduction

on how high the temperature is [17], shorter device life times and unreliability since elevated

temperatures have a strong impact on the hazard rate [18]. And last but not least, temperature­

dependent subthreshold current may lead to increased leakage power [19, 20].

Figure 1.1: Microprocessor trends over the last 40 years [1].

Figure 1.2: Power density of Intel products released over the period 2004­2015 [1].
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Consequently, thermal modeling is of critical importance since knowing the temperature

distribution across the chip can help prevent the issues mentioned above. Huang et al. [2, 21]

suggest that a well­planned thermal model can help complete the leakage power calculation

flowchart and play a significant role in developing a reliable and high­performance IC, as

shown in Figure 1.3.

Figure 1.3: Thermal modeling in power integrity analysis [2].

Most of the past work on thermal analysis and simulation is focused on the discretization

of the partial differential equation (PDE) of the heat conduction equation [22], transforming

it into a system of ordinary differential equations (ODE) (e.g. [3, 23, 24, 25]). Then, the

resulting discretized equations of the thermal model are solved by corresponding them to an

electrical equivalent circuit [26]. The problem with these methods is that the result of the

discretization could lead to extremely large matrices, leading to particularly long simulation

times.

However, on most occasions, there is no need to perform thermal analysis across the

whole device, but at some pre­definedmonitor points. In these cases, the high­order system of

equations can be transformed into a much smaller simplified system, that’s an approximation

of the original one, through a Model Order Reduction (MOR) approach.

The two main categories of MOR are the system theoretic techniques methods (such as

Balanced Truncation, first occurrence in [27]) and the moment­matching methods (mainly

Krylov subspace methods, first occurrence in [28]). The first one demonstrates better perfor­

mance due to the fact that it preserves its stability. For the same reason, it offers an a­priori
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error bound [29, 30]. However, methods of this category appear to have the highest cost,

which results from the fact that one has to solve two Lyapunov equations of size the same

as the original. This severely impedes the amenability of these methods on systems of high

order. On the other hand, moment­matching techniques are an efficient alternative since they

only require the computation of the reduction subspace [31]. The downside to this type of

methods is that they do not offer boundary approximation errors and that the quality of the

ROM approximation depends only on the produced subspace. Overall, MMmethods are well

established due to their computational efficiency in producing reduced­order models with ac­

ceptable accuracy.

1.2 Contributions

In this thesis, we introduce a parametric ROM generation tool that uses MM techniques,

and in particular Krylov Subspaces methods, in order to scale down the order of very large

thermal models in low execution times while maintaining great accuracy. It should be noted

that this research has been conducted in the Electronics Research Lab 1, in collaboration with

Huawei Technologies. The contributions of this thesis are summarized below:

1. We created a parametric ROM tool that handles large industrial thermal models, con­

sisting of several million elements.

2. The paramtric reduced­order matrices produced by our tool exhibit not only very small

dimension but also great accuracy for all different parameter values within a pre­

specified range.

3. We integrated state­of­the­art C++ parallel sparse direct and iterative solvers, like the

Pardiso and a preconditioned conjugate gradient (PCG), to achieve extremely good

execution times.

4. Experimental results on very large scale thermal models consisting of millions of ele­

ments indicates significantly fast reduction time while achieving very well accuracy.

1Electronics Research Lab: https://erl.e­ce.uth.gr/

https://erl.e-ce.uth.gr/
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1.3 Thesis Organization

The rest of the Thesis is organized as follows. Chapter 2 provides a detailed description

of the on­device thermal modeling, including the heat conduction and the analogy between

thermal and electrical circuits, as well as the heat transfer from the surface to the environ­

ment. Chapter 3 introduces MOR, emphasizing on MM techniques. Chapter 4 presents our

parametric ROM generation tool along with some efficient implementation choices. In Chap­

ter 5, we present the experimental results and analyze the accuracy and the performance of

the tool. Finally,we draw some conclusions and give future directions in Chapter 6.





Chapter 2

State­Space Model

2.1 Thermal Modeling

2.1.1 On­device thermal modeling

Thermal conduction is the main mechanism of heat transfer. It is primarly evaluated in

terms of Fourier’s Law for heat conduction:

q(r, t) = −kt∇T (r, t) (2.1)

which shows that the local heat flux density q is equal to the product of thermal conductivity k

of the material and the negative local temperdature gradient−∇T over an area r = [x, y, z]T .

In other words, the heat flux density is the amount of energy that flows through a unit area

per unit time. Also, according to the conservation of energy, the rate of change of the heat

flux q is equal to the difference between the power generated by the heat sources and the rate

of change of temperature:

∇ · q(r, t) = g(r, t)− ρcρ
∂T (r, t)

∂t
(2.2)

where g(r, t) is the power density of the heat sources, and ρ, cρ are the density and the heat

capacity of the material. So, by replacing q from 2.1 in 2.2, we result in:

−kt∇2T (r, t) = g(r, t)− ρcρ
∂T (r, t)

∂t
(2.3)

which can be writen as the following Partial Differential Equation (PDE):

ρcρ
∂T (r, t)

∂t
= kt∇2T (r, t) + g(r, t)

= kt(
∂2T (r, t)

∂x2
+

∂2T (r, t)

∂y2
+

∂2T (r, t)

∂z2
) + g(r, t)

(2.4)

7



8 Chapter 2. State­Space Model

followed by the corresponding boundary conditions, of which we are going to discuss at the

end of this section.

The next step is to discretize the 3D space with the corresponding steps ∆x, ∆y, ∆z,

transforming the second­order derivatives into finite difference approximations. Applying

these and multiplying the equation 2.4 by ∆x∆y∆z, it becomes:

ρcρ(∆x∆y∆z)
dT (r, t)

dt
− kt

∆y∆z

∆x
(Ti+1,j,k − 2Ti,j,k + Ti−1,j,k)

− kt
∆x∆z

∆y
(Ti,j+1,k − 2Ti,j,k + Ti,j−1,k)

− kt
∆x∆y

∆z
(Ti,j,k+1 − 2Ti,j,k + Ti,j,k−1)

= gi,j,k

(2.5)

2.1.2 Electrical analogy of heat conduction

In solids, heat conduction is analogous to the conduction of electricity in electrical con­

ductors. The flow of heat is proportional to the difference in temperature, as in a conductor,

the flow of electricity is proportional to a potential difference. The temperature corresponds

to the voltage, the heat flow corresponds to the current, etc., as shown in table 2.1.

Table 2.1: The analogous elements of thermal and electrical conduction

Electrical Circuit Thermal Circuit

Charge Heat

Current Heat Flow

Voltage Temperature

Electrical Resistance Thermal Resistance

Electrical Capacitance Thermal Capacitance

Electrical Conductance Thermal Conductance

So, bearing this in mind, the analogous discretized electrical circuit has a node at every

discrete point in the thermal grid, as shown in Figure 2.1. The conductances connecting two

neighboring nodes in the directions of x, y, z respectively are:

Gx ≡ kt∆y∆z

∆x
,Gy ≡

kt∆x∆z

∆y
,Gz ≡

kt∆x∆y

∆z
(2.6)

The capacitance at each node to ground is:

C ≡ ρcp(∆x∆y∆z) (2.7)
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Finally, the current sources are:

Ii,j,k ≡ gi,j,k(∆x∆y∆z) (2.8)

Figure 2.1: Discretization of space & electrical equivalent circuit [3].

So, having defined Gx, Gy, Gz, C, and Ii,j,k, and using the Modified Nodal Analysis

method (MNA), our system becomes:

Gx(t) +C
dx(t)

dt
= Bu(t) (2.9)

where,

n ∈ R is the number of nodes of the system,

p ∈ R is the number of ports of the system,

G ∈ Rnxn is a symmetric positive­definite (SPD) matrix of the conductances,

C ∈ Rnxn is a diagonal matrix of the cell capacitances,

x ∈ Rn is the vector of the unknown temperatures,

B ∈ Rnxp is the input­to­state connectivity (i.e., power distribution) matrix,

u ∈ Rp is the vector of the input excitations from the current sources.

At this point, we have formulated a way to obtain the temperature at every node of the

grid. However, in many cases, the temperature does not need to be monitored accross the

whole device but only at some pre­defined points, which are denoted as monitor points. The

part of x(t) corresponding to the monitor points can be computed by the following:

y(t) = Lx(t) (2.10)
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where,

q ∈ R is the number of the monitor points,

y ∈ Rq is the output temperatures vector,

L ∈ Rqxn is the state­to­outpt connectivity matrix.

So, the state­space form of our system is:

Gx(t) +C
dx(t)

dt
= Bu(t)

y(t) = Lx(t)

(2.11)

2.1.3 Heat transfer coefficients

In order to solve the system of differential equations in 2.11, it must be accompanied by

boundary conditions. These boundary conditions have a physical meaning as well, since they

describe the heat flow between the device and the environment.

The radiative boundary condition, at a specific point, is modeled as:

dT

dn
= h(T − To) (2.12)

where,

h ∈ R is the heat transfer coefficient,

To ∈ R is the ambient temperature.

The equation 2.12 shows that the difference between the surface temperature and the

ambient temperature is proportional to the heat flow between the surface and the environment.

So, if we apply FDM, we obtain:

Ti,j,k − Ti−1,j,k

∆x
= h(Ti,j,k − To) (2.13)

By applying the discretized equation boundary condition of the HTCs (eq. 2.13) on the state­

space model (eq. 2.11), it becomes:

(G+
∑
i

hiAi)x(t) +C
dx(t)

dt
= Bu(t)

y(t) = Lx(t) + To

(2.14)

where, A ∈ Rnxn is a diagonal matrix that contains the surface nodes from which heat flows

towards the environment. This way, the HTCs are added to the diagonal elements of the

conductance matrixG.

From this point until the end of the Thesis, although we keep the notation of the equation

2.11 for the state­space model,G is considered to include the HTCs.
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2.2 Parametric Thermal Modeling

Parametrizing thermal models is crucial for the design and testing of ICs [32, 33, 34],

as small changes of the geometry and the physical properties of the device may affect its

response. However, time restrictions do not allow the re­calculation of the model for each

variation of the circuit’s properties de novo.

So, there is a need for a parametric discretized system that can handle the variation of such

parameters so that the process of thermal modeling do not have to be implemented anew for

all possible values, which can be essential for real­time applications and simulations.

With that being said, to construct the parametricmodel, the system in equation 2.11 should

be transformed to allow the access and the modification of the parameter values inside the

same representation, while avoiding re­calculating the system’s equations and performing a

new reduction. As a result, the state­space model can be written as:

G(λ1, ..., λm)x(t, λ1, ..., λm) +C
dx(t, λ1, ..., λm)

dt
= Bu(t)

y(t, λ1, ..., λm) = Lx(t, λ1, ..., λm)

(2.15)

where, G,C ∈ Rn×n are again the conductance and capacitance matrices, B ∈ Rn×p is the

power distribution (input­to­state connectivity) matrix, and L ∈ Rq×n is the state­to­output

connectivity matrix. The elements of G and C, and as a result the states of the system x,

depend on a set of parameters λ = [λ1, . . . , λm] which model the effect of different materials

that are going to be analyzed for each part of the device during thermal simulation. More

specifically, each parameter λi corresponds to a specific conductance or capacitance scaling

factor.





Chapter 3

Model Order Reduction

The complexity and the large size of some contemporary systems, render these sys­

tems’ equations impossible to solve. Model order reduction (MOR) aims to lower the sheer

complexity of these problems so that they can be dealt within a reasonable period of time.

The methods used are divided into two main categories, system theoretic methods and the

moment­matching techniques.

The system theoretic techniques, with the most common being the Balanced Truncation

(BT) [27, 35, 36, 37], tend to have better accyracy since they preserve the system’s stability

[38]. For the same reason, it provides a global a­priori error between the transfer function of

the reduced and the original model [29, 30]. The main idea behind BT is to truncate the least

controllable and obervable states associated with the smallest Hankel singular values (HSVs)

of the system [39, 40].

The downside of these methods is that, in order to obtain the controllability and observ­

ability matrices needed for the computation of the HSVs, one has to solve two Lyapunov

equations [41, 42] of size equal to the original, which are very computationally demanding.

They also involve storage of dense matrices [43, 44, 45], even if the system matrices are

sparse, which is not amenable to our case, since our matrices are typically of very high order,

e.g., hundrends of thousands or even millions of elements.

On the other hand, the main goal of the moment­matching methods, i.e., the Krylov sub­

space approaches, is to create a Krylov subspace of a much smaller order than the original

system’s order and then to project the system onto the specific produced subspace. The cre­

ation of the projection matrix that describes the subspace to be produced uses the moments of

the original transfer functions in order to approximate the reduced ones and involves simple

13
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decompositions and linear solvers which makes the MMmethods a better fit for our problem

since they tend to be more time efficient.

These methods do not offer an a­priori error and the efficiency of the reduced matrices de­

pends exclusively on the quality of the Krylov subspace produced. This is why some heuristic

error bounds have been proposed in order to measure the error between the transfer functions

of the original and the reduced model [46, 47, 48]. Furthermore, although they may not pre­

serve some important proporties of the system such as the stability and the passivity, there

are approaches that indeed lead to stable systems, ensuring an acceptable accuracy [49].

3.1 Moment­Matching

Consider the state­space model of equation 2.11:

C
dx(t)

dt
= Gx(t) +Bu(t),

y(t) = Lx(t)

(3.1)

The objective of MOR is to produce a reduced­order model:

C̃
dx̃(t)

dt
= G̃x̃(t) + B̃u(t),

ỹ(t) = L̃x̃(t)

(3.2)

with G̃, C̃ ∈ Rr×r, B̃ ∈ Rr×p, L̃ ∈ Rq×r, where the order of the reduced model is r << N

and the output error ||ỹ(t)−y(t)||2 is small. An equivalent metric of accuracy in the frequency

domain (via Plancherel’s theorem [50]) is the distance ||H̃(s)−H(s)||∞, where

H(s) = L(sC−G)−1B

H̃(s) = L̃(sC̃− G̃)−1B̃

are the transfer functions of the original and the reduced­order model, and ||.||∞ is the induced

L2 matrix norm (or theH∞ norm of a rational transfer function).

The most important and successful MOR methods for linear systems are based on MM.

They are very efficient in circuit simulation problems and are formulated in a way that has a

direct application to the linear model of (3.1).

By applying the Laplace transform to (3.1), we obtain the s domain equations as:

sCx(s)− x(0) = Gx(s) +Bu(s)

y(s) = Lx(s)
(3.3)
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Assuming that x(0) = 0 and that a unit impulse is applied to u(s) (i.e., u(s) = 1), then the

above system of equations can be written as follows:

(sC−G)x(s) = B

y(s) = Lx(s)
(3.4)

and by expanding the Taylor series of x(s) around zero, we derive the following equation:

(sC−G)(x0 + x1s+ x2s
2 + . . . ) = B (3.5)

The transfer function of (3.1) is a function of s, and can be expanded into a moment expansion

around s = 0 as follows:

H(s) = M0 +M1s+M2s
2 +M3s

3 . . . (3.6)

where, M0, M1, M2, M3, . . . are the moments of the transfer function. Specifically, in cir­

cuit simulation problems, M0 is the DC solution of the linear system. This means that the

inductors of the circuit are considered as short circuits and the capacitors as open circuits.

Moreover,M1 is the Elmore delay of the linear model, which is defined as the time required

for a signal at the input port to reach the output port. In general, Mi is related to the system

matrices as:

Mi = L(G−1C)iG−1B (3.7)

The goal of MM reduction techniques is the derivation of a reduced­order model where

some moments M̃i of the reduced­order transfer function H̃(s) match some moments of the

original transfer functionH(s).

3.1.1 Krylov subspaces

Let us now denote the two projection matrices onto a lower dimensional subspace as

Vℓ,Vr ∈ RN×r. These matrices can be derived from the associated moments using one or

more expansion points. As a result, if we assume that s = 0, then the matricesVℓ andVr are

defined as follows:

range(Vr) = span{G−1B, (G−1C)G−1B, . . . , (G−1C)r−1G−1B}

range(Vℓ) = span{LT , (CTG−T )LT , . . . , (CTG−T )r−1LT} (3.8)
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The computed reduced­order model matches the first 2r moments and is obtained by the

following matrices:

C̃ = VT
ℓ CVr, G̃ = VT

ℓ GVr, B̃ = VT
ℓ B, L̃ = LVr (3.9)

This reduced model provides a good approximation around the DC point. Finally, in case we

employ a one­sided Krylov method, which is usually the case, the matrixVℓ can be set equal

toVr, an equality that also holds for symmetric systems.

3.1.2 ROM generation by the Arnoldi procedure

The Arnoldi procedure [51] that computes the projection matrix V begins with Bk, and

then iteratively generates a sequence of subspacesKk(Ak,Bk) in order to compute the matrix

V ∈ RN×r and produce the ROM as described in (3.9).

The complete Arnoldi procedure is given in Algorithm 1, where we pass as arguments the

Ak and Bk matrices. The matrix Bk depends on the expansion point around which we want

to expand the Taylor series in order to produce the Krylov subspace. Finally, we also pass as

arguments the desired order and the number of ports of the system, which are then used in

step 4 in order to compute the number of moments used to match the trasnfer functions. This

step can also be explained as “how many times the number of ports of the system p fits in the

desired order r”.

Now that the arguments have been explained, let us analyze the Arnoldi procedure. At

step 3, the initial projection matrix is computed for the first moment and the rest of the pro­

jection matrix V is iteratively computed for all the other moments in steps 5­12. At step 7,

the projection matrix for each new moment is computed and then the function orth_wrt,

at step 8, performs an orthogonalization on V1 w.r.t. all the previous moments. Finally, in

steps 9­10, the newV matrix is orthogonalized using a QR orthogonalization, which is then

concatenated to the finalV matrix.

Finally, before returning the produced projection matrix, we make sure at step 13 that the

number of columns of this matrix matches the desired order r.

3.1.3 Multi­point moment­matching

Most popular approach towards the expansion point selection is using DC as the expan­

sion point, i.e., expanding on zero. However, in some cases, there’s a need for multiple ex­
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Algorithm 1: Arnoldi procedure for computing the projection matrix [51]
Input: Ak ≡ G−1C,Bk ≡ (G+ sC)−1B where s the expansion point, desired order r, #ports p

Output:V

1 Function compute_projection_matrix(Ak,Bk, r, p):

2 j = 1

3 V(j) = qr([BE ])

4 k = r
p

5 while (j < k) do

6 k1 = p(j − 1); k2 = k1 + p;

7 V1 = [AkV
(j)(:, k1 + 1 : k2)]

8 V2 = orth_wrt(V1,V
(j), p)

9 V3 = qr(V2)

10 V(j+1) = [V(j),V3]

11 j = j + 1

12 end

13 V = V(:, 1 : r)

14 returnV

15 End Function

pansion points. Let [s1, ..., sk] be a set of k distinct expansion points. There are many method­

ologies where complex and real expansion points are tested. However, for the purpose of this

Thesis, all expansion points are real numbers. The subspace that makes use use of this set is:

range(Vr) = span{(G− s1C)−1B, . . . , (G− skC)−1B}

range(Vℓ) = span{(G− s1C)−TLT , . . . , (G− skC)−TLT}
(3.10)

The matrices Vl and Vr of Equation 3.10 can be implemented using a Rational Arnoldi

method [52] which uses multiple expansion points in order to create the Krylov subspace.

Previous work (e.g [53, 54]), has made use of the poles ofAE ≡ G−1Cmatrix in order to

calculate the expansion points. Codecasa et al. [55] have built an algorithm that exploits the

poles of matrixAE and calculates the optimal expansion points. The essense of the expansion

points algorithm is given in Algorithm 2. It should be pointed out that in step 10, dnandK

are the Jacobi elliptic function and the complete elliptic integral function respectively.
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Algorithm 2: Computation of expansion points for MPMM [55]
Input: G, C, #exp_points

Output: exp_points

1 Function get_exp_points(G,C,#exp_points):
2 Compute inverse of C: Cinv = 1./C

3 λmax = 1/min_eigenvalue(Cinv ∗G)

4 λmin = 1/max_eigenvalue(Cinv ∗G)

5 k′ = λmin

λmax

6 k =
√

1− k′2

7 Determine smallest integerm such that 4exp(−mπ2/log(4/k′)) ≤ ϵ

8 j = 0

9 while j < m do

10 σ(j) = λmax ∗ dn((2j − 1)/(2m)) ∗ K(k)

11 j = j + 1

12 end

13 exp_points = get_dominant_exp_points(σ,#exp_points)

14 return exp_points

15 End Function

3.2 Parametric Moment­Matching

Now we are going to take the problem of order reduction one step further by adding the

issue of the parameters. As analyzed in Section 2.2, there is a need for parametric thermal

modeling. However, standard MOR methods are not typically robust when there is a para­

metric model to be reduced, hence the necessity of techniques that take into consideration the

variability of such parameters. Parametric Model Order Reduction (PMOR) [56] has been es­

tablished for this exact reason, with first occurrences in [46, 57] .

Most of the previous work on parametric MOR has focused on moment­matching tech­

niques since Krylov subspaces can be easily constructed w.r.t. independent parameters of the

model [58, 59, 60, 61].

Similarly to (3.2), the parametric transfer function of the original model is computed as:

H(s, λ1, . . . , λm) = L(sC(λ1, . . . , λm)−G(λ1, . . . , λm))
−1B (3.11)

for which we seek to generate a ROM approximation, which will be able to accurately capture
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the input/output behavior of the system for any possible combination in the parameter space:

H̃(s, λ1, . . . , λm) = L̃(sC̃(λ1, . . . , λm)− G̃(λ1, . . . , λm))
−1B̃ (3.12)

Generally, MORmethods try to generate a ROMwhose structure is similar to the original

one, i.e., exhibiting a similar parametric dependence. The most straightforward method for

representing a parametric system is based on a Taylor series expansion with respect to the

parameters:

(s(C0 +C1λ1 + · · ·+Cmλm)− (G0 +G1λ1 + · · ·+Gmλm))x(s, λ) = Bu(s)

y(s, λ) = Lx(s, λ)
(3.13)

where,C0 andG0 contain the capacitance and conductance values corresponding to the non­

parametric parts, while Ci and Gi include the capacitance and conductance values that are

scaled with respect to the parameters. Using this kind of representation, with explicit pa­

rameter dependence, allows the tool to obtain a ROM, with similar representation when a

projection matrix is applied

(s(C̃0 + C̃1λ1 + · · ·+ C̃mλm)− (G̃0 + G̃1λ1 + · · ·+ G̃mλm))x(s, λ) = B̃u(s)

y(s, λ) = L̃x(s, λ)
(3.14)

where G̃0, G̃1, . . . , G̃m, C̃0, C̃1, . . . , C̃m ∈ Rr×r, B̃ ∈ Rr×p, and L̃ ∈ Rq×r are the ROM

matrices, with r << N .





Chapter 4

ROM Generation Tool

4.1 Constructing the State­Space Model

For the generation of the thermal equivalent circuit, we have parsed the corresponding

comma­separated values (CSV) files, provided by Huawei, that contained the netlists, i.e.,

the conductance and capacitance elemtned of the model, needed. We constructed the corre­

spondingG,C matrices by parsing the netlists and by applying the modified nodal analysis

(MNA) framework on these input files and described by a system of PDEs, as explained in

equation 2.9 of Chapter 2:

Gx(t) +C
dx(t)

dt
= Bu(t)

y(t) = Lx(t)

(4.1)

where

n denotes the order of the original system,

p denotes the number of power distribution sources,

G ∈ Rn×n is a Symmetric Positive Definite (SPD) matrix of the conductances,

C ∈ Rn×n is a diagonal matrix of cell capacitances,

x ∈ Rn is the vector of unknown temperatures Ti,j,k at all discretization points (i, j, k) (con­

stituting the internal states of the system),

B ∈ Rn×p is the power distribution (input­to­state connectivity) matrix,

u ∈ Rp is the vector of input excitations from the current sources Ii,j,k,

L ∈ Rq×n is the state­to­output connectivity matrix, where q is the number of monitor points,

T0 is the ambient temperature,

21
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y ∈ Rq is the q­rows column vector of the final output temperatures.

In order to demonstrate statistics, such as sparsity and patterns, we have constructed sev­

eral artificial benchmarks that represent simplified microprocessor designs with random con­

trol logic and datapath. Since in these designs, each node has a capacitor to ground and a

resistance for each neighboring node, they have high sparsity ratio, e.g., 90− 99%.

The sparsity paterns of the generated sparse matricesG,C are shown in Figures 4.1 and

4.2.MatrixG is a five­diagonal matrix containing the conductances between two neighboring

nodes of the circuit. Its non­zero values 3, 455, 074 ≪ 500, 000x500, 000. Matrix C is a

diagonal matrix containing the capacitance values between each node and the ground. As one

can imagine, the non­zero elements of this matrix are 500, 000. Both matrices are symmetric.

Figure 4.1: Sparsity pattern of a state­space model matrixG ∈ R500Kx500K .

Now that the model is ready, we need to add the HTCs to the diagonal of the matrix G.

As explained in Section 2.1.3, the heat exchange through device interfaces is modeled with

the radiative boundary condition (discretized boundary condition in Equation 2.13). In order

to take into account the HTCs, they have to be added to the diagonal of matrix G and in

particular only to the surface nodes on which there is a heat exchange with the environment:

(G+
∑
i

hiAi)x(t) +C
dx(t)

dt
= Bu(t) (4.2)
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Figure 4.2: Sparsity pattern of a state­space model matrix C ∈ R500Kx500K .

where, for each surface direction i, Ai ∈ Rn×n is the diagonal matrix arising from the

discretization of the convection boundary conditions on each surface node and hi is the HTC

value in each discretization area which describes the heat flow between the device and the

environment.

In case of a parametric model, the procedure for the HTCs is mostly the same. The in­

formation, that we were provided, on the HTCs was the final value of the HTC to a specific

direction, i.e., these values already encapsule the information of the material and it is not

affected by the conductance and the capacitance factors. Also, as analyzed in Section 3.2,

matrices G0 and C0 contain the non­parametric parts of the conductance and capacitance

matrices, respectively, which means that they are not going to be multiplied by a factor like

the rest of the parts. In conclusion, the values of the HTCs are added to the diagonal of matrix

G0 and are dealt with the non­parametric parts of the devive.

4.2 Multi­Point Moment­Matching Procedure

In the process of developing the parametric ROMgeneration tool, we first created a multi­

point moment matching (MPMM) procedure for non­parametric models. It is the basis of the

parametric procedure that is going to be thoroughly explained in Section 4.3. The complete

MPMM procedure is given in Algorithm 3, which employs Algorithm 2 for computing the
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optimal expansion points.

Algorithm 3:MPMM procedure for computing ROM (G̃, C̃, B̃, L̃)
Input:G, C, B, L, desired_size r, #ports p,moments_per_exp_point

Output: G̃, C̃, B̃, L̃

1 Function mpmm_mor(G,C,B,L, r, p,moments_per_exp_point):
2 #exp_points = r/p

3 exp_points = get_exp_points(C,G,#exp_points)

4 V = []

5 Ak = G−1C,

6 while i < #exp_points do

7 Bk = (G+exp_point(i)∗C)
−1

B

8 Vi = compute_projection_matrix(Ak,Bk,moments_per_exp_point ∗ p)

9 V = [V,Vi]

10 i = i+ 1

11 end

12 G̃ = VT ∗G ∗V

13 C̃ = VT ∗C ∗V

14 B̃ = VT ∗B

15 L̃ = L ∗V

16 return G̃, C̃, B̃, L̃

17 End Function

MPMM takes as input the matrices of the original model (G,C,B,L), the reduced size

r, the number of ports p, and the number of momentsmoments_per_exp_point for each call

to the Arnoldi procedure. As outputs, it returns the reduced matrices G̃, C̃, B̃, L̃.

The algorithm begins at step 2 by computing the number of the expansion points based

on the desired reduced order and the number of ports of the system, and then it initializes

the vector of the expansion points using Algorithm 2 for optimal expansion points selection

(step 3). In steps 4­5, it initializes the total projection matrix V and the matrix Ak which is

used in the Arnoldi procedure along with matrix Bk.

In steps 6­10, the algorithm iteratively computes the final projection matrix, i.e., the

Krylov subspace onto which the original matrices are then projected (in steps 12­15). The

resulted matrices G̃, C̃, B̃, L̃ are the reduced order matrices, a.k.a. the output of the algo­

rithm.
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4.3 Parametric MOR Procedure
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4.4 Implementation Details
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4.4.1 Orthogonalization in steps 3 and 9

4.4.2 Orthogonalization in step 8
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4.4.3 Solvers
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Chapter 5

Experimental Evaluation

5.1 Experimental Setup

For the experimental evaluation of our tool, we created three artificial benchmarks that

represent real microprocessor designs. The characteristics of the constructed benchmarks are

shown in Table 5.1. Nodes is the number of the discretized points on the grid, which means

that the system of equations that the tool solves is of size Nodes, since G,C ∈ RNodesxNodes.

Conductances is the number of the conductances, i.e. the connections between the nodes.

Capacitances refer to the capacity to ground for each node, hence Nodes = Capacitances.

Power Sources represents the number of ports of the circuit. Each port of the circuit is con­

nected to a power source. Monitor Points is the number of nodes where we want to observe

the temperature.

Table 5.1: Model Characteristics

Model Nodes Conductances Capacitances Power Sources Monitor Points

model1 500,000 ~1,500,000 500,000 10 100

model2 1,500,000 ~4,000,000 1,500,000 10 100

model3 5,000,000 ~15,000,000 5,000,000 10 100

The reduced models of these benchmarks were calculated using the Huawei’s proprietary

ROM generation tool that was implemented for the purpose of “Reduced order model gener­

ation for thermal simulation” project. The parametric ROM generation tool was tested with

both procedures of DC approach and Multi­Point Moment Matching (MPMM) approach in

35
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order to evaluation their performances and compare them. In both methods, the projection

matrix was built by the Arnoldi procedure, shown in Algorithm 1. In DC method, where the

only expansion point is the DC (zero), for the cases where the reduced size is more than the

number of ports, in the Arnoldi procedure, the numbermoments that the subspace is expanded

are computed by #moments = reduced_size/ #ports. On the other hand, in MPMM ap­

proach, if the desired reduced size is set to a number larger than the number of ports, then the

number of expansion points is set to reduced_size/ #ports and only one moment is used for

the expansion of the Krylov subspace.

Both approaches were tested using solver1 and solver21 and for three different reduced

orders, 10, 20 and 70. For all cases, the tolerance of the error tolerance for both solvers, which

were evalutated as well, was set to ϵ = 10−5. Since the solvers used are parallelizable, the tool

was run with 40 threads. The total transient analysis time is 2000sec and the step is 200sec.

An example of the configuration file of the tool for model1 and desired reduced order 10

is shown in Figure 5.1. We first set the input files, then the number of threads used for the

parallel solvers, the desired reduced size and finally the ambient temperature, in which case

it is 273.15K, i.e., 0◦C.

Figure 5.1: Configuration file for model1 & reduced order 10.

1The solvers used cannot be shown, as they are covered by an NDA agreement with Huawei Technologies
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For the evaluation of the methods, we compared the responses of the transient analysis of

both the original and the reduced model of the same characteristics at the monitor points. We

used Backward Euler for the iterative approximation of the derivatives. Finally, the transient

analysis end time was set to 2500sec and the timestep to 50sec.

The metrics we used in order to evaluate the above­mentioned approaches where the

mean relative error(%), the max relative error(%) and the Reduction time (in sec). The time

that was spent on transient analysis is not taken into account. All experiments were executed

with C++11 on a Windows workstation, having an Intel Zeon Silver processor with 40 cores

running at 2.2GHz and 128GB memory.

5.2 Experimental Results

The experimental results from the transient analysis are reported in Table 5.2, where the

values in bold are the best time for the specific combination of benchmark and reduced size.

The experiments that are compared to each other are all in the same line, i.e., the ones for

the same model and the same desired reduced order. For example, the first experiment cor­

responds to testing the DC approach along with solver1 with model1 and reduced order 10.

Table 5.2: Reduction results of transient analysis of the benchmarks

Model

DC Approach MPMM Approach

Reduced solver1 solver2 solver1 solver2

Order MRE Max RE Time MRE Max RE Time MRE Max RE Time MRE Max RE Time

(%) (%) (sec) (%) (%) (sec) (%) (%) (sec) (%) (%) (sec)

10 0.00962 0.14998 24.390 0.00962 0.14998 23.357 0.00962 0.14998 24.519 0.00962 0.14998 23.853

model1 20 0.00019 0.00982 27.344 0.00019 0.00982 26.993 0.00019 0.00982 27.414 0.00019 0.00982 27.092

70 0.00005 0.00022 130.564 0.00005 0.00022 126.437 0.00005 0.00022 129.677 0.00005 0.00022 126.475

10 0.01264 0.18730 41.559 0.01264 0.18730 45.712 0.01264 0.18730 42.144 0.01263 0.18730 39.713

model2 20 0.00035 0.01635 47.553 0.00034 0.01634 50.414 0.00035 0.01633 50.263 0.00035 0.01634 49.647

70 0.00005 0.00072 223.911 0.00005 0.00072 226.317 0.00004 0.00076 222.006 0.00004 0.00073 225.102

10 0.01400 0.20776 331.324 0.01403 0.20776 317.412 0.01403 0.20777 326.497 0.01405 0.20778 316.765

model3 20 0.00043 0.02348 377.179 0.00047 0.02343 376.274 0.00043 0.02348 374.590 0.00045 0.02344 376.929

70 0.00018 0.00091 1748.300 0.00015 0.00097 1731.650 0.00011 0.00092 1682.150 0.00011 0.00092 1742.110

By observing the table, one can immediately notice the exceptionally low errors, both

for mean and max relative errors with acceptable reduction times. The significance of these

results can become even greater considering that the reduction shown in this table is between

98.74% and 99.999813% for original models of sizes 500K and 5M with desired reduced

orders of 70 and 10 respectively.
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In regard to the errors between the various approaches and solvers, the differences are

negligible, especially for the smaller benchmarks. For example, all the experiments concern­

ing model1 and desired reduced order of 70 provide the same mean and max errors. This was

expected, since we made use of established methods.

Finally, by noticing the pattern of the best times, the conclusion that can be made is that

for relatively small benchmarks, the DC approach in combination with solver2 is the best

choice. On the other hand, for very large benchmarks, the MPMM approach is clearly the

best choice. Also, the solver1 solver seems to outrun solver2 in most scenarios.

In general, the differences in performance and accuracy between the approaches are

almost indistinguishable. The reduction percentage varies from 98.74% (model1 with re­

duced size 70, Figure 5.2 shows the transient analysis of a monitor for this experiment) to

99.999813% (model3 with reduced size 10, a transient plot of this experiment is shown in Fig­

ure 5.3) with the corresponding max relative errors 0.00005% and 0.20777% and reduction

times 126.437sec and 316.765sec.

Figure 5.2: Transient analysis of model1 ­ desired order 70 ­ solver2.
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Figure 5.3: Transient analysis of model3 ­ desired order 10 ­ solver2.





Chapter 6

Conclusions and Future Work

In this Thesis, we presented a parametric ROM generation tool that handles real­world

large thermal models, up to millions of elements. We implemeted two procedures for the

expansion points selection, a multi­point moment matching (MPMM) and a single point mo­

ment matching (MM) procedure that were tested based on their accuracy and performance.

Furthermore, the developed procedures have been optimized by exploiting state­of­the­art

(direct and iterative) solvers.

Experimental results show that both approaches (MPMM and single point MM) have

almost identical accuracy but with some small differences in performance. For relatively

small models (e.g., of 500 thousands states), a single expansion point with multiple moments

has better accuracy than multiple expansion points. For large models, it is evident that there

is a need for more expansion points. Regarding the solvers, they have very small ­ almost

negligible ­ differences in both accuracy and performance. Overall, our tool achieves a model

reduction of 98.74% with 0.00005% Max Relative Error and reduction time of 126.537sec

for a model of 500k nodes and desired reduced order 70.

In regard to future work, neural networks can be applied to our tool to improve its perfor­

mance in reduction time, since the complexity of a prediction is O(1). Moreover, according

to recent developments, Physics Informed Neural Networks (PINN) [62] are very efficient

in computing the temperature response of the transient analysis with acceptable accuracy.

Finally, as an extension to our tool, it can be modified in order to handle industrial geometry

description files (e.g., STEP) and construct the MNA system of equations.
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