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Abstract— In this paper, a direct-coupled thermal-

mechanical analysis of a Power Electronics Modules (PEM) 

using ANSYS-FEM (Finite Element Method) is integrated with 

a Parametric Model Order Reduction (pMOR) technique. 

Unlike most present studies on model order reduction, which 

perform the coupled thermal-mechanical analysis by sequential-

coupled thermal-mechanical models, the direct-coupled 

thermal-mechanical approach deployed in this study solves the 

thermal and structural models simultaneously. Commonly, 

pMOR mainly focuses on parametrising model parameters (e.g., 

material properties, loads.) that are constants. In this 

investigation, a new approach to parametrise temperature-

dependent properties using pMOR, such as the coefficient of 

thermal expansion (CTE) of the materials in PEM structures, 

has been demonstrated in the context of the reliability 

assessment of electronic modules. A two-dimensional finite 

element model of a PEM is developed and used to study the 

temperature-dependent CTE effects of the Aluminium (Al) alloy 

on the thermal-mechanical response of the system under 

thermal load. A Krylov subspace-based technique, PRIMA, has 

been used for the model order reduction and a linear approach 

of matrix interpolation for the parametrisation in the pMOR. 

The full-order state-space model has 30,612 degrees of freedom 

(DOFs), and the reduced model achieved by pMOR has just 8 

DOFs. The simulation runs show that with this approach, a 

substantial reduction in computational time can be achieved, for 

this problem, by 81% between the full and the reduced order 

models. In modelling predictions, the pMOR-based solution has 

retained the accuracy of results. In this instance, the average 

difference in stress result, compared to the ANSYS-FEM model 

(FOM) solution, is only 0.43%. 

Keywords—Finite Element Method (FEM), Thermal-

Mechanical Analysis, Power Electronics Module (PEM), 

Reliability Assessment, Parametric Model Order Reduction 

(pMOR) 

I. INTRODUCTION 

With the advancement of modern technologies in 
disciplines such as space travel, aeronautics, and nuclear 
applications, it is becoming increasingly difficult for 
engineers to work on complex and expensive projects [1, 2]. 
These technologies require reliability assessments and 
protection constraints as these are essential for safety. 
Engineering analyses and designs are mainly done by 
simulating working principles of physical domains, and these 
simulations are based on mathematical models [3, 4]. Partial 
differential equations (PDEs), derived from engineering 
sciences, can explain the working principles of physical 
systems [5, 6]. The finite element method (FEM) is currently 

one of the most used computational tools for solving PDEs. 
PDEs are discretised into algebraic equations utilising simple 
approximate unknown variables in finite element analysis. 
The computation in finite element analysis includes complex 
and significantly high dimensional systems of differential 
equations. Reduction of dimensions of these equations is in 
high demand considering the application and simulation time 
requirements. The classic method of model reduction 
technique, Modal truncation, and most widely practised 
Krylov subspace-based techniques offer good approximate 
models [7, 8, 9]. However, as reported in previous studies, 
Krylov subspace-based techniques are comparatively “semi-
automatic” [8].   

Electronic systems’ performances and reliability are 
reliant on thermal behaviours. One of the crucial means of 
dissipation in these systems is thermal-elastic damping. 
Hence, it is vital to concentrate on the thermal-mechanical 
analysis of electronic systems for reliability assessments. 

Thermal-mechanical analysis-based reliability assessment 
had been previously conducted with FEM and CARES, a 
reliability assessment computational tool, by Eblen [10] for 
microelectronic package designing. Codecasa et al. [11] 
presented a computational tool, TRIC, a multigrid and ad-hoc 
projection-based solver to reduce simulation time for 
necessary thermal-mechanical analysis in electronic 
packaging. Shen and Ke [12] investigated an electrical contact 
region by electrical-thermal-mechanical coupled analysis.  

Bai and Su [13] examined a large-scale model of a linear-
drive multimode resonator by devising a Krylov subspace-
based model reduction algorithm. Liu et al. [14] applied 
Krylov subspace-based model order reduction (MOR) 
technique to obtain the temperature profile of an electrical 
converter assembly used in hybrid and electric vehicles. 
Several works focused on developing boundary condition 
independent (BCI) reduced thermal and coupled models, and 
they used Krylov subspace-based approach [15] and a 
reduction matrix code, FANTASTIC [16, 17], to investigate 
multiple electronic systems. 

A thermal-mechanical assessment of a micro-resonator 
had been performed by Choi et al. [18] before, where they 
applied the moment matching algorithm for Krylov subspace-
based model reduction. Mechanical loading of an IGBT-PEM 
structure and electrical-thermal profiles of a PEM wire-bond 
structure were studied, through Krylov subspace-based MOR 
techniques, by Rajaguru et al. [9, 19].  
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A modal approach had been previously applied for model 

reduction of thermal models and optimisation of electronic 
boards by Bissuel et al. [20]. A frequency response analysis of 
a micro-thruster was performed by Baur et al. [21], utilising 
several pMOR methodologies to parametrise the physical 
properties of the model. Feng et al. [22] applied a multi-
moment-matching based pMOR approach to electrical and 
electrical-thermal models of a nanoelectronics structure to 
parametrise a physical dimension of the model. Random 
variables of an electromagnetic-heat model were parametrised 
with a pMOR method, which follows the superposition 
principle, by ter Maten et al. [23]. A parametric reduced order 
model (ROM) of a piezoelectric energy harvester was 
developed by Bouhedma et al. [24] using Krylov subspace-
based MOR technique to parametrise the geometric properties 
of the model. Three reduced-order modelling approaches were 
explored, by Schütz et al. [25], to parametrise magnetostatic 
variables of micro-actuator systems. Yuan et al. [26] applied 
two pMOR methods to build an optimised model of a 
miniaturised thermoelectric generator. 

The FANTASTIC code was employed by Scognamillo et 
al. [27] for performing the electrical-thermal examination of a 
power module, where nonlinear thermal impacts were realised 
in the model. A procedure to achieve a reduced order model 
of a multi-physical piezoelectric kick and catch actuator 
system with nonlinear input had been presented by Schütz et 
al. [28] by using a Krylov subspace-based approach.   

In most above-referenced studies, the coupled thermal-
mechanical models had been solved by sequential-coupled 
models. But a direct-coupled thermal-mechanical model is 
more reasonable and provides more accurate results. Thus, a 
direct coupled thermal-mechanical model, which solves the 
thermal and mechanical models simultaneously, has been used 
for the current analysis. Furthermore, in previous pMOR 
studies, constant values of material properties, e.g., coefficient 
of thermal expansion (CTE), have been widely parametrised. 
But temperature-dependent properties of materials should be 
considered for more realistic thermal-mechanical parametric 
analysis. Hence, temperature-dependent CTE of the wire 
material for the current PEM structure has been parametrised 
in this pMOR study.    

II. PROBLEM FORMULATION 

A. Parametric Full Order Model 

The parametric state-space model can be expressed in the 
form [26, 29]: 

𝑬(𝒑𝑖)𝒙̇(𝒑𝑖 , 𝑡) = 𝑨(𝒑𝑖)𝒙(𝒑𝑖 , 𝑡) + 𝑩(𝒑𝑖)𝒖(𝒑𝑖 , 𝑡) 

𝒚(𝒑𝑖 , 𝑡) = 𝑪(𝒑𝑖)𝒙(𝒑𝑖, 𝑡) 
(1) 

Here, 𝑬(𝒑𝑖), 𝑨(𝒑𝑖) ∈ ℝ𝑁×𝑁  are system matrices. 
𝑩(𝒑𝑖) ∈ ℝ𝑁×𝑀   and 𝑪(𝒑𝑖) ∈ ℝ𝑃×𝑁  are input and output 
matrices; they are dependent on parametric points 𝒑𝑖 . 
𝒖(𝒑𝑖 , 𝑡) ∈ ℝ𝑀  and 𝒚(𝒑𝑖 , 𝑡) ∈ ℝ𝑃  are inputs and outputs of 
the system, and 𝒙(𝒑𝑖 , 𝑡) ∈ ℝ𝑁 is the states of the system, they 
are time, 𝑡, and parametric point, 𝒑𝑖, dependent. 𝒑𝑖, here, is 
considered a vector of parametric points representing changes 
in modelling properties, for 𝑖 = 0, 1, … 𝑘, with 𝑘 parametric 
points. 

B. Projection-based Model Order Reduction 

The linear time-invariant (LTI) system, parametric point 
independent state-space model of (1), can be expressed in the 
form [26, 29]: 

𝑬 𝒙̇(𝑡) = 𝑨 𝒙(𝑡) + 𝑩 𝒖(𝑡) 

𝒚(𝑡) = 𝑪 𝒙(𝑡) 
(2) 

Here, 𝑬, 𝑨 ∈ ℝ𝑁×𝑁  are system matrices. 𝑩 ∈ ℝ𝑁×𝑀  and 
𝑪 ∈ ℝ𝑃×𝑁  are input and output matrices. 𝒖(𝑡) ∈ ℝ𝑀  and 
𝒚(𝑡) ∈ ℝ𝑃  are the inputs and outputs of the system, and 
𝒙(𝑡) ∈ ℝ𝑁  is the states of the system. 𝑁 ∈ ℕ represents the 
order of the system and is deemed to be very high.  

The reduced order model of the system in (2) is then can 
be stated as [26, 29]: 

𝑬𝑟  𝒙̇𝑟(𝑡) = 𝑨𝑟 𝒙𝑟(𝑡) + 𝑩𝑟  𝒖𝑟(𝑡) 

𝒚𝑟(𝑡) = 𝑪𝑟 𝒙𝑟(𝑡) 
(3) 

The reduced matrices in (3) are determined as 𝑬𝑟 =
𝑽𝑇𝑬𝑽, 𝑨𝑟 = 𝑽𝑇𝑨𝑽, 𝑩𝑟 = 𝑽𝑇𝑩 and 𝑪𝑟 = 𝑪𝑽 using PRIMA 
[30, 31]. Here, 𝑬𝑟 , 𝑨𝑟 ∈ ℝ𝑞×𝑞 , 𝑩 ∈ ℝ𝑞×𝑚  and 𝑪 ∈ ℝ𝑝×𝑞 
matrices are dimensionally very small as the projection 
(transformation) matrix 𝑽 ∈ ℝ𝑁×𝑞  and 𝑞 ≪ 𝑁 . The 
projection (transformation) matrix is achieved through the 
transfer function of the full order model (2), and then the 
transfer function of the reduced order model is calculated. 
Transfer functions of the full order model and reduced order 
model can be described as [30, 31]: 

𝒀(𝑠) = 𝑪 (𝑠𝑬 − 𝑨 )
−1𝑩 (4) 

𝒀𝑟(𝑠) = 𝑪𝑟
 (𝑠𝑬𝑟 − 𝑨𝒓)−1𝑩𝑟 (5) 

C. Interpolation of Sparse Matrices 

Considering matrices in (1) as 𝑿(𝒑𝑖) = 𝑬(𝒑𝑖) , 𝑨(𝒑𝑖) , 
𝑩(𝒑𝑖)  as sparse matrices, the state-space system for 
considered parametric points can be achieved by 
implementing linear matrix interpolation as shown below [29, 
32, 33]: 

𝑿(𝒑𝑖) = 𝑿(𝒑𝑖=0) + 𝜔(𝒑𝑖) [𝑿(𝒑𝑖=𝑘) − 𝑿(𝒑𝑖=0)] (6) 

Here, 𝜔(𝒑𝑖)  is calculated using the linear interpolation 
method. For current case, a bi-linear approach has been 
adopted to implement matrix interpolation. In the present 
study, 𝑖 = 0, 1, … , 𝑘  with 𝑘 = 6 . So, the adopted bi-linear 
interpolation method can be expressed as: 

𝑿(𝒑𝑖=0,1,2,3) = 𝑿(𝒑0) + 𝜔(𝒑𝑖) [𝑿 (𝒑𝑘
2

) − 𝑿(𝒑0)] 

𝑿(𝒑𝑖=4,5,6) = 𝑿 (𝒑𝑘
2

) + 𝜔(𝒑𝑖) [𝑿(𝒑𝑘) − 𝑿 (𝒑𝑘
2

)] 

(7) 

D. Parametric Reduced Order Model 

Finally, the reduced parametric model can be formed using 
the interpolated matrices shown in (7) and following the 
approach shown in (3). The reduced parametric model can be 
expressed as [26]: 

𝑬𝑟(𝒑𝑖)𝒙̇𝑟(𝒑𝑖 , 𝑡) = 𝑨𝑟(𝒑𝑖)𝒙𝑟(𝒑𝑖 , 𝑡)
+ 𝑩𝑟(𝒑𝑖)𝒖𝑟(𝒑𝑖, 𝑡) 

𝒚𝑟(𝒑𝑖, 𝑡) = 𝑪𝑟(𝒑𝑖)𝒙𝑟(𝒑𝑖 , 𝑡) 

(8) 

The reduced parametric model in (8) has been solved by 
using the generalised trapezoidal rule (GTR) [9]. 

E. Parametric Thermal-Mechanical Model 

After finite element discretisation, the thermal-mechanical 
model studied in this work forms a second-order system. The 



 

 
parametric thermal-mechanical model can be expressed as the 
followings [34, 35]: 

𝑴(𝒑𝑖)𝒛̈(𝒑𝑖, 𝑡) + 𝑫(𝒑𝑖)𝒛̇(𝒑𝑖 , 𝑡) + 𝑲(𝒑𝑖)𝒛(𝒑𝑖, 𝑡)
= 𝑮(𝒑𝑖)𝒖(𝒑𝒊, 𝑡) 

𝒚(𝒑𝑖 , 𝑡) = 𝑳(𝒑𝑖) 𝒛(𝒑𝑖 , 𝑡) 

(9) 

Here, 𝑴(𝒑𝑖), 𝑫(𝒑𝑖), 𝑲(𝒑𝑖) ∈ ℝ𝑛×𝑛  are mass, damping 
and stiffness matrices with 2𝑛 = 𝑁 . 𝑮(𝒑𝑖) ∈ ℝ𝑛×𝑀  and 
𝑳(𝒑𝑖) ∈ ℝ𝑃×𝑛  are input and output matrices. 𝒖(𝒑𝑖, 𝑡) ∈ ℝ𝑀 
and 𝒚(𝒑𝑖, 𝑡) ∈ ℝ𝑃 are the inputs and outputs of the system, 
and 𝒛(𝒑𝑖 , 𝑡) ∈ ℝ𝑛  is the states of the system. For a general 
direct-coupled thermal-mechanical analysis, matrices and 
vectors are defined as [35]: 

𝑴 = [
𝑴𝑠 𝟎
𝟎 𝟎

], 𝑫 = [
𝑫𝑠 𝟎

𝑫𝑡𝑢 𝑫𝑡], 𝑲 = [
𝑲𝑠 𝑲𝑢𝑡

𝟎 𝑲𝑡
], 

𝑮 = [
𝑭
𝑸

], 𝒛̈ = [
𝒛̈𝑢𝑡

𝑻̈
], 𝒛̇ = [

𝒛̇𝑢𝑡

𝑻̇
], 𝒛 = [

𝒛𝑢𝑡

𝑻
]  

(10) 

with, 𝑲𝑡 = 𝑲𝑡𝑏 + 𝑲𝑡𝑐, 𝑭 = 𝑭𝑛𝑑 + 𝑭𝑝𝑟 + 𝑭𝑎𝑐 , 𝑸 =
𝑸𝑛𝑑 + 𝑸𝑔 + 𝑸𝑐 

(11) 

Here, 𝑴𝑠 is structural mass matrix. 𝑫𝑠 , 𝑫𝑡 and 𝑫𝑡𝑢  are 
structural damping, thermal specific heat and thermoelastic 
damping matrices. 𝑲𝑠 , 𝑲𝑢𝑡  and 𝑲𝑡  are structural stiffness, 
thermoelastic stiffness and thermal conductivity matrices with 

𝑲𝑡𝑏 and 𝑲𝑡𝑐 as thermal conductivity matrices of material and 
convection surface. 𝑭 is applied mechanical load vector with 

𝑭𝑛𝑑, 𝑭𝑝𝑟 and 𝑭𝑎𝑐 as applied nodal force and applied pressure 
load vectors, and force vector because of acceleration effects. 
𝒛𝑢𝑡  and 𝑻 are displacement and thermal potential vector. 𝑸 is 

applied thermal load vector with 𝑸𝑛𝑑, 𝑸𝑐 and 𝑸𝑔 as applied 
nodal heat flow rate and convection surface vectors, and heat 
generation rate vector excluding Joule heating.    

The current thermal-mechanical model in (9) has been 
transformed to the state-space representation shown in (1) as 
[19, 34]:   

[
𝑭 𝟎
𝟎 𝑴

] [
𝒛̇
𝒛̈

] = [
𝟎 𝑭

−𝑲 −𝑫
] [

𝒛
𝒛̇

] + [
𝟎
𝑮

] 𝒖 

𝒚 = [𝑳 𝟎] [
𝒛
𝒛̇

] 
(12) 

with, 𝑬 = [
𝑭 𝟎
𝟎 𝑴

] , 𝑨 = [
𝟎 𝑭

−𝑲 −𝑫
] , 𝑩 = [

𝟎
𝑮

] , 

𝑪 = [𝑳 𝟎], 𝒙̇ = [
𝒛̇
𝒛̈

], 𝒙 = [
𝒛
𝒛̇

] 
(13) 

Here, 𝑭 ∈ ℝ𝑛×𝑛  must be a non-singular matrix. In the 
current modelling, 𝑭 = 𝑰𝑛 , where 𝑰𝑛  is an 𝑛 × 𝑛  identity 
matrix. 

III. POWER ELECTRONICS MODULE 

In this work, a 2D model of a power electronics module 
(PEM) has been considered for a thermal-mechanical analysis. 
It is a SiC-based power module. Fig. 1 shows the PEM 
structure and boundary conditions used for the coupled 
analysis. The model was built in ANSYS with Al (alloy) as the 
wire material, and the material properties of Al (alloy) will be 
parametrised in this pMOR study. 

A. FEM Model 

A direct coupled transient thermal-mechanical analysis 
has been adopted for the FEM model. The SiC bodies of the 
model are thermal sources with isothermal boundary 
conditions of 𝑇𝑆𝑖𝐶 = 100𝑜𝐶 . It is considered high 
temperature, labelled A in Fig. 1, in the model with the 
assigned uniform temperature value. The bottom edge of the 
baseplate, with Cu material, has an isothermal boundary 
condition of 𝑇𝐵 = 22𝑜𝐶 . It is the low temperature of the 
model, labelled B in Fig. 1. This low temperature matches the 
initial and ambient temperatures of the model. For structural 
(mechanical) boundary conditions, the bottom two corner 
vertices are assumed to be rigidly fixed, i.e., no deformation 
is anticipated for these two vertices. The analysis time for the 
current model is 10𝑠 , and the heat-generating body has a 
constant temperature throughout the analysis. Since no 
plasticity behaviour is considered for the wire 
material, Al (alloy), in the PEM structure, varying temperature 
behaviour of the heat-generating body has not been practised 
in the current analysis for the simplicity of the model.     

B. Grid Independence Study 

The FEM model has been reviewed for consistencies 
considering two different mesh sizes, according to the 
validation method in [36]. Fig. 2 shows the temperature and 
total deformation results, along a probing point (line/path), for 
two different mesh sizes. The probing point is a vertical line 
in the left part of the PEM structure, starting at the top of the 
wire, in the wire bond area, and proceeding to the bottom of 
the baseplate. The results for two different mesh sizes match 
very well. Mesh 1 has 5398 nodes with 4493 elements, and 
Mesh 2 has 3813 nodes with 3074 elements. Mesh 1 and Mesh 
2 have an average orthogonal quality of 0.99, considered 
“outstanding” quality according to [36]. 

C. Parametric Points 

The coefficient of thermal expansion of Al (alloy), 𝐶𝑇𝐸𝐴𝑙 , 
depends on temperature distribution in the Al (alloy) bodies, 
representing a non-linear material property for the material. 
This 𝐶𝑇𝐸𝐴𝑙  and Young’s Modulus of Al (alloy), 𝐸𝐴𝑙 , have 
been parametrised in this work for design points exploration. 
Uniform parametric points, seen in Fig. 3, have been chosen 

 

Figure 1: 2-D PEM structure and Boundary Conditions.  
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to implement pMOR with matrix interpolation. The 
parametric points are equally spaced parametric points, 
i.e., 𝐶𝑇𝐸𝐴𝑙  values are uniformly spaced corresponding to their 
temperature, and 𝐸𝐴𝑙  constant values are also equally 
spaced. Fig. 4 shows the 𝐶𝑇𝐸𝐴𝑙 values’ ranges considered for 
the parametric study. Table 1 shows Young’s Modulus value 
ranges according to parametric points. 

D. Reduced Model 

The state-space full order model (FOM) has a total degree 
of freedom (DOF) of 𝑁 = 30,612 as the system matrices size 
for the state-space model is 𝑁 × 𝑁. The reduced order model 
has a total DOF of 𝑞 = 8  with reduced system matrices 
size 𝑞 × 𝑞. So, the simulation time required for the parametric 
reduced-order model is significantly less than FOM. The 
pMOR solution, including reduction processes, for seven 
parametric points only required 818𝑠, whereas the ANSYS 
solution would have required approximately 4305𝑠 , 
performing simulations on the same computer. So, with the 
pMOR approach, an 81%  reduction in computational time 
has been achieved. 

A flow chart showing the organisational steps taken to 
carry out the pMOR study is shown in Fig. 5. The PEM model 
has been built in ANSYS for FEM discretisation. System 
matrices and load vectors have been extracted, from the 
ANSYS, for three parametric points (𝒑0, 𝒑3 and 𝒑6) after the 
discretisation. These system matrices have been exported as 
sparse matrices for portability. The matrices and vectors have 

been imported into MATLAB for the next step. With these 
matrices and vectors, a parametric reduced-order model has 
been built using the pMOR approach. 

E. Resutls and Discussions 

For carrying out the pMOR study with the current FEM 
discretised model, it is required that pMOR results agree well 
with the ANSYS full order model (FOM) solution. The 
degrees of freedom (DOFs) in the current model are 

TABLE 1:  PARAMETRIC POINTS FOR THE YOUNG’S MODULUS OF 𝐴𝑙 

(ALLOY), 𝐸𝐴𝑙. 

Parametric Points Young’s Modulus (𝑬𝑨𝒍) in GPa 

𝒑0 71.06 GPa 

𝒑1 71.05 GPa 

𝒑2 71.04 GPa 

𝒑3 71.03 GPa 

𝒑4 71.02 GPa 

𝒑5 71.01 GPa 

𝒑6 71.00 GPa 

 

 

Figure 3: Uniform parametric points. 

 

Figure 4: Parametric points for the temperature dependent coefficient of 

thermal expansion of Al (alloy), 𝐶𝑇𝐸𝐴𝑙. 
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Figure 5: The organisational process for pMOR. 
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(b) Temperature, 𝑇 
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Figure 2: Mesh sensitivity analysis comparing temperature and total 

deformation along a probing point (line/path) in the left side of the PEM 

structure shown in Fig. 1. 
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temperature and directional deformations, i.e., deformation in 
the x-axis and deformation in the y-axis. In Fig. 6s, the 
contours of temperature and total deformation distributions 
are shown considering the left part of the PEM structure. This 
figure compares results obtained from ANSYS solution 
against parametric reduced order model solution. Interpolated 
parametric point solution from the reduced order model has 
been compared here to validate the matrix interpolation 
method additionally. The chosen parametric point for the 
result shown in Fig. 6 is 𝒑5. The reduced order model solution 
agrees very well with the ANSYS solution. 

Fig. 6(a) and 6(b) show that the temperature load in the 
wire bond area is one of the highest temperature regions of the 
model. The temperature in the wire bond area reaches the level 
of the temperature of the heat-generating body (SiC-based 
semiconductor). The peak values of the temperature 
distribution in the PEM structure have about 
a 0.04%  difference between ANSYS and reduced order 
model solutions. This wire bond area is the area of interest for 
analyses in this work. 

In Fig. 6(c) and 6(d), it is seen that the wire structure 
encounters the highest level of deformation in the module. The 
wire bond area of the PEM structure also sees a comparatively 
very high level of deformation. The difference in the peak 
value of the total deformation results between ANSYS and the 

reduced model’s solution is approximately 1.4%. The highest 
deformation area in the PEM structure was anticipated to be 
in the wire structure for the considered model.   

Fig. 7 shows the equivalent (von-Mises) stress results in 
the wire bond region. Results for this figure are across a 
probing point, a line/path, as seen in Fig. 7(a). The probing 
point is in the wire structure’s edge and in the wire structure, 
which is in direct contact with Al (alloy) layer adjacent to the 

 
(a) Temperature, ANSYS solution. 

 
(b) Temperature, pMOR solution (interpolated). 

 
(c) Total deformation, ANSYS solution. 

 
(d) Total deformation, pMOR solution (interpolated). 

Figure 6: Temperature and Total Deformation distribution from 

ANSYS and pMOR solutions in the left part of the PEM structure for 

the parametric point 𝒑5. 

 

(a) Equivalent (von-Mises) stress, obtained by the pMOR solution, along 
the probing point (line/path) in PEM (Fig. 1) for parametric point 𝒑5. 

 

(b) Equivalent (von-Mises) stress, ANSYS vs pMOR solution, for the 
parametric point 𝒑5. 

 

(c) Equivalent (von-Mises) stress, obtained by the pMOR solution, for 
all the considered parametric points. 

Figure 7: Equivalent (von-Mises) stress along a probing point 

(line/path) in wire bond region of PEM structure shown in Fig. 1. 
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heat generating source, SiC-based semiconductor, to its 
opposite side. So, the results show the predicted stresses in the 
wire body for the considered probing point (line/path), 
considering the importance of this area [37, 38]. Fig. 
7(b) compares stress results obtained from ANSYS and 
reduced order model solutions for the parametric point 𝑝5, an 
interpolated parametric point for pMOR with matrix 
interpolation. The equivalent (von-Mises) stress result agrees 
very well with the ANSYS result. The stress results, shown 
in Fig. 7(b), have an average difference of 
only 0.43%  between ANSYS and reduced-order model 
solutions. So, the reduced order modelling approach, pMOR, 
provides an excellent approximate model and is suitable for 
reliability analysis. In Fig. 7(c), equivalent stress results 
obtained by the reduced order model along the probing point 
are shown for all the parametric points. It is seen from the 
figure that equivalent (von-Mises) stresses along the probing 
point range approximately from 120𝑀𝑃𝑎  to 170𝑀𝑃𝑎  for 
considered parametric points. In the current model, the wire 
material, Al (alloy), has a yield strength of 280𝑀𝑃𝑎. So, the 
equivalent (von-Mises) stresses in the wire bond area do not 
exceed the yield strength of the material for analysed 
parametric points. 

F. Error Analysis  

The local reduced order model in (3) or the parametric 
reduced order model in (8) cannot be solved errors free. The 
model order reduction errors can be computed using the 
transfer functions of the full-order and reduced-order models. 
The error calculation method can be stated as the following [9, 
19]: 

𝝐(𝒑𝑖 , 𝑠) =
||𝒀(𝒑𝑖 , 𝑠) − 𝒀𝑟(𝒑𝑖 , 𝑠)||

||𝒀(𝒑𝑖 , 𝑠)|| 
 (14) 

Table 2 shows the model order reduction error for the 
parametric point 𝒑3 . Two different orders of the reduced 
model have been explored before further analysis. It is seen in 
Table 2 that order 8 and 9 show similar model order reduction 
error. Since the model order reduction error doesn’t change 
much for the reduced order 9, the pMOR study has been 
carried out with reduced order 8.      

IV. CONCLUSION 

A parametric study has been carried out for a direct-
coupled thermal-mechanical analysis of a power electronics 
module. The parametric study has been conducted using the 
parametric model order reduction method. The temperature-
dependent values of the coefficient of thermal expansion and 
constant values of Young’s modulus of the wire structure have 
been parametrised for parametric/design point exploration. 
The Krylov subspace-based approach PRIMA has been used 
for model order reduction, and the bi-linear technique of 
matrix interpolation has been used to build a parametric 
reduced-order model. The reduced order model has very low 
dimensionality and saves a significant amount of 
computational time, about 81% . The reduced order model 

retains a very high level of accuracy, showing only a 0.43% 
difference in the stress result. Overall, the pMOR method 
offered in this work can overcome any challenges related to 
simulation time that may arise during reliability analysis-
based design explorations while considering a large-scale 
model. Further studies will be focused on implementing 
pMOR approaches considering models with nonlinear 
plasticity behaviours in the wire material. 
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