186 research outputs found

    Numerical simulation of prominence oscillations

    Get PDF
    We present numerical simulations, obtained with the Versatile Advection Code, of the oscillations of an inverse polarity prominence. The internal prominence equilibrium, the surrounding corona and the inert photosphere are well represented. Gravity and thermodynamics are not taken into account, but it is argued that these are not crucial. The oscillations can be understood in terms of a solid body moving through a plasma. The mass of this solid body is determined by the magnetic field topology, not by the prominence mass proper. The model also allows us to study the effect of the ambient coronal plasma on the motion of the prominence body. Horizontal oscillations are damped through the emission of slow waves while vertical oscillations are damped through the emission of fast waves.Comment: 12 pages, 14 figures, accepted by Astronomy and Astrophysic

    Numerical simulations of stellar winds: polytropic models

    Get PDF
    We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, polytropic, magnetized, rotating models. These represent 2D generalisations of the analytical 1D Weber-Davis wind solution, which we obtain in the process. Axisymmetric wind solutions containing both a `wind' and a `dead' zone are presented. Since we are solving for steady-state solutions, we efficiently exploit fully implicit time stepping. The method allows us to model thermally and/or magneto-centrifugally driven stellar outflows. We particularly emphasize the boundary conditions imposed at the stellar surface. For these axisymmetric, steady-state solutions, we can use the knowledge of the flux functions to verify the physical correctness of the numerical solutions.Comment: 11 pages, 6 figures, accepted for Astron. Astrophys. 342, to appear 199

    Rossby Wave Instability and three-dimensional vortices in accretion disks

    Full text link
    Context. The formation of vortices in accretion disks is of high interest in various astrophysical contexts, in particular for planet formation or in the disks of compact objects. But despite numerous attempts it has thus far not been possible to produce strong vortices in fully three-dimensional simulations of disks. Aims. The aim of this paper is to present the first 3D simulation of a strong vortex, established across the vertically stratified structure of a disk by the Rossby Wave Instability. Methods. Using the Versatile Advection Code (VAC), we set up a fully 3D cylindrical stratified disk potentially prone to the Rossby Wave Instability. Results. The simulation confirms the basic expectations obtained from previous 2D analytic and numerical works. The simulation exhibits a strong vortex that grows rapidly and saturates at a finite amplitude. On the other hand the third dimension shows unexpected additional behaviours that could be of strong importance in the astrophysical roles that such vortices can play.Comment: Accepted by Astronomy and Astrophysic

    Simulations of small-scale explosive events on the Sun

    Get PDF
    Small-scale explosive events or microflares occur throughout the chromospheric network of the Sun. They are seen as sudden bursts of highly Doppler shifted spectral lines of ions formed at temperatures in the range 2x10^4 - 5x10^5 K. They tend to occur near regions of cancelling photospheric magnetic fields and are thought to be directly associated with magnetic field reconnection. Recent observations have revealed that they have a bi-directional jet structure reminiscent of Petschek reconnection. In this paper compressible MHD simulations of the evolution of a current sheet to a steady Petschek, jet-like configuration are computed using the Versatile Advection Code. We obtain velocity profiles that can be compared with recent ultraviolet line profile observations. By choosing initial conditions representative of magnetic loops in the solar corona and chromosphere, it is possible to explain the fact that jets flowing outward into the corona are more extended and appear before jets flowing towards the chromosphere. This model can reproduce the high Doppler shifted components of the line profiles but the brightening at low velocities, near the centre of the bi-directional jet, cannot be explained by this simple MHD model.Comment: 16 pages, 8 figures. To be published in Solar Physic

    Non-linear dynamics of Kelvin-Helmholtz unstable magnetized jets: three-dimensional effects

    Get PDF
    A numerical study of the Kelvin-Helmholtz instability in compressible magnetohydrodynamics is presented. The three-dimensional simulations consider shear flow in a cylindrical jet configuration, embedded in a uniform magnetic field directed along the jet axis. The growth of linear perturbations at specified poloidal and axial mode numbers demonstrate intricate non-linear coupling effects. The physical mechanims leading to induced secondary Kelvin-Helmholtz instabilities at higher mode numbers are identified. The initially weak magnetic field becomes locally dominant in the non-linear dynamics before and during saturation. Thereby, it controls the jet deformation and eventual breakup. The results are obtained using the Versatile Advection Code [G. Toth, Astrophys. Lett. Comm. 34, 245 (1996)], a software package designed to solve general systems of conservation laws. An independent calculation of the same Kelvin-Helmholtz unstable jet configuration using a three-dimensional pseudo-spectral code gives important insights into the coupling and excitation events of the various linear mode numbers.Comment: 10 (+7) pages, 6 figures, accepted for Phys. Plasmas 6, to appear 199

    Pulsar wind nebulae in supernova remnants

    Get PDF
    A spherically symmetric model is presented for the interaction of a pulsar wind with the associated supernova remnant. This results in a pulsar wind nebula whose evolution is coupled to the evolution of the surrounding supernova remnant. This evolution can be divided in three stages. The first stage is characterised by a supersonic expansion of the pulsar wind nebula into the freely expanding ejecta of the progenitor star. In the next stage the pulsar wind nebula is not steady; the pulsar wind nebula oscillates between contraction and expansion due to interaction with the reverse shock of the supernova remnant: reverberations which propagate forward and backward in the remnant. After the reverberations of the reverse shock have almost completely vanished and the supernova remnant has relaxed to a Sedov solution, the expansion of the pulsar wind nebula proceeds subsonically. In this paper we present results from hydrodynamical simulations of a pulsar wind nebula through all these stages in its evolution. The simulations were carried out with the Versatile Advection Code.Comment: 10 pages, 9 figures, submitted to Astronomy and Astrophysic

    On the Azimuthal Stability of Shock Waves around Black Holes

    Full text link
    Analytical studies and numerical simulations of time dependent axially symmetric flows onto black holes have shown that it is possible to produce stationary shock waves with a stable position both for ideal inviscid and for moderately viscous accretion disks. We perform several two dimensional numerical simulations of accretion flows in the equatorial plane to study shock stability against non-axisymmetric azimuthal perturbations. We find a peculiar new result. A very small perturbation seems to produce an instability as it crosses the shock, but after some small oscillations, the shock wave suddenly transforms into an asymmetric closed pattern, and it stabilizes with a finite radial extent, despite the inflow and outflow boundary conditions are perfectly symmetric. The main characteristics of the final flow are: 1) The deformed shock rotates steadily without any damping. It is a permanent feature and the thermal energy content and the emitted energy vary periodically with time. 2) This behavior is also stable against further perturbations. 3) The average shock is still very strong and well defined, and its average radial distance is somewhat larger than that of the original axially symmetric circular shock. 4) Shocks obtained with larger angular momentum exhibit more frequencies and beating phenomena. 5) The oscillations occur in a wide range of parameters, so this new effect may have relevant observational consequences, like (quasi) periodic oscillations, for the accretion of matter onto black holes. Typical time scales for the periods are 0.01 and 1000 seconds for black holes with 10 and 1 million solar mass, respectively.Comment: 15 pages, 7 figures, accepted by the Astrophysical Journa
    corecore