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Abstract. We discuss steady-state transonic outflows obtained
by direct numerical solution of the hydrodynamic and magneto-
hydrodynamic equations. We make use of the Versatile Advec-
tion Code, a software package for solving systems of (hyper-
bolic) partial differential equations. We proceed stepwise from a
spherically symmetric, isothermal, unmagnetized, non-rotating
Parker wind to arrive at axisymmetric, polytropic, magnetized,
rotating models. These represent 2D generalisations of the an-
alytical 1D Weber-Davis wind solution, which we obtain in the
process. Axisymmetric wind solutions containing both a ‘wind’
and a ‘dead’ zone are presented.

Since we are solving for steady-state solutions, we ef-
ficiently exploit fully implicit time stepping. The method
allows us to model thermally and/or magneto-centrifugally
driven stellar outflows. We particularly emphasize the
boundary conditions imposed at the stellar surface. For these
axisymmetric, steady-state solutions, we can use the knowl-
edge of the flux functions to verify the physical correctness of
the numerical solutions.

Key words: Sun: solar wind – methods: numerical – Magneto-
hydrodynamics (MHD)

1. Introduction

Observational and theoretical research on stellar winds and as-
trophysical jets has evolved rapidly. For our own sun and its as-
sociated solar wind, the current understanding necessitates the
combined study of solar wind acceleration and coronal heating
in time-dependent modeling (Holzer & Leer 1997). At the same
time, Holzer and Leer rightfully stressed that it remains useful to
emphasize on early studies of wind acceleration. This, we find,
is especially true for numerical modeling of stellar winds. With
the ultimate goal of time-dependent heating/wind modeling in
mind, we here address the simpler question on how to accurately
model 1D and 2D steady-state winds by the numerical solution
of the polytropic magnetohydrodynamic (MHD) equations.

Since much of the 1D solutions we obtain is known from the
outset, we can verify our resultsprecisely. Indeed, 1D Parker
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(1958) and Weber-Davis (Weber & Davis 1967) wind solutions
can be checked to agree with the analytic description. In their
axisymmetric 2D extensions, various physical quantities must
be conserved along poloidal streamlines. Sakurai (1985, 1990)
presented such 2D generalizations of the magnetized Weber-
Davis wind, using a method designed from these conservation
laws. With modern numerical schemes, we can recover and ex-
tend his solutions to allow for the self-consistent modeling of
‘dead’ and ‘wind’ zones, as in the solar wind. Our steady-state
solutions can be checked to conserve quantities along stream-
linesa posteriori.

Of crucial importance is the choice of boundary condi-
tions used in the simulations. Since the governing equations
for steady-state, transonic MHD flows are of mixed-type, their
character can change from elliptic to hyperbolic at a priori un-
determined internal critical surfaces. Causality arguments have
been used to discuss which and how many boundary conditions
must be prescribed (Bogovalov 1997). Our choice of boundary
conditions used at the stellar surface is therefore discussed in
detail.

All solutions presented are obtained with a single soft-
ware package, the Versatile Advection Code (VAC, see Tóth
1996, 1997 and alsohttp://www.phys.uu.nl/ ˜toth ).
Although we only present steady-state transonic outflows in
spherical and axisymmetry, VAC is developed for handling
hydrodynamic (HD) and magnetohydrodynamic (MHD) one-,
two-, or three-dimensional, steady-state or time-dependent
problems in astrophysics. It is therefore capable of achieving
our ultimate goal of time-dependent 3D wind modeling. The
insight gained in this study of steady-state polytropic flows will
then be very useful.

In Sect. 2, we list the equations and discuss the Versatile
Advection Code for solving them in Sect. 3. Our calculations
are presented in Sects. 4, 5, and 6. Conclusions are given in
Sect. 7. The approach taken is a gradual one, where for in-
stance our 1D solutions are used to construct initial conditions
for their 2D extension. We will therefore model, in increas-
ing order of complexity: (i) isothermal, spherically symmet-
ric Parker winds; (ii) polytropic, spherically symmetric Parker
winds; (iii) polytropic, rotating Parker winds for the equato-
rial plane; (iv) Weber-Davis magnetized, polytropic, rotating
winds for the equatorial plane; and finally axisymmetric, poly-
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tropic, rotating 2D winds, both (v) unmagnetized and magne-
tized, without (vi) and with (vii) a ‘dead’ zone.

2. Equations

We solve the HD and MHD equations expressed in the conser-
vative variables densityρ, momentum vectorρv, and magnetic
field B. These are given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂(ρv)
∂t

+ ∇ · [ρvv + ptotI − BB] = ρg, (2)

∂B
∂t

+ ∇ · (vB − Bv) = 0. (3)

We introducedptot = p + 1
2B

2 as the total pressure,I as the
identity tensor,gas the external gravitational field, and exploited
magnetic units such that the magnetic permeability is unity. We
drop the energy equation and assume a polytropic relation con-
necting the thermal pressurep and the densityρ. For a poly-
tropic indexγ, we thus assumep ∼ ργ . Hence, we do not ad-
dress the heat deposition in the corona. Although we solve the
time-dependent equations as given above, we will only present
steady-state∂/∂t = 0 solutions of Eqs. (1)–(3). For stellar wind
calculations, we consider a spherically symmetric external grav-
itational fieldg = −GM∗/r2êr, whereG is the gravitational
constant,M∗ is the stellar mass,r is the distance to the stellar
center, and̂er indicates the radial unit vector.

3. Versatile advection code

In this section, we discuss the software and numerical method
used. The physics results are described from Sect. 4 onwards.
The Versatile Advection Code (VAC, see Tóth 1996, 1997) is
a general purpose software package for solving a conservative
system of hyperbolic partial differential equations with addi-
tional non-hyperbolic source terms, such as the MHD equa-
tions. VAC runs on PC’s, on a variety of workstations, on vector
platforms, and we can also run in parallel on a cluster of work-
stations, and on distributed memory architectures like the Cray
T3D and T3E, and the IBM SP (Keppens & Tóth 1998, T́oth &
Keppens 1998). The code is written in the dimension indepen-
dent LASY syntax (T́oth 1997), so it can be used as a convenient
tool to handle HD and MHD one-, two-, or three-dimensional
problems in astrophysics and laboratory plasma physics. The
dimensionality of the problem and the actual set of equations to
solve are easily selected in a preprocessing step.

VAC uses a structured finite volume grid and offers a choice
of conservative, second order accurate, shock-capturing, spatial
and temporal discretization schemes. The spatial discretizations
include two Flux Corrected Transport variants and four Total
Variation Diminishing (TVD) schemes (T́oth & Odstřcil 1996).
Temporal discretization can be explicit, semi-implicit, or fully
implicit. It was recently demonstrated (Keppens et al. 1998,
Tóth et al. 1998) how the implicit approach can be used very

efficiently, for steady-state and time-accurate problems possibly
containing discontinuities. Here, we expect smooth solutions to
the steady-state HD and MHD equations, so one can greatly
benefit computationally from fully implicit time stepping.

In this paper, we solve the polytropic HD (B = 0) Eqs. (1)
and (2) in Sects. 4.1 and 5. Magnetohydrodynamic equations are
solved in Sects. 4.2 and 6. We solve one-dimensional problems
in Sect. 4 and two-dimensional problems in Sects. 5 and 6. In
practice, this means that the stellar winds we model are solu-
tions of the equations under the additional assumption of a pre-
scribed symmetry in the ignored directions. One-dimensional
problems assume a spherical symmetry, while 2D solutions as-
sume∂/∂ϕ = 0. Here,ϕ denotes the angle in a cylindrical
(R,ϕ, z) coordinate system centered on the star with its polar
and rotation axis asz-axis.

Since we are interested in steady-state solutions, we use
fully implicit time stepping as detailed and demonstrated in
Keppens et al. (1998) and Tóth et al. (1998). The linear systems
arising in the linearized fully implicit backward Euler scheme
are solved using a direct block tridiagonal solver for the 1D
problems and using a preconditioned Stabilized Bi-Conjugate
Gradient iterative solver (van der Vorst 1992) for the 2D cases.
The Modified Block IncompleteLU preconditioner is described
in van der Ploeg et al. (1997). We consistently used the TVD
Lax-Friedrich (TVDLF) spatial discretization (Yee 1989, Tóth
& Odstřcil 1996) usingWoodwardlimiting (Collela & Wood-
ward 1984). We typically took Courant numbersC = O(100).
For all 1D solutions and for the 2D hydrodynamic solutions, the
steady-state is reached when the relative change in the conserva-
tive variables from one time level to the next drops below10−8.
We use a normalized measure defined by (Tóth et al. 1998)

∆2U ≡
√√√√ 1
Nvar

Nvar∑
u=1

∑
grid(Un+1

u − Un
u )2∑

grid(Un
u )2

, (4)

whereNvar is the number of conserved variablesUi, and the
superscripts indicate the pseudo time leveltn. Since we are
solving for smooth solutions, the numerical schemes can easily
achieve such accuracy in the steady-state solutions.

For the axisymmetric 2D MHD solutions, the way to ensure
a zero divergence of the magnetic field is non-trivial. Unless one
uses a scheme which keeps∇·B = 0 exactly in some discretiza-
tion, like the constrained transport method (Evans & Hawley
1988), corrective action needs to be taken during the time inte-
gration. This involves either including corrective source terms
in the equations which are proportionate to the numerically gen-
erated divergence (Powell 1994, their use for TVDLF was first
advocated by T́oth & Odstřcil 1996), or making use of a pro-
jection scheme (Brackbill & Barnes 1980) which involves the
solution of a Poisson equation. These two approaches can even
be combined and such combination is also beneficial for fully
implicit schemes (T́oth et al. 1998). For the 2D axisymmetric
MHD wind solutions presented in Sect. 6, it proved difficult to
ensure a divergence free solution in a fully implicit manner. Us-
ing explicit time stepping and employing the projection scheme
before every time step, we could get steady-state solutions where
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∆2U ' O(10−7) which have acceptable| ∇ · B |< 10−3,
although this time-marching method is computationally much
more costly than the implicit approach. The use of Powell source
terms alone proved inadequate for these wind solutions, as fairly
large errors are then advected into the whole solution domain
from the stellar boundary outwards.

VAC makes use of two layers of ghost cells surrounding the
physical domain to implement boundary conditions. A symme-
try condition at a boundary is then imposed by mirroring the
calculated values in the two physical cell layers adjacent to the
boundary in these ghost cells. The boundary conditions imposed
at the stellar surface are extremely important. We will emphasize
them for all cases considered.

4. 1D polytropic winds

4.1. Parker winds

Our starting point is the well-known analytic Parker (1958) so-
lution for a spherically symmetric, isothermal (γ = 1) outflow
from a star of massM∗ and radiusr∗. Given the magnitude of the
escape speedvesc =

√
2GM∗/r∗, one can construct a unique

‘wind’ solution which starts subsonically at the stellar surface
and accelerates monotonically to supersonic speeds. This so-
lution is transonic at the critical positionrs = v2

escr∗/(4c
2
s∗),

wherec2s∗ = p/ρ is the constant isothermal sound speed. Since
we know the position of the critical pointrs, we can easily de-
termine the flow profilevr(r) and the corresponding density
profile ρ(r). The radial velocity is obtained from the iterative
solution of the transcendental equation

vr

cs∗
=

√√√√4
(rs
r

)
− 3 + 2 ln

[(
r

rs

)2 (
vr

cs∗

)]
. (5)

The density profile results from the integrated mass conserva-
tion equation. Since the radial velocity reaches a constant super-
sonic value asymptotically, the corresponding density vanishes
at infinity as1/r2.

Choosing units such thatr∗ = 1, ρ∗ ≡ ρ(r∗) = 1 with
cs∗ = 1, we initialize a 1D spherically symmetric, poly-
tropic (with γ > 1) hydrodynamic outflow with this analytic
isothermal Parker wind solution on a non-uniform mesh rang-
ing throughr ∈ [1, 50]r∗. We use 1000 grid points and exploit
a grid accumulation at the stellar surface, where the accelera-
tion due to the pressure gradient is largest. In the ghost cells
used to impose boundary conditions at the stellar surface, we
fix the value of the base density to unity, and extrapolate the
radial momentum continuously from its calculated value in the
first grid cell. Atr = 50r∗, we extrapolate both density and ra-
dial momentum continuously into the ghost cells. We then use
a fully implicit time integration to arrive at the corresponding
steady-state, spherically symmetric, polytropic Parker wind so-
lution. The obtained solutionρ(r), vr(r) can be verified to have
a constant mass fluxρr2vr as a function of radius and energy
integral

E =
(
v2

r/2 + c2s/(γ − 1) −GM∗/r
)
/c2s∗,

wherec2s(r) = ργ−1. Also, determining the sonic pointrs where
vr(rs) = cs(rs) and the base radial velocityvr∗, the solution
can be checked to satisfy

rs
r∗

=
(
vesc

2cs∗

)2(γ + 1)
5 − 3γ

(
cs∗
vr∗

)2(γ − 1)
5 − 3γ

. (6)

Note how the isothermalγ = 1 case is the only polytropic
wind solution where the position of the critical point can be
determineda priori.

In practice, we increased the polytropic index gradually
from γ = 1 through 1.05, 1.1, 1.12, 1.125 toγ = 1.13, each
time relaxing the obtained steady-state solution for one poly-
tropic index to the unique transonic wind solution for the next
value. In the top panel of Fig. 1, we plot the radial variation of
the Mach numberMs = vr/cs for the isothermalγ = 1 Parker
wind with vesc = 3.3015cs∗, and for similar polytropic winds
with γ = 1.1 and1.13. The vertical dashed lines indicate the
agreement of the positions of the sonic points whereMs = 1
with the calculated right hand side of Eq. (6). Note the outward
shift of the sonic point with increasing polytropic index and the
corresponding decrease of the asymptotic radial velocity.

When we relax the restriction of spherical symmetry by al-
lowing a rigid stellar rotation rateΩ∗, we can easily construct
a solution for the equatorial plane only. Indeed, ignoring vari-
ations perpendicular to this plane, one simply adds a toroidal
velocity profile wherevϕ(r) = Ω∗r∗(r∗/r) and then solves for
ρ(r), vr(r), andvϕ(r). The boundary conditions on the toroidal
momentum keepρvϕ fixed at the base and extrapolate it contin-
uously at the end of the computational domain. A polytropic,
rotating Parker solution for the equatorial regions is found by
relaxation from a non-rotating wind with the same polytropic
indexγ. In the bottom panel of Fig. 1, we show the Mach number
Ms(r) for vesc = 3.3015cs∗ andγ = 1.13 Parker winds where
ζ = Ω∗r∗/cs∗ equalsζ = 0.0156, ζ = 1 andζ = 1.9. The
solution withζ = 0.0156 hardly differs from its non-rotating
thermally driven counterpart shown in Fig. 1, as expected. The
additional centrifugal acceleration causes an increase in the base
velocityvr∗ and in the asymptotic radial velocity. Again, the so-
lution can be verified to have a constant radial mass fluxρr2vr,
Bernoulli function

E =
(
[v2

r + v2
ϕ]/2 + c2s/(γ − 1) −GM∗/r

)
/c2s∗,

and constant specific angular momentumrvϕ. The positions of
the critical point(s)rs are now obtained from a generalization
of Eq. (6), namely from the solutions of

ζ2
(
r∗
rs

)2

− v2
escr∗

2c2s∗rs
+ 2

[(
vr∗
cs∗

) (
r∗
rs

)2
]2(γ − 1)

γ + 1
= 0. (7)

This equation reduces to a second degree polynomial for aγ = 1
isothermal, rotating, Parker wind so it is evident that rotation
rates exist that introduce a second critical point. In Fig. 1, only
theζ = 1.9 solution exhibits two critical points, shown as ver-
tical dotted lines, within the domain. We determined the critical
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Fig. 1. Polytropic Parker winds withvesc = 3.3015cs∗. Top panel:
Mach numberMs as a function of radial coordinate for spherically
symmetric Parker winds for polytropic indexγ = 1 (isothermal),γ =
1.1 and γ = 1.13. Bottom panel:equatorial solutions for rotating
γ = 1.13 polytropic Parker winds for various rotation parametersζ.
Critical points are indicated.

point(s) by solving Eq. (7) using the calculated base speedvr∗.
The close-up of the radial variation ofMs for ζ = 1.9 at the
base reveals that this thermo-centrifugally driven wind passes
the first critical point while being decelerated, then starts to ac-
celerate and finally becomes supersonic at the second critical
point. To correctly capture the dynamics close to the stellar sur-
face it is clear that we need a high grid resolution, especially at
the stellar surface. Indeed, the first critical point for theζ = 1.9
solution is situated at1.006r∗.

4.2. Weber-Davis winds

The magnetized Weber-Davis (WD) solution (Weber & Davis
1967) represents a valuable extension to the rotating, polytropic
Parker wind solution for the equatorial plane. Again assuming
that there is no variation perpendicular to this plane, one now
needs to solve for an additional two magnetic field components

Br(r) andBϕ(r). One is trivially obtained from the∇ · B =
0 equation, namelyBr = Br∗r2∗/r

2. The analytic treatment
reveals that the magnetized polytropic wind solution has a total
of two critical points, namely the slowrs and the fastrf critical
point. These are determined by the zeros ofv4

r − v2
r(c2s +A2

r +
A2

ϕ)+c2sA
2
r. In between lies the Alfv́en pointrA, defined as the

radius at which the radial velocityvr equals the radial Alfv́en
speedAr = Br/

√
ρ. Since the equatorial fieldline is prescribed

to be radial in the poloidal plane and the transfield force balance
is not taken into account, this Alfvénic transition is not a critical
point in this model.

In the fully implicit time stepping towards a steady-state
WD wind for specific values ofvesc = 3.3015cs∗, γ = 1.13,
ζ = 0.0156, and for the base radial Alfv́en speedAr∗ =
Br∗/

√
ρ∗ = 3.69cs∗, we initializeρ(r), vr(r), andvϕ(r) with

the corresponding non-magnetic, polytropic rotating Parker so-
lution. We fixBr to its known1/r2 dependence throughout the
time evolution, and initializeBϕ to zero. The boundary condi-
tions atr = 50r∗ extrapolate all quantities we solve for con-
tinuously into the ghost cells. At the base, we keep the density
fixed, the radial momentum and toroidal field component are
extrapolated linearly from the first two calculated mesh points,
while the toroidal momentumρvϕ is coupled to the magnetic
field ensuring

vϕ − Ω∗r∗
vr

=
Bϕ

Br
. (8)

This expresses the parallelism of the velocity and the mag-
netic field in the frame rotating with the stellar angular velocity
Ω∗. Using these initial and boundary conditions, we arrive at
the unique WD wind solution for the given parameters. This
magnetized polytropic wind solution for the equatorial plane is
shown in Fig. 2. The solution agreesexactlywith the analytic
WD wind: we obtain five constants of motion, namely the mass
flux ρr2vr ' 0.0139, the magnetic fluxr2Br = 3.69 which is
constant by construction, the validity of Eq. (8) over the whole
domain, the Bernoulli integral

E =
(
[v2

r + v2
ϕ]/2 + c2s/(γ − 1) −GM∗/r − vϕBϕBr/ρvr

+B2
ϕ/ρ

)
/c2s∗ ' 2.45,

and the constant total specific angular momentumL = rvϕ −
rBϕBr/ρvr ' 13.36. The positions of the critical points are
rs = 7.4r∗ and rf = 31.2r∗, while the Alfvén point is at
rA = 29.2r∗, as indicated in Fig. 2. This agrees with the val-
ues given in the Appendix to Keppens et al. (1995), where the
same WD solution was calculated in a completely different
fashion. Indeed, the WD solution for given values ofγ, cs∗,
vesc/cs∗, ζ, andAr∗/cs∗, can alternatively be calculated as a
minimization problem in a six-dimensional space (see Belcher
& MacGregor 1976) where one solves for the six unknowns
[vr∗, vϕ∗, rs, vr(rs), rf , vr(rf )]. This can be done using stan-
dard Newton-Raphson iteration provided one has an educated
initial guess, but it can even be obtained by the use of age-
netic algorithm, as first demonstrated by Charbonneau (1995).
The fact that the, for our method initially unknown, base veloc-
ities appear in the determining set of variables for these min-
imization methods again indicates that a high base resolution
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Fig. 2.Weber-Davis wind solution for the equatorial plane.Top panel:
radial variation of the radial Alfv́en speedAr, sound speedcs, and
velocitiesvr andvϕ, all normalized to the base sound speedcs∗. Bottom
panel:the corresponding poloidal Alfv́en Mach numberMA = vr/Ar,
and poloidal slow and fast Mach numbers, determining the positions
of the critical points and the Alfv́en point. See text for parameters.

is absolutely essential. Values for these six unknowns found
from the solution in Fig. 2 are[0.01395, 0.01541, 7.4, 0.6018,
31.2, 1.1592] and these agree with the Newton-Raphson solu-
tion.

The calculation of the WD polytropic wind by the stepwise
relaxation from an isothermal Parker wind is thus an excellent
test for the numerics, as every step (from isothermal to poly-
tropic, from non-rotating to rotating, from Parker to WD) can be
verified preciselyto agree with the known solutions. It should
be clear that we can construct WD wind solutions where the
acceleration results from the combined action of thermal, cen-
trifugal, and magnetic forces. However, our interest is in the
generalization of these 1D models out of the equatorial plane.
We will again proceed in logical steps towards this goal.

5. Axisymmetric 2D polytropic HD winds

To arrive at a crude model for the coronal expansion of a rigidly
rotating star, we set forth to construct an axisymmetric, steady-
state, polytropic wind solution valid throughout a poloidal cross-
section. With the polar axis as rotation and symmetry axis, we
need to generalize the rotating, polytropic Parker wind which
succesfully modeled the equatorial regions. Whereas the Parker
solution had at least one critical point, its 2D extension is ex-
pected to give rise to critical curves in the poloidal plane. The
degree of rotation determines the deviation from perfect circles
arising in the non-rotating, spherically symmetric case.

To initialize a 2D fully implicit time-stepping procedure
to arrive at a steady-state wind, we use the 1D Parker solu-
tion with identical escape speedvesc, polytropic indexγ, and
rotational parameterζ. We use a spherical(r, θ) grid in the
poloidal plane, where the grid spacing is equidistant inθ, but
is accumulated at the base in the radial direction. We take a
300 × 20 grid and only model a quarter of a full poloidal
cross-section. The density is initialized such that for all angles
θ, the radial variation equals the 1D Parker wind appropriate
for the equator. Writing the Parker solution asρP (r), vP

r (r),
vP

ϕ (r), we setρ(r, θ; t = 0) = ρP (r), and similarly, we set
vr(r, θ; t = 0) = vP

r (r) andvϕ(r, θ; t = 0) = vP
ϕ (r) sin(θ)

so that it vanishes at the poleθ = 0, while vθ(t = 0) = 0
everywhere. Since we now use a coarser radial resolution, we
interpolate the Parker solution linearly onto the new radial grid.
Boundary conditions then impose symmetry conditions at the
pole (θ = 0) and the equator (θ = π/2). The radial coordi-
nate still coversr ∈ [1, 50]r∗, as in the 1D calculations. Since
the solutions are supersonic atr = 50r∗, the boundary con-
ditions there merely extrapolate the density and all three mo-
mentum components linearly in the ghost cells. The stellar ro-
tation enters as a boundary condition in the toroidal momen-
tum component, which enforcesvϕ = Ω∗R∗, where(R, z) are
the cartesian coordinates in the poloidal(r, θ) plane. Note that
the toroidal momentum may still change in the process, since
we can no longer fix the density at the stellar surface to aθ-
independent constant value. This is because in steady-state, the
density profile should establish a gradient in theθ direction to
balance the component of the centrifugal force in that direc-
tion. In the purely radial direction, the inwards pointing gravity
must be balanced by the combination of the pressure gradient
and the radial component of the centrifugal force. We therefore
extrapolate the density linearly at the base. To enforce the to-
tal mass flux as in the equatorial Parker solution, we determine
the constantfmass = ρP r2vP

r from the 1D calculation, and fix
ρvR = fmassR/r

3 andρvz = fmassz/r
3 at the stellar surface

for its 2D extension.
An elementary analytic treatment for a 2D polytropic

steady-state wind solution proceeds by noting that mass con-
servation is ensured when the poloidal momentum is derived
from an arbitrary stream functionχ(R, z) such thatρvp =
(1/R)êϕ × ∇χ. It is then easily shown that the toroidal mo-
mentum equation is equivalent with the existence of a second
arbitrary functionL(χ) = Rvϕ, corresponding to the conserva-
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tion of specific angular momentum along a poloidal streamline.
Similarly, energy conservation along a streamline introduces

E(χ) =
[
v2

R + v2
z + v2

ϕ

]
/2 + ργ−1/(γ − 1) −GM∗/r.

Across the poloidal streamlines all forces must balance out.
We show streamlines and the contours of constant poloi-

dal Mach numberMp =
√

(v2
R + v2

z)/c2s for two hydrody-
namic wind solutions forvesc = 3.3015cs∗, γ = 1.13, and with
ζ = 0.0156 (top panel) andζ = 0.3 (bottom panel) in Fig. 3.
We restricted the plotting region to about10r∗. For the imposed
mass flux parameter, we used the valuesfmass = 0.01377 for
the slow rotator andfmass = 0.01553 for the faster rotator, as
found from the equatorial Parker solution for the sameγ and
ζ. Note how for low rotation rates, the wind solution is almost
spherically symmetric with nearly radial streamlines and cir-
cular Mach curves. For higher rotation rates, the critical Mach
curve whereMp = 1 moves inwards at the equator and outwards
at the pole when compared to a non-rotating case. The stream-
lines show the equatorward deflection when material is released
from the stellar surface due to the centrifugal force. Such equa-
torward streamline bending due to rotation is discussed in detail
in the analytical study by Tsinganos & Sauty (1992). For these
solutions, we can then verify that the specific angular momen-
tumL, as well as the total energyE, are conserved along the
streamlines.

6. Axisymmetric 2D polytropic MHD winds

6.1. Magnetized winds

To obtain an axisymmetric magnetized wind solution, we may
simply add a purely radial magnetic field to a 2D HD wind
solution and use this configuration as an initial condition for an
MHD calculation. Hence, we setBR(R, z; t = 0) = βR/r3

andBz(R, z; t = 0) = βz/r3 while Bϕ(t = 0) = 0. Such a
monopolar field is rather unrealistic for a real star, but it is the
most straightforward way to include magnetic effects. The same
type of field was used by Sakurai (1985, 1990), which contained
the first 2D generalization of the WD model.

Boundary conditions at equator and pole are imposed by
symmetry considerations. Atr = 50r∗, we extrapolate all
quantities linearly. Similarly, the base conditions extrapolate
the density profileρ and all magnetic field components, while
the poloidal velocity components are set to ensure a prescribed
mass flux. The stellar rotation rate and the coupling between the
velocity and the magnetic field enters in the boundary condition
at the stellar surface where we demand

vϕ = Ω∗R∗ +Bϕ

√
v2

R + v2
z/

√
B2

R +B2
z . (9)

Specific attention is paid to ensuring the∇ · B = 0 condition.
As explained in Sect. 3, we now switch strategy and use explicit
time stepping combined with a projection scheme to obtain the
steady state solution.

We calculated the 2D extension of the WD wind correspond-
ing to vesc = 3.3015cs∗, γ = 1.13, ζ = 0.0156 andβ = 3.69.
The mass flux is set to befmass = 0.01377. We show in Fig. 4

Fig. 3. 2D Polytropic HD winds. We show streamlines and contours
(dotted for values below unity) of the poloidal Mach numberMp in the
poloidal plane. For low (top panel) and high (bottom panel) rotation
rates.

the streamlines, and the positions of the critical curves where
the poloidal Alfv́en Mach number and the poloidal slow and fast
Mach numbers equal unity. The squared poloidal Alfvén Mach
numberMp

A is given by

(Mp
A)2 =

(
v2

R + v2
z

)
/

(
A2

R +A2
z

) ≡ v2
p

A2
p

, (10)

with Alfv én speedsAi ≡ Bi/
√
ρ. The squared poloidal slow

Mp
s and fastMp

f Mach numbers are defined by
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Fig. 4. Polytropic axisymmetric MHD wind. We show the streamlines
and the positions of the critical surfaces where the poloidal Mach num-
bers equal unity. Parameters are as in the 1D Weber-Davis wind shown
in Fig. 2.

(Mp
s )2 =

2
(
v2

R + v2
z

)
c2s +A2

p +A2
ϕ −

√[
c2s +A2

p +A2
ϕ

]2 − 4 c2s A2
p

,

(11)

(
Mp

f

)2
=

2
(
v2

R + v2
z

)
c2s +A2

p +A2
ϕ +

√[
c2s +A2

p +A2
ϕ

]2 − 4 c2s A2
p

.

(12)

At the pole, the fast Mach number coincides with the Alfvén
one sinceBϕ vanishes there and the parameters are such that
A2

p > c2s. Away from the pole, the toroidal field component does
not vanish, so that Alfv́en and fast critical curves separate. Note
how the equatorial solution strongly resembles the WD wind
solution for the same parameters shown in Fig. 2. The obtained
wind solution is mostly thermally driven, like the solar wind.
The rotation rate and magnetic field effects are minor and an al-
most spherically symmetric wind results. Sakurai (1985, 1990)
demonstrated that for stronger fields, the magnetic force of the
spiraling fieldlines deflect the outflow poleward. This magnetic
pinching force can produce a polar collimation of the wind.
These effects have also been addressed by analytical studies of
self-similar outflows in Trussoni et al. (1997).

For these axisymmetric, steady-state MHD outflows, the
solutions can be verified to obey the following conservation
laws. Mass conservation is ensured when writing the poloidal
momentum vector asρvp = (1/R)êϕ × ∇χ, with the stream
function χ(R, z). The zero divergence of the magnetic field
yields, likewise,Bp = (1/R)êϕ × ∇ψ, with ψ the flux func-
tion. The poloidal part of the induction equation then leads to

χ(ψ), provided that the toroidal component of the electric field
Eϕ vanishes. This can easily be checked fromvRBz = vzBR,
and the solution shown in Fig. 4 satisfies this equality to within
1%. This allows us to writeχ′ ≡ dχ/dψ = ρvp/Bp =
ρvR/BR = ρvz/Bz. A fair amount of algebra shows that
the toroidal momentum and induction equation introduce two
more flux functions, namely the specific angular momentum
L(ψ) = Rvϕ −RBϕBp/ρvp and a function related to the elec-
tric field Ω(ψ) = [vϕ − (vp/Bp)Bϕ] /R. The Bernoulli func-
tion derivable from the momentum equation can be written as

E(χ) =
[
v2

R + v2
z + v2

ϕ

]
/2 + ργ−1/(γ − 1) −GM∗/r

−vϕBϕBp/ρvp +B2
ϕ/ρ.

Note how the constants of motion found in the WD solution
immediately generalize in this formalism (mass flux, magnetic
flux, corotation as in Eq. (8), specific angular momentumL and
Bernoulli functionE). The hydrodynamic limit is found for zero
magnetic fieldB = 0 and vanishing electric fieldΩ = 0. Across
the poloidal streamlines, the momentum balance is governed
by the generalized, mixed-type Grad-Shafranov equation. The
numerical solutions we obtained indeed have parallel poloidal
streamlines and poloidal fieldlines and conserve all these quan-
tities along them.

6.2. Winds containing a ‘dead’ zone

The monopolar field configuration used above is unrealistic.
However, it should be clear that our method easily generalizes
to bipolar stellar fields by appropriately changing the initial con-
dition on the magnetic field. In fact, a star like our sun has open
fieldlines at both poles and closed fieldlines around its equator.
To obtain a steady-state stellar wind containing a ‘wind’ zone
along the open fieldlines and a ‘dead’ zone about the stellar
equator, we can simply initialize the polar regions up to a de-
sired polar angleθwind as above. The equatorial ‘dead’ zone
is then initialized as follows: the density and the toroidal mo-
mentum component is taken from the 2D HD wind with the
same rotational and polytropic parameters while the poloidal
momentum components are set to zero. The initial magnetic
field configuration in the ‘dead’ zone is set to a dipole field
which has

BR = 3ad
z R

(R2 + z2)5/2 , (13)

and

Bz = ad
(2z2 −R2)

(R2 + z2)5/2 . (14)

The strength of the dipole is takenad = β/(2 cos(θwind)) to
keep the radial field componentBr constant atθ = θwind. The
initial Bϕ component is again zero throughout. In summary, we
now have the following set of parameters used in the simulation:
the escape speedvesc, the polytropic indexγ, the rotational pa-
rameterζ, the field strength throughβ, and the extent of the dead
zone throughθwind. In addition, the mass fluxfmass is used in
the boundary condition of the poloidal momentum components.
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Fig. 5. Axisymmetric magnetized wind containing a ‘wind’ and a
‘dead’ zone. Shown are the poloidal magnetic fieldlines and the
poloidal flow field as vectors. Indicated are the three critical surfaces
whereMp

s = 1 (dotted),Mp
A = 1 (solid line), andMp

f = 1 (dashed).

Boundary conditions at the stellar surface are identical as above,
but now the dead zone has a zero mass flux, so thatfmass(θ).
Note that in a completely analoguous way, we could allow for a
latitudinal dependence of the stellar rotation rateΩ∗(θ), or the
magnetic field strengthβ(θ).

This t = 0 guess for an axisymmetric MHD wind is then
time-advanced to a stationary solution. Fig. 5 shows the final
stationary state, for the parameter valuesvesc = 3.3015cs∗,
γ = 1.13, a constant rotation rate corresponding toζ = 0.0156,
β = 3.69, θwind = 60◦ and the mass flux in the wind zone set to
the constantfmass = 0.01377, while it is zero in the dead zone.
These parameters are as in the WD solution and the Sakurai
wind presented earlier. The initial field geometry has evolved
to one where the open fieldlines are draped around a distinct
bipolar ‘dead’ zone of limited radial extent and the prescribed
latitudinal range. The outflow nicely traces the field geometry
outside this dead zone. As seen from the figure, we have calcu-

Fig. 6. Polar plots of the scaled density (dashed) and velocity (solid)
for two fixed radial distances: 10 and 20 (thick lines) stellar radii. The
‘dead’ zone has a clear influence on the latitudinal variation.

lated the full poloidal halfplane and imposed symmetry bound-
ary conditions at north and south pole. We used a polar grid of
resolution300 × 40 of radial extent[1, 50]r∗ with a radial grid
accumulation at the base. The north-south symmetry of the final
solution is a firm check of the numerics. The critical surfaces
are also indicated in Fig. 5 and they differ significantly from the
monopolar field solution shown in Fig. 4. Again, at the polar
regions, the Alfv́en and fast critical surface coincides. Now, the
Bϕ also vanishes at the equator where conditions are such that
the slow and the Alfv́en critical surfaces coincide. TheBϕ com-
ponent changes sign when going from north to south, as the rigid
rotation shears the initial, purely poloidal bipolar magnetic field.
This is different from the Sakurai wind presented above, where
the boundary condition onBϕ was taken symmetric about the
equator. Note how the equatorial acceleration to super-Alfvénic
velocities occurs very close to the end of the dead zone. The
critical surfaces are all displaced inwards as compared to the
monopolar case.

Fig. 5 shows that poloidal streamlines and fieldlines are par-
allel. TheEϕ is below 3%. In Fig. 6, we show the latitudinal
variation of the (scaled) density and the velocity at two fixed
radial distances in a polar plot. The spacecraft Ulysses and the
on-board SWOOPS experiment provided the solar community
with detailed measurements of these quantities for the solar wind
(McComas et al. 1998). Qualitatively, the measured poloidal
density and velocity variation resembles the curves from Fig. 6:
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the density is higher about the ecliptic and there is a decrease
in wind speed associated with the equatorial ‘dead’ zone. How-
ever, our computational domain extended to 50 stellar radii,
while Ulysses measurements apply to larger radial distances.
Note that we could use observed solar differential rotation pro-
files, as well as mass fluxes and magnetic field strengths, to
obtain a better MHD proxy of solar wind conditions. The ex-
tent of the solar coronal active region belt suggests the use of a
‘dead’ zone larger than modeled in Fig. 5.

7. Conclusions and outlook

We obtained polytropic stellar winds as steady-state transonic
outflows calculated with the Versatile Advection Code. We
could relax an isothermal, spherically symmetric Parker wind,
to a polytropic wind model. Subsequently, we included stellar
rotation and a magnetic field, to arrive at the well-known Weber-
Davis solution. We used fully implicit time stepping to converge
to the steady-state solutions. The correctness of these 1D wind
solutions can be checkedprecisely.

We generalized to 2D axisymmetric, unmagnetized and
magnetized winds. Noteworthy is our prescription of the stellar
boundary conditions in terms of the prescribed mass fluxfmass

and the way in which the parallelism of the flow and the field-
lines in the poloidal plane is achieved. In Bogovalov (1996), the
stellar boundary specified the normal magnetic field component
and the density at the surface, while keeping the velocity of the
plasma on the stellar surface in the rotating frame constant. Our
approach differs markedly, since we impose the mass flux and
ensure the correct rotational coupling of velocity and magnetic
field. We refrain from fixing the density, as the analytical treat-
ment shows that the algebraic Bernoulli equation together with
the cross-field momentum balance really determines the density
profile and the magnetic flux function concurrently, and should
not be specified a priori. In fact, we let the density and all mag-
netic field components adjust freely at the base. This allows
for the simultaneous and self-consistent modeling of both open
and closed fieldline regions, which is not immediately possible
when using the method of Sakurai (1985). By an appropriate
initialization of the time-marching procedure used to get the
steady-state solutions, we can find magnetized winds contain-
ing both a ‘wind’ and a ‘dead’ zone.

The method lends itself to investigate thermally and/or
magneto-centrifugally driven polytropic wind solutions. One
could derive angular momentum loss rates used in studies of
stellar rotational evolution (Keppens et al. 1995, Keppens 1997).
However, our immediate interest is in the relaxation of the as-
sumptions inherent in our approach.

In this paper, we assume a polytropic equation of state
throughout. All solutions are smooth and demonstrate a con-
tinuous acceleration from subslow outflow at the stellar surface
to superfast outflow at large radial distances. Our polytropic
assumption has to be relaxed to investigate the combined coro-
nal heating/solar wind problem within an MHD context. This
involves adding the energy equation. We plan to study pos-
sible discontinuous transonic solutions containing shocks. We

can then address the puzzling paradox recently raised by ana-
lytic investigations of translational symmetric and axisymmetric
transonic MHD flows (Goedbloed & Lifschitz 1997, Lifschitz &
Goedbloed 1997, Goedbloed et al. 1998). The generalized Grad-
Shafranov equation describing the cross-fieldline force bal-
ance has to be solved concurrently with the algebraic condi-
tion expressed by the Bernoulli equation. Rigorous analysis of
the generalized mixed-type Grad-Shafranov partial differential
equation, in combination with the algebraic Bernoulli equation,
shows that only shocked solutions can be realized whenever a
limiting line appears within the domain of hyperbolicity. More-
over, in Goedbloed & Lifschitz (1997) and Lifschitz & Goed-
bloed (1997), it was pointed out that there are forbidden flow
regimes for certain translationally symmetric, self-similar so-
lutions of the MHD equations. The Alfv́en critical point is in
those solutions situated within a forbidden flow regime, which
can only be crossed by shocks. It is of vital importance to under-
stand what ramifications this has on analytic and numerical stud-
ies of stellar winds, or on accretion-type flows where shocked
solutions are rule rather than exception. Since the schemes used
in VAC are shock-capturing, we have all ingredients needed to
clarify this paradox. Numerical studies of self-similar solutions
as those discussed in Trussoni et al. (1996) and Tsinganos et al.
(1996) are called for. Combined analytic and numerical studies
of such axisymmetric steady-state flows have been initiated in
Goedbloed et al. (1998) and in Ustyugova et al. (1998).

After those paradoxes are resolved, we will be in a position
to relax the conditions of axisymmetry and stationarity. While
several authors have already initiated this daunting task (Gibson
& Low 1998, Guo & Wu 1998, Wu & Dryer 1997, Usmanov
& Dryer 1995), we believe that an in-depth study of the sub-
tleties involved with the various restrictions mentioned is still
warranted.
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