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Abstract. We discuss steady-state transonic outflows obtain@®58) and Weber-Davis (Weber & Dayis 1967) wind solutions
by direct numerical solution of the hydrodynamic and magnetoan be checked to agree with the analytic description. In their
hydrodynamic equations. We make use of the Versatile Advexisymmetric 2D extensions, various physical quantities must
tion Code, a software package for solving systems of (hypée conserved along poloidal streamlines. Sakurai (1985, 1990)
bolic) partial differential equations. We proceed stepwise fronpaesented such 2D generalizations of the magnetized Weber-
spherically symmetric, isothermal, unmagnetized, non-rotatiBgvis wind, using a method designed from these conservation
Parker wind to arrive at axisymmetric, polytropic, magnetizethws. With modern numerical schemes, we can recover and ex-
rotating models. These represent 2D generalisations of the tamd his solutions to allow for the self-consistent modeling of
alytical 1D Weber-Davis wind solution, which we obtain in thédead’ and ‘wind’ zones, as in the solar wind. Our steady-state
process. Axisymmetric wind solutions containing both a ‘windsolutions can be checked to conserve quantities along stream-
and a ‘dead’ zone are presented. linesa posteriori
Since we are solving for steady-state solutions, we ef- Of crucial importance is the choice of boundary condi-

ficiently exploit fully implicit time stepping. The methodtions used in the simulations. Since the governing equations
allows us to model thermally and/or magneto-centrifugalfpr steady-state, transonic MHD flows are of mixed-type, their
driven stellar outflows. We particularly emphasize theharacter can change from elliptic to hyperbolic at a priori un-
boundary conditions imposed at the stellar surface. For thekgermined internal critical surfaces. Causality arguments have
axisymmetric, steady-state solutions, we can use the knowken used to discuss which and how many boundary conditions
edge of the flux functions to verify the physical correctness ofust be prescribed (Bogovalov 1997). Our choice of boundary

the numerical solutions. conditions used at the stellar surface is therefore discussed in
detail.

Key words: Sun: solar wind — methods: numerical — Magneto- All solutions presented are obtained with a single soft-

hydrodynamics (MHD) ware package, the Versatile Advection Code (VAC, séeT
1996/ 199F and alsbttp://www.phys.uu.nl/ “toth ).

Although we only present steady-state transonic outflows in
_ spherical and axisymmetry, VAC is developed for handling
1. Introduction hydrodynamic (HD) and magnetohydrodynamic (MHD) one-,

Observational and theoretical research on stellar winds and §& OF t_hree-dimens_ional, _steady-state or time-depe_nd_ent
trophysical jets has evolved rapidly. For our own sun and its &4°PIéms in astrophysics. It is therefore capable of achieving
sociated solar wind, the current understanding necessitatesdigUltimate goal of time-dependent 3D wind modeling. The
combined study of solar wind acceleration and coronal heatifitj'9nt 9ained in this study of steady-state polytropic flows will
in time-dependent modeling (Holzer & Léer 1997). At the santden be very useful. , , _
time, Holzer and Leer rightfully stressed that it remains useful to In SectDZ, we list thg equatlons and discuss the Ver;atlle
emphasize on early studies of wind acceleration. This, we firfeflvection Code for solving them in Sefcl. 3. Our calculations
is especially true for numerical modeling of stellar winds. WitA® Presented in Sedf$[4, 5, did 6. Conclusions are given in
the ultimate goal of time-dependent heating/wind modeling RECtY- The approach taken is a gradual one, where for in-
mind, we here address the simpler question on how to accural%@me our 1D solutions are used to construct initial conditions
model 1D and 2D steady-state winds by the numerical solutifffj their 2D extension. We will therefore model, in increas-
of the polytropic magnetohydrodynamic (MHD) equations. ing order of_ comp_l_eX|ty: (@ |_sotherm§1I, spherically _symmet-
Since much of the 1D solutions we obtain is known from tHC Parker winds; (ii) polytropic, spherically symmetric Parker

outset, we can verify our resulsecisely Indeed, 1D Parker winds; (iii) polytropic, rotating Parker winds for the equato-
rial plane; (iv) Weber-Davis magnetized, polytropic, rotating

Send offprint requests 1&. Keppens winds for the equatorial plane; and finally axisymmetric, poly-
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tropic, rotating 2D winds, both (v) unmagnetized and magnefficiently, for steady-state and time-accurate problems possibly
tized, without (vi) and with (vii) a ‘dead’ zone. containing discontinuities. Here, we expect smooth solutions to
the steady-state HD and MHD equations, so one can greatly
benefit computationally from fully implicit time stepping.

In this paper, we solve the polytropic HB (= 0) Eqs.[(1)
We solve the HD and MHD equations expressed in the consand [2) in Sect§ 4.1 ahdl 5. Magnetohydrodynamic equations are
vative variables density, momentum vectopv, and magnetic solved in Sect§. 412 ahdl 6. We solve one-dimensional problems

2. Equations

field B. These are given by in Sect[# and two-dimensional problems in Sddts. 5[and 6. In
ap practice, this means that the stellar winds we model are solu-
B +V-(pv) =0, (1) tions of the equations under the additional assumption of a pre-

scribed symmetry in the ignored directions. One-dimensional

a(pv) B problems assume a spherical symmetry, while 2D solutions as-
o TV [PW At prorl —BB] = pg, 2) sumed/dyp = 0. Here,¢ denotes the angle in a cylindrical
9B (R, v, z) coordinate system centered on the star with its polar

— +V-(vB—-Bv)=0. (3) and rotation axis as-axis.

ot Since we are interested in steady-state solutions, we use
We introduced;; = p + %Bz as the total pressuré,as the fully implicit time stepping as detailed and demonstrated in
identity tensorg as the external gravitational field, and exploite{€Ppens et alL(1998) andbth et al. (1998). The linear systems
magnetic units such that the magnetic permeability is unity. V@iSing in the linearized fully implicit backward Euler scheme
drop the energy equation and assume a polytropic relation c8f¢ Solved using a direct block tridiagonal solver for the 1D
necting the thermal pressupeand the density. For a poly- Problems and using a preconditioned Stabilized Bi-Conjugate
tropic index~y, we thus assumg ~ p”. Hence, we do not ad- Gradient iterative solver (van der Vorst 1992) for the 2D cases.
dress the heat deposition in the corona. Although we solve thae Modified Block IncompletéU preconditioner is described
time-dependent equations as given above, we will only preséhan der Ploeg et al. (1997). We consistently used the TVD
steady-statd/dt = 0 solutions of Eqs[{1)E{3). For stellar wind-ax-Friedrich (TVDLF) spatial discretization (Yee 198%th
calculations, we consider a spherically symmetric external gra-OdstiCil 199€) us!ngWoodwardllmltlng (Collela & Wood-
itational fieldg = —G M, /r2&,, whereG is the gravitational Ward.1984). We typically took Courant numbgrs= O(100).

center, an@, indicates the radial unit vector. steady-state is reached when the relative change in the conserva-

tive variables from one time level to the next drops beldws.

) . We use a normalized measure defined bgtkiTet al[1998)
3. Versatile advection code

In this section, we discuss the software and numerical method 1 Y eria (U™t = U2 4
used. The physics results are described from Bect. 4 onwafd$.” — \| N, Sg(Um2 7 )
The Versatile Advection Code (VAC, se®fh[1996] 1997) is u=t ¢
a general purpose software package for solving a conservatieere N, is the number of conserved variables and the
system of hyperbolic partial differential equations with addsuperscripts indicate the pseudo time let/el Since we are
tional non-hyperbolic source terms, such as the MHD equsslving for smooth solutions, the numerical schemes can easily
tions. VAC runs on PC’s, on a variety of workstations, on vectachieve such accuracy in the steady-state solutions.
platforms, and we can also run in parallel on a cluster of work- For the axisymmetric 2D MHD solutions, the way to ensure
stations, and on distributed memory architectures like the Cragero divergence of the magnetic field is non-trivial. Unless one
T3D and T3E, and the IBM SP (Keppens &fh[1998, Dth & usesascheme which keepsB = 0 exactly in some discretiza-
Keppens 1988). The code is written in the dimension indepéivn, like the constrained transport method (Evans & Hawley
dent LASY syntax (bth'1997), soit can be used as a conveniei®88), corrective action needs to be taken during the time inte-
tool to handle HD and MHD one-, two-, or three-dimensiongration. This involves either including corrective source terms
problems in astrophysics and laboratory plasma physics. Tihéhe equations which are proportionate to the numerically gen-
dimensionality of the problem and the actual set of equationsdrated divergence (Powell 1994, their use for TVDLF was first
solve are easily selected in a preprocessing step. advocated by &th & Odstgil [1996), or making use of a pro-
VAC uses a structured finite volume grid and offers a choigection scheme (Brackbill & Barnés 1980) which involves the
of conservative, second order accurate, shock-capturing, spat@ution of a Poisson equation. These two approaches can even
and temporal discretization schemes. The spatial discretizatibescombined and such combination is also beneficial for fully
include two Flux Corrected Transport variants and four Totahplicit schemes (oth et al["”1998). For the 2D axisymmetric
Variation Diminishing (TVD) schemes 6th & Odst&il1996). MHD wind solutions presented in Sddt. 6, it proved difficult to
Temporal discretization can be explicit, semi-implicit, or fullyensure a divergence free solution in a fully implicit manner. Us-
implicit. It was recently demonstrated (Keppens et al. 1998 explicit time stepping and employing the projection scheme
Toth et al 1998) how the implicit approach can be used velbgfore every time step, we could get steady-state solutions where
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A U ~ O(10~7) which have acceptableV - B |< 1073, wherec?(r) = p7~!. Also, determining the sonic poinf where
although this time-marching method is computationally mueh(r;) = ¢,(rs) and the base radial velocity.., the solution
more costly than the implicit approach. The use of Powell sourcan be checked to satisfy
terms alone proved inadequate for these wind solutions, as fairly 2y +1) 2 3
. . . ’y A’/ —
large errors are then advected into the whole solution domey? voee\ =37 [\ B=37
from the stellar boundary outwards. — = — (6)
VAC makes use of two layers of ghost cells surrounding tHes
physical domain to implement boundary conditions. A symmetote how the isothermaj = 1 case is the only polytropic
try condition at a boundary is then imposed by mirroring thgind solution where the position of the critical point can be
calculated values in the two physical cell layers adjacent to theterminedh priori.
boundary in these ghost cells. The boundary conditions imposed|n practice, we increased the polytropic index gradually
atthe stellar surface are extremely important. We willemphasiggm ~ = 1 through 1.05, 1.1, 1.12, 1.125 to= 1.13, each

2¢sx Ups

them for all cases considered. time relaxing the obtained steady-state solution for one poly-
tropic index to the unique transonic wind solution for the next
4. 1D polytropic winds value. In the top panel of Figl 1, we plot the radial variation of
] the Mach numbeh/, = v,./c, for the isothermaly = 1 Parker
4.1. Parker winds wind with ves. = 3.3015¢s,, and for similar polytropic winds

Our starting point is the well-known analytic Parker (1958) sd!ith v = 1.1 and1.13. The vertical dashed lines indicate the
lution for a spherically symmetric, isothermal & 1) outflow agreement of the positions of the sonic points whiefe= 1
from a star of masa/, and radius.,.. Given the magnitude of the with the calculated right hand side of E. (6). Note the outward
escape speed.,. = \/2GM, /7., one can construct a uniqueShiﬁ of the sonic point with increasing polytropic index and the
‘wind’ solution which starts subsonically at the stellar surfacgTrésponding decrease of the asymptotic radial velocity.

and accelerates monotonically to supersonic speeds. This so\When we relax the restriction of spherical symmetry by al-
lution is transonic at the critical positian, = v2, . /(4¢2,) lowing a rigid stellar rotation rat€,, we can easily construct
Sk /1

esc’ *

wherec2, = p/p is the constant isothermal sound speed. SineSolution for the equatorial plane only. Indeed, ignoring vari-
we know the position of the critical point, we can easily de- tions perpendicular to this plane, one simply adds a toroidal

termine the flow profiley, (r) and the corresponding density/€l0city profile where, (1) = Q.r.(r../r) and then solves for
profile p(r). The radial velocity is obtained from the iterative?("): vr (1), @ndu,(r). The boundary conditions on the toroidal

solution of the transcendental equation momentum keepuv,, fixed at the base and extrapolate it contin-
uously at the end of the computational domain. A polytropic,

v , 2 /0 rotating Parker solution for the equatorial regions is found by
T =14 (i) —3+2In () ( u )1 (5) relaxation from a non-rotating wind with the same polytropic
Cox " Ts Cox index. In the bottom panel of Fig] 1, we show the Mach number

The density profile results from the integrated mass conser%é_(%for Yese = 3'3?150_5* ;8?;6: 15)’ 1Parl(<jer Vl'nld; V\fphere
tion equation. Since the radial velocity reaches a constant sugier= S +/+/Csx €qualse = 0.0156, ¢ = 1 and¢ = 1.9. The

sonic value asymptotically, the corresponding density vanishsﬁoéuuon W'thC = 0.0156 hardly dlffe_rs from its non-rotating
at infinity as1 /2. thermally driven counterpart shown in Hig. 1, as expected. The

Choosing units such that — 1, p. = p(r.) — 1 with adldltl_(t)nal cen(tjrl_fu?r?l accelertatt|_on cguTeslan_;nc'rA\eas_elrt]hthe base
cs« = 1, we initialize a 1D spherically symmetric, poly—?/(nj[.OCI yvr*ban |r_1f_ gtasr)]/mpo Icra tla }[/e cé?' Iy galn&,a €so-
tropic (with v > 1) hydrodynamic outflow with this analytic ution can be verified to have a constant radial massix, .

isothermal Parker wind solution on a non-uniform mesh rang-emou”I function

ing throughr € [1,50]r,. We use 1000 grid points and exploity, _ ([vz +02)/2+ /(v —1) — GM*/r) /2,
a grid accumulation at the stellar surface, where the accelera- ?

tion due to the pressure gradient is largest. In the ghost celf®d constant specific angular momentewn. The positions of
used to impose boundary conditions at the stellar surface, #he critical point(s)-s are now obtained from a generalization
fix the value of the base density to unity, and extrapolate tb&Eqg. [6), namely from the solutions of
radial momentum continuously from its calculated value in the 2y —1)
first grid cell. Atr = 50r,, we extrapolate both density and ra- 9 9 9 %

dial momentum continuously into the ghost cells. We then uge <”> _ Yesc™ | (Ur*) (”) =0.(7)
a fully implicit time integration to arrive at the corresponding \7s 2c2,7s Csx Ts

steady-state, spherically symmetric, polytropic Parker wind S‘?ﬁis equation reduces to a second degree polynomiatford

lution. The obtained solutiop(r), v,-(r) can be verified to have . , ; ) X .
sothermal, rotating, Parker wind so it is evident that rotation

a constant mass flux-2v,. as a function of radius and ener . . " . )
integral wr g})rates exist that introduce a second critical point. In[Big. 1, only

the ¢ = 1.9 solution exhibits two critical points, shown as ver-
E=(v2/2+c/(y—1)—GM,/r) [c2,, tical dotted lines, within the domain. We determined the critical
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10.00¢ 1 B.(r) andB,(r). One is trivially obtained from th& - B =
r 1 0 equation, namel\3, = B,.r2/r?. The analytic treatment
i - reveals that the magnetized polytropic wind solution has a total
I | of two critical points, namely the slow; and the fast  critical
1.00 point. These are determined by the zeros/of v2(c? + A2 +

A2)+c?AZ. Inbetween lies the Alfgn pointr 4, defined as the
radius at which the radial velocity. equals the radial Alfgn
speedd, = B,./,/p. Since the equatorial fieldline is prescribed
to be radial in the poloidal plane and the transfield force balance
is not taken into account, this Alénic transition is not a critical
point in this model.

In the fully implicit time stepping towards a steady-state
WD wind for specific values ob.s. = 3.3015¢s,, v = 1.13,

‘ ‘10 - ¢ = 0.0156, and for the base radial Alen speedA,, =

r/r, B, /\/p+ = 3.69c,., we initialize p(r), v,.(r), andv, (1) with

the corresponding non-magnetic, polytropic rotating Parker so-
lution. We fix B,. to its known1/r? dependence throughout the
time evolution, and initializé5,, to zero. The boundary condi-
tions atr = 50r, extrapolate all quantities we solve for con-

r g 1 tinuously into the ghost cells. At the base, we keep the density
1.00 : : fixed, the radial momentum and toroidal field component are
‘ extrapolated linearly from the first two calculated mesh points,
while the toroidal momenturpu,, is coupled to the magnetic
field ensuring

Vyp — Ty B,

o "B 8
This expresses the parallelism of the velocity and the mag-
netic field in the frame rotating with the stellar angular velocity
001l . . . [ L ‘ - Q.. Using these initial and boundary conditions, we arrive at
1 10 the unique WD wind solution for the given parameters. This

r/r, magnetized polytropic wind solution for the equatorial plane is
shown in Figl 2. The solution agreesactlywith the analytic
WD wind: we obtain five constants of motion, namely the mass

0.01

10.00

¢=1.9:

Fig. 1. Polytropic Parker winds withe,e = 3.3015¢s.. Top panel:

Mach numberM; as a function of radial coordinate for spherically, 9 . 9 L
symmetric Parker winds for polytropic index= 1 (isothermal);y = flux pr=v,. = 0.0139, the magnetic flux"B, = 3.69 which is

1.1 and~y = 1.13. Bottom panel:equatorial solutions for rotating Constant by construction, the validity of Egl. (8) over the whole

~ = 1.13 polytropic Parker winds for various rotation parameters domain, the Bernoulli integral

Critical points are indicated. E = ([ +02]/24c2/(y—1) = GM./r — v B, B, /pv,
—&—Bi/p) /c?, ~2.45,

point(s) by solving Eq[{7) using the calculated base speed and the constant total specific angular momenfues rv,, —

The close-up of the radial variation éf for ( = 1.9 at the rB,B,/pv, ~ 13.36. The positions of the critical points are
base reveals that this thermo-centrifugally driven wind passes= 7.4r, andr; = 31.2r,, while the Alfvén point is at

the first critical point while being decelerated, then starts to act = 29.2r,, as indicated in Fig]2. This agrees with the val-
celerate and finally becomes supersonic at the second critige$ given in the Appendix to Keppens et al. (1995), where the
point. To correctly capture the dynamics close to the stellar sseme WD solution was calculated in a completely different
face itis clear that we need a high grid resolution, especiallyfashion. Indeed, the WD solution for given values+ofc,.,

the stellar surface. Indeed, the first critical point fordhe 1.9  vese/css, ¢, @and A, /cs., Can alternatively be calculated as a
solution is situated at.0067. minimization problem in a six-dimensional space (see Belcher
& MacGregor 1976) where one solves for the six unknowns
[Vrss Vs 75, 0 (75), 75, v (1£)]. This can be done using stan-
dard Newton-Raphson iteration provided one has an educated
The magnetized Weber-Davis (WD) solution (Weber & Davisitial guess, but it can even be obtained by the use géa
1967) represents a valuable extension to the rotating, polytropétic algorithm as first demonstrated by Charbonneau (1995).
Parker wind solution for the equatorial plane. Again assumifidne fact that the, for our method initially unknown, base veloc-
that there is no variation perpendicular to this plane, one naties appear in the determining set of variables for these min-
needs to solve for an additional two magnetic field componemtsization methods again indicates that a high base resolution

4.2. Weber-Davis winds
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5. Axisymmetric 2D polytropic HD winds

To arrive at a crude model for the coronal expansion of a rigidly
rotating star, we set forth to construct an axisymmetric, steady-
state, polytropic wind solution valid throughout a poloidal cross-
section. With the polar axis as rotation and symmetry axis, we
need to generalize the rotating, polytropic Parker wind which
succesfully modeled the equatorial regions. Whereas the Parker
solution had at least one critical point, its 2D extension is ex-
pected to give rise to critical curves in the poloidal plane. The
degree of rotation determines the deviation from perfect circles
arising in the non-rotating, spherically symmetric case.

To initialize a 2D fully implicit time-stepping procedure
to arrive at a steady-state wind, we use the 1D Parker solu-
tion with identical escape speed;,., polytropic indexy, and
rotational paramete¢. We use a sphericdlr, ) grid in the
poloidal plane, where the grid spacing is equidistard,ibut
is accumulated at the base in the radial direction. We take a
300 x 20 grid and only model a quarter of a full poloidal
cross-section. The density is initialized such that for all angles
0, the radial variation equals the 1D Parker wind appropriate
for the equator. Writing the Parker solution @8(r), vZ (1),
vb (r), we setp(r,0;t = 0) = pP(r), and similarly, we set
v (r,0;t = 0) = vf (r) andvy(r,0;t = 0) = vE(r)sin(0)
so that it vanishes at the pote= 0, while vy(t = 0) = 0
everywhere. Since we now use a coarser radial resolution, we
interpolate the Parker solution linearly onto the new radial grid.
Boundary conditions then impose symmetry conditions at the
pole @ = 0) and the equatord(= =/2). The radial coordi-
nate still covers: € [1,50]r, as in the 1D calculations. Since
the solutions are supersonicat= 50r,, the boundary con-
ditions there merely extrapolate the density and all three mo-
mentum components linearly in the ghost cells. The stellar ro-
tation enters as a boundary condition in the toroidal momen-

Fig. 2. Weber-Davis wind solution for the equatorial plafiep panel: tum component, which enforces = Q. R., where(R, z) are

radial variation of the radial Alfen speedd., sound speed;, and  the cartesian coordinates in the poloidald) plane. Note that

velocitiesv,. andvg,,alllnormalllzed to the base sound spegdBottom the toroidal momentum may still change in the process, since

panel.the_ corresponding poloidal Alan Mach numbeMA = v’"/A“. - we can no longer fix the density at the stellar surface t a

and poloidal slow and fast Mach numbers, determining the posmo?]sde endent constant value. This is because in steadv-state. the

of the critical points and the Alfn point. See text for parameters. :jensﬁtynprofile Shsould (\a/st:biish I; gradiear1L:Sin fﬂgrectig:tg !
balance the component of the centrifugal force in that direc-
tion. In the purely radial direction, the inwards pointing gravity

. . . must lan th mbination of the pr re gradient
is absolutely essential. Values for these six unknowns foun(}JS be balanced by the combination of the pressure gradie

from the solution in Fig2 aré).01395, 0.01541, 7.4, 0.6018, and the radial component of the centrifugal force. We therefore

31.2,1.1592] and these agree with the Newton-Raphson Sol%eﬁ(trapolate the Qen3|ty Imearly at the base. .TO enforce the .to'
tion al mass flux as in the equatorial Parker solution, we determine

. L ._the constanf,,,.ss = pr?vf from the 1D calculation, and fix
The calculation of the WD polytropic wind by the stepwise 1 = Fass R/ andpu. = foassz/r at the stellar surface

relaxation from an isothermal Parker wind is thus an excell ; :
test for the numerics, as every step (from isothermal to olo—r 1ts 2D extension.
' y step POY" A elementary analytic treatment for a 2D polytropic

tropic, from non-rotating to rotating, from Parker to WD) can b teady-state wind solution proceeds by noting that mass con-

verified preciselyto agree with the known solutions. It shoul L . . .

: ) ervation is ensured when the poloidal momentum is derived
be clear that we can construct WD wind solutions where the . .

) : . rom an arbitrary stream function(R, z) such thatpv, =

acceleration results from the combined action of thermal, cen-, .. . : .
trifugal, and magnetic forces. However, our interest is in t /R)é, x V. Itis then easily shown that the toroidal mo-
engra,lization o?these 1D mbdels out (;f the equatorial Ianeemum equation is equivalent with the existence of a second
g . . : . a P arbitrary functionL () = Ruv,,, corresponding to the conserva-
We will again proceed in logical steps towards this goal.
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tion of specific angular momentum along a poloidal streamline. 10"
Similarly, energy conservation along a streamline introduces

E(x) = [W%Jrvarvi} J24 77 /(v —1) — GM,/r. 8

Across the poloidal streamlines all forces must balance out.

We show streamlines and the contours of constant poloi-
dal Mach numbetM,, = +/(v% + v2)/c2 for two hydrody- 6
namic wind solutions foo.,. = 3.3015¢,,, v = 1.13, and with
¢ = 0.0156 (top panel) and = 0.3 (bottom panel) in Fid.3. «
We restricted the plotting region to abadwk-,.. For the imposed 4
mass flux parameter, we used the valfigsss = 0.01377 for
the slow rotator andf,,,.ss = 0.01553 for the faster rotator, as
found from the equatorial Parker solution for the samand 2
¢. Note how for low rotation rates, the wind solution is almost
spherically symmetric with nearly radial streamlines and cir-
cular Mach curves. For higher rotation rates, the critical Mach |
curve wheré\f,, = 1 moves inwards at the equator and outwards
at the pole when compared to a non-rotating case. The stream-
lines show the equatorward deflection when material is released
from the stellar surface due to the centrifugal force. Such equa-
torward streamline bending due to rotation is discussed in detail;
in the analytical study by Tsinganos & Saufy (1992). For these
solutions, we can then verify that the specific angular momen-
tum L, as well as the total energy, are conserved along the 4
streamlines.

6. Axisymmetric 2D polytropic MHD winds 6
6.1. Magnetized winds

To obtain an axisymmetric magnetized wind solution, we maNy
simply add a purely radial magnetic field to a 2D HD wind
solution and use this configuration as an initial condition for an
MHD calculation. Hence, we sdr(R,2;t = 0) = BR/r3
and B, (R, z;t = 0) = 8z/r* while B,,(t = 0) = 0. Such a
monopolar field is rather unrealistic for a real star, but it is the
most straightforward way to include magnetic effects. The same
type of field was used by Sakurai (1985, 1990), which contained 0 K
the first 2D generalization of the WD model.

Boundary conditions at equator and pole are imposed by
symmetry considerations. At = 50r,, we extrapolate all

quantities linearly. Similarly, the base conditions extrapolaﬁgls_ 2D Polytropic HD winds. We show streamlines and contours

the density profiley and all magnetic field components, whilgqteq for values below unity) of the poloidal Mach numbég in the
the poloidal velocity components are set to ensure a prescribggidal plane. For lowtop pane) and high bottom panél rotation
mass flux. The stellar rotation rate and the coupling between thgs.

velocity and the magnetic field enters in the boundary condition
at the stellar surface where we demand

IS

av]

the streamlines, and the positions of the critical curves where
vy = QR + By /vh + vg/\/B%% + B2 (9) the poloidal Alfven Mach number and the poloidal slow and fast

N o ] ) N Mach numbers equal unity. The squared poloidal AifiMach
Specific attention is paid to ensuring tke- B = 0 condition. numberM?, is given by

As explained in Sedf]3, we now switch strategy and use explicit

time stepping combined with a projection scheme to obtain the 9 9 5 o\ v2
steady state solution. (M5)” = (vk +v) [ (AR + AZ) = I%’ (10)

We calculated the 2D extension of the WD wind correspond-
iNg t0 vese = 3.3015¢,,, v = 1.13, ¢ = 0.0156 and3 = 3.69. with Alfvén speeds!; = B;/,/p. The squared poloidal slow
The mass flux is set to bg,,.ss = 0.01377. We show in Fig# M?P and fastM}’ Mach numbers are defined by
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x (), provided that the toroidal component of the electric field
E, vanishes. This can easily be checked fropB. = v. Bk,

and the solution shown in Figl. 4 satisfies this equality to within
1%. This allows us to writey’ = dx/dy = pv,/B, =
pvr/Br = pv./B.. A fair amount of algebra shows that
the toroidal momentum and induction equation introduce two
more flux functions, namely the specific angular momentum
L(+) = Rv, — RB, B,/ pv, and a function related to the elec-
tric field Q(v) = [v, — (vp/Bp)B,] /R. The Bernoulli func-
tion derivable from the momentum equation can be written as

E(x) = [ +v2+02] /2+p /(v —1) - GM./r
—v,By,By/pvp + Bi/p.

30

T
iy

20

10

Note how the constants of motion found in the WD solution
immediately generalize in this formalism (mass flux, magnetic
flux, corotation as in Eq.{8), specific angular momeniuand
Bernoulli functionE). The hydrodynamic limitis found for zero
magnetic field = 0 and vanishing electric field = 0. Across

the poloidal streamlines, the momentum balance is governed
by the generalized, mixed-type Grad-Shafranov equation. The
numerical solutions we obtained indeed have parallel poloidal

Fig. 4. Polytropic axisymmetric MHD wind. We show the streamlinegtreamlines and poloidal fieldlines and conserve all these quan-
and the positions of the critical surfaces where the poloidal Mach nugieg along them.

bers equal unity. Parameters are as in the 1D Weber-Davis wind shown
in Fig.[2.
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6.2. Winds containing a ‘dead’ zone

(Mg’)2 _ 2 (“12% +U§) 7 The monopolar field configuration used above is unrealistic.
‘ 24 A2 4 A2 — \/[Cz + A2 +A2}2 _ 42 A2 However, it should be clear that our method easily generalizes
Lo sooP ® P tobipolar stellar fields by appropriately changing the initial con-
(11) dition on the magnetic field. In fact, a star like our sun has open
) 2 (v + v2) fieldlines at both poles and closed fieldlines around its equator.
(M]’?) — Rz ~ To obtain a stead_y—stgte stellar wind containing a ‘wind’ zone
2+ A2+ A2 + \/[03 + A2+ AEO]Q —4c2 A2 along the open flgldl|ne§ _qnc_i a ‘dead’ zone gbout the stellar
(12) equator, we can simply initialize the polar regions up to a de-
sired polar anglé,,;,,q as above. The equatorial ‘dead’ zone
At the pole, the fast Mach number coincides with the A&Hv is then initialized as follows: the density and the toroidal mo-
one sinceB,, vanishes there and the parameters are such thantum component is taken from the 2D HD wind with the
Af, > ¢2. Away from the pole, the toroidal field component doesame rotational and polytropic parameters while the poloidal
not vanish, so that Alfén and fast critical curves separate. Notmomentum components are set to zero. The initial magnetic
how the equatorial solution strongly resembles the WD wirfeéld configuration in the ‘dead’ zone is set to a dipole field
solution for the same parameters shown in [Hig. 2. The obtaingdich has
wind solution is mostly thermally driven, like the solar wind. R
The rotation rate and magnetic field effects are minor and an &r = 3adm, (13)
most spherically symmetric wind results. Sakurai (1985, 1990)
demonstrated that for stronger fields, the magnetic force of thed
spiraling fieldlines deflect the outflow poleward. This magnetic (222 — R?)
pinching force can produce a polar collimation of the wind?: = adm-
These effects have also been addressed by analytical studies of
self-similar outflows in Trussoni et al. (1997). The strength of the dipole is takery = 3/(2 cos(0.ing)) tO
For these axisymmetric, steady-state MHD outflows, theep the radial field componeBt. constant aé = 0,,;,4. The
solutions can be verified to obey the following conservatidnitial B, component is again zero throughout. In summary, we
laws. Mass conservation is ensured when writing the poloidadw have the following set of parameters used in the simulation:
momentum vector agv, = (1/R)é, x Vyx, with the stream the escape speed,., the polytropic indexy, the rotational pa-
function x (R, z). The zero divergence of the magnetic fieldameter, the field strength through, and the extent of the dead
yields, likewise B, = (1/R)é, x V1, with ¢ the flux func- zone througl®,,;,q. In addition, the mass flug,,.., is used in
tion. The poloidal part of the induction equation then leads the boundary condition of the poloidal momentum components.

(14)
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r i j/ N \ ,’\ \ ~ 1 Fig. 6. Polar plots of the scaled density (dashed) and velocity (solid)
f l & 4 N\ . for two fixed radial distances: 10 and 20 (thick lines) stellar radii. The
4 A8 AN 1 ‘dead’ zone has a clear influence on the latitudinal variation.
NM‘%W \ \ \\\ ) 7
R T lated the full poloidal halfplane and imposed symmetry bound-
0 5 R 10 15 ary conditions at north and south pole. We used a polar grid of

resolution300 x 40 of radial exten{1, 50]r, with a radial grid
Fig. 5. Axisymmetric magnetized wind containing a ‘wind’ and &accumulation at the base. The north-south symmetry of the final
:;iﬁ;alzzg\‘;‘ fi(ser:jogv:vzzzio:rs]eln%?::c;?eﬂ ;Tr]:gtlr?eettlr?rg:lgrlilgs; :‘Sgaé%lution is a firm check of the numerics. The critical surfaces
whereAr? - 1 (dotted) M% - 1 (solid fine), andif? - 1 (dashed) &re also indicated in Figl 5 and they differ significantly from the
monopolar field solution shown in F[d. 4. Again, at the polar
regions, the Alfén and fast critical surface coincides. Now, the
B, also vanishes at the equator where conditions are such that
Boundary conditions at the stellar surface are identical as aba¥e, slow and the Alfén critical surfaces coincide. T, com-
but now the dead zone has a zero mass flux, softhat;(6). ponentchanges signwhen going from north to south, as the rigid
Note that in a completely analoguous way, we could allow forratation shears the initial, purely poloidal bipolar magnetic field.
latitudinal dependence of the stellar rotation ratéf), or the This is different from the Sakurai wind presented above, where
magnetic field strength(6). the boundary condition o3, was taken symmetric about the
Thist = 0 guess for an axisymmetric MHD wind is thenequator. Note how the equatorial acceleration to superéhity
time-advanced to a stationary solution. [Elg. 5 shows the finadlocities occurs very close to the end of the dead zone. The
stationary state, for the parameter valugs. = 3.3015¢,., critical surfaces are all displaced inwards as compared to the
~ = 1.13, a constant rotation rate corresponding te 0.0156, monopolar case.
B = 3.69, 0,inqa = 60° and the mass flux in the wind zone setto  Fig[3 shows that poloidal streamlines and fieldlines are par-
the constant,,,.; = 0.01377, while itis zero in the dead zone.allel. The E, is below 3%. In Figlb, we show the latitudinal
These parameters are as in the WD solution and the Sakwariation of the (scaled) density and the velocity at two fixed
wind presented earlier. The initial field geometry has evolveddial distances in a polar plot. The spacecraft Ulysses and the
to one where the open fieldlines are draped around a distinotboard SWOOPS experiment provided the solar community
bipolar ‘dead’ zone of limited radial extent and the prescribeslith detailed measurements of these quantities for the solar wind
latitudinal range. The outflow nicely traces the field geomet(iMicComas et al. 1998). Qualitatively, the measured poloidal
outside this dead zone. As seen from the figure, we have caldansity and velocity variation resembles the curves froniTFig. 6:
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the density is higher about the ecliptic and there is a decreas@ then address the puzzling paradox recently raised by ana-
in wind speed associated with the equatorial ‘dead’ zone. Holytic investigations of translational symmetric and axisymmetric
ever, our computational domain extended to 50 stellar radiiansonic MHD flows (Goedbloed & Lifschitz1997, Lifschitz &
while Ulysses measurements apply to larger radial distanc€medbloed1997, Goedbloed efal. 1998). The generalized Grad-
Note that we could use observed solar differential rotation pr8hafranov equation describing the cross-fieldline force bal-
files, as well as mass fluxes and magnetic field strengths,atice has to be solved concurrently with the algebraic condi-
obtain a better MHD proxy of solar wind conditions. The extion expressed by the Bernoulli equation. Rigorous analysis of
tent of the solar coronal active region belt suggests the use dha generalized mixed-type Grad-Shafranov partial differential
‘dead’ zone larger than modeled in Hig. 5. equation, in combination with the algebraic Bernoulli equation,
shows that only shocked solutions can be realized whenever a
, limiting line appears within the domain of hyperbolicity. More-
7. Conclusions and outlook over, in Goedbloed & LifschitZ (1997) and Lifschitz & Goed-
We obtained polytropic stellar winds as steady-state transoRleed (1997), it was pointed out that there are forbidden flow
outflows calculated with the Versatile Advection Code. Weegimes for certain translationally symmetric, self-similar so-
could relax an isothermal, spherically symmetric Parker wintitions of the MHD equations. The Alén critical point is in
to a polytropic wind model. Subsequently, we included stel|Hrose solutions situated within a forbidden flow regime, which
rotation and a magnetic field, to arrive at the well-known Webetan only be crossed by shocks. Itis of vital importance to under-
Davis solution. We used fu||y |mp||C|t time Stepping to Convergétand what ramifications this has on analytic and numerical stud-
to the steady-state solutions. The correctness of these 1D wgfiof stellar winds, or on accretion-type flows where shocked
solutions can be checkexdecisely solutions are rule rather than exception. Since the schemes used
We generalized to 2D axisymmetric, unmagnetized afiti VAC are shock-capturing, we have all ingredients needed to
magnetized winds. Noteworthy is our prescription of the stellglarify this paradox. Numerical studies of self-similar solutions
boundary conditions in terms of the prescribed massjﬂ%s as those discussed in Trussoni et(al. (1996) and Tsinganos etal.
and the way in which the parallelism of the flow and the field1996) are called for. Combined analytic and numerical studies
lines in the poloidal plane is achieved. In Bogovalov (1996), tffd such axisymmetric steady-state flows have been initiated in
stellar boundary specified the normal magnetic field componés@edbloed et all (1998) and in Ustyugova et[al. (1998).
and the density at the surface, while keeping the velocity of the After those paradoxes are resolved, we will be in a position
plasma on the stellar surface in the rotating frame constant. d@felax the conditions of axisymmetry and stationarity. While
approach differs marked|y' since we impose the mass flux ssfyeral authors have already initiated this daunting task (Gibson
ensure the correct rotational coupling of velocity and magneficLow 1998, Guo & Wul1998, Wu & Dryer 1997, Usmanov
field. We refrain from fixing the density, as the analytical trea& Dryer(1995), we believe that an in-depth study of the sub-
ment shows that the a|gebraic Bernoulli equation together Wﬁﬁtles involved with the various restrictions mentioned is still
the cross-field momentum balance really determines the den¥fg/ranted.
profile and the magnetic flux function concurrently, and should

not be specified a priori. In fact, we let the density and all ma cknowledgementsThe Versatile Advection Code was developed as

o . . art of the project on ‘Parallel Computational Magneto-Fluid Dynam-
netic field components adjust freely at the base. This allom%’,funded by the Dutch Science Foundation (NWO) Priority Program

for the simultaneous and self-consistent modeling of both 0p(‘?rﬁ]Massively Parallel Computing, and coordinated by JPG. Computer

and closed fieldline regions, which is notimmediately possibighe on the Cray C90 was sponsored by the Dutch ‘Stichting Nationale
when using the method of Sakurai (1985). By an appropriat@mputerfaciliteiten’ (NCF).

initialization of the time-marching procedure used to get the
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