25 research outputs found

    Approximate Computing Survey, Part I: Terminology and Software & Hardware Approximation Techniques

    Full text link
    The rapid growth of demanding applications in domains applying multimedia processing and machine learning has marked a new era for edge and cloud computing. These applications involve massive data and compute-intensive tasks, and thus, typical computing paradigms in embedded systems and data centers are stressed to meet the worldwide demand for high performance. Concurrently, the landscape of the semiconductor field in the last 15 years has constituted power as a first-class design concern. As a result, the community of computing systems is forced to find alternative design approaches to facilitate high-performance and/or power-efficient computing. Among the examined solutions, Approximate Computing has attracted an ever-increasing interest, with research works applying approximations across the entire traditional computing stack, i.e., at software, hardware, and architectural levels. Over the last decade, there is a plethora of approximation techniques in software (programs, frameworks, compilers, runtimes, languages), hardware (circuits, accelerators), and architectures (processors, memories). The current article is Part I of our comprehensive survey on Approximate Computing, and it reviews its motivation, terminology and principles, as well it classifies and presents the technical details of the state-of-the-art software and hardware approximation techniques.Comment: Under Review at ACM Computing Survey

    Learning-based inductive invariant synthesis

    Get PDF
    The problem of synthesizing adequate inductive invariants to prove a program correct lies at the heart of automated program verification. We investigate, herein, learning approaches to synthesize inductive invariants of sequential programs towards automatically verifying them. To this end, we identify that prior learning approaches were unduly influenced by traditional machine learning models that learned concepts from positive and negative counterexamples. We argue that these models are not robust for invariant synthesis and, consequently, introduce ICE, a robust learning paradigm for synthesizing invariants that learns using positive, negative and implication counterexamples, and show that it admits honest teachers and strongly convergent mechanisms for invariant synthesis. We develop the first learning algorithms in this model with implication counterexamples for two domains, one for learning arbitrary Boolean combinations of numerical invariants over scalar variables and one for quantified invariants of linear data-structures including arrays and dynamic lists. We implement the ICE learners and an appropriate teacher, and show that the resulting invariant synthesis is robust, practical, convergent, and efficient. In order to deductively verify shared-memory concurrent programs, we present a sequentialization result and show that synthesizing rely-guarantee annotations for them can be reduced to invariant synthesis for sequential programs. Further, for verifying asynchronous event-driven systems, we develop a new invariant synthesis technique that constructs almost-synchronous invariants over concrete system configurations. These invariants, for most systems, are finitely representable, and can be thereby constructed, including for the USB driver that ships with Microsoft Windows phone

    Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications

    Full text link
    The challenging deployment of compute-intensive applications from domains such Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. In Part II of our survey, we classify and present the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators & systems. Moreover, we present a detailed analysis of the application spectrum of Approximate Computing and discuss open challenges and future directions.Comment: Under Review at ACM Computing Survey

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    A Compass to Controlled Graph Rewriting

    Get PDF
    With the growing complexity and autonomy of software-intensive systems, abstract modeling to study and formally analyze those systems is gaining on importance. Graph rewriting is an established, theoretically founded formalism for the graphical modeling of structure and behavior of complex systems. A graph-rewriting system consists of declarative rules, providing templates for potential changes in the modeled graph structures over time. Nowadays complex software systems, often involving distributedness and, thus, concurrency and reactive behavior, pose a challenge to the hidden assumption of global knowledge behind graph-based modeling; in particular, describing their dynamics by rewriting rules often involves a need for additional control to reflect algorithmic system aspects. To that end, controlled graph rewriting has been proposed, where an external control language guides the sequence in which rules are applied. However, approaches elaborating on this idea so far either have a practical, implementational focus without elaborating on formal foundations, or a pure input-output semantics without further considering concurrent and reactive notions. In the present thesis, we propose a comprehensive theory for an operational semantics of controlled graph rewriting, based on well-established notions from the theory of process calculi. In the first part, we illustrate the aforementioned fundamental phenomena by means of a simplified model of wireless sensor networks (WSN). After recapitulating the necessary background on DPO graph rewriting, the formal framework used throughout the thesis, we present an extensive survey on the state of the art in controlled graph rewriting, along the challenges which we address in the second part where we elaborate our theoretical contributions. As a novel approach, we propose a process calculus for controlled graph rewriting, called RePro, where DPO rule applications are controlled by process terms closely resembling the process calculus CCS. In particular, we address the aforementioned challenges: (i) we propose a formally founded control language for graph rewriting with an operational semantics, (ii) explicitly addressing concurrency and reactive behavior in system modeling, (iii) allowing for a proper handling of process equivalence and action independence using process-algebraic notions. Finally, we present a novel abstract verification approach for graph rewriting based on abstract interpretation of reactive systems. To that end, we propose the so-called compasses as an abstract representation of infinite graph languages and demonstrate their use for the verification of process properties over infinite input sets

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing
    corecore