
c© 2015 Pranav Garg

LEARNING-BASED INDUCTIVE INVARIANT SYNTHESIS

BY

PRANAV GARG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Doctoral Committee:

Associate Professor Madhusudan Parthasarathy, Chair
Associate Professor Darko Marinov
Associate Professor Mahesh Vishwanathan
Dr. Sumit Gulwani, Microsoft Research
Dr. Kenneth McMillan, Microsoft Research

ABSTRACT

The problem of synthesizing adequate inductive invariants to prove a program
correct lies at the heart of automated program verification. We investigate,
herein, learning approaches to synthesize inductive invariants of sequential
programs towards automatically verifying them. To this end, we identify that
prior learning approaches were unduly influenced by traditional machine learn-
ing models that learned concepts from positive and negative counterexamples.
We argue that these models are not robust for invariant synthesis and, conse-
quently, introduce ICE, a robust learning paradigm for synthesizing invariants
that learns using positive, negative and implication counterexamples, and
show that it admits honest teachers and strongly convergent mechanisms for
invariant synthesis. We develop the first learning algorithms in this model
with implication counterexamples for two domains, one for learning arbitrary
Boolean combinations of numerical invariants over scalar variables and one for
quantified invariants of linear data-structures including arrays and dynamic
lists. We implement the ICE learners and an appropriate teacher, and show
that the resulting invariant synthesis is robust, practical, convergent, and
efficient.
In order to deductively verify shared-memory concurrent programs, we

present a sequentialization result and show that synthesizing rely-guarantee
annotations for them can be reduced to invariant synthesis for sequential
programs. Further, for verifying asynchronous event-driven systems, we de-
velop a new invariant synthesis technique that constructs almost-synchronous
invariants over concrete system configurations. These invariants, for most
systems, are finitely representable, and can be thereby constructed, including
for the USB driver that ships with Microsoft Windows phone.

ii

To my parents.

iii

ACKNOWLEDGMENTS

I would like to thank Madhusudan Parthasarathy for his continuous support
and encouragement through the past six years. Over this time, he has tried
to inculcate in me his keenness to think about a research problem afresh,
and his taste for rigor and simplicity, for which I will be forever grateful.
I thank other members of my doctoral committee– Sumit Gulwani, Darko
Marinov, Kenneth McMillan, and Mahesh Vishwanathan. They have all
eagerly provided me with advice on both my research and career.
I would specially like to thank Christof Löding and Daniel Neider, with

whom I have now been fruitfully collaborating for more than four years and
all the work presented herein has been mostly done together with them. I
still remember how when we started our collaboration the main premise of
this thesis looked insurmountable. If we have made any headway towards
solving the undertaken problem, a large portion of the credit goes to them
and Madhu. Dan Roth has also been a fantastic collaborator, and I have
gained immensely from his mentorship and teaching. I also thank others with
whom I have worked over the course of my doctoral research, which includes
Rishi Agarwal, Gogul Balakrishnan, Ankush Desai, Aarti Gupta, Indranil
Gupta, Alex Gyori, Franjo Ivančić, Akash Lal, Gennaro Parlato, Edgar Pek,
Xiaokang Qiu, Muntasir Raihan Rahman, Shambwaditya Saha, Francesco
Sorrentino, Andrei Stefanescu and Josep Torrellas.

I spent six memorable months at MSR India under Akash Lal, who was the
perfect host, and several ideas which form the bulk of my thesis germinated
during that time. I also had a wonderful opportunity of spending a summer
at NEC Laboratories in Princeton, NJ and my association with my mentor,
Franjo Ivančić, continues to this day, for which I am very thankful.

The Computer Science department in the University of Illinois provided me
with an environment which was very conducive to learning, and I specially
enjoyed the courses taught by Vikram Adve, Madhusudan Parthasarathy, Dan

iv

Roth, Grigore Ros,u and Mahesh Vishwanathan. I would also like to thank
my teachers from my undergraduate institute, IIT Kanpur– Piyush P. Kurur,
Somenath Biswas and (Late) Sanjeev Kumar Aggarwal, who were the first
ones to introduce me to research and sparked my interest in programming
languages and formal methods.
The formal methods group at UIUC has been extremely vibrant and I

learned a lot from the everyday interactions I had with my colleagues at
the university– apart from my collaborators mentioned above, these include
Sruthi Bandhakavi, Parasara Sridhar Duggirala, Rajesh Karmani, and Dileep
Kini.
Finally, my journey during these past six years has seen a fair share of

ups and downs, at both professional and personal levels. While my advisor,
Madhu, has been full of support throughout the highs and the lows, the
support of my friends and family has been invaluable towards the completion
of this journey. I would like to dearly thank my parents and my siblings–
Yamini and Pallavi, for always being there for me.

My stay at UIUC has been extremely pleasant and I would like to end by
thanking my friends who made this stay memorable– Pooja Agarwal, Rishi
Agarwal, Shikha Aggarwal, Shashank Agrawal, Mayank Baranwal, Ankita
Bhutani, Piyush Deshpande, Rajesh Bhasin, Parasara Sridhar Duggirala,
Abhishek Gupta, Dileep Kini, Vivek Kumar, Kapil Mathur, Shishir Pandya,
Advitya Patyal, Deeksha Rastogi, Manila Sarangi, Prakalp Srivastava, and
Ankur Taneja.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Background . 5
1.2 Contributions of the Thesis 6
1.3 Related Research . 8

CHAPTER 2 THE ICE LEARNING MODEL FOR ROBUST
INVARIANT SYNTHESIS . 16
2.1 Non-robustness of Traditional Learning Models for Synthe-

sizing Invariants . 16
2.2 The ICE Learning Framework 19
2.3 ICE Learning over Lattice Domains 23
2.4 ICE Learning for Universally Quantified Properties 25
2.5 Remarks . 27

CHAPTER 3 ICE LEARNING USING CONSTRAINT SOLVING . . 29
3.1 Constraint Solver based ICE Learning Algorithm for Syn-

thesizing Numerical Invariants 31
3.2 Convergence of the Learning Algorithm 33
3.3 Experimental Results . 34

CHAPTER 4 ICE LEARNING NUMERICAL INVARIANTS US-
ING DECISION TREES . 38
4.1 Background: Learning Decision Trees from Positive and

Negative Examples . 40
4.2 A Generic Decision Tree Learning Algorithm in the Presence

of Implications . 43
4.3 Choosing Attributes in the Presence of Implications 47
4.4 Convergent Learning of Decision-trees 52
4.5 Experiments and Evaluation 57

CHAPTER 5 LEARNING UNIVERSALLY QUANTIFIED IN-
VARIANTS OVER LINEAR DATA STRUCTURES 69
5.1 Overview . 71
5.2 Quantified Data Automata Model to Express Invariants

over Linear Data-Structures 73

vi

5.3 Properties of Quantified Data Automata 77
5.4 Elastic Quantified Data Automata 84
5.5 Modeling Linear Data Structures as Words and Converting

EQDAs to Decidable Logics 87
5.6 Learning Likely Invariants over Linear Data Structures by

Passively Learning QDAs . 105
5.7 ICE Learning QDAs . 118

CHAPTER 6 SYNTHESIZING INVARIANTS FOR LISTS US-
ING ABSTRACT INTERPRETATION 126
6.1 Programs Manipulating Heap and Data 130
6.2 Quantified Skinny-Tree Data Automata 133
6.3 A Partial Order over QSDAs 138
6.4 Abstract Transformer over QSDAs 139
6.5 Elastic Quantified Skinny-Tree Data Automata 144
6.6 Experimental Evaluation . 148
6.7 Related Work . 151

CHAPTER 7 VERIFYING SHARED MEMORY CONCURRENT
PROGRAMS . 152
7.1 A Compositional Abstract Semantics for Concurrent

Programs . 155
7.2 A High-level Overview of the Sequentialization 159
7.3 Sequential and Concurrent Programs 161
7.4 The Sequentialization . 163
7.5 Experience . 167
7.6 Related Work . 170

CHAPTER 8 VERIFYING ASYNCHRONOUS PROGRAMS BY
SYNTHESIZING ALMOST-SYNCHRONOUS INVARIANTS . . . 172
8.1 Motivation . 175
8.2 Event-driven Automata Model 180
8.3 Almost-Synchronous Invariants for Event-driven Automata . . 184
8.4 Lifting ASI Reductions to P Programs 193
8.5 Implementation and Evaluation 195
8.6 Remarks . 201
8.7 Related Work . 201

CHAPTER 9 CONCLUSIONS . 204

REFERENCES . 208

vii

CHAPTER 1

INTRODUCTION

The problem of program verification– given a program P and a safety speci-
fication ϕ, does P satisfy ϕ– is a classic problem that is inherently related
to the semantics of programs [Flo67,Hoa69]. Given a set of initial states of
a program and a set of bad states, ¬ϕ, that do not meet the specification,
the general methodology for proving the correctness of the program involves
specifying an invariant for the program. An invariant is a set of program
states that includes the initial states of the program, excludes the set of
bad states and is inductive– which means that it is closed with respect to
the transition relation of the program, and guarantees that any execution
of a statement in the program from a state that belongs to the invariant
region results in a state that also belongs to the invariant (see Figure 1.1).
By using induction on the number of steps taken by the program, one can
easily argue that an inductive invariant with the above properties is an over-
approximation of the reachable states of the program, and since it does not
intersect with the set of bad states, the program is correct. The problem
of synthesizing adequate inductive invariants to prove a program correct is
at the heart of automated program verification. Synthesizing invariants is in
fact the hardest aspect of program verification [Weg74,Koe,Man10]—once
adequate inductive invariants are synthesized, program verification reduces
to checking validity of verification conditions1 obtained from finite loop-free
paths [Flo67,Hoa69,BCD+05], which is a logic problem that has been highly
automated over the years with the advances in automated logic solvers.

Nevertheless, there are known several procedures for synthesizing inductive
program invariants including (symbolic) model checking [McM92], abstract
interpretation [CC77], predicate abstraction [BR02,HJMS02], Craig’s inter-
polation [McM03] and IC3 [Bra11]. All of these techniques are mostly tuned

1see Section 1.1 for background on verification conditions; verification conditions check
if the invariants specified are adequate and inductive.

1

Figure 1.1: If we view a program as a transition system with a set of initial
states Init and bad states Bad, a program execution is a transition sequence.
If the program is correct, then there is no transition sequence from an initial
state to a bad state. Reach is the set of reachable states and I is an adequate
inductive invariant that verifies the program.

towards verifying a certain class of programs or verifying programs with re-
spect to a certain class of properties, and due to the inherent hardness of the
problem, come with certain limitations. As an example, model checking can
successfully synthesize an invariant when the program has a finite state-space
or the paths in the program are bounded. However, for programs over an
infinite domain, for eg. integers, with unbounded number of paths in the
program, model checking is bound to fail. Similarly, invariants synthesized by
abstract interpretation over a given abstract domain might be inadequate due
to widening [CC77], and predicate abstraction, which has been very successful
in synthesizing invariants over type-state predicates [BR02], is mostly inade-
quate to synthesize invariants over numerical domains. As opposed to the
above white-box techniques, where the synthesizer of the invariant is acutely
aware of the precise program and the property that is being proved, this
thesis explores a completely different way for synthesizing inductive invariants–
using learning.
As compared to the techniques mentioned above, ours is a black-box

approach where the invariant synthesizer is largely agnostic to the structure
of the program and the property, but works with a partial view of the
requirements of the invariant. Given a finite set (or a sample) of program
configurations consisting of those that are reachable along bounded executions
of the program and those that lead to violations of the specification, the

2

Figure 1.2: Black-box learning of invariants

invariant synthesizer is a learning algorithm that learns a classifier that
separates the former set of configurations from the latter. The inductive bias of
the learning algorithm forces generalization to unseen program configurations.

In this data-driven approach, we split the synthesizer of invariants into two
parts (see Figure 1.2). One component is a teacher, which is essentially a
program verifier that can verify the program using a conjectured invariant
and generates counterexamples; it may also have other ways of generating con-
figurations that must or must not be in the invariant (e.g., dynamic execution
engines, bounded model-checking engines, etc.). The other component is a
learner, which learns from counterexamples given by the teacher to synthesize
the invariant. In each round, the learner proposes an invariant hypothesis H,
and the teacher checks if the hypothesis is adequate to verify the program
against the specification; if not, it comes up with concrete program config-
urations that need to be added or removed from the invariant (denoted by
+ and − in Figure 1.2). The learner, who comes up with the invariant H is
completely agnostic of the program and property being verified, and aims to
build a simple formula that is consistent with the sample. Hence, when learn-
ing an invariant, the teacher and learner talk to each other in rounds, where
in each round the teacher comes up with additional constraints involving new
data-points and the learner replies with some set satisfying the constraints,
until the teacher finds the set to be an adequate inductive invariant. The
above learning approach for synthesizing invariants has several advantages; it
was explored before in other contexts [CGP03,AMN05,ACMN05,ECGN00],
and has been explored with renewed interest in this thesis and concurrently

3

by other researchers in [SNA12,SGH+13b,SGH+13a,SA14].

Advantages of Learning: There are many advantages the learning approach
has over traditional white-box approaches. First, a synthesizer of invariants
that works cognizant of the program and property is very hard to build, simply
due to the fact that it has to deal with the complex logic of the program.
This is specially true when the program is itself complex– for instance, if the
program has operations over non-linear arithmetic, complex data-structure
manipulating operations, etc. Building a set that is guaranteed to be an
inductive invariant, in this case, while also reasoning over a complex memory
model and program semantics gets extremely hard. However, a black-box
invariant synthesis technique that uses a “guess and check” approach guided
by a finite set of configurations is easier to build and has better chances of
finding the invariant. (See [TLLR13] where a similar argument is made for
black-box generation of the abstract post in an abstract interpretation setting).
Second, learning, which typically concentrates on finding the simplest concept
that satisfies the constraints, implicitly provides a tactic for generalization,
while white-box techniques (like interpolation) need to build in tactics to
generalize. This ties together with the first advantage where building these
generalization tactics in a white-box setting becomes hard, as the programs
get more complex. Finally, the black-box approach allows us to seamlessly
integrate highly scalable machine-learning techniques into the verification
framework [Mit97a,KV94]. Machine learning algorithms can be trained to
learn invariants that belong to various classes of Boolean functions, such as
k-CNF/k-DNF, Linear Threshold Functions, Decisions Trees, etc., and we
develop such machine learning algorithms in this thesis.

However, standard machine learning algorithms for classification are mostly
trained on given sets of positive and negative examples. We show, in this
thesis, that such a learning model, shown in Figure 1.2, is not robust for
synthesizing invariants. Consequently, we introduce a new learning model for
robust invariant synthesis called ICE, which stands for learning invariants
using Implication Counter-Examples, and develop several learning algorithms
in the ICE model and deploy them in verifying programs correct. Before
we delve deeper into our learning model in Chapter 2, let us next introduce
some preliminary concepts (Section 1.1), followed by our main contributions
(Section 1.2) and related research (Section 1.3).

4

1.1 Background

This thesis assumes the familiarity of the reader with Floyd-Hoare logic [Flo67,
Hoa69] for proving the correctness of programs (readers can refer to the survey
paper [Apt81] or the book [BM07] for a comprehensive exposition of this
topic). The central feature of Hoare logic is the Hoare triple. A valid
Hoare triple {P} C {Q}, where C is a command and P , Q are assertions,
implies that from any program configuration that satisfies assertion P , if the
program executes C then, on termination, the resulting configuration will
satisfy Q. These assertions are formulas in predicate logic, which provides
a finite representation for a possibly infinite set of program configurations.
Hoare logic provides a set of proof rules for checking the validity of such
Hoare triples. The methodology for verifying programs using Hoare logic
involves annotating assertions at various locations in the program such that
the corresponding Hoare triples are valid. Given these logical annotations,
the validity of the corresponding Hoare triples is reduced to checking the
validity of a set of predicate logic formulas called verification conditions.
This reduction is achieved by predicate transformers, weakest precondition or
strongest postcondition, which provide strategies to build valid deductions in
Hoare logic.

Given a statement S, the weakest precondition of a formula R with respect
to S– wp(S,R), is the weakest precondition on the initial state ensuring
that an execution of S on termination results in a final state satisfying R.
Conversely, the strongest postcondition of a formula R with respect to S–
sp(S,R), is the strongest postcondition satisfied by the final state of any
terminating execution of S, for any initial state satisfying R. These predicate
transformers can be constructed for various statements in the language, such
as an assignment or an assume statement, and also for any arbitrary sequence
of such statements. As a result, it is not required to annotate logical assertions
at every location in the program but only annotate pre/post-conditions for
(recursive) functions and invariants for loops in the program.

Given user annotations P and Q enclosing a straight-line sequence of state-
ments S, the Hoare triple {P}S{Q} is valid iff the verification condition
P ⇒ wp(S,Q) is a valid formula. This is equivalent to checking if the verifi-
cation condition sp(S, P)⇒ Q is valid. Once program annotations have been
provided by the user, verification conditions such as these can be automati-

5

cally generated and checked for validity using (mostly automated) constraint
solvers. Coming up with these annotations is, however, mostly manual, and
is very cumbersome and tedious [Weg74]. Automatically synthesizing these
annotations is the central problem we address in this thesis.

1.2 Contributions of the Thesis

ICE learning model for synthesizing invariants. We propose a robust
learning model for synthesizing inductive invariants called ICE learning.
Learning has been explored before in the context of synthesizing program
invariants [SNA12,SGH+13b,SGH+13a,CW12,KJD+10] and, also, in other
verification contexts [CGP03,AMN05,ACMN05,ECGN00]. We show that
these prior-known learning approaches are not robust for invariant synthesis.
Our work in this thesis (Chapter 2) is the first that develops a robust learning
model that explicitly incorporates the search for inductive invariants in black-
box invariant generation.

ICE algorithms for learning numerical invariants. We develop two
new ICE learning algorithms for learning numerical program invariants. In
Chapter 3, we adapt the template-based synthesis techniques that use con-
straint solvers [CSS03, GSV08, GMR09, GR09] to build a black-box ICE
learning algorithm. Our algorithm iterates over all possible template formulas
in increasing complexity, till it finds, using a constraint solver, an adequate
invariant in the appropriate template. The resulting learning algorithm is,
thereby, strongly convergent despite the concept class of invariants being
infinite. Our second algorithm for learning numerical invariants (Chapter 4)
adapts decision-tree learning to the ICE framework. This work breaks new
ground in adapting machine learning techniques to invariant synthesis, giving
the first efficient robust ICE machine-learning algorithms for synthesizing
invariants. We build both these learning algorithms over Boogie [BCD+05]
and show that they are extremely effective in synthesizing adequate inductive
invariants over scalar program variables. On a large suite of benchmark
programs, our learning algorithms outperform existing white-box invariant
synthesis techniques including interpolation [BK11,McM06], template-based
invariant generation [GR09], abstract interpretation [CC77,TLLR13], and

6

existing black-box learning techniques including learning algorithms based on
computational geometry [SGH+13b] and randomized search [SA14].

Synthesizing universally quantified invariants of linear data struc-
tures. We present a novel automata-based representation of quantified prop-
erties of linear data-structures, called quantified data automata (QDA), and
develop learning algorithms for them (Chapter 5). In particular, we first de-
velop a passive learning algorithm, based on Angluin’s L∗ algorithm [Ang87a],
for learning QDAs from concrete data structure configurations that manifest
along dynamic test runs. We also develop an RPNI-based [OG92] learning
algorithm in the ICE model for robustly learning QDAs. We, further, identify
a subclass of QDAs, called elastic QDAs, that can be converted to formu-
las of decidable logics over arrays and lists, and adapt the above learning
algorithms to learning elastic QDAs. Using a wide variety of programs ma-
nipulating arrays and lists, we show that we can effectively learn adequate
quantified invariants in these settings using these learning algorithms. Elas-
tic QDAs, it turns out, also form an abstract domain for heap analysis of
programs manipulating acyclic heaps with a single pointer field, including
data-structures such singly-linked lists (Chapter 6). We develop an abstract
transformer and a widening operator over the domain of elastic QDAs, and
show that our abstract interpretation is able to prove the naturally required
universally-quantified properties of a large suite of list-manipulating programs.

Verification and invariant synthesis of concurrent programs. In
Chapter 7, we address the problem of verification of shared-memory concurrent
programs. We develop a sound sequentialization for concurrent programs,
thereby showing that the problem of compositionally verifying concurrent
program reduces to sequential verification. The sequentialization we develop
also provides a way to synthesize compositional rely-guarantee proofs of
correctness of concurrent programs by reducing the problem to invariant
synthesis of the corresponding recursive sequential program. This brings
learning-based invariant synthesis techniques, we have investigated in this
thesis, into play for automatically proving concurrent programs correct. In fact,
we use the sequentialization followed by an automatic predicate-abstraction
tool [BR02] to automatically verify concurrent programs.

7

Finally, in Chapter 8, we investigate the problem of provably verifying that
an asynchronous message-passing system satisfies its local assertions. We
present a novel reduction scheme for asynchronous event-driven programs
that synthesizes almost-synchronous invariants— invariants consisting of
global states where message buffers are close to empty. The reduction finds
almost-synchronous invariants and simultaneously argues that they cover all
local states of the system. We implement our reduction strategy, which is
sound and complete, and show that it is more effective in proving programs
correct as well as more efficient in finding bugs in several programs, compared
to current search strategies which almost always diverge. The high point of
our experiments is that our technique can prove the Windows Phone USB
Driver written in P [DGJ+13] correct for the responsiveness property, which
was hitherto not provable using state-of-the-art model-checkers.

1.3 Related Research

White-box techniques for synthesizing invariants. Invariant synthe-
sis is one of the fundamental problems in automated program verification,
and there has been a lot of related research towards automatically synthe-
sizing program invariants. As opposed to the black-box learning approach
investigated in this thesis, where the invariant synthesizer is largely agnostic
to the structure of the program and the property but works with a partial
view of the requirements of the invariant, white-box invariant synthesizers
are acutely aware of the precise program and the property that is being
verified. Prominent examples for white-box techniques for synthesizing in-
variants include abstract interpretation [CC77], predicate abstraction [BR02],
interpolation [McM03,McM06], and IC3 [Bra11].
In abstract interpretation [CC77], invariant generation is achieved by

computing fixed-points on abstract lattices of finite height, or using widen-
ing and narrowing techniques for lattices of infinite height (see [Kar76]
and [CH78] for abstract interpretation over affine equalities and inequalities
and [Min01] for abstract interpretation over octagons). Abstract interpre-
tation has been predominately used for synthesizing invariants over convex
domains [Min01,CH78], but there has also been research into non-convex
domains, such as by considering powerset extensions of abstract domains

8

in [FR99,FR99, SISG06, SISG06], and even non-lattice domains [GNS+13].
However, often for an abstract domain, the most precise abstract transformer
does not exist or is not computable [RSY04,TLLR13]. This is often true when
the abstract domain elements are very complex, for eg., involve non-convex
concepts or abstractions over heap structures such as the domain elements in-
volving QDAs we introduce in Chapter 6, or when the programming language
is complicated [TLLR13]. Abstract interpretation in such a case is bound to
be imprecise. Even otherwise, when the most precise abstract transformer
is computable, abstract interpretation often synthesizes imprecise invariants
due to widenings it performs when the domain has an infinite height.
Instead of computing program semantics over a fixed abstract domain a

la abstract interpretation, abstraction-refinement approaches strive to refine
the abstract domain based on guidance by counterexamples. Predicate
abstraction [BR02,HJMS02], for instance, tunes the abstract lattice according
to the property being verified, and the Boolean program model-checker
computes the reachable set of predicate-states over the chosen lattice, and
hence essentially synthesizes a program invariant.
In recent years, techniques based on Craig’s interpolation [McM03,JM06,

McM06] have emerged as a new method for invariant synthesis, and use
the unsatisfiable core of the proof that a bounded run does not violate the
post-condition to infer a generalization that is likely to be an invariant. In-
terpolation techniques, which are inherently white-box as well, are known
for several theories, including linear arithmetic [KLR10], uninterpreted func-
tion theories [RS10,BZM08], and even quantified properties over arrays and
lists [JM07b,McM08,ABG+12,SPW09]. These methods use different heuris-
tics like term abstraction [ABG+12], finding interpolants over a restricted
language [JM07b,McM08] and use of existential ghost variables [SPW09]
to ensure that the interpolant converges on an invariant from a finite set
of spurious counter-examples. As opposed to using various heuristics we
mention above to force generalization to an inductive invariant, learning
approaches, we investigate in this thesis, rely on the inductive bias of the
learners to generalize. Complementary to interpolation, IC3 [Bra11] has also
been proposed recently as an alternate approach for generalizing results of
symbolic bounded model-checking to synthesize program invariants.
Template based approaches to synthesizing numerical invariants using

constraint solvers have also been explored in the past in white-box set-

9

tings [CSS03,GSV08,GR09,GMR09]. These approaches directly encode the
adequacy of the invariant (encoding the entire program’s body) into a con-
straint, and use Farkas’ lemma to reduce the problem to satisfiability of a
quantifier-free non-linear arithmetic formulas. We adapt this approach, some-
what, to develop an ICE learning algorithm for learning numerical invariants,
presented in Chapter 3. Our approach splits the task of invariant synthesis
between a white-box teacher and a black-box learner, communicating only
through implication constraints on concrete data-points. This greatly reduces
the complexity of the problem, as opposed to template-based white-box ap-
proaches, leading to simple teacher and a learner that solves the satisfiability
problem for only linear arithmetic constraints, which is decidable.

Heap analysis using abstract interpretation For invariants expressing
properties on the dynamic heap, shape analysis techniques are the most well
known [SRW02], where locations are classified using unary predicates (some
dictated by the program and some given as instrumentation predicates by
the user), and abstractions summarize all nodes with the same predicates
into a single node. These user-provided instrumentation predicates are often
too particular to the program being verified. Coming up with them is,
therefore, not an easy task, and often is as hard as manually specifying the
invariant. For singly-linked lists, [MYRS05] introduces a family of abstractions
based on a set of instrumentation predicates which track uninterrupted list
segments. While this alleviates the burden of the user to some extent,
the instrumentation predicates in these abstractions only handle structural
properties of lists and not the more-complex quantified data properties that
are the subject of our investigation in Chapter 5-6. Several separation
logic based shape analysis techniques have also been developed over the
years [DOY06,GVA07,BCC+07,BCI11]. But like [MYRS05], they too mostly
handle properties concerning the shape of heap structures.
In recent work [MRS10,CR08, BDES12,GMT08,CCL11,HP08], several

abstract domains have been explored for analyzing heaps which combine the
shape and the data constraints. Though some of these domains [MRS10,CR08]
can handle heap structures more complex than singly-linked lists, most of these
domains require the user to provide a set of data predicates [GMT08], a set
of structural guard patterns [BDES12], or predicates over both the structure
and the data constraints [MRS10,CR08]. In contrast, the abstract domain

10

we develop in Chapter 6, based on quantified data automata, is strictly more
expressive than the abstract domains in [CCL11,HP08]– the data automata
we introduce allows expressing arbitrary n-ary quantified relations between
data elements, such as sortedness of a list that [CCL11], for example, cannot
express. Also, these n-ary quantified relations are automatically synthesized
in our abstract analysis and are not required to be provided by the user. The
only assistance our technique requires from the user is specifying a numerical
domain over data formulas and the number of universally quantified variables.
Automata based abstract interpretation has been explored in the past

for inferring shape properties about the heap [HHR+11]. However, in our
work (Chapter 6) we are interested in strictly-richer universally quantified
properties on the data stored in the heap. [Av11] introduces a streaming
transducer model for algorithmic verification of single-pass list-processing
programs. However the transducer model severely constrains the class of
programs it can handle; for example, [Av11] disallows repeated or nested list
traversals which are required in sorting routines, etc.

[PW10] proposes a counter-example driven shape analysis where the user
is required to provide certain quantified predicates for the analysis. Given
these predicates, [PW10] uses a CEGAR-loop for incrementally improving
the precision of the abstract transformer and also discovering new predicates
on the heap objects that are part of the invariant.

Decidable heap logics. Quantified data automata model we introduce in
Chapter 5 for representing quantified invariants over lists and arrays is inspired
by decidable heap logics– the decidable fragment of Strand [MPQ11] and
the array property fragment [BMS06], and can track invariants with guard
constraints of the form y ≤ t or t ≤ y for universal variables y and some
term t. These structural constraints on the guard are very similar to array
partitions in [GRS05,HP08,CCL11]. However, our automata model is strictly
more general. For instance, none of these related works can handle sortedness
of arrays which requires quantification over more than one variable.

Using learning to synthesize program invariants. We primarily in-
vestigate in this thesis learning techniques to synthesize inductive program
invariants. A prominent early example of using black-box learning for syn-
thesizing invariants is Daikon [ECGN00], which uses conjunctive Boolean

11

learning to synthesize likely invariants from program configurations recorded
along dynamic test runs. A similar line of work has been explored more
recently in [NKWF12] for synthesizing likely polynomial and array invariants.
Our work in Chapter 5 [GLMN13] also synthesizes likely invariants, but for
rich quantified data properties over linear data-structures such as linked-lists
and arrays. However, it is important to note that the invariants synthesized
in this manner might not be true inductive invariants of the program. This
shortcoming is gotten rid of in Houdini [FL01], which, like Daikon also uses
conjunctive Boolean learning to learn conjunctive invariants over templates of
atomic formulas but, has a constraint-solver based teacher to iteratively guide
the conjunctive learner by providing counterexamples till the concept learned
is inductive and adequate. A similar algorithm is used in liquid types [RKJ08]
for inferring refinement types for program expressions to statically verify
programs memory-safe.

Following these early works [ECGN00,FL01], learning was explicitly intro-
duced in the context of verification by Cobleigh et al. [CGP03], which was then
followed by several algorithms based on Angluin’s L∗ algorithm [Ang87a] for
learning regular languages applied to finding rely-guarantee contracts [AMN05],
learning stateful interfaces for programs [ACMN05] and verifying CTL prop-
erties [VV07].
Recently, there has been a renewed interest in the application of learn-

ing to program verification, in particular to synthesize invariants by us-
ing scalable machine learning techniques [Mit97a,KV94] to find classifiers
that separate good states that the program can reach (positive counterex-
amples) from bad states the program is forbidden from reaching (nega-
tive counterexamples). This includes the work we present in this the-
sis [GLMN13,GLMN14,GNMR15] and also concurrent work by other re-
searchers [CW12,KJD+10,SNA12,SGH+13b,SGH+13a,SA14,KPW15]. How-
ever, it turns out that merely learning from positive and negative counterex-
amples for synthesizing invariants is inherently not robust. We therefore
introduce ICE learning (see Chapter 2) [GLMN14], which extends this clas-
sical learning setting with learning using implication counterexamples and
results in a robust model for invariant synthesis. Implication counterexamples
were also identified by Sharma et al in [SGH+13b], but the learners proposed
by them did not handle them in any way. Subsequent to introducing ICE
learning we have developed ICE learners for learning invariants over octogo-

12

nal domains (Chapter 3-4) [GLMN14,GNMR15] and universally quantified
invariants over linear data structures [GLMN14]. ICE learners have also
been, consequently, developed by other researchers for Regular Model Check-
ing [Nei14], and invariant synthesis using randomized search [SA14]. In fact,
as we show in Chapter 2 [GLMN14], the Houdini algorithm [FL01] along
with its generalization by Thakur et al. [TLLR13] and [GKT13] to arbitrary
abstract domains like intervals, octagons, polyhedrons, linear equalities, etc.
can also be seen as ICE learning algorithms. In the context of black-box
invariant synthesis, counterexamples to inductiveness of an invariant have
been handled in the past in [RSY04,YBS06,Eij98, FL01], but only in the
context of lattice domains where the learned concepts grow monotonically
and implications essentially yield positive examples (see Chapter 2). The ICE
learning model, we propose, uniformly incorporates the search for inductive
sets in black-box invariant generation.

The work by Vardhan [Var06] is another systematic attempt to view verifi-
cation as a learning problem. Instead of learning the set of reachable states,
Vardhan proposes to learn system executions witnessing the reachability of
these states, i.e., learning a set of state-witness pairs such that a pair (s, w)
is in the target concept if and only if the state s is shown to be reachable by
the witness w. One can now answer membership and equivalence queries in
this representation and subsequently learn invariants when the concept being
learned in this representation is regular.

One primary difference in our work, compared to white-box approaches for
invariant synthesis we have described before, is that our black-box approach
does not look at the code of the program, but synthesizes an invariant
from a snapshot of examples and counter-examples that characterize the
invariant. This has both advantages and disadvantages compared to white-
box techniques. The main disadvantage is that information regarding what
the program actually does is lost in invariant synthesis. However, this is
the basis for its advantage as well– by not looking at the code, the learning
algorithm promises to learn the sets with the simplest representations, and
can also be much more flexible. For instance, even when the code of the
program is complex, for example having non-linear arithmetic or complex
heap manipulations that preclude logical reasoning, black-box learning gives
ways to learn simple invariants for them.

A problem that is very related to invariant synthesis is that of synthesizing

13

programs such that they satisfy a given specification. In program or expression
synthesis, a popular approach is to use counterexample guided inductive syn-
thesis (CEGIS) [ABJ+13,SL08,SLTB+06], which is also a black-box learning
paradigm like ICE learning, and is gaining traction aided by synthesizers
based on explicit enumeration, symbolic constraint-solving and stochastic
search. In addition, learning has also been used as a technique for solving
various problems in software engineering including for model extraction and
testing of software [ACH+10,CNS13].

Machine learning theory. One of the advantages of the learning approach
to synthesizing invariants, we investigate in this thesis, is the opportunity to
build highly scalable program analyses based on machine learning algorithms.
Machine learning algorithms (see [Mit97b] for an overview) are often used
in practical learning scenarios due to their high scalability. Amongst the
most well-known classification algorithms are the winnow algorithm [Lit87],
perceptron [Ros58], and support vector machines [CV95] for learning lin-
ear classifiers, and decision tree algorithms, such as ID3 [Qui86] and C4.5,
C5.0 [Qui93] for learning arbitrary Boolean functions. Since the concept class
of invariants we learn in Chapter 4 are arbitrary Boolean functions, we base
our learner in Chapter 4 on decision tree learning algorithms [Qui86,Qui93].
Apart from our work, recent work has investigated abstract domains based
on decision trees for proving conditional termination [UM14] and learning
program invariants using decision tree learning [KPW15].

Turning to general learning theory, the field of algorithmic learning theory
is a well-established field [KV94,Mit97a]. The PAC learning model of learning
approximating concepts with high probability using samples drawn randomly
from a distribution is a well-studied model. In the absence of any underlying
distribution, the classical results in learning theory are for learning using
queries where the learner is allowed to ask the teacher various different kinds
of questions (see [Ang87b] for an overview). A celebrated result in this
realm is the polynomial-time learning of regular languages by Angluin which
uses membership and equivalence queries [Ang87a]. Gold [Gol78] showed
that the problem of finding the smallest automaton consistent with a set of
accepted and rejected strings is NP-complete. The RPNI algorithm [OG92]
is a passive learning algorithm for regular languages that learns from positive
and negative examples, works in polynomial time, but does not guarantee

14

learning the smallest automaton. The ICE learning algorithm we develop
in Chapter 5 for learning quantified properties of linear data structures
is based on RPNI, but extended to the ICE setting. Angluin’s learning
using only equivalence queries [Ang87b,Ang90] is very closely tied to the
mistake-bound online learning model proposed by Littlestone in [Lit87], in
which a learner iteratively learns from incorrectly classified data and needs
to converge to a correct classifier within a (polynomially) bounded number
of wrong conjectures. Both these learning models are closely related to the
iterative learning we propose in ICE. However, though, machine learning
community has developed several algorithms for learning classifiers in the
online learning model, such as the winnow [Lit87] and perceptron [Ros58],
we are not aware of any prior machine learning algorithms in the online
learning framework designed to learn from positive and negative data as well
as implications.

15

CHAPTER 2

THE ICE LEARNING MODEL FOR
ROBUST INVARIANT SYNTHESIS

In this chapter we develop a new learning model called ICE for robustly
synthesizing inductive program invariants. To do so, let us first take a closer
look at the “guess-and-check” learning approach for invariant synthesis as
suggested in Chapter 1. Recall that in this approach (ref. Figure 1.2) the
learner synthesizes suggestions for the invariants in each round. The teacher
is completely aware of the program and the property being verified, and (a)
checks if the invariant hypothesis H conjectured by the learner is indeed an
inductive invariant and is adequate in proving the property of the program
(typically using a constraint solver), and (b) if the invariant is not adequate,
comes up with concrete program configurations that need to be added or
removed from the invariant (denoted by + and − in Figure 1.2). The learner,
who conjectures the invariant hypothesis H is completely agnostic of the
program and the property being verified, and aims at learning a simple formula
that is consistent with the sample of labeled program configurations. When
learning an invariant, the teacher and the learner talk to each other in rounds,
where in each round the teacher comes up with additional constraints involving
new data-points and the learner replies with a new invariant hypothesis
satisfying the constraints, until the teacher finds that the invariant conjectured
is an adequate inductive invariant.

2.1 Non-robustness of Traditional Learning Models for
Synthesizing Invariants

The learning approach described above is unduly influenced by computational
learning theory, automata learning, and machine learning techniques, which
have traditionally offered learning from positive and negative examples. As
we show below, learning from labeled (positive and negative) examples as

16

above does not form a robust learning framework for synthesizing invariants.
To see why, consider the following simple program—

pre; S; while (b) do L; od S ′; post
with a single loop body for which we want to synthesize an invariant that
proves that when the precondition to the program holds, the postcondition
holds upon exit. Let us assume that the learner has conjectured H as a
hypothesis invariant. In order to check if H is an adequate invariant, the
teacher checks the following properties:
(a) whether the strongest-post of the precondition across S implies H; if

not the teacher finds a concrete program configuration p that should
belong to the invariant and returns this as a positive example to the
learner.

(b) whether the strongest-post of (H∧¬b) across S ′ implies the postcondition;
if not, the teacher returns a concrete program configuration p in H that
should not belong to the invariant as a negative example.

(c) whether H is inductive; i.e., whether the strongest-post of (H ∧ b)
across the loop body L implies H; if not, the teacher finds two concrete
program configuration p and p′, such that on executing the loop body L
from configuration p the program reaches configuration p′, where p ∈ H
and p′ < H.

Since the teacher does not know the precise invariant (there are after all many),
in the last case above, the teacher has no way of knowing whether p should be
excluded from H or whether p′ should be included in H. In the learning model
that requires the teacher to return a positive or negative counterexample to
the learner in every round, the teacher gets stuck. In many learning algorithms
in the program verification literature [CGP03,AMN05,ACMN05,GLMN13],
the teacher cheats: she arbitrarily chooses to exclude p from H or include
p′ in H hoping that it will result in an inductive invariant. However, this
arbitrary choice makes the entire framework non-robust, causing divergence,
preventing the learner from learning the simplest concepts, and introducing
arbitrary bias that is very hard to control. Another way to make progress,
in this case, is to return to the learner the membership of p and p′ with
respect to the reachable set of configurations of the program. The teachers in
the learning algorithms in [GLMN13,SGH+13b], in fact, answer membership
queries for p and p′ by checking for their reachability along bounded executions.
While answering these membership queries is sometimes possible in this way,

17

Figure 2.1: A schematic of the ICE learning model for synthesizing
invariants.

in general the reachability problem is undecidable. Also the teacher by
answering membership queries with respect to the reachable set guides the
learner towards learning this set which is often more complex to represent
than the simplest inductive invariants.

When faced with non-inductiveness of the current invariant hypothesis H
in terms of a pair (p, p′), all that the teacher knows is that for any inductive
invariant I of the loop in the program, if p belongs to I then configuration p′

should also belong to I. In the new learning model that we formally describe
in this chapter, the teacher simply communicates this pair of configurations
(p, p′) to the learner and demands that the learner learns hypotheses H
such that if p is included in H, then so is p′. Consequently, we propose
that we build learning algorithms that do not just learn from (positively or
negatively) labeled counterexamples, as most traditional learning algorithms
do, but instead also learn from unlabeled counterexamples for which the
learner predicts labels such that they are constrained by an implication
relation (shown as an arrow in the sample in Figure 2.1). The learning model
that we propose is called ICE that stands for learning using Implication
counterexamples. In this learning model, the learner assigns (positive or
negative) labels to the unlabeled counterexamples based on considerations of
simplicity of the learned concept, generalization, etc., as opposed to the teacher
making arbitrary choices for these labels as in various traditional learning
algorithms in the verification literature [CGP03,AMN05,ACMN05,GLMN13].
ICE learning is a robust learning model for synthesizing invariants, in the
sense that the teacher can always communicate to the learner precisely why
a hypothesis is not an inductive invariant (even for programs with multiple

18

loops, nested loops, etc.). The teacher in ICE learning consequently is both
honest (never gives an example classification that precludes an invariant) and
makes progress (is always able to refute an invariant that is not adequate
or inductive). This is in sharp contrast to learning only from positive and
negative examples, where the teacher is forced to be dishonest (as it does not
know an invariant) to make progress.

2.2 The ICE Learning Framework

When defining a (machine) learning problem, one usually specifies a domain
D (like points in the real plane or finite words over an alphabet), and a class
of concepts C (like rectangles in the plane or regular languages), which is a
class of subsets of the domain. In classical learning frameworks (see [KV94]),
the teacher provides a set of positive examples in D that are part of the
target concept, and a set of negative examples in D that are not part of the
target concept. Based on these, the learner must construct a hypothesis that
approximates the target concept the teacher has in mind.

ICE learning: In our setting, the teacher does not have a precise target
concept from C in mind, but is looking for an inductive set which meets certain
additional constraints. Consequently, we extend this learning setting with a
third type of information that can be provided by the teacher: implications.
Formally, let D be some domain and C ⊆ 2D be a class of subsets of D,
called the concepts. The teacher knows a triple (P,N,R), where P ⊆ D is
an (infinite) set of positive examples, N ⊆ D is an (infinite) set of negative
examples, and R ⊆ D × D is a relation interpreted as an (infinite) set of
implications. We call (P,N,R) the target description, and these sets are
typically infinite and are obtained from the program, but the teacher has the
ability to query these sets effectively.

The learner is given a finite part of this information (E,C, I) with E ⊆ P ,
C ⊆ N , and I ⊆ R. We refer to (E,C, I) as an ICE sample. The task of
the ICE learner is to construct some hypothesis H ∈ C such that P ⊆ H,
N ∩ H = ∅, and for each pair (x, y) ∈ R, if x ∈ H, then y ∈ H. A
hypothesis with these properties is called a correct hypothesis. Note that a
target description (P,N,R) may have several correct hypotheses (while H

19

must include P , exclude N , and be R-closed, there can be several such sets).

Iterative ICE learning: The above ICE learning corresponds to a passive
learning setting, in which the learner does not interact with the teacher. In
general, the quality of the hypothesis will heavily depend on the amount of
information contained in the sample. However, when the hypothesis is wrong,
we would like the learner to gain information from the teacher using new
samples. Since such a learning process proceeds in rounds, we refer to it as
iterative ICE learning.

The iterative ICE learning happens in rounds, where in each round, the
learner starts with some sample (E,C, I) (from previous rounds or an initial-
ization) and constructs a hypothesis H ∈ C from this information, and asks
the teacher whether this is correct. If the hypothesis is correct (i.e., if P ⊆ H,
H ∩N = ∅, and for every (x, y) ∈ R, if x ∈ H, then y ∈ H as well), then the
teacher answers “correct” and the learning process terminates. Otherwise,
the teacher returns either some element d ∈ D with d ∈ P \H or d ∈ H ∩N ,
or an implication (x, y) ∈ R with x ∈ H and y < H. This new information is
added to the sample of the learner.
The learning proceeds in rounds and when the learning terminates, the

learner has learned some R-closed concept that includes P and excludes N .

2.2.1 ICE Learning for Synthesizing Invariants

Given an ICE learning algorithm for a concept class, we can build algorithms
for synthesizing invariants by building the required (white-box) teacher. We
can apply such learning for finding invariants in programs with multiple loops,
nested loops, etc. The learning will simultaneously learn all these invariant
annotations. The teacher can check the hypotheses by generating verification
conditions for the hypothesized invariants and by using automatic theorem
provers to check their validity.

Honesty and Progress: The two salient features of ICE learning is that
it facilitates progress and honesty. The teacher can always make progress by
adding a positive/negative/implication counterexample such that H (and any
other previous hypothesis) does not satisfy it. Furthermore, while augmenting
the sample, the teacher can answer honestly, not precluding any possible

20

adequate inductive invariant of the program. Honesty and progress are
impossible to achieve when learning just from positive and negative examples
(when the hypothesis is not inductive, it is hard to make progress without
making a dishonest choice).

Convergence: The setting of iterative ICE learning naturally raises the
question of convergence of the learner, that is, does the learner find a correct
hypothesis in a finite number of rounds? We say that a learner strongly con-
verges, if for every target description (P,N,R) it reaches a correct hypothesis
(from the empty sample) after a finite number of rounds, no matter what
information is provided by the teacher (of course, the teacher has to answer
correctly according to the target description (P,N,R)).
Note that the definition above demands convergence for arbitrary triples

(P,N,R), and allows the teacher in each round to provide any information
that contradicts the current hypothesis, and is hence a very strong property.

Observe now that for a finite class C of concepts, a learner strongly converges
if it never constructs the same hypothesis twice. This assumption on the
learner is satisfied if it only produces hypotheses H that are consistent with
the sample (E,C, I), that is, if E ⊆ H, C∩H = ∅, and for each pair (x, y) ∈ I,
if x ∈ H, then y ∈ H. Such a learner is called a consistent learner. Since
the teacher always provides a witness for an incorrect hypothesis, the next
hypothesis constructed by a consistent learner must be different from all the
previous ones.

Lemma 2.2.1. For a finite class C of concepts, every consistent learner
strongly converges.

Learning Floyd-Hoare style Proof Annotations: While the above is
a general scheme for learning invariants, we are more interested in restricted
forms of expressing inductive invariants that use Floyd-Hoare style proof
annotations for sequential imperative programs [Flo67,Hoa69]. In Floyd-Hoare
style verification for sequential programs with function calls, the annotation
mechanism requires pre- and post-conditions for all functions/methods in
the program, and loop invariants for every while-loop in the program. Note
that these annotations define, in turn, a particular form of an invariant over
the set of global configurations of the program, but are restricted in the

21

sense that they syntactically talk only about the local configuration in scope.
Floyd-Hoare style reasoning hence has several sources of incompleteness such
as the ability to talk only about the local state in scope, though this can
be mitigated by using ghost-variables [Apt81]. Post-conditions, as a result,
express properties not just about the state at the method exit, but relate
it to the state at the entry to the method as well, and hence we will think
about post-conditions encoding properties of pairs of configurations.

As we mentioned above, Floyd-Hoare style proof annotations are restricted
to only express properties about variables in the local scope. In particular,
post-condition annotations of a function/method relate the return value of
the method to only the input arguments (and the variables that are defined
in the global scope). Consequently, if there is a function with several method
calls, each with formal parameters being a subset of the local variables of
the function, the conjunction of the post-conditions of the methods together
with the pre-condition of the function defines, logically, the set of global
configurations that can be reached in the current scope of the function.
This, as a result, couples multiple proof annotations together and several of
them together contribute to the safety of a specification. Counterexamples to
inductiveness of Floyd-Hoare style proof annotations, in general, are, therefore,
horn clauses and not implications. When we mention invariant synthesis,
henceforth, we assume that the user supplies adequate pre- and post-conditions
for all methods in the program, and we use ICE learning to automatically
synthesize loop invariants that are adequate to establish the correctness of
pre/post-condition annotations for every method (counterexamples in this
scenario are necessarily implications), and subsequently the correctness of the
entire program. Even though we have not experimented with and evaluated
learning algorithms that generalize to horn counterexamples (and can learn
pre/post-condition annotations for methods as well), we must note that all
ICE learning algorithms that we present in this thesis can be easily generalized
to learn from horn counterexamples, as well.

Assuming specifications are given in the form of assertions, ICE learning can
now be used to find the annotations of the program that prove the program
correct. We first set up a way to represent sets of configurations and set up
an iterative ICE framework to learn such sets of configurations. We can add
a new variable l to configurations that denotes the annotation location, and
learn a set of configurations which can then be partitioned using this variable

22

into the various places of annotation in the program. When confronted
with a hypothesis H, the teacher will check whether the annotations defined
by H prove the program correct (by generating verification conditions that
are then validated using an automated theorem prover), and if not, find
witnesses (again, using the theorem prover) that show why H does not define
an inductive invariant proving the assertions, and appropriately modify the
sample (E,C, I) in the next round.
Note that most of the verification conditions, when invalid, will result in

an implication constraint to be added to the constraint set. However, the
entire process of deriving an invariant is property-based (dependent on the
specification) as the counterexamples stem for the inability of the invariant
to prove the safety property at hand. Also, note that all normal program
constructs for while-programs can be handled using this general scheme
(multiple loops, nested loops, etc.); however synthesizing new ghost variables,
updating them, and using them in invariants cannot be done in this framework,
and in general, is out of scope of our current work.

2.3 ICE Learning over Lattice Domains

When the class of concepts forms a lattice, ICE learning algorithms can be
easily constructed, and in fact methods for synthesizing invariants already
exist in the literature that can be seen as ICE learning algorithms. In
particular, the abstract Houdini algorithm [FL01, TLLR13] and the work
reported in [GKT13] for invariant synthesis over numerical abstract domain
lattices are ICE learning algorithms.

Consider an abstract domain that is a lattice. Given any sample (E,C, I),
we can learn the best (smallest with respect to the underlying partial-order)
abstract element that satisfies the constraints (E,C, I) as follows:

(1) Set E ′ to be the set of examples E.

(2) Compute H– the least upper bound of the set of all α(e), for each
e ∈ E ′, where α is the abstraction operator [CC77]. H is, arguably, the
smallest hypothesis that can be expressed as an element of the lattice
domain and that contains E ′. If H does not satisfy the implication
constraints I, then we find pairs (e, e′) in I where e ∈ H and e′ < H,

23

and add the element e′ to E ′, and repeat Step 2 for the new set. If H
does not satisfy the negative counterexamples C, then the learner exits
stating that there is no concept in the lattice domain that meets the
constraints of the ICE sample.

To see why the above is a consistent ICE learner that terminates, note that
for any E ′, whenever the learner hypothesizes H, H is the smallest concept
(with respect to the underlying partial-order) that contains examples in E ′.
It follows that for any implication pair (e, e′) that is not satisfied by H, any
concept that satisfies the samples and includes examples in E ′ must include
e′ as well. This is so because every concept that includes E ′ is a superset of
H, and hence must include e. This justifies updating E ′ to include e′, and
repeating the passive learning algorithm. Note that E ′ is initialized to the set
of positive examples E in Step 1 of the learning algorithm. This establishes
the consistency of the base case of the recursive argument. Similarly, following
the same reasoning we can show that if there is a counterexample c ∈ C that
belongs to H, then no concept exists in the lattice domain that satisfies the
ICE sample, since all such concepts are supersets of H and will necessarily
include c. In this case, the learning algorithm terminates declaring that there
is no concept that satisfies the sample.
To argue termination of the above learning algorithm, note that for every

iteration in Step 2, the learner, since it’s given new examples that are not
in the current hypothesis, is forced to produce strictly larger hypotheses.
Since I is finite, this process converges in a finite number of steps. It is also
easy to see that the above ICE learner is consistent; it produces hypotheses
that satisfy all constraints. Consequently, it follows by Lemma 2.2.1 that if
the class of concepts is finite, then iterative ICE learning using the above
algorithm strongly converges.
We can, using this argument, establish polynomial-time (non-iterative)

ICE learning algorithms for conjunctive formulas (in fact, this is what the
classical Houdini algorithm does [KV94,FL01]), k-CNF formulas [KV94], and
for abstract domains such as intervals, octagons, polyhedra, linear equalities,
etc. as in [RSY04,YBS06]. However, note that the iterative extension of the
above ICE algorithm may not converge (unless the abstract domain has a
finite height). One can of course use a widening heuristic after some rounds to
terminate [CC77], but then the iterative ICE algorithm will not be necessarily

24

strongly convergent. The iterative ICE algorithm with widening is, in fact,
precisely the abstract Houdini algorithm proposed recently in [TLLR13], and
is similar to another recent work in [GKT13], and are not strongly convergent.

2.4 ICE Learning for Universally Quantified Properties

The ICE learning framework we described in Section 2.2 works for learning
quantifier-free concepts that are most naturally used to express invariants over
program variables, etc. In this section we describe an extension of ICE learning
to learning universally quantified concepts. We consider synthesis of universal
properties of the form ψ = ∀y1, . . . , yk. ϕ(y1, . . . , yk), where ϕ is a quantifier-
free formula. We now describe how to extend the ICE learning framework
so that we can learn the universally quantified concept ψ by using a learner
for the quantifier-free property described by ϕ(y1, . . . , yk). These universally
quantified properties naturally arise in programs over data-structures. A
configuration of a program can be described by the heap structure (locations,
the various field-pointers, etc.), and a finite set of pointer variables pointing
into the heap. Since the heap is unbounded, typical invariants for programs
manipulating heaps require universally quantified formulas. For example, a
list structure is sorted if the data at all pairs y1, y2 of successive positions in
the list is sorted in the correct order.
The formula ψ describes a set of program configurations with a certain

property. In the plain learning setting, the class of all sets that can be
described by such universal formulas would form the concept class for the
learning problem (over the domain D of all program configurations). We now
describe how this setting can be modified in a fairly generic way such that
we can instead use a learner for the quantifier-free property (described by the
formula ϕ(y1, . . . , yk)). For this purpose, we add valuations of the quantified
variables to the elements of the quantified domain, and modify the learning
setting a bit to reflect the universal semantics of the variables y1, . . . , yk.

Consider for each concrete program configuration c, the set Sc of valuation
configurations of the form (c, val), where val is a valuation of the variables
y1, . . . , yk. For example, if the configurations are heaps, then the valuation
maps each quantified variable yi to a cell in the heap, akin to a scalar pointer
variable. Then c |= ψ if (c, val) |= ϕ for all valuations val, and c 6|= ψ if

25

(c, val) 6|= ϕ for some valuation val.
This leads to the setting of data-set based ICE learning. In this setting, the

target description is of the form (P̂ , N̂ , R̂) where P̂ , N̂ ⊆ 2D and R̂ ⊆ 2D×2D.
A hypothesis H ⊆ D is correct if P ⊆ H for each P ∈ P̂ , N * H for each
N ∈ N̂ , and for each pair (X, Y) ∈ R̂, if X ⊆ H, then also Y ⊆ H. The
sample is a finite part of the target description, that is, it is of the form
(Ê, Ĉ, Î), where Ê, Ĉ ⊆ 2D, and Î ⊆ 2D × 2D. A hypothesis H ⊆ D is
consistent with the sample if for each E ⊆ H for each E ∈ Ê, C * H for each
C ∈ Ĉ, and for each pair (X, Y) ∈ I, if X ⊆ H, then also Y ⊆ H.
An ICE learner for the data-set based setting corresponds to an ICE

learner for universally quantified concepts in the original data-point based
setting, described in Section 2.2, using the following connection. Given a
standard target description (P,N,R) overD, we now consider the domainDval

extended with valuations of the quantified variables y1, . . . , yk as described
above. Replacing each element c of the domain by the set Sc ⊆ Dval transforms
(P,N,R) into a set-based target description. Then a hypothesis H (described
by a quantifier-free formula ϕ(y1, . . . , yk)) is correct w.r.t. the set-based target
description iff the hypothesis described by ∀y1, . . . , yk. ϕ(y1, . . . , yk) is correct
w.r.t. the original target description.

Note that augmenting program configurations with valuations for universal
variables is similar to introducing “Skolem constants” or universally-quantified
“indexed” variables in the literature [FQ02,LB07]. However, learning over
data-sets over these universal variables is very different and more involved as
compared to abstract interpretation or predicate-abstraction based techniques
that have been explored using “Skolem constants”. This is because learning
over data-sets allows us to learn from not only positive counterexamples,
but also from negative counterexamples and implications. On the other
hand, an abstract interpretation based technique only witnesses positive
counterexamples (refer to Section 2.3) and thereby only needs to handle them.
We describe in Chapter 5 a new learning algorithm in the data-set based ICE
setting that learns quantified properties over linear data-structures like arrays
and lists.

26

2.5 Remarks

The ICE learning framework presents a way for synthesizing inductive program
invariants that is essentially property-driven! In other words, the ICE learning
framework essentially requires the program to be annotated with a safety
specification (or an assertion) to learn a non-trivial inductive invariant. This
is very different from other invariant synthesis techniques such as abstract
interpretation [CC77] and model checking, learning likely invariants using
Daikon [ECGN00], etc. ICE learning over lattice domains, exemplified by
the Houdini [FL01] and abstract Houdini [TLLR13] algorithms, though is an
instantiation of the ICE learning framework, differs from general ICE learning
in this aspect, in that it learns non-trivial invariants even in the absence of any
specification. Another point to note is that strongly convergent ICE learners
guarantee that, for a correct program, the learner will synthesize an invariant
for it within a finite number of rounds, and hence prove the program correct.
However, there is no termination guarantee on disproving an incorrect (or
buggy) program. In the event of analyzing an incorrect program, however,
the ICE sample might become inconsistent (implication gives contradictory
classifications), in which case we can terminate and output a corresponding
error trace.

Finally, we must note that the ICE learning framework relies fundamentally
on the availability of a teacher that can return counterexamples to the
inductiveness of conjectures hypothesized by the learner. While this allows
the learner to be completely black-box that learns concepts purely from a
sample of counterexamples and brings with it several advantages, the presence
of a teacher in the iterative-ICE limits, to some extent, the performance
of the ICE framework. Recent advances in SMT technology together with
an intrinsic compositionality ensure that deductive verification scales to
programs with up to hundred thousands lines of code [CDH+09]. Also, ICE
learning algorithms based on machine learning, such as the one we present
in Chapter 4, are very efficient and scale to very large sample sizes. Still,
efficient invariant synthesizers such as those based on abstract interpretation
for simple concept classes like intervals, analyses like constant propagation,
etc. are not undesirable. In the future, we see existing white-box program
analysis techniques such as program slicing and abstract interpretation for
simple concept classes being used together with and complementing black-box

27

invariant synthesis using ICE learning.
In this thesis, we develop ICE learning algorithms for learning numerical

invariants (Section 3 and Section 4) and an ICE algorithm for learning
quantified invariants over linear data-structures such as arrays and lists
(Section 5), and evaluate them for synthesizing inductive program invariants.

28

CHAPTER 3

ICE LEARNING USING CONSTRAINT
SOLVING

In this chapter, we present a general approach to ICE learning that reduces
the learning problem to a constraint satisfaction problem. We instantiate
this approach by developing a concrete learning algorithm for synthesizing
numerical program invariants. We describe the algorithm and compare it
favorably to a host of other state-of-the-art invariant synthesizers.
Figure 3.1 gives a graphical visualization of the learning problem. At

its core, the learning problem is to learn a concept within a predefined
concept class that is consistent with a given sample of ICE counterexamples.
Figure 3.1 considers a very simple case of a program with two integer variables
x1 and x2 (the state-space of the program, therefore, consists of the 2-D plane
assigning values to these variables). Given an ICE sample, the learner learns
an invariant that includes all positive counterexamples, excludes all negative
counterexamples and consistently labels the implication counterexamples (see
Figure 3.1). Note that the end points of these implications can be labeled by
the learner in any way, i.e., they can be included in the concept learned or
excluded from the concept, as far as the implication constraint is satisfied.
As we will see, the learning approach in this chapter can learn very expressive
concept classes, such as when the concept class is not convex. Learning such
concept classes is difficult, even in a supervised setting. Learning from a
sample that has unlabeled implication counterexamples adds an additional
combinatorial complexity to the learning problem. The idea that we follow is
to offload the combinatorial complexity to the advances in constraint solving,
whereby a constraint solver is used to directly guess an invariant/concept
that is consistent with the sample. Note that while doing so, the solver also
labels the implication counterexamples in a consistent manner.

An alternate way is to arbitrarily assign labels to end-points of implication
counterexamples in a consistent manner, first, and then use supervised learners
for learning hypotheses consistent with all the labeled examples in the sample.

29

x1 ≤ −10

x1 − x2 ≤ −2

x1

x2

++
+++

+++
+++++

+ + + ++
––––––––– –––

−60 −40 −20 0 20

−40

−20

0

20

Figure 3.1: Graphical visualization of ICE learning. The program consists of
two variables– x1 and x2; marked as +, − and → are positive, negative and
implication counterexamples that together comprise the ICE sample; the
invariant region learned x1 ≤ −10 ∨ x1 − x2 ≤ −2 (colored as grey) is a
subset of the program state-space.

However, as mentioned in Chapter 2, we want the labels for implications to
not be fixed beforehand, but be determined during the learning process such
that the learned hypothesis generalizes well, has a small size, etc. The concept
class we learn in this chapter is very expressive, which can precisely accept
only the points that are labeled positively in the sample, and so on. Therefore,
preventing overfitting of the learned hypothesis is an additional challenge.
We solve this by organizing the concept class into a hierarchy of increasing
complexity (wrt. size, values of constants in the domain elements, etc.) and
explicitly forcing the constraint solver based learner to learn hypotheses of
a small size (and, thereby also assigning, at the same time, labels to the
implication end-points which are consistent to it). Organizing the concept
class into a hierarchy of languages of increasing complexity is inspired from
the idea of language stratification in [JM06], where inductive invariants are
synthesized using interpolation and the procedure is biased to synthesize
invariants that belong to the language class of the smallest complexity. Next,
we instantiate the general approach we describe above and develop an ICE
learning algorithm for a concept class of numerical invariants.

30

3.1 Constraint Solver based ICE Learning Algorithm
for Synthesizing Numerical Invariants

In this section, we describe a learning algorithm, based on the approach
described above, for synthesizing invariants that are arbitrary Boolean combi-
nations of numerical atomic formulas. Since we want the learning algorithm to
generalize the sample (and not capture precisely the finite set of implication-
closed positive examples), we would like it to learn a formula with the
simplest Boolean structure. In order to do so, we iterate over templates
over the Boolean structure of the formulas, and learn a formula in the given
template.

Note that the concept domain for the learning algorithm is a join-semilattice
(every pair of elements has a least upper bound) since formulas are closed
under disjunction. Hence we can employ the generic abstract Houdini algo-
rithm [TLLR13] to obtain a passive ICE learning algorithm. However, using
this vanilla algorithm will return concepts that overfit the sample, learning
only the precise set of positive and implication-closed set, and hence not
generalize without a widening operation. Widening for disjunctive domains
is not easy, as there are several ways to generalize disjunctive sets [BHZ04].
Furthermore, even with a widening, we will not get a strongly convergent iter-
ative ICE algorithm that we desire (see experiments where abstract Houdini
diverges even on conjunctive domains on some programs for this reason). The
algorithm we build in this section will not only be strongly convergent but
also will produce the simplest expressible invariant.

Let Var = {x1, · · · , xn} be the set of (integer) variables in the scope of the
program. For simplicity, let us restrict atomic formulas in our concept class
to octagonal constraints, over program configurations, of the general form:

s1v1 + s2v2 ≤ c, s1, s2 ∈ {0,+1,−1}, v1, v2 ∈ V ar, v1 , v2, c ∈ Z.
(We can handle more general atomic formulas as well; we stick to the above
for simplicity and effectiveness.)
Our ICE-learning algorithm will work by iterating over more and more

complex templates till it finds the simplest formula that satisfies the sample.
A template fixes the Boolean structure of the desired invariants and also
restricts the constants c ∈ Z appearing in the atomic formulas to lie within
a finite range [−M,+M], for some M ∈ Z+. Bounding the constants leads
to strong convergence as we show below. For a given template ∨i ∧j αij,

31

the iterative ICE-learning algorithm we describe below learns an adequate
invariant ϕ, of the form:

ϕ(x1, · · · , xn) = ∨
i

∧
j(sij1 vij1 + sij2 vij2 ≤ cij), | cij | ≤ M.

Given a sample (E,C, I), the learner iterates through templates, and for
each template, tries to find concrete values for sijk , v

ij
k (k ∈ {1, 2}) and cij

such that the formula ϕ is consistent with the sample; i.e., for every data-point
p ∈ E, ϕ(p) holds; for p ∈ C, ϕ(p) does not hold; and for every implication
pair (p, p′) ∈ I, ϕ(p′) holds if ϕ(p) holds. Unfortunately, finding these values
in the presence of implications is hard; classifying each implication pair (p, p′)
as both positive or p as negative tends to create an exponential search space
that is hard to search efficiently. As we mentioned before, our ICE learner uses
a constraint solver to search this exponential space in a reasonably efficient
manner. It does so by checking the satisfiability of the formula Ψ (shown in
Figure 3.2), over free variables sijk , v

ij
k and cij , which precisely captures all the

ICE constraints. In this formula, for every data-point p in the sample, bp is a
Boolean variable which tracks ϕ(p); the Boolean variables bijp represent the
truth value of (sij1 vij1 + sij2 vij2 ≤ cij) on data-point p (line 3 in Figure 3.2),
rijkp encode the value of sijk · v

ij
k (line 5 in Figure 3.2); and dijkp encode the value

of vijk (line 6 in Figure 3.2).
Note that Ψ falls in the theory of quantifier-free linear integer arithmetic,

the satisfiability of which is decidable. A satisfying assignment for Ψ gives
a consistent formula that the learner conjectures as an invariant. If Ψ is
unsatisfiable, then there is no invariant for the current template consistent
with the given sample. In this case we iterate by increasing the complexity
of the template. For a given template, the class of formulas conforming
to the template is finite. Our enumeration of templates dovetails between
the Boolean structure and the range of constants in the template, thereby
progressively increasing the complexity of the template. Consequently, the
ICE learning algorithm always synthesizes a consistent hypothesis if there is
one, and furthermore synthesizes a hypothesis of the simplest template.

A similar approach can be used for learning invariants over linear constraints,
and even more general constraints, if there is an effective solver for the resulting
theory.

32

Ψ(sijk , v
ij
k , c

ij) ≡
∧
p∈E

bp

 ∧
∧
p∈C
¬bp

 ∧
 ∧

(p,p′)∈I
bp ⇒ bp′

∧
∧

p

bp ⇔∨
i

∧
j

bijp

∧
∧
p,i,j

bijp ⇔ (∑
k∈{1,2}

rijkp ≤ cij
)∧

∧
i,j

(
−M ≤ cij ≤ M

) ∧
 ∧

p,i,j
k∈{1,2}

sijk = 0⇒ rijkp = 0
sijk = 1⇒ rijkp = dijkp
sijk = −1⇒ rijkp = −dijkp

∧

 ∧
p,i,j

k∈{1,2}

∧
l∈[1,n]

(vijk = l⇒ dijkp = p(l))

∧
 ∧

i,j
k∈{1,2}

(
−1 ≤ sijk ≤ 1

)∧
 ∧

i,j
k∈{1,2}

(1 ≤ vijk ≤ n)

 ∧
∧
i,j

(vij1 , vij2)

Figure 3.2: The SMT formula Ψ that the learner uses to passively learn a
hypothesis consistent with the ICE sample.

3.2 Convergence of the Learning Algorithm

Our iterative ICE algorithm conjectures a consistent hypothesis in each
round, and hence ensures that we do not repeat hypotheses. Furthermore,
the enumeration of templates using dovetailing ensures that all templates
are eventually considered, and together with the fact that there are a finite
number of formulas conforming to any template ensures strong convergence.

Theorem 3.2.1. The above ICE learning algorithm always produces con-
sistent conjectures and the corresponding iterative ICE algorithm strongly
converges.

Our learning algorithm has some similarities and differences from earlier
white-box constraint based approaches to invariant synthesis, first proposed by

33

Colon et al. [CSS03] and subsequently developed by others [GSV08,GMR09,
GR09]. These approaches directly encode the adequacy of an invariant that
belongs to a given syntactic template (encoding the entire program’s body)
into a constraint, and use Farkas’ lemma to reduce the problem to satisfiability
of quantifier-free non-linear arithmetic formulas, which is harder and in general
undecidable. We, on the other hand, split the task between a white-box teacher
and a black-box learner, communicating only through ICE constraints on
concrete data-points. This greatly reduces the complexity of the problem,
leading to a simple teacher and a much simpler learner. There are some
connections, however, between ICE learning as we have described above and
checking the unsatisfiability of non-linear constraints, obtained as a result of
applying Farkas’ lemma in [CSS03,GSV08,GMR09,GR09], using approaches
such as sampling and interval constraint propagation [JKDW01,VHMK97].
But, note that our learning procedure is completely agnostic of complexity of
the program as long as the verification oracle can generate counterexamples to
inadequate invariant hypotheses. Consequently, our learning procedure often
synthesizes inductive invariants even when the program involves complex
operations such as those over non-linear arithmetic, whereas the reduction
using Farkas’ lemma to non-linear constraint satisfaction is only applicable
when the program’s verification conditions involve linear arithmetic, and,
hence, will not apply.

3.3 Experimental Results

We have implemented our learning algorithm as an invariant synthesis tool 1

in Boogie [BCD+05]. In our tool we enumerate templates in an increasing
order of their complexity. For a given Boolean structure of the template Bi,
we fix the range of constants M in the template to be the greater value out
of i and the maximum integer in the program. If an adequate invariant is not
found, we increase i and look at the next template for the invariants. If an
adequate invariant is found for a given template Bi and M , we use binary
search on M to find an invariant that has the same Boolean structure but
the smallest constants. This enumeration of templates is complete and it
ensures that we learn the simplest invariant. In our tool, ICE counterexamples

1Available at http://www.cs.uiuc.edu/~madhu/cav14/

34

Program Invariant

White Black
Box Box

InvGen CPA absH Geometric ICE-CS
[GR09] [BK11] [TLLR13] [SGH+13b]

w1[GSV08] x ≤ n 0.1 × 0.1 0.2 0.0
w2[GSV08] x ≤ n− 1 0.1 × 0.2 0.1 0.0
fig1[GSV08] x ≤ −1 ∨ y ≥ 1 × 4.5 × × 0.1
fig3[GHK+06] lock = 1 ∨ x ≤ y − 1 0.1 1.4 × 0.1 0.0
fig6[GHK+06] true 0.1 1.3 0.1 0.1 0.0
fig8[GHK+06] true 0.0 1.4 0.0 0.0 0.0
fig9[GHK+06] x = 0 ∧ y ≥ 0 0.1 1.4 0.0 0.2 0.0
ex7 [IS] 0 ≤ i ∧ y ≤ len × 1.6 0.2 0.4 0.0
ex14[IS] x ≥ 1 × 1.5 0.2 0.2 0.0

ex23[IS] 0 ≤ y ≤ z ∧ × 90.5 0.2 × 14.2
z ≤ c+ 4572

finf1 x = 0 0.1 1.5 0.1 0.4 0.0
finf2 x = 0 0.1 1.4 0.0 0.1 0.0
winf1 x = 0 0.0 1.4 0.0 0.0 0.0
winf2 x = 0 0.0 1.4 0.0 0.0 0.0
winf3 x = 0 × 1.4 0.3 0.1 0.1
term2 true 0.0 1.6 0.0 0.0 0.0
term3 true 0.0 1.4 0.0 0.0 0.0

sum1 sn = i− 1 ∧ × × × × 1.8(sn = 0 ∨ sn ≤ n)
sum3 sn = x 0.1 1.5 0.1 0.1 0.0
sum4 sn = i− 1 ∧ sn ≤ 8 0.1 2.8 × × 2.6
trex1 z >= 1 0.1 1.5 0.1 0.4 0.0
trex2 true 0.0 1.4 0.0 0.0 0.0

trex3
0 ≤ x1 ∧ 0 ≤ x2 ∧

0.5 × × × 2.20 ≤ x3 ∧ d1 = 1 ∧
d2 = 1 ∧ d3 = 1

trex4 true 0.0 1.4 0.0 0.0 0.0

tcs [JM06] i ≤ j − 1 ∨ i ≥ j + 1∨ 0.1 1.4 × 0.5 1.4
x = y

array j ≤ 0 ∨m ≤ a[0] × × × 0.2 0.3
lucmp n = 5 × 77.0 0.0 0.1 0.0

matrix a[0][0]≤m ∨ j≤0; × × × × 5.8
a[0][0]≤m ∨ j+k≤0

n.c11 0 ≤ len ≤ 4 0.1 2.2 × 0.2 0.6
cgr1[GSV08] x− y ≤ 2 0.1 1.5 0.1 0.2 0.0

cgr2[GSV08] N ≤ 0 ∨ (x ≥ 0 ∧ × 1.8 × × 7.30 ≤ m ≤ N − 1)
oct x+ y ≤ 2 0.0 1.3 0.2 0.1 0.2
vmail i ≥ 0 × 1.4 0.1 0.3 0.0
vbsd pathlim ≤ tmp × 1.6 0.5 × 0.0

Table 3.1: Results for ICE learning numerical invariants. All times reported
are in seconds. × means that the corresponding verification tool could not
find an adequate invariant.

35

discovered while learning an invariant belonging to a simpler template are
not wasted but used in subsequent rounds. As already mentioned, our learner
uses an incremental Z3 [dMB08] solver that adds a new constraint for every
ICE counterexample discovered by the Boogie based teacher.
We evaluate our tool on SV-COMP benchmarks2 and several other pro-

grams from the literature (see Table 3.1). We use SMACK [RE] to convert C
programs to Boogie and use our tool to learn loop invariants for the result-
ing Boogie programs. We use inlining to infer invariants for programs with
multiple procedures. In Table 3.1 we compare our tool to invariant synthesis
using abstract Houdini [TLLR13] (called absH in Table 3.1), a black-box
invariant learning algorithm based on computational geometry [SGH+13b]
(called Geometric), Invgen [GR09] and the interpolation based Impact algo-
rithm [McM06] implemented in CPAchecker (called CPA) [BK11]. Note that
Invgen and CPAchecker do not restrict themselves to finding invariants which
are Boolean combinations of octagonal constraints, whereas our approach as
well as the two black-box learners we compare against, abstract Houdini and
Geometric, do.

We implemented the octagonal domain in abstract Houdini for a comparison
with our tool. As mentioned in Chapter 2.3, abstract Houdini is an ICE
learning algorithm but is not strongly convergent. Unlike our tool, abstract
Houdini is not able to learn disjunctive octagonal invariants. In addition, it is
unable to prove programs like trex3 and n.c11 where a conjunctive invariant
exists but abstract Houdini loses precision due to widening, and is unable to
synthesize such an invariant.
InvGen [GR09] uses a white-box constraint-based approach to invariant

synthesis. Unlike our tool that enumerates all templates, InvGen requires
the user to specify a template for the invariants. Also, as it directly encodes
the program’s verification conditions over invariant template arguments, we
found it unable to handle programs with arrays and pointers even if the
required invariants are numerical formulas over scalar variables. Invgen is
also incomplete, meaning that it might fail to find an inductive invariant even
if there exists such an invariant in its template space, and is unable to prove
several scalar programs like fig1 and cegar2 correct.

Finally, [SGH+13b] is a computational geometry based learning algorithm
2https://svn.sosy-lab.org/software/sv-benchmarks/tags/svcomp13/loops/

36

for inferring numerical invariants. This learning algorithm is not an ICE
algorithm– it conjectures an invariant from a sample consisting of purely
positively and negatively labeled data-points that manifest along dynamic test
runs, and we found it to be non-robust. From our experience, the inference
procedure in [SGH+13b] is very sensitive to the test harness used to obtain
the set of safe/unsafe program configurations. For several programs, we could
not learn an adequate invariant using [SGH+13b] despite many attempts with
different test harnesses.

The experiments show that our tool outperforms [TLLR13,SGH+13b,GR09,
BK11] on most programs, and learns an adequate invariant for all programs
in reasonable time. Though we use the more complex but more robust
framework of ICE learning that promises to learn the simplest invariants and
is strongly convergent, it is generally faster than other learning algorithms
like [SGH+13b,SNA12] that learn invariants from just positive and negative
examples, and lack any such promises.
In our experiments, we also validate the importance of implication coun-

terexamples to the overall progress of the iterative learning algorithm. With
the same constraint-solver based learner (ICE-CS), we implement a dishonest
teacher who treats both endpoints of an implication pair as positive counterex-
amples. Most programs with complex invariants (7 programs from Table 3.1)
could not be proved correct, showing that the teacher caused divergence.
Declaring both implication endpoints as negative counterexamples performed
worse. Similar observations have also been made before by others; for eg.,
Jung et al. [JKWY10], who resolve membership queries in the context of
learning invariants by giving random answers when a precise answer is not
known, report that they restart their algorithm on reaching an inconsistent
state, which might happen quite often while learning inductive invariants for
a given program. We have also experimented with a teacher which unrolls
loops in the program by a bounded number of loop iterations, so as to increase
the chance of the teacher returning positive or negative counterexamples to
the conjectured invariant hypotheses. However, even doing so does not at all
eliminate the need for implication counterexamples, for the programs in our
benchmark suite.

37

CHAPTER 4

ICE LEARNING NUMERICAL
INVARIANTS USING DECISION TREES

One of the biggest advantages of the black-box learning paradigm is the
possible usage of machine learning techniques to synthesize invariants. The
learner, being completely agnostic to the program (its programming language,
semantics, etc.), can be seen as a machine learning algorithm that learns a
Boolean classifier of configurations [Mit97b]. Machine learning algorithms can
be trained to learn functions that belong to various classes of Boolean functions,
such as k-CNF/k-DNF, Linear Threshold Functions, Decisions Trees, etc.,
and some algorithms have already been used in invariant generation [SNA12].
However, standard machine learning algorithms for classification are trained
on given sets of positive and negative examples, but do not handle implications
and hence do not help in building robust learning platforms for invariant
generation.
In this section, we build the first machine learning algorithms for robust

invariant generation. We adapt and extend classical scalable machine learning
algorithms for constructing decision trees (which can express any Boolean
function) to ICE learning algorithms. We show that this results in efficient
algorithms for synthesizing invariants.
Decision trees over a set of attributes provide a universal representation

of a Boolean function defined over a fixed set of numerical and categorical
attributes. Internal nodes in decision trees are decision variables that split
over a value of a single attribute, and the leaves are labeled with classification
labels (positive or negative in our setting).
Our starting point is the well-known decision tree learning algorithms of

Quinlan [Qui86,Qui93,Mit97b] that work by constructing the tree top-down
from positive and negative samples. These are efficient algorithms as they
choose heuristically the best attribute that classifies the sample at each stage
of the tree based on statistical measures, and do not backtrack nor look ahead.
One of the well-known ways to pick these attributes is based on a notion

38

called information gain, which is in turn based on a statistical measure using
Shannon’s entropy function [Sha48,Qui93,Mit97b]. The inductive bias in
these learning algorithms is roughly to compute the smallest decision tree
that is consistent with the sample—a bias that again suits our setting well, as
we would like to construct the smallest invariant formula amongst the large
number of invariants that may exist. Machine learning algorithms, including
the decision tree learning algorithm, often do not produce concepts that are
fully consistent with the given sample—this is done on purpose to avoid
over-fitting to the training set, under the assumption that, once learned, the
hypothesis will be evaluated on new, previously unseen data. We remove
these aspects from the decision tree algorithm (which includes, for example,
pruning to produce smaller trees at the cost of inconsistency) as we aim at
identifying a hypothesis that is correct rather than one that only approximates
the target hypothesis.
We first present a generic top-down decision tree algorithm that works

on samples with implications. This algorithm constructs a tree top-down,
classifying end-points of implications in a way that reduces the sizes of trees
and guarantees to always create a tree that is consistent with the sample
(Section 4.2). Next, we develop several novel “information gain” measures
that are used to determine the best attribute to split on the current collection
of examples and implications, while learning decision trees (Section 4.3).
Next, we build a decision tree learning algorithm for the ICE model so that
it is convergent in an iterative learning framework (Section 4.4). In invariant
synthesis, the passive learner for decision trees operates in conjunction with a
verification oracle that takes hypothesized invariants produced by the learner
and returns samples that exhibit why the hypothesized invariant is incorrect.
We would like this iterative learning to terminate, but unfortunately, as the
concept class is infinite, decision tree learning (both the classical one as well as
the one we develop above for ICE) need not terminate. Hence, we build a new
algorithm that uses the Occam principle to gain convergence—it strives to
produce decision trees that use the minimum thresholds for any sample. This
gives us an invariant generation scheme that is guaranteed to converge to an
invariant, if one exists that is expressible using the given attributes. Finally,
we implement our ICE decision tree algorithms (i.e., the generic ICE learning
algorithm with the various statistical measures for choosing attributes) and
build teachers to work with these learners to guide them towards learning

39

invariants. We perform extensive experiments on a set of programs, with small
and intricate loop invariants, taken from software verification competitions
and the literature. We compare the tool with both invariant generation tools
that use interpolation, as well as black-box ICE learning algorithms that use
random search [SA14] and constraint solvers [GLMN14]. Despite being a
fledgling algorithm, the first to use machine-learning algorithms adapted to
the ICE setting, we show that the techniques using both statistical measures
performs extremely well. On the class of more than 50 benchmarks, our tool
is in fact the only one that finds adequate invariants in all of them.

We believe that this work breaks new ground in adapting machine learning
techniques to invariant synthesis, giving the first efficient robust ICE machine-
learning algorithms for synthesizing invariants.

4.1 Background: Learning Decision Trees from
Positive and Negative Examples

Our algorithm for learning invariants builds on the classical recursive algo-
rithm to build decision trees proposed by Quinlan (we refer the interested
reader to standard texts on learning for more information on decision tree
learning [Mit97b]). The reader is encouraged to think of decision trees as
Boolean combinations of formulae of the form ai ≤ c, where ai is drawn
from a fixed set of numerical attributes A (which assign a numerical value to
each sample) and c is a constant, or of the form bi, where bi is drawn from a
fixed set of Boolean attributes (which assign a truth value to each sample).
When performing invariant learning, we will fix a set of attributes typically as
certain arithmetic combinations of integer variables (for example, octagonal
combinations of variables or certain linear combinations of variables with
bounded co-efficients). Boolean attributes are useful for other non-numerical
constraints (are x and y aliased, does x point to nil, etc.). Consequently, the
learner would learn the thresholds (the values for c in ai ≤ c) and the Boolean
combination of the resulting predicates, including arbitrary conjunctions of
disjunctions as a proposal for the invariant. As an example, in Figure 3.1, x1

and x1−x2 are the relevant numerical attributes with constant thresholds −10
and −2, respectively, and the decision tree learner would learn these thresh-
olds for these attributes, together with the Boolean form of the invariant,

40

which is a disjunction of the two half-spaces: x1 ≤ −10 and x1 − x2 ≤ −2.
Quinlan’s algorithm, sketched in pseudo code as Algorithm 1, builds the

tree top-down (without backtracking), choosing the best attribute at each
stage using an information theoretic measure. It has been implemented by
the ID3, C4.0, and C5.0 algorithms [Qui86,Qui93,Mit97b].

Algorithm 1: The basic inductive decision tree construction algorithm
underlying ID3, C4.0, and C5.0

input : A sample S = 〈S+, S−〉 and Attributes
22 Return ID3 (〈S+, S−〉,Attributes).

3 Proc ID3 (Examples = 〈Pos,Neg〉, Attributes)
55 Create a root node of the tree.
77 if all examples are positive or all are negative then
99 Return the single node tree Root with label + or −, respectively.

10 else
1212 Select an attribute a (and a threshold c for a if a is numerical) that

(heuristically) best classifies Examples.
1414 Label the root of the tree with this attribute (and threshold).
1616 Divide Examples into two sets: Examplesa that satisfy the predicate

defined by attribute (and threshold), and Examples¬a that do not.
1818 Return tree with root and left tree ID3 (Examplesa,Attributes) and

right subtree ID3 (Examples¬a,Attributes) ;
19 end

The crucial aspect of the extremely scalable decision tree learning algorithms
is that they choose the attribute for the current sample in some heuristic
manner, and never back-track (or look forward) to optimize the size of the
decision tree. The prominent technique for choosing attributes is based on
a statistical property, called information gain, to measure how well each
attribute classifies the examples at any stage of the algorithm. This measure
is typically defined using a notion called Shannon entropy [Sha48], which,
intuitively, captures the impurity of a sample. The entropy of a sample S
with p positive samples and n negative samples is a value between 0 and 1,
defined to be

Entropy(S) = − p

p+ n
log2

p

p+ n
− n

p+ n
log2

n

p+ n
.

Intuitively, if the sample contains only positive (or only negative) points (i.e.,
if p = 0 or n = 0), then its entropy is 0, while if the sample had roughly an
equal number of positive and negative points, then its entropy is close to 1.

41

When evaluating an attribute a (and threshold) on a sample S, splitting it
into Sa and S¬a (points satisfying the attribute and points that do not), one
computes the information gain of that attribute (w.r.t. the chosen threshold):
the information gain is the difference between the entropy of S and the sum of
the entropies of Sa and S¬a weighted by the number of points in the respective
samples. For numerical attributes, the thresholds also need to be synthesized;
in the case of information gain, however, it turns out that the best threshold
is always at some value occurring in the points in the sample [Qui93]. The
algorithm chooses the attribute that results in the largest information gain.
The above heuristic for greedily picking the attribute that works best at

each level has been shown to work very well in large and a wide variety of
machine learning applications [Qui93,Mit97b]. When decision tree learning is
used in machine learning contexts, there are other important aspects: (a) the
learning is achieved using a small portion of the available sample, so that the
tree learned can be evaluated for accuracy against the rest of the sample, and
(b) there is a pruning procedure that tries to generalize and reduce the size
of the tree so that the tree does not overfit the sample. When using decision
tree learning for synthesizing invariants, we prefer to use all the samples as we
anyway place the passive learning algorithm in a larger context by building a
teacher which is a verification oracle. Also, we completely avoid the pruning
phase since pruning often produces trees that are (mildly) inconsistent with
the sample; since we cannot tolerate any inconsistent trees, we prefer to avoid
this (incorporating pruning in a meaningful and useful way in our setting is
an interesting future direction).
In the context of invariant synthesis, we assume that all integer variables

mentioned in the program occur explicitly as numerical attributes; hence, it
turns out that any sample of mixed positive and negative points can be split
(potentially using the same attribute repeatedly with different thresholds)
and eventually separated into purely positive and purely negative points (in
the worst case, each point is separated into its own leaf). Consequently, we
are guaranteed to always obtain some decision tree that is consistent with
any input sample.

42

4.2 A Generic Decision Tree Learning Algorithm in
the Presence of Implications

In this section, we present the skeleton of our new decision tree learning
algorithm for samples containing implication examples in addition to positive
and negative examples. We present this algorithm at the level of Algorithm 1,
excluding the details of how the best attribute at each stage is chosen. In
Section 4.3, we articulate several different natural ways of choosing the best
attribute, and evaluate them in experiments.

Algorithm 2: The basic decision tree construction algorithm for ICE
samples

input : An ICE sample S = 〈S+, S−, S⇒〉 and Attributes
22 Initialize global Impl to S⇒.
44 Initialize G, a partial valuation of end-points of implications in Impl , to be
empty.

66 Let Unclass be the set of all end-points of implications in Impl .
88 Set G to be the transitive closure of the positive and negative classifications
in S+ and S− with respect to Impl.

1010 Return DecTreeICE (〈S+, S−,Unclass〉,Attributes).

11 Proc DecTreeICE (Examples = 〈Pos,Neg,Unclass〉, Attributes)
1313 Move all points from Unclass that are positively, respectively negatively,

classified in G to Pos, respectively Neg.
1515 Create a root node of the tree.
1717 if Neg = ∅ then
1919 Mark all elements in Unclass as positive in G.
2121 Take the implication closure of G w.r.t. Impl.
2323 Return the single node tree Root, with label +.
2525 else if Pos = ∅ then
2727 Mark all elements in Unclass as negative in G.
2929 Take the implication closure of G w.r.t. Impl.
3131 Return the single node tree Root, with label −.
3333 else
3535 Select an attribute a (and a threshold c for a if a is numerical) that

(heuristically) best classifies Examples and Impl.
3737 Label the root of the tree with this attribute a (and threshold c).
3939 Divide Examples into two sets: Examplesa that satisfy the predicate

defined by the attribute (and threshold) and Examples¬a that do not.
4141 T1 = DecTreeICE(Examplesa,Attributes) (may update G).
4343 T2 = DecTreeICE(Examples¬a,Attributes) (may update G).
4545 Return tree with root, left tree T1, and right tree T2.
46 end

43

Our goal in this section is to build a top-down construction of a decision
tree for an ICE sample, such that the tree is guaranteed to be consistent with
respect to the sample; an ICE sample is a tuple S = (S+, S−, S⇒) consisting
of a finite set S+ of positive points, a finite set S− of negative points, and
a finite set S⇒ of pairs of points corresponding to the implications. The
algorithm is an extension of the classical decision tree algorithm presented in
Section 4.1, which preserves the property to be consistent with positive and
negative samples. The main hurdle we need to cross is to construct a tree
consistent with the implications. Note that the pairs of points corresponding
to implications do not have a classification, and it is the learner’s task to
come up with a classification in a manner consistent with the implication
constraints. As part of the design, we would like the learner to not classify
the points a priori in any way, but classify these points in a way that leads to
a smaller concept (or tree).
Our algorithm, shown in pseudo code as Algorithm 2, works as follows.

First, given an ICE sample 〈S+, S−, S⇒〉 and a set of attributes, we store
S⇒ in a global variable Impl and create a set Unclass of unclassified points
as the end-points of the implication samples. We also create a global table
G that holds the partial classification of all the unclassified points (initially
empty). We then call our recursive decision tree constructor with the sample
〈S+, S−,Unclass〉.
Receiving a sample 〈Pos,Neg,Unclass〉 of positive, negative, and unclas-

sified examples, our algorithm chooses the best attribute that divides this
sample, say a, and recurses on the two resulting samples Examplesa and
Examples¬a. Unlike the classical learning algorithm, we do not recurse in-
dependently on the two sets—rather we recurse first on Examplesa, which
will, while constructing the left subtree, make classification decisions on some
of the unclassified points, which in turn will affect the construction of the
right subtree for Examples¬a (see the else clause in Algorithm 2). The new
classifications that are decided by the algorithm are stored and communicated
using the global variable G.
Whenever Algorithm 2 reaches a node where the current sample has only

positive points and implication end-points that are either classified positively
or unclassified yet, then the algorithm will, naturally, decide to mark all
remaining unclassified points positive, and declare the current node to be a
leaf of the tree (see first conditional in the algorithm). Moreover, it marks in

44

G all the unclassified end-points of implications in Unclass as positive and
propagates this constraint across implications (taking the implication closure
of G with respect to the global set Impl of implications). For instance, if (x, y)
is an implication pair, both x and y are yet unclassified, and the algorithm
decides to classify x as positive, it propagates this constraint by making y
also positive in G; similarly, if the algorithm decided to classify y as negative,
then it would mark x also as negative in G. Deciding to classify x as negative
or y as positive places no restrictions on the other point, of course.

We need to argue why Algorithm 2 always results in a terminating procedure
that constructs a decision tree consistent with the sample. As a preparation,
we introduce a property of the sample and the partial valuation for the
implication end-points, called a valid sample.
In the following description, let us fix an ICE sample S = 〈S+, S−, S⇒〉,

and let G be a partial valuation of end-points of in S⇒. By abuse of notation,
we use S∪G to refer to the sample one obtains from classifying the end-points
of implications in S⇒ with the (partial) valuation of G.

Definition 4.2.1 (Valid sample). A sample S = 〈S+, S−, S⇒〉 is valid if for
every implication (x, y) ∈ S⇒

1. it is not the case that x is classified positively and y negatively in S ∪G;

2. it is not the case that x is classified positively and y is unclassified in
S ∪G; and

3. it is not the case that y is classified negatively and x is unclassified in
S ∪G.

A valid sample has the following property.

Lemma 4.2.2. For any valid sample (with partially classified end-points of
implications), extending it by classifying all unclassified points as positive
will result in a consistent classification, and extending it by classifying all
unclassified points as negative will also result in a consistent classification.

Proof of Lemma 4.2.2. The above lemma is easy to prove: first, consider the
extension of a valid sample by classifying all unclassified points as positive.
Assume, for the sake of contradiction, that this valuation is inconsistent. Then,
there exists an implication pair (x, y) such that x is classified as positive and

45

y is classified as negative. Since such an implication pair could not have
already existed in the valid sample (by definition), it must have been caused
by the extension. Since we introduced only positive classifications, it must
have been that x (and not y) is the only new classification. Hence the valid
sample must have had the implication pair (x, y) with y classified as negative
and x being unclassified, which contradicts Condition 3 of Definition 4.2.1.
The proof of the extension with negative classifications follows from similar
arguments. �

However, Algorithm 2 does not classify all implication end-points com-
pletely positive, or completely negative; recall that Algorithm 2 only changes
the classification (from unknown to positive or negative, respectively) of
unclassified implication end-points in the current leaf and those that need to
be updated during the implication closure. It is not hard to verify that even
such a partial assignment preserves consistency of an ICE sample.

Corollary 4.2.3. Lemma 4.2.2 also holds if a subset of unclassified points are
classified (completely positively or completely negatively) and the implication
closure is taken.

It is now straightforward to prove the correctness of the decision tree ICE
learner.

Theorem 4.2.4. Algorithm 2, independent of how the attributes are chosen
to split a sample, always terminates and produces a decision tree that is
consistent with the input ICE sample.

Proof of Theorem 4.2.4. Theorem 4.2.4 follows from the fact that Algorithm 2
always maintains a valid sample:

1. Algorithm 2 receives an ICE sample and applies the implication closure,
which results in a valid sample (or an inconsistency is detected and the
learning stops as there does not exist a decision tree that classifies the
sample correctly while satisfying the implication constraints).

2. When Algorithm 2 arrives at a leaf that has only positive and unclassified
points, it classifies all these unclassified points to be positive and takes
the implication closure. Assuming that the ICE sample was valid,
the new sample is also valid due to Corollary 4.2.3. In the case that

46

Algorithm 2 arrives at a leaf that has only negative and unclassified
points, validity of the resulting sample follows using similar arguments.

The above argument shows that Algorithm 2 never ends up in an inconsistent
sample, which proves its correctness. Moreover, we assume the presence of
(numerical) attributes that can always split any sample subset with more
than one example, which proves termination as well. �

As opposed to constructing the decision-tree recursively using depth-first
search, a recursive construction of the tree using breadth-first-search or a
combination of the two depending on some heuristics is equally sound, but is
something that we have not looked at in great detail.
The running time of Algorithm 2 is O(nlogn ×m × |T |) for a sample of

size n, when the total number of attributes is m, and when the learner learns
a tree of size |T |. Decision tree algorithms, in general, scale very well with
respect to number of attributes and the sample. In Section 4.5, we report on
scalability of our decision-tree based learning algorithm with respect to the
size of the sample. In the next section, we explore several different ways to
choose the best attribute, at each stage of the decision tree construction, all
of which are linear or sub-quadratic on the sample.

4.3 Choosing Attributes in the Presence of
Implications

Algorithm 2 ensures that the resulting decision tree is consistent with the given
sample, irrespective of the exact mechanism used to determine the attributes
to split and their thresholds. As a consequence, the original split heuristic
based on information gain (see Section 4.1), which is unaware of implications,
might simply be employed. However, since our algorithm propagates the
classification of data points once a leaf node has been reached, just ignoring
implications can easily lead to seemingly good splits that later turn into bad
ones. The following example illustrates such a situation.

Example 4.3.1. Suppose that Algorithm 2 processes the sample shown in
Figure 4.1a, which also depicts the (only) implication in the global set Impl.

When using the original split procedure (i.e., using information gain while
ignoring the implication and its corresponding unclassified data points), the

47

x
0 5

y

+
+

–? ?

(a) Sample before splitting

x
0 5

y

+
+

–+ +

(b) Samples after splitting

Figure 4.1: The samples discussed in Example 4.3.1.

learner splits the sample with respect to attribute x at threshold c = 3 since this
split yields the highest information gain—the information gain is 1 since the
entropy of the resulting two subsamples is 0. Using this split, the learner parti-
tions the sample into Examplesa and Examples¬a and recurses on Examplesa.
Since Examplesa contains only unclassified and positively classified points,
it turns all unclassified points in this sample positive and propagates this
information along the implication. This results in the situation depicted in
Figure 4.1b. Note that the learner now needs to split Examples¬a since the
unclassified data points in it are now classified positively.

On the other hand, if we consider the implications and their corresponding
data points while deciding the split, it allows us to split the sample such that
the antecedent and the consequent of the implication both belong to either
Examplesa or Examples¬a (e.g., on splitting with respect to x with threshold
c = 4). Such a split has the advantage that no further splits are required and,
often, results in a smaller tree.

In fact, experiments showed that a learner which ignores implications
when choosing an attribute often learns relatively large decision trees or even
diverges. Hence, we next propose two methods that take implications into
account while choosing the attribute to split.

Penalizing Cutting Implications: In order to better understand how
to deal with implications, we analyzed classifiers learned by other ICE-
learning algorithms for invariant synthesis, such as the randomized search
of [SA14] and the constraint solver-based ICE learner of [GLMN14]. This
analysis showed that the classifiers finally learned (and also those conjectured
during the learning) almost always classify the antecedent and consequents of
implications equally (either both positive or both negative).Note that learning
in a semi-supervised setting under equivalence constraints (where unlabeled
counterexample pairs need to be labeled with the same classification) has been

48

investigated to some extent in machine learning literature [Yao15,BM98], and
is arguably easier to handle than handling directional implication constraints.
The fact that successful ICE learners almost always classify antecedents

and consequents of implications equally suggests that our decision tree learner
should avoid to “cut” implications. This is a heuristic which assumes that,
since the endpoints of the implication counterexamples will eventually be
labeled with the same classification, they would often reach the same leaf
node in the learned tree. Formally, we say that an implication (p, q) ∈ Impl
is cut by the samples Sa and S¬a if p ∈ Sa and q ∈ S¬a, or p ∈ S¬a and
q ∈ Sa;1 in this case, we also say that the split of S into Sa and S¬a cuts the
implication.

A straightforward approach to discourage cutting implications builds on top
of the original information gain and imposes a penalty for every implication
that is cut. This idea gives rise to the penalized information gain that we
define by:

Gainpen(S, Sa, S¬a) = Gain(S, Sa, S¬a) − Penalty(Sa, S¬a, Impl) (4.1)
where Sa, S¬a is the split of the sample S, Gain(S, Sa, S¬a) is the original
information gain based on Shannon’s entropy, and Penalty(Sa, S¬a, Impl) is a
total penalty function that we assume to be monotonically increasing with
the number of implications cut (we make this precise shortly). Note that
this new information gain does not prevent the cutting of implications (if
required) but favors not to cut them.
However, not every cut implication poses a problem: implications whose

antecedents are classified negatively and whose consequents are classified
positively are safe to cut (as this helps creating more pure samples), and we
do not want to penalize cutting those. Since we do not know the classifications
of unclassified points when choosing an attribute, we penalize an implication
depending on how “likely” it is an implication of this type (i.e., we assign no
penalty if the sample containing the antecedent is predominantly negative
and the one containing the consequent is predominantly positive). More
precisely, given the samples Sa and S¬a, we define the penalty function

1Given a sample S = 〈Pos,Neg,Unclass〉, we write x ∈ S as a shorthand notation for
x ∈ Pos ∪Neg ∪Unclass.

49

Penalty(Sa, S¬a, Impl) by(∑
(x,y)∈Impl
x∈Sa,y∈S¬a

1− f(Sa, S¬a)
)

+
(∑

(x,y)∈Impl
x∈S¬a,y∈Sa

1− f(S¬a, Sa)
)
,

where for two samples S1 = 〈Pos1,Neg1,Unclass1〉 and S2 = 〈Pos2,Neg2,

Unclass2〉,

f(S1, S2) = |Neg1|
|Pos1|+ |Neg1|

· |Pos2|
|Pos2|+ |Neg2|

is the relative frequency of the negative points in S1 and the positive points
in S2 (which can be interpreted as likelihood of an implication from S1 to S2

being safe).

Extending entropy to an ICE Sample: In the second variant of infor-
mation gain that we develop for deciding the best attribute to split a given
ICE sample, we do not change the definition of information gain (as a function
of the entropy of the sample) but we extend Shannon’s entropy to deal with
implications in the sample using conditional probabilities. The entropy of a
set of examples is a function of the discrete probability distribution of the
classification of a point drawn randomly from the examples. In a classical
sample that only has points labeled positive or negative, one could count the
fraction of positive (or negative) points in the set to compute these proba-
bilities. However, an estimation of these probabilities becomes non-trivial in
the presence of unclassified points that can be classified as either positive or
negative. Moreover, in an ICE sample, the classification of these points is
not independent anymore as the classification for the points need to satisfy
the implication constraints. Given a set of examples with implications and
unclassified points, we will first estimate the probability distribution of the
classification of a random point drawn from these examples, taking into ac-
count the implication constraints, and then use it for computing the entropy.
We will use this new entropy to compute the information gain while choosing
the attribute for the split.
Given S = 〈Pos, Neg, Unclass〉, and a set of implications Impl, let ImplS

be the set of implications projected onto S such that both the antecedent
and consequent end-points in the implication are unclassified (i.e., ImplS =
{(x1, x2) ∈ Impl | x1, x2 ∈ Unclass}). For the purpose of entropy computation,
we will assume that there is no point in the examples that is common to

50

more than one implication. This is a simplifying assumption, which also
holds statistically if the space enclosing all the points is much larger than the
number of points. Let Unclass′ ⊆ Unclass be the set of unclassified points
in the sample that are not part of any implication in ImplS (for example,
x1 ∈ Unclass′ if (x1, x2) ∈ Impl and x2 ∈ Pos). Note that points in Unclass′

can be classified as either positive or negative by the learner, completely
independent of the classification of any other point. This is, for instance, not
true for points that are end-points of implications in ImplS.

Let Pr(x = c) be the probability of the event that a point x ∈ S is classified
as c, where c is either positive/+ or negative/−. Note that Pr(x = +) is
1 when x ∈ Pos and is 0 when x ∈ Neg. Let us define Pr(S, c) to be the
probability of the event that a point which is drawn randomly from S is
classified as c. Then,

Pr(S,+) = 1
|S |

∑
x∈S

Pr(x = +)

= 1
|S |

(∑
x∈Pos∪Neg∪Unclass′

Pr(x = +) +

∑
(x1,x2)∈ImplS

Pr(x1 = +) + Pr(x2 = +)
)

(4.2)

Recall that unclassified points xu ∈ Unclass′ are statistically classified
by the learner completely independent of other points in the sample; so,
we assume that the probability that a point xu is classified as positive (or
negative) is in accordance with the distribution of points in the sample set S.
In other words, we recursively assign Pr(xu = +) = Pr(S,+).

For points x1 and x2 that are involved in an implication ImplS, we assume
that the antecedents x1 are classified independently and the classification of
consquents x2 is conditionally dependent on the classification of antecedents,
such that the implication constraint is satisfied. As a result, we assign
Pr(x1 = +) = Pr(S,+), for the same reason as described for xu above.
And for consequents x2, using conditional probabilities we obtain, Pr(x2 =
+) = Pr(x2 = + | x1 = +)·Pr(x1 = +) + Pr(x2 = + | x1 = −)·Pr(x1 = −).
From the implication constraint between x1 and x2, we know that x2 is
guaranteed to be positive if x1 is classified positive, i.e., Pr(x2 = + | x1 =
+) = 1. However, when x1 is classified negative, the consequent x2 is allowed

51

to be classified as either positive or negative completely independently, and
hence we assign Pr(x2 = + | x1 = −) = Pr(S,+).
Plugging in these values for probabilities in Equation 4.2 and using p =
|Pos |, n = |Neg |, i = |Impl |, u′ = |Unclass′ | and |S | = p + n + 2i + u′,
Pr(S,+) is the positive solution of the following quadratic equation:

ix2 + (p+ n− i)x− p = 0
As a sanity check, note that Pr(S,+) = p

p+n , if there are no implications in
the sample set (i.e., i = 0). Also, Pr(S,+) = 1 if n = 0 and Pr(S,+) = 0 if
p = 0 (i.e., when the set S has no negative or positive points). Once we have
computed Pr(S,+), the entropy of S can be computed in the standard way as

Entropy(S) = −Pr(S,+) · log2 Pr(S,+)− Pr(S,−) · log2 Pr(S,−)
where Pr(S,−) =

(
1 − Pr(S,+)

)
. Now, we plug this new entropy in the

information gain and obtain a gain measure that explicitly takes implications
into account.

4.4 Convergent Learning of Decision-trees

In this section, we build a decision-tree learner that is guaranteed to terminate
and produce an invariant for any program, provided the invariant is expressible
as a formula involving the numerical and Boolean attributes our learner has
been instantiated with. Note that decision-tree learning for a sample always
terminates (see Theorem 4.2.4); we are concerned here with the termination
of the iterative learning algorithm that works with the teacher to learn an
invariant. The set of formulas involving numerical and Boolean attributes is
infinite and hence the iterative learning algorithm presented thus far need
not converge.
If we bound the maximum thresholds that occur in the inequalities asso-

ciated with numerical attributes, then, clearly, the set of all semantically
different Boolean formulas that respect this restriction is bounded as well.
Our strategy for convergence is to iteratively bound the (absolute value) of
the maximum threshold, thereby effectively searching for decision trees with
minimal thresholds, and growing the threshold only if we can prove that the
current threshold is insufficient to build a classifier consistent with the given
sample. Note that this search biases the learner towards finding concepts
with smaller thresholds, which is an Occam razor that we are happy with, as

52

we would like to infer invariants that have smaller constants before exploring
those with larger constants. Clearly, if there is some invariant expressible
using the numerical and Boolean attributes, the learner will never increment
the maximum threshold beyond the maximum absolute constant used in
this invariant. Moreover, since there are only a finitely many (semantically
different) formulae with a bounded maximum threshold and since the learner
can never propose a conjecture twice (due to the fact that it always constructs
conjectures that are consistent with the current sample, which contains a
counterexample to any previous conjecture), the learner must find a valid
invariant.
Let us assume a set of numerical attributes A = {a1, . . . , an} and let us

assume (for simplicity) that there are no Boolean attributes. Then the set of
all Boolean formulae with absolute maximum threshold m are defined to be
the set of all Boolean combinations of atomic predicates of the form ai ≤ c,
where |c| ≤ m. For any m ∈ N, the set of (semantically different) formulae
with absolute maximum threshold m is bounded.

In the setting when we have only positively/negatively labeled samples (as
opposed to ICE samples), such an algorithm is actually easy to build, since we
can easily know when no formula with maximum thresholdm can be consistent
with the sample. We simply take the standard C5 algorithm, and modify the
learner so that when processing any node n of the tree with a sample (S+, S−)
(line 5 of Algorithm 1), we only look at predicates involving an attribute
and a threshold c, where |c| is at most m. If we succeed in building a tree,
then we would have learned a formula with absolute maximum threshold m.
However, if we get stuck, then it must be the case that we are at a node n
with sample (S+, S−), and no predicate with threshold at most m is able
to separate a positive point s+ ∈ S+ and a negative point s− ∈ S−. This
of course means that these two points are not separable by any Boolean
formula with maximum threshold m, and hence we can safely increment m,
and iterate.
The above, however, fails in the ICE setting! The problem is that the

learner may have made some choices regarding the valuations of end-points
of implication counterexamples, and this choice may lead it to get to a node
where there are two points s+ and s− that are not separable (where these
points were not marked to be positive and negative in the original sample,
but by the learner). Backtracking from such a scenario to consider some other

53

valuation is dangerous as the learner may no longer run in polynomial time.
The goal of this section is to show how to build a passive decision-tree learner
that takes an ICE sample S and an absolute maximum threshold m, and
either produces a decision-tree consistent with S or declares that none exists,
and runs in polynomial time in both |A| and |S| and is independent of m.
Before we describe the precise algorithm, let us explain the underlying

idea that makes it work. Consider two points s, s′ in the sample (i.e., s and
s′ occur as classified points or as some end-point of an implication). Now,
assume that there is no atomic predicate of the form ai ≤ c with |c| ≤ m

that separates these points (i.e., which evaluates to true on one and false on
the other). Then, no matter what final classification we come up with using
a decision tree, the classification of s and s′ will be necessarily identical: if
s was classified already to be positive (or negative), then s′ must have the
same classification; if s and s′ are both unclassified, then we need to classify
them both to be positive or both to be negative.

The key idea now is to identify all such pairs of inseparable points s and s′,
and add the implications (s, s′) and (s′, s) to the ICE sample, which captures
the condition that they need to be labeled with the same classification. We
can then simply run our ICE decision tree learner on this augmented ICE
sample. In fact, we can do even better— when it is not possible to construct
any decision-tree, consistent with the ICE sample, with absolute threshold
values at most m, we also detect this using a pre-processing check.

Let us formally define the way we add new implications for a maximum
threshold m ∈ N. Assume that we have an ICE sample S = (S+, S−, S⇒),
and let T be the set of points occurring in S (classified or otherwise). Given
T , we now define the following equivalence class ≡m on T :

s ≡m s′ iff there is no predicate of the form ai ≤ c with |c| ≤ m that
separates s and s′.

Based on this equivalence relation, we now augment the original sample S to
obtain what we call the m-augmented ICE sample of S, denoted by S⊕m. We
proceed in two steps. First, we construct a new sample S ′ = (S+, S−, S⇒∪E)
by copying S and adding implications E = {(s, s′) | s ≡m s′} to S⇒ (i.e.,
we add implications between all ≡m points). Then, we take the implication
closure of S ′, which produces the m-augmented ICE sample S ⊕m. Recall
that the implication closure repeats the following steps until a fixed point is

54

reached: it takes implications (s, s′) where s is positively classified and adds
s′ as positive to the sample; similarly, it takes implications (s, s′) where s′ is
negatively classified, and adds s as negative to the sample.

The notion of valid samples (see Definition 4.2.1), which intuitively states
that a sample is implication-closed and has no inconsistent implications, now
gives us a handle to check whether a Boolean formula with absolute maximum
threshold m that is consistent with S exists or not. More precisely, we can
show that:

a) If S ⊕m is not valid, then there is no Boolean formula with absolute
maximum threshold m that is consistent with S. In the overall learning
loop, we would increment m in this case and restart learning from S.

b) If S ⊕m is valid, then calling our ICE decision tree learner (i.e., Algo-
rithm 2) on S ⊕m while restricting it to predicates that use thresholds
with absolute values at most m is guaranteed to terminate and return a
tree that is consistent with S.

Before we prove these claims, let us describe in more detail the modification
of Algorithm 2 mentioned in Part (b). To force Algorithm 2 to only split a
sample with a threshold whose absolute value is less or equal to some bound
m ∈ N, it is indeed enough to modify Line 35 such that the algorithm only
considers thresholds c that satisfy |c| ≤ m. We call the learning algorithm
resulting from this simple modification bounded ICE decision tree learner, or
bounded ICE-DT learner for short.

With this defined, we can now prove both claims.

Proof of Part (a). Let S be an ICE sample and m ∈ N. Assume, for the
sake of a contradiction, that S ⊕m = (S+, S−, S⇒) is not valid but there is
a formula f with absolute maximum threshold m that is consistent with S
(where consistency is defined in the obvious way as classifying points correctly
and respecting implications). Since S⊕m is implication-closed (by definition),
the only property of validity that can fail is that there exist s, s′ such that
s ∈ S+, s′ ∈ S−, and (s, s′) ∈ S⇒. Since f is consistent with S and has
maximum threshold m, it satisfies all the new implication constraints that
were added between ≡m-equivalent points. Hence f is also consistent with its
implication closure, which is S ⊕m. This, however, is a contradiction as f

55

must classify s as positive and s′ as negative, and hence does not satisfy the
implication (s, s′). �

Proof of Part (b). Again, let S be an ICE sample and m ∈ N. Moreover,
assume that S ⊕m is a valid sample. Analogous to the correctness proof
of Algorithm 2 (i.e., Theorem 4.2.4), we know that when given a valid
initial sample, the bounded ICE-DT learner maintains validity and produce a
decision tree that is consistent with the sample. However, it is left to show
that the bounded ICE-DT learner is guaranteed to terminate. In particular,
we need to show that in any node that is not a leaf, it will be able to find
some predicate (using a threshold |c| ≤ m) according to which it can split the
current (sub-)sample. This was guaranteed in Algorithm 2 due to the fact
that two points can always be separated (using an attribute that is different
for both points and a suitable threshold), which does not hold now because
we have restricted thresholds to those whose absolute values is at most m.
We show now, however, that a split with threshold |c| ≤ m is always possible
due to the validity of S ⊕m.

Assume that the bounded ICE-DT learner processes a node with the (sub-
)sample S ′ = (S+, S−, S⇒) of S ⊕ m containing a positive point p ∈ S+

and a negative point n ∈ S−. Moreover, assume that it cannot find an
attribute and threshold |c| ≤ m that separates p and n. Hence, it follows
that p ≡m n, and S ′ contains the implication pair (p, n) as this pair is added
to the initial sample and the set of implications S⇒ does not change during
the recursive construction of the tree. This means that S ′ is not valid since
p ∈ S+, n ∈ S−, and (p, n) ∈ S⇒. However, this is a contradiction since the
bounded ICE-DT learner starts with a valid sample S ⊕m, and maintains
valid samples throughout, which implies that S ′ must be valid. �

The algorithm sketched in pseudo code as Algorithm 3 produces a consistent
decision tree with minimal threshold m ∈ N, which can be seen as follows.
Since any valid sample allows for a consistent decision tree, there exists a
threshold m∗ for which S⊕m∗ is valid and, therefore, Algorithm 3 terminates.
Moreover, Algorithm 3 starts with m = 0 and increases m by one only if the
sample S ⊕m is not valid (i.e., there is no Boolean formula with absolute
threshold m that is consistent with S), hence, it will produce a tree with
minimal threshold.

56

Algorithm 3: Convergent ICE decision-tree learning algorithm.
input : An valid ICE sample S = 〈S+, S−, S⇒〉 and Attributes

22 m← 0.
44 T ← set of all points occurring in the sample.
66 while (true) do
88 Compute ≡m on T .

1010 Construct S ⊕m.
1212 if (S ⊕m is valid) then
1414 Run the bounded ICE-DT learner with bound m and return the

decision tree it constructs.
15 else
1717 m← m+ 1.
18 end
19 end

Building S ⊕m and checking whether it is valid can be done in poynomial-
time. Computing ≡m is a partition refinement algorithm: in each refinement
step, we consider an attribute a and only those values for thresholds that occur
in the sample plus the thresholds −m and +m, and refine the equivalence
class based on the elements of the sample it can separate. Consequently,
computing S⊕m can be done in polynomial time. Furthermore, the bounded
DT-ICE learner also considers only those values for thresholds that occur in
the sample plus the thresholds −m and +m. Consequently, it too will work
polynomial in the input sample.
The following theorem states the main result of this section, namely that

when paired with a honest teacher, Algorithm 3 always terminates and returns
an invariant given that one exists.

Theorem 4.4.1. Fix a set of numerical attributes and Boolean attributes
over a set of program configurations. Consider a program P which has an
inductive invariant that proves it satisfies a safety specification, where the
invariant is expressible as a Boolean combination of the attributes with arbi-
trary inequalities. Then Algorithm 3 will converge on an inductive invariant
of the program P when paired with any honest teacher.

4.5 Experiments and Evaluation

To assess the performance of our decision tree ICE learner, we implemented a
prototype of Algorithm 2, with the two information gain measures, described

57

in Section 4.3, as an invariant synthesis tool for Boogie [BCD+05] programs
and compare it to other invariant generation algorithms. We conducted all
of the following experiments on a Core i5 CPU with 6GB of RAM running
Windows 7 with a 10 minute timeout limit.

Learner: We implemented the learning algorithm on top of the freely available
version of the C5.0 algorithm (Release 2.10) [Qui93]. Since we rely on learning
without classification errors, we disable all of C5.0’s special features, such as
pruning, boosting, etc.
Furthermore, though our learning algorithm can work with any class of

predicates (including non-linear predicates), we parameterize it with the class
of octagonal predicates (of the form ±x ± y ≤ c). More precisely, we add
all numerical attributes of the form ±x± y for all combinations of variables
x, y in the program (note that the learner learns the thresholds c as well
as the Boolean combination of these predicates). This class of predicates is
sufficient to express all invariants in our benchmark and, furthermore, all
black-box learners that we compare with are also instantiated with this class
of predicates.

Teacher: We implemented a teacher in Boogie [BCD+05], which generates
verification conditions for a given input program. The teacher prioritizes
returning positive/negative counterexamples to implication counterexamples.
Since loop invariants usually do not involve large constants, the teacher biases
the learner towards trees with smaller thresholds by producing counterex-
amples that have small values. When searching for counterexamples, we
iteratively bound the absolute values of the variables to 2, 5, 10, and ∞ till
we find a counterexample.

Experimental Results for Invariant Generation: We evaluate the two
configurations of the decision-tree based learner discussed in Section 4.3 in the
context of invariant synthesis and compare them to various other invariant
synthesis algorithms. The experimental results are tabulated in Table 4.1, and
the scatter-plots comparing the time taken by solvers is depicted in Figure 2.

Solvers: We first tabulate times of CPAchecker [BK11], which is a white-
box state-of-the-art verifier; we use the configuration that corresponds to
the predicate abstraction and the interpolation [McM06] based refinement.
Note that CPAchecker has a disadvantage as it does not restrict itself to

58

Pr
og

ra
m

W
hi
te
-b
ox

Bl
ac
k-
bo

x
C
PA

ch
ec
ke
r

R
an

do
m
iz
ed

Se
ar
ch

[S
A
14

]
IC

E-
C
S
[G

LM
N
14

]
IC

E-
D
T
-e
nt
ro
py

IC
E-

D
T
-p
en

al
ty

[B
K
11

](
s)

M
in
.(s

)
M
ax

.(s
)

Av
g.
(s
)
+

T
O

P,
N
,I

#
R

T
(s
)

P,
N
,I

#
R

T
(s
)

P,
N
,I

#
R

T
(s
)

SV
-C

O
M
P

pr
og

ra
m
s
an

d
va
ria

nt
s
[sv

c]
ar
ra
y

2
0

12
3

18
.5

+
3/

10
T
O

4,
7,
11

14
0.
5

6,
7,
22

34
1.
47

5,
11

,3
2

48
2.
2

ar
ra
y2

2.
4

0.
1

38
4.
5

10
5.
7
+

4/
10

T
O

4,
7,
5

7
0.
3

2,
3,
1

5
0.
22

2,
4,
1

6
0.
39

af
np

χ
T

O
0.
1

0.
7

0.
3
+

0/
10

T
O

1,
19

,1
5

29
3.
6

1,
3,
7

11
0.
48

1,
2,
7

10
0.
47

cg
gm

p
2

—
—

—
+
10

/1
0
T
O

1,
36

,5
0

71
51

.1
1,
18

,4
5

64
3.
48

1,
17

,4
2

60
3.
01

co
un

tu
d

χ
—

—
—

+
10

/1
0
T
O

3,
12

,7
13

1
3,
10

,5
17

0.
69

2,
9,
3

13
0.
51

dt
uc

χ
T

O
4.
9

19
0.
4

62
.8

+
2/

10
T
O

3,
9,
14

12
0.
7

2,
5,
11

12
0.
51

4,
11

,1
4

21
0.
83

ex
14

2.
4

0
0.
1

0.
0
+

0/
10

T
O

2,
5,
1

7
0

1,
1,
0

2
0.
12

1,
1,
0

2
0.
11

ex
14

c
1.
8

0.
2

31
.6

3.
4
+

0/
10

T
O

2,
2,
1

4
0

2,
2,
0

3
0.
12

2,
2,
0

3
0.
14

ex
23

5.
4

0.
1

12
7.
5

21
.8

+
1/

10
T
O

5,
32

,4
0

69
17

.5
6,
23

,1
2

36
1.
59

8,
9,
1

15
0.
56

ex
7

5.
7

0
16

0.
2

22
.0

+
0/

10
T
O

1,
2,
1

2
0

1,
1,
0

2
0.
12

1,
1,
0

2
0.
09

m
at
rix

l1
3.
3

—
—

—
+
10

/1
0
T
O

2,
9,
3

8
0.
3

6,
8,
2

9
0.
61

6,
9,
2

10
0.
58

m
at
rix

l1
c

3
—

—
—

+
10

/1
0
T
O

4,
12

,4
8

0.
9

7,
13

,2
10

0.
59

7,
13

,1
9

0.
5

m
at
rix

l2
3.
4

0.
7

0.
7

0.
7
+

9/
10

T
O

8,
19

,1
3

27
22

.9
8,
11

,8
23

1.
25

9,
11

,6
22

1.
06

m
at
rix

l2
c

3.
1

30
8

30
8

30
8.
0
+

9/
10

T
O

χ
T

O
15

,2
6,
10

44
2.
61

20
,3
5,
22

66
3.
95

nc
11

2.
1

0
0.
1

0.
1
+

0/
10

T
O

5,
15

,7
18

0.
7

3,
6,
5

13
0.
58

2,
4,
4

9
0.
39

nc
11

c
2.
1

0.
1

46
.1

6.
3
+

2/
10

T
O

4,
6,
3

10
0.
4

3,
3,
3

8
0.
36

3,
3,
3

8
0.
27

su
m
1

1.
9

27
0.
2

27
0.
2

27
0.
2
+

9/
10

T
O

2,
15

,1
0

17
2.
3

3,
11

,2
14

0.
58

3,
11

,2
14

0.
56

su
m
3

2
0

0.
1

0.
1
+

0/
10

T
O

1,
3,
1

4
0.
1

1,
4,
1

6
0.
31

1,
4,
1

6
0.
31

su
m
4

2.
2

4.
7

26
.8

11
.4

+
0/

10
T
O

1,
23

,3
1

44
3.
5

1,
9,
41

51
2.
42

1,
8,
41

50
2.
46

su
m
4c

2
3.
1

42
0.
2

17
1.
2
+

6/
10

T
O

6,
29

,2
1

34
11

.6
4,
14

,7
22

1.
05

4,
13

,4
18

0.
86

ta
ca
s

1.
8

0
0.
1

0.
0
+

0/
10

T
O

7,
8,
5

14
1.
7

14
,1
0,
17

38
1.
65

11
,8
,7

23
0.
81

tr
ex
1

1.
9

0
90

.6
9.
1
+

0/
10

T
O

2,
3,
0

3
0

2,
3,
0

5
0.
19

2,
3,
0

5
0.
19

tr
ex
3

χ
—

—
—

+
10

/1
0
T
O

6,
19

,6
19

2.
7

3,
7,
4

12
0.
55

2,
6,
3

10
0.
42

vs
en

d
1.
8

0
0.
1

0.
0
+

0/
10

T
O

1,
1,
0

2
0

1,
1,
0

2
0.
14

1,
1,
0

2
0.
11

C
on

tin
ue
d
on

ne
xt

pa
ge

Ta
bl
e
4.
1:

R
es
ul
ts

co
m
pa

rin
g
di
ffe

re
nt

in
va
ria

nt
sy
nt
he
sis

to
ol
s.

χ
T

O
in
di
ca
te
s
th
at

th
e
to
ol

tim
es

ou
t
(>

10
m
in
ut
es
);
χ

in
di
ca
te
s
th
at

th
e
to
ol

in
co
rr
ec
tly

co
nc
lu
de
s
th
at

th
e
pr
og
ra
m

is
bu

gg
y;

χ
M

O
in
di
ca
te
s
th
at

th
e
to
ol

ru
ns

ou
t
of

m
em

or
y;

P
,N
,I

ar
e
th
e
nu

m
be

r
of

po
sit

iv
e,

ne
ga
tiv

e
ex
am

pl
es

an
d
im

pl
ic
at
io
ns

in
th
e
fin

al
sa
m
pl
e
of

th
e
re
sp
.
le
ar
ne
r;
#
R

is
th
e

nu
m
be

r
of

ro
un

ds
,a

nd
T

is
th
e
tim

e
in

se
co
nd

s.

59

Ta
bl
e
4.
1
co
nt
in
ui
ng

Pr
og
ra
m

W
hi
te
-b
ox

Bl
ac
k-
bo

x
C
PA

ch
ec
ke
r

R
an

do
m
iz
ed

Se
ar
ch

[S
A
14
]

IC
E-

C
S
[G

LM
N
14
]

IC
E-

D
T
-e
nt
ro
py

IC
E-

D
T
-p
en
al
ty

[B
K
11
](
s)

M
in
.(s

)
M
ax

.(s
)

Av
g.
(s
)
+

T
O

P,
N
,I

#
R

T
(s
)

P,
N
,I

#
R

T
(s
)

P,
N
,I

#
R

T
(s
)

O
th
er

pr
og
ra
m
s

ar
ra
yi
nv

1
3.
8

—
—

—
+
10
/1
0
T
O

χ
M

O
4,
48
,2
22

27
1

30
.8
7

5,
45
,1
21

16
8

13
.1
7

ar
ra
yi
nv

2
4.
5

0.
1

56
.4

16
.7

+
0/
10

T
O

4,
22
,3
3

43
20
.9

5,
24
,5
0

78
4.
65

4,
16
,1
4

33
1.
26

de
c

15
.4

0
0

0.
0
+

0/
10

T
O

1,
1,
1

3
0

1,
2,
0

3
0.
12

1,
2,
0

3
0.
14

fo
rm

ul
a2
2

2
1.
7

34
7.
9

17
2.
8
+

6/
10

T
O

1,
18
,1
1

22
1.
8

1,
16
,3
2

49
2

1,
7,
20

28
1.
09

fo
rm

ul
a2
5

2.
3

9.
1

16
3.
5

56
.6

+
2/
10

T
O

1,
46
,3
0

49
14

1,
53
,3

57
2.
26

1,
53
,3

57
2

fo
rm

ul
a2
7

2.
2

—
—

—
+
10
/1
0
T
O

χ
M

O
1,
18
3,
18

20
2

9.
56

1,
11
9,
11

13
1

5.
55

in
c

15
.4

0
0

0.
0
+

0/
10

T
O

3,
12
,1
01

11
2

1.
7

3,
1,
10
2

10
6

4.
31

3,
1,
10
0

10
4

3.
92

in
c2

1.
8

0
8

0.
8
+

0/
10

T
O

3,
4,
3

8
0.
1

2,
3,
1

6
0.
22

2,
3,
1

6
0.
23

lo
op

s
χ

T
O

96
.1

28
4.
1

15
9.
2
+

4/
10

T
O

4,
3,
10

7
0.
2

2,
6,
11

16
0.
66

2,
5,
10

14
0.
58

Pr
og
ra
m
s
fro

m
[G

SV
08
,G

H
K

+
06
,I
S,
A
M
13
]

ad
d

χ
—

—
—

+
10
/1
0
T
O

1,
11
,0

12
0.
1

2,
12
,1

15
0.
59

2,
12
,1

15
0.
56

ce
ga
r1

1.
9

0
0.
1

0.
1
+

0/
10

T
O

1,
1,
1

3
0

3,
1,
1

5
0.
17

3,
1,
1

5
0.
22

ce
ga
r2

2.
2

1.
2

30
5.
6

82
.1

+
3/
10

T
O

4,
20
,1
4

28
9.
5

4,
7,
8

17
0.
61

5,
9,
14

26
0.
94

di
lli
g0
1

1.
9

4.
8

56
.4

16
.7

+
0/
10

T
O

5,
15
,1
0

17
0.
7

2,
4,
1

6
0.
27

2,
4,
1

6
0.
23

di
lli
g0
3

χ
T

O
0.
4

6.
3

4.
0
+

4/
10

T
O

2,
12
,9

15
1

1,
3,
2

6
0.
22

1,
4,
2

7
0.
37

di
lli
g0
5

χ
T

O
6.
4

17
2.
3

87
.5

+
4/
10

T
O

3,
21
,2
5

29
4.
9

2,
26
,3

30
1.
2

2,
26
,3

30
1.
22

di
lli
g0
7

1.
9

0.
2

16
.6

4.
1
+

0/
10

T
O

2,
6,
8

13
0.
3

2,
4,
6

12
0.
47

3,
4,
6

13
0.
41

di
lli
g1
2

χ
T

O
—

—
—

+
10
/1
0
T
O

χ
M

O
1,
5,
13
6

10
9

7.
91

1,
5,
98

68
3.
46

di
lli
g1
5

1.
9

—
—

—
+
10
/1
0
T
O

3,
8,
16

22
2.
9

2,
3,
6

10
0.
37

2,
3,
10

14
0.
5

di
lli
g1
7

χ
T

O
—

—
—

+
10
/1
0
T
O

3,
15
,5
3

34
12
.7

2,
6,
23

21
0.
87

2,
6,
21

21
0.
95

di
lli
g1
9

2.
3

62
.7

45
5.
7

26
9.
0
+

0/
10

T
O

4,
12
,1
8

20
8.
6

5,
4,
17

22
0.
94

3,
3,
7

12
0.
45

di
lli
g2
4

1.
9

—
—

—
+
10
/1
0
T
O

6,
7,
28

17
1.
4

0,
11
,6

15
0.
62

0,
11
,6

15
0.
7

di
lli
g2
5

2
—

—
—

+
10
/1
0
T
O

1,
41
,9
6

51
14
.9

1,
7,
27
6

11
2

11
.1
5

1,
6,
13
0

62
3.
45

di
lli
g2
8

χ
T

O
11
5.
3

22
8.
5

19
3.
6
+

2/
10

T
O

1,
5,
14

11
0.
2

1,
4,
26

19
0.
75

1,
3,
17

14
0.
59

fig
1

1.
9

0.
5

51
.2

11
.1

+
4/
10

T
O

2,
5,
1

6
0.
1

2,
4,
1

6
0.
22

2,
4,
1

6
0.
22

fig
3

1.
9

0.
3

5.
2

2.
7
+

8/
10

T
O

2,
4,
2

6
0.
1

4,
3,
0

5
0.
22

4,
3,
0

5
0.
27

fig
9

1.
9

0
0.
1

0.
0
+

0/
10

T
O

0,
2,
0

2
0

1,
1,
0

2
0.
12

1,
1,
0

2
0.
09

w
1

1.
8

0
0.
2

0.
1
+

0/
10

T
O

1,
3,
3

5
0

2,
1,
1

4
0.
22

2,
1,
1

4
0.
16

w
2

1.
9

0.
1

22
3.
9

27
.5

+
1/
10

T
O

2,
4,
1

4
0

1,
1,
1

3
0.
14

1,
1,
1

3
0.
12

C
on

tin
ue
d
on

ne
xt

pa
ge

60

Ta
bl
e
4.
1
co
nt
in
ui
ng

Pr
og
ra
m

W
hi
te
-b
ox

Bl
ac
k-
bo

x
C
PA

ch
ec
ke
r

R
an

do
m
iz
ed

Se
ar
ch

[S
A
14
]

IC
E-

C
S
[G

LM
N
14
]

IC
E-

D
T
-e
nt
ro
py

IC
E-

D
T
-p
en
al
ty

[B
K
11
](
s)

M
in
.(s

)
M
ax

.(s
)

Av
g.
(s
)
+

T
O

P,
N
,I

#
R

T
(s
)

P,
N
,I

#
R

T
(s
)

P,
N
,I

#
R

T
(s
)

Pr
og
ra
m
s
w
ith

in
va
ria

nt
s
ov
er

no
n-
lin

ea
r
in
te
ge
r
ar
ith

m
et
ic

m
ul
tip

ly
χ

—
—

—
+
10
/1
0
T
O

χ
M

O
2,
28
,1
2

42
24
.1
8

6,
47
,1
9

71
59
.7
6

sq
rt

χ
—

—
—

+
10
/1
0
T
O

3,
26
,2
6

32
9.
2

3,
15
,1
4

31
1.
42

4,
28
,1
4

43
1.
97

sq
ua

re
χ

—
—

—
+
10
/1
0
T
O

χ
M

O
1,
8,
2

11
0.
41

1,
8,
2

11
0.
42

In
va
ria

nt
sy
nt
he
sis

in
a
de
du

ct
iv
e-
ve
rifi

ca
tio

n
se
tt
in
g

ar
ra
y_

di
ff

—
—

2,
2,
2

4
0.
07

2,
2,
0

3
0.
14

2,
2,
0

3
0.
14

cp
m
1

—
—

—
2,
4,
0

5
2.
78

2,
4,
0

5
2.
81

cp
m
2

—
—

—
1,
8,
11

20
7.
37

1,
8,
11

20
7.
08

A
gg
re
ga
te

41
/
58

pr
og
ra
m
s

39
/
58

pr
og
ra
m
s

50
/
58

pr
og
ra
m
s

58
/
58

pr
og
ra
m
s

58
/
58

pr
og
ra
m
s

61

finding Boolean combinations of octagonal constraints, while all the black-
box learners do. Next we tabulate results for the black-box learners. The
first is a randomized search based invariant synthesis tool [SA14]; this uses
its own in-built teacher. The second is the constraint-solver based learner
from [GLMN14] (called ICE-CS); this uses a teacher that does not bound
counterexamples (as its in-built search bounds the constants in predicates
iteratively anyway). The last two columns depict the new decision tree
learners in this paper, from Section 4.3, which includes the learner that
computes the information gain which accounts for implications (called ICE-
DT-entropy) and the learner that penalizes splits that cut implications (called
ICE-DT-penalty).

Benchmarks: We report results for a suite of programs, which includes all
programs from the SV-COMP (2014 and 2015) benchmark “loop” suite [svc]
(which involves small programs but with intricate loop invariants) and pro-
grams from the literature [GLMN14,GSV08,GHK+06,AM13, IS]. The SV-
COMP examples which were buggy programs are excluded, of course, as our
technique only proves correct programs correct2 Furthermore, we exclude
SV-COMP benchmarks where the loop invariant involved arrays3 as well as
programs where the invariant is extremely simple (like true or x = 0), since all
tools took no time. Some programs in Table 4.1 are the natural unbounded
versions of programs that were artificially bounded in SV-COMP to simplify
them. We additionally have a few benchmarks that require invariants over
non-linear integer arithmetic, and also some partially annotated programs
where the invariant needs to be strengthened to prove them correct (we
explain these benchmarks later in this section). The programs in our suite
have up to 100 lines of C code, involve up to 15 program variables, and often
need complex invariants for their static verification.

Since the performance of the randomized search based invariant synthesis
depends on the randomly chosen seed, we run it 10 times for every program
and report the minimum and maximum time, the average of the times (when
it doesn’t timeout) and the number of runs where it times out (≥ 10 min.).

2When a program is buggy, we could find this bug when we find an inconsistent sample;
however, this is not a scalable approach to find bugs.

3We handle only those array programs in which the invariant itself is scalar, and not a
quantified array invariant.

62

10−2 10−1 100 101 102

10−1

101

TO

TO

Time CPAchecker in s

T
im

e
IC

E
D
T

pe
na

lty
in
s

0 20 40 60
0

20

40

60

TO

TO

Time ICE CS in s

T
im

e
IC

E
D
T

pe
na

lty
in
s

10−2 10−1 100 101 102

10−1

101

TO

TO

Time ICE DT entropy in s

T
im

e
IC

E
D
T

pe
na

lty
in
s

Figure 4.2: Runtime comparison between invariant synthesis tools. TO
denotes timeout after 600 s

63

For the constraint solver based learner and our decision tree learners we
provide details about the composition of the final sample, in terms of the
number of positive, negative and implication counter-examples that were
required to learn an adequate invariant and the number of rounds to converge.

Observations: The hypothesis that we want to test is whether the learning-
based invariant synthesis tools developed in this paper are competitive with
(not necessarily better than) state-of-the-art tools in verification.

CPAchecker is a mature tool (it won the software verification competition
(SV-COMP) including the competition for the “loop” category in it). From
Table 4.1 and Figure 2(a), we conclude that our learning algorithms are
competitive to CPAchecker for synthesizing invariants for the benchmarks.
Out of the 58 programs, CPAchecker synthesizes adequate invariants for 41
programs; however, recall that it is at a disadvantage here as since it does
not know that the programs have octagonal constraints, while the black-
box learners do. Moreover, when we run CPAchecker in its competition
configuration, it was successful on 6 additional programs (but couldn’t find
invariants on the other 11).
To showcase the advantages of black-box learning, 3 out of these 58 pro-

grams, namely multiply, sqrt, and square, require invariants over non-linear
integer arithmetic which CPAchecker is unable to synthesize. The black-box
learning algorithms are completely agnostic of the semantics of the program
as long as the teacher can generate counterexamples for the learner. Learning
invariants for these programs was not a problem for our decision-tree based
learners and also, for a couple of these programs, for the constraint-solver
based learner. Note that for these three programs, we manually ask the learn-
ing algorithms for all black-box learners to learn an invariant over attributes
which include octagonal attributes, as before, and, additionally, attributes
over non-linear terms. Even though solving constraints over non-linear in-
teger arithmetic is undecidable, our Boogie-based teacher (in ICE-DT) had
no problems in providing counterexamples to refute inadequate invariant
hypotheses.
Invariant synthesis using randomized search [SA14], in our experience, is

very volatile, as shown by the large variation in run times (see column showing
minimum and maximum times), performing fast as well as timing out on the
same program. It times out on 16 programs on all runs. Further, there are

64

around 22 programs for which randomized search fails more than half of the
time. However, note that there are certain random walks where it finds the
invariant very fast.
Our decision tree based learners are also faster than the constraint solver

based learner ICE-CS, which times out or runs out of memory on 6 programs.
More importantly, we think that ICE-CS will inherently hit a wall for larger
programs. The number of formulas that we are learning from grows with the
number of variables, the size of the invariant formula, and hence a learning
based algorithm may have to collect a large set of samples, each of which
refutes some of these formulae. The size of the constraints in ICE-CS grows
unduly, and running a constraint solver suffers greatly when programs get
slightly larger. We refer the reader to the microbenchmarks described below
that show how poorly ICE-CS performs when compared to ICE-DT as the
sample sizes increase. In fact, in the examples where it failed to find invariants,
we found that the sample sizes grew to be hundreds and involved up to 5
variables with a template that would cause the constraints it generates to be
fairly large, which caused it to run out of memory.
The two decision tree learners we build, ICE-DT-Entropy and ICE-DT-

Penalty are both equally efficient and effective in synthesizing invariants
(Figure 2(c)). Note that since our teacher returns implications only if it
cannot find positive/negative examples, all programs that report a non-zero
number of implications in the final sample (∼ 80% of programs) required
implication counterexamples to make progress.

Finding invariants in partially annotated programs Black-box learn-
ing of invariants is particularly advantageous in the context of deductive
verification, where the programmer has manually partially annotated the pro-
gram with the specification, pre/post-conditions for methods and complicated
invariants that form the crux of the proof of the correctness of the program,
and we wish to reduce the annotation burden of the programmer by automati-
cally strengthening the specified invariants by inferring simpler invariants over
scalar variables to prove the specification. Inferring such a simple scalar in-
variant would be hard for static analysis tools or white-box invariant synthesis
engines such as CPAchecker, as they cannot work with the complex quantified
invariants already written. A “guess-and-check” approach that black-box in-
variant synthesis entails (including methods like Houdini [FL01]), on the other

65

hand, can learn such simple invariants as long as the teacher can generate
counterexamples for the learner (by even using incomplete mechanisms such
as E-matching [dMB07] or natural proofs [QGSM13,PQM14]). The table
lists 3 examples where we tried our tool, and the tool was able to strengthen
invariants. These include array_diff (a program that computes differences
between successive values of a sorted array) and two verified modules of C
programs that model a distributed key-value store protocol. The latter two
had been deductively verified in VCC [CDH+09] with complex invariants,
and we removed some of the scalar invariants from some methods, converted
them to Boogie code and asked the invariant synthesizers to infer them.

101 102 103 104
0.01
0.1

1
10

R
un

tim
e
in
s

ϕ1

101 102 103 104
0.01
0.1

1
10

ϕ2

101 102 103 104

0.1

1

10

ϕ3

101 102 103 104
0.01
0.1

1
10

Sample size

R
un

tim
e
in
s

101 102 103 104
0.01
0.1

1
10

Sample size
101 102 103 104

0.01
0.1

1
10

Sample size

w
ith

ou
t

im
pl
i-

ca
tio

ns

w
ith

im
-

pl
ic
at
io
ns

Decision tree-
based ICE
learner

Constraint solver-
based
ICElearner [GLMN14]

Figure 4.3: Results of the scalability micro-benchmarks

Robustness to small changes: To see how the learners would perform if
there were a few other variables which were not involved in the invariant, we
generated variations for 18 programs so that they have (three) extra variables
that are havoc-ed inside the loop. This increases the search-space of the
invariant synthesis problem for all the black-box learners. ICE-CS times out
on two of these additional programs (sum1, matrix2c); it finishes but takes
more time for some programs. Randomized search fails (no successful run)
on eight additional programs. However, our decision tree learners continued
to perform equally well for programs with these extra variables. The learning
algorithms underlying our approach are particularly good in weeding out

66

irrelevant attributes, and we believe this to be the reason for their superior
performance.

In practical examples such as GPUVerify [BCD+12], an invariant typically
involves only a small set of variables (two or three), but candidates range
over a large set of variables (some times up to hundreds of them). We believe
it is important for black-box invariant generation algorithms to handle such
scenarios. We have also successfully applied our decision tree learner to learn
invariants for selected large GPUVerify programs (for instance prefixSum and
binomialOption), and though these are conjunctive invariants, our learning
algorithm worked well. A more careful study and a full-blown invariant
generation based on our techniques for race-checking GPU programs is ongoing
research.

4.5.1 Scalability Micro-benchmarks:

We finally report our tool’s performance on some micro-benchmarks demon-
strating the scalability of the decision tree ICE learner compared to other learn-
ing techniques, namely the constraint solver-based ICE learner of [GLMN14].
This benchmark consists of samples of increasing size (containing between
50 and 50,000 data points) that have been randomly drawn and classified
with respect to three formulas ϕ1 = x1 ≤ −1 ∨ y ≥ 1, ϕ2 = x1 − x2 ≥ 2, and
ϕ3 = 0 ≤ x0∧ 0 ≤ x1∧ 0 ≤ x2∧x3 , 1∧x4 , 1∧x5 , 1) such that half of the
data points are positive and half are negative. For each of the three formulas,
the benchmark consist of a sample with no implications and a sample with 1

4

of the data points unclassified and part of an implication.
The results of this benchmark are shown in Figure 4.3. The upper row

shows the results on samples without implications, wheres the lower row shows
results on samples with implications. Except for one sample suite, the decision-
tree based learner can handle samples up to 50 000 data points, whereas the
constraint-solver based learner times out or runs out of memory on samples
with 1000 data points (with one exception). Note that the formulas φ1, φ2,
φ3 involve 1− 6 atomic formulas and range over 2− 6 variables; for invariant
templates that have more atomic formulas to be determined and for programs
with more variables, the memory/time-out limit for the constraint solver
based learner might be reached even below samples with 1000 data-points (as

67

seen in some of the invariant synthesis benchmarks). As Figure 4.3 shows, the
decision tree-learner is on average one order of magnitude faster than ICE-CS,
though it learns formulas that are roughly of the same “size” (not visualized
in the figure). In summary, the micro-benchmark shows that the decision-tree
based ICE learner scales much better than the constraint-solver based ICE
learner, which motivates the use of machine-learning based tools for invariant
synthesis. Note, however, that these are simply scalability micro-benchmarks
to compare the learners, and do not measure their efficacy in actually learning
inductive program invariants; efficicacy of learning invariants was discussed
earlier.

68

CHAPTER 5

LEARNING UNIVERSALLY QUANTIFIED
INVARIANTS OVER LINEAR DATA

STRUCTURES

Linear data structures, such as arrays and linked lists, are important un-
bounded data structures used in computer science. Properties of such linear
data structures require quantification due to the unbounded nature of these
structures. For instance, expressing that the data stored in a linked list is
sorted requires quantification. Reasoning with such data structures requires
expressing such properties, especially in program verification where such prop-
erties can encode pre/post conditions or invariants that help prove a program
correct. In this section, our main motivation stems from program verification,
in particular the problem of synthesizing loop invariants for programs that
express properties of linear data structures. In particular, as we have argued
in this thesis, our main motivation is to synthesize these invariants using
learning.

In many fields of logic, automata theory plays an important role as a normal
form for logic. For instance, monadic second order logic on labeled words
and trees, both finite and infinite, is captured using finite-state automata
on these structures [Tho97,GTW02]. A connection to automata theory is
often useful as the simple structure of automata in terms of graphs gives
a better arena than logic to study algorithmic problems on the associated
logic. Decision procedures such as satisfiability on logic (and even model-
checking of systems) can be translated to appropriate emptiness-checking
algorithms on graphs [VW86]. Another important algorithmic procedure that
automata yield are learning algorithms— automata-based learning algorithms
give a means to learn the corresponding logical formulae in various learning
models [Ang87a,Gol78].

In this section, we build learning algorithms for quantified logical formulas
describing sets of linear data structures. Our aim is to build algorithms that
can learn formulas of the kind “∀y1, . . . , yk ϕ”, where ϕ is quantifier-free,
and which capture properties of arrays and lists (the variables range over

69

indices for arrays, and locations for lists, and the formula can refer to the
data stored at these positions and compare them using arithmetic, etc.).
Due to the formal connection between logics and automata theory and the
advantages we mentioned above, we model linear data structures as data
words, where each position is decorated with a letter from a finite alphabet
modeling the program’s pointer variables that point to that cell in the list or
index variables that index into the cell of the array, and with data modeling
the data value stored in the cell, e.g., integers. Further, we seek automata
models for expressing quantified properties of such data words.

Our main contribution is a novel representation (normal form) for quantified
properties of linear data structures, called quantified data automata (QDA). In
Section 5.3, we explore various properties of QDAs and the languages accepted
by them. The class of quantified properties that can be expressed using QDAs
is very powerful, and does not admit decidable satisfiability problems, in
general. The validity of the corresponding logical formulas in the theory of
arrays and lists is also undecidable, in general. In the context of program
verification, even if we use QDAs to learn invariants, we will be unable to
verify automatically whether the learned properties are adequate invariants
for the program at hand. Even though SMT solvers support heuristics to
deal with quantified theories (like e-matching [dMB07]), in our experiments,
the verification conditions derived from invariants expressed as QDAs could
not be handled by such SMT solvers. Section 5.4, therefore, introduces the
subclass of QDAs, called elastic QDAs, that admit decidable validity problems.
In Section 5.5 we describe how quantified properties of linear data structures
can be modeled using QDAs/EQDAs, and present a translation from EQDAs
to decidable fragments of arrays and lists. Finally, to complete the picture,
we develop different learning algorithms for learning QDAs/EQDAs. First, in
Section 5.6, we present an active learning algorithm that extends Angluin-
style learning of finite automata to learn QDAs. We deploy this algorithm in
a passive setting to learn quantified invariants of linear data-structures from
a sample set of positively and negatively labeled program configurations that
do or do not manifest along dynamic test runs. Subsequently, in Section 5.7,
we develop a robust ICE learning algorithm for learning QDAs and apply
this algorithm to robustly learn quantified invariants of linear data structures
such as arrays and lists.

70

5.1 Overview

List and Array Invariants:

Consider a typical invariant in a sorting program over lists where the loop
invariant is expressed as:

head→∗ i ∧ ∀y1, y2.((head→∗ y1∧ succ(y1, y2)∧y2 →∗ i)⇒ d(y1) ≤ d(y2))
(5.1)

This says that for all cells y1 that occur somewhere in the list pointed to by
head and where y2 is the successor of y1, and where y1 and y2 are before the
cell pointed to by a scalar pointer variable i, the data value stored at y1 is no
larger than the data value stored at y2. This formula is not in the decidable
fragment of Strand [MPQ11,MQ11] since the universally quantified variables
are involved in a non-elastic relation succ (in the subformula succ(y1, y2)).
Such an invariant for a program manipulating arrays can be expressed as:

∀y1, y2.((0 ≤ y1 ∧ y2 = y1 + 1 ∧ y2 ≤ i)⇒ A[y1] ≤ A[y2]) (5.2)

Note that the above formula is not in the decidable array property frag-
ment [BMS06].

Quantified Data Automata: The key idea we explore in our work is
an automaton model for expressing such constraints called quantified data
automata (QDA). The above two invariants are expressed by the following
QDA:

q5

q0start q1 q2 q3 q4

d(y1) ≤ d(y2)

true

({head},−)

({head, i}, ∗),

({head}, y2)

(b, y1)

({i}, ∗),

(b, y2)

b

(b, y2)

b, ({i},−)

({i}, y2)

({i},−)

b b

?

({head}, y1)

The above automaton reads (deterministically) data words whose labels
denote the positions pointed to by the scalar pointer variables head and i,

71

as well as valuations of the quantified variables y1 and y2. We use two blank
symbols that indicate that no pointer variable (“b”) or no variable from Y

(“−”) is read in the corresponding component; moreover, b = (b,−). Missing
transitions go to a sink state labeled false. The above automaton accepts
a data word w with a valuation v for the universally quantified variables y1

and y2 as follows: it stores the value of the data at y1 and y2 in two registers,
and then checks whether the formula annotating the final state it reaches
holds for these data values. The automaton accepts the data word w if for
all possible valuations of y1 and y2, the automaton accepts the corresponding
word with valuation. The above automaton hence accepts precisely those set
of data words that satisfy the invariant formula.

Decidable Fragments and Elastic Quantified Data Automata: The
emptiness problem for QDAs is undecidable; in other words, the logical
formulas that QDAs express fall into undecidable theories of lists and arrays.
A common restriction in the array property fragment as well as the syntactic
decidable fragments of Strand is that quantification is not permitted to be
over elements that are only a bounded distance away. The restriction allows
quantified variables to only be related through elastic relations (following the
terminology in Strand [MPQ11,MQ11]).

For instance, a formula equivalent to the formula in Eq. 5.1 but expressed
in the decidable fragment of Strand over lists is:

head→∗ i ∧ ∀y1, y2.((head→∗ y1 ∧ y1 →∗ y2 ∧ y2 →∗ i)⇒ d(y1) ≤ d(y2))
(5.3)

This formula compares data at y1 and y2 whenever y2 occurs sometime after
y1, and this makes the formula fall in a decidable class. Similarly, a formula
equivalent to the formula Eq. 5.2 in the decidable array property fragment is:

∀y1, y2.((0 ≤ y1 ∧ y1 ≤ y2 ∧ y2 ≤ i)⇒ A[y1] ≤ A[y2]) (5.4)

The above two formulas are captured by a QDA that is the same as shown
before, except that the b-transition from q2 to q5 is replaced by a b-loop on q2.
We identify a restricted form of quantified data automata, called elastic

quantified data automata (EQDA) in Section 5.4, which structurally captures
the constraint that quantified variables can be related only using elastic

72

relations (like →∗ and ≤). Furthermore, we show in Section 5.5 that EQDAs
can be converted to formulas in the decidable fragment of Strand and the
array property fragment, and hence expresses invariants that are amenable
to decidable analysis across loop bodies.

It is important to note that QDAs are not necessarily a blown-up version of
the formulas they correspond to. For a formula, the corresponding QDA can
be exponential, but for a QDA the corresponding formula can be exponential
as well (QDAs are like BDDs, where there is sharing of common suffixes of
constraints, which is absent in a formula).

5.2 Quantified Data Automata Model to Express
Invariants over Linear Data-Structures

We model lists (and finite sets of lists) and arrays that contain data over
some data domain D as finite words, called data words, encoding the pointer
variables and the data values.

Definition 5.2.1 (Data words). Let PV = {p1, . . . , pr} be a finite set of
pointer variables, Σ = 2PV , and D a data domain. A data word over PV and
D is a word u ∈ (Σ×D)∗ where every p ∈ PV occurs exactly once in u (i.e.,
for each u = a1 . . . an and p ∈ PV , there exists precisely one j ∈ {1, . . . , n}
such that aj = (X, d) and p ∈ X).

The empty set in the first component of a data word corresponds to a blank
symbol indicating that no pointer variable occurs at this position. We also
denote this blank symbol by the letter b.
Let Y = {y1, . . . , yk} be a nonempty, finite set of universally quantified

variables. The automata we build accepts a data word if for all possible
valuations of Y over the positions of the data word, the data stored at these
positions satisfy certain properties. For this purpose, the automaton reads
data words extended by valuations of the variables in Y , called valuation
words. The variables are then quantified universally in the semantics of the
automaton model (as explained later in this section).

Definition 5.2.2 (Valuation word). A valuation word is a word v ∈ (Σ ×
(Y ∪ {−})×D)∗ where v projected to its first and third component forms a
data word and where each y ∈ Y occurs exactly once in v.

73

We use the symbol “−” to denote positions in valuation words where no
universally quantified variable occurs. Note that the choice of the alphabet
ensures that all universally quantified variables have to occur at different
positions and is technically convenient.

A valuation word corresponds to a data word with a valuation of Y . This
is formalized by the following definition.

Definition 5.2.3. Given a valuation word v ∈ (Σ × (Y ∪ {−}) ×D)∗, the
corresponding data word is the word dw(v) ∈ (Σ×D)∗ resulting from projecting
v to its first and third components.

Later, we will also consider a third type of words, called symbolic words.
In contrast to data and valuation words, symbolic words only capture the
structure of a list or array but do not contain data.

Definition 5.2.4 (Symbolic word). Let Σ = 2PV and Π = Σ × (Y ∪ {−}).
A symbolic word is a word w ∈ Π∗ where each p ∈ PV occurs exactly once in
w and each y ∈ Y occurs exactly once in w.

We denote the symbol in Π representing neither a pointer nor a universally
quantified variable by b = (b,−). The next definition establishes a connection
between symbolic and valuation words.

Definition 5.2.5. Given a valuation word v ∈ (Σ × (Y ∪ {−}) ×D)∗, the
corresponding symbolic word is the word sw(v) ∈ Π∗ resulting from projecting
v to its first two components.

To express the properties on the data, let us fix a set of constants, functions
and relations over D. We assume that the quantifier-free first-order theory
over this domain is decidable; we encourage the reader to keep in mind the
theory of integers with constants (0, 1, etc.), addition, and the usual relations
(≤, <, etc.) as a standard example of such a domain.

Quantified data automata use a finite set F of formulas over the atoms
d(yi), i ∈ {1, . . . , n}, which we interpret as the data values of the cells pointed
to by the variables y1, . . . , yn. We assume that this set is organized in a
(bounded semi-)lattice, which leads to the following definition.

Definition 5.2.6 (Formula lattice). A formula lattice F = (F,v,t, false, true)
is a tuple consisting of a finite set F of formulas over the atoms d(y1), . . . , d(yn),

74

a partial-order relation v over F , a least-upper bound operator t, and the
formulas false and true, which are required to be in F and correspond to the
bottom and top elements of the lattice. Furthermore, we require that whenever
α v β, then α ⇒ β. Also, we require that the formulas in the lattice are
pairwise inequivalent.

One example of such a formula lattice over the data domain of integers
can be obtained by taking a set of representatives of all possible inequivalent
Boolean formulas over the atomic formulas involving no constants, defining
α v β if and only if α⇒ β, and taking the least-upper bound of two formulas
as the disjunction of them. Such a lattice would be of size doubly exponential
in the number of variables n, and consequently, in practice, we may want
to use a different coarser lattice, such as the Cartesian formula lattice. The
Cartesian formula lattice is formed over a set of atomic formulas and consists
of conjunctions of literals (atoms or negations of atoms). The least-upper
bound of two formulas is taken as the conjunction of those literals that occur
in both formulas. For the ordering, we define α v β if all literals appearing
in β also appear in α. The size of a Cartesian lattice is exponential in the
number of literals.
We are now ready to introduce the automaton model.

Definition 5.2.7 (Quantified data automata). Let PV be a finite set of
program variables, Y a finite, nonempty set of universally quantified variables,
D a data domain, and F a formula lattice over a finite set F of formulas.
A quantified data automaton (QDA) is a tuple A = (Q,Π, q0, δ, f) where Q
is a finite, nonempty set of states, Π = Σ× (Y ∪ {−}) is the input alphabet,
δ : Q × Π → Q is the (partial) transition function, and f : Q → F is the
final-evaluation function, which maps each state to a data formula.

Intuitively, a QDA is a register automaton that reads the data word
extended by a valuation that has a register for each y ∈ Y , which stores the
data stored at the positions evaluated for Y , and checks whether the formula
decorating the final state reached holds for these registers. It accepts a data
word u ∈ (Σ ×D)∗ if it accepts all possible valuation words v extending u
with a valuation over Y . We formalize this below.

A configuration of a QDA A = (Q,Π, q0, δ, f) is a pair (q, r) where q ∈ Q
and r : Y → D is a partial variable assignment. The initial configuration is
(q0, r0) where the domain of r0 is empty.

75

The run of A on a valuation word v = (a1, y1, d1) . . . (an, yn, dn) ∈ (Σ×(Y ∪
{−})×D)∗ is a sequence (q0, r0), . . . , (qn, rn) of configurations that satisfies
δ(qi, (ai, yi)) = qi+1 and

ri+1 =

ri{yi ← di} if yi ∈ Y ;

ri if yi = −;

where i ∈ [0, n), the configuration (q0, r0) is the initial configuration, and
ri{yi ← di} corresponds to the mapping ri in which the argument yi is mapped
to the value di. We use A : (q0, r0) v−→ (qn, rn) as a shorthand-notation.

The QDA A accepts a valuation word v ifA : (q0, r0) v−→ (q, r) with r |= f(q);
that is, after reading the valuation word, the data stored in the registers
satisfies the formula annotating the state finally reached. The language
Lval(A) is the set of valuation words accepted by A.
The QDA A accepts a data word u ∈ (Σ×D)∗ if A accepts all valuation

words v with dw(v) = u. The language Ldat(A) is the set of data words
accepted by A.
To ease working with QDAs and to obtain the intended semantics, we as-

sume throughout this chapter that each QDA satisfies two further constraints:

• Each QDA verifies that its input satisfies the constraints on the number
of occurrences of variables from PV and Y . All inputs violating these
constraints (i.e., all inputs that are not valuation words) either do not
admit a run due to missing transitions or lead to a dedicated state
labeled with the data formula false. This property implies that the
states of an QDA are “typed” with the set of variables that have been
read so far. As a consequence, cycles in the transition structure of an
QDA can only be labeled with b-symbols. Note that this assumption
is no restriction because both the language of valuation words and the
language of data words are defined in terms of words that satisfy the
correct occurrence of variables from PV and Y .

• Each QDA verifies that the universally quantified variables occur in its
input in the same fixed order, say y1 ≺ · · · ≺ yk. All valuation words
violating this order lead to a dedicated state labeled with the data
formula true (i.e., all such valuation words are accepted). The rationale
behind this assumption is the following: since the variables y ∈ Y are

76

universally quantified, it is sufficient to check a property with respect
to a fixed order and a different order should not change the accepted
language of data words.

Although this assumption is a restriction in general, each QDA can be
transformed into one that accepts the same data language and respects
the predetermined variable ordering if the formula lattice is closed
under conjunction. The idea for such a construction is to use a subset
construction that follows all paths that only differ in the order of Y .
For each state in a set of states reached like that, one remembers in
which order the variables in Y have occurred. At the final states, one
uses the conjunction of all formulas in the set with the appropriate
renaming of the variables in Y . Due to the universal semantics of QDAs,
this captures a QDA that accepts the same data language as original
automaton. Since most natural formula lattices, such as the full lattice
and the Cartesian lattice (which we use in this chapter), are closed
under conjunction, we can without loss of generality assume that each
QDA respects a fixed ordering of the universally quantified variables.

5.3 Properties of Quantified Data Automata

In this section, we study properties of QDAs, such as viewing QDAs as Moore
machines, whether QDAs allow for canonical representations, their closure
under Boolean operations, and decidability results for them.

5.3.1 Viewing QDAs as Moore Machines

Moore machines are extensions of deterministic finite automata that are
equipped with output at their states and define a mapping rather than accept
a language. On a syntactical level, QDAs can be viewed as such machines,
where the output corresponds to the formulas at the final states of the QDA.
Taking this view of QDAs allows us to derive some results by using the theory
of Moore machines. Formally, Moore machines are defined as follows.

Definition 5.3.1 (Moore machine). A Moore machine is a tuple M =
(Q,Σ,Γ, q0, δ, λ) where Q is a nonempty, finite set of states, Σ is the input

77

alphabet, Γ is the output alphabet, q0 ∈ Q is the initial state, δ : Q× Σ→ Q

is the transition function, and λ : Q→ Γ is the output function that assigns
an output-symbol to each state.

The run of a Moore machine M on a word u = a1 . . . an is a sequence
q0, . . . , qn of states that satisfies δ(qi, ai+1) = qi+1 for all i ∈ [0, n); as in the
case of QDAs, we use the shorthand-notationM : q0

u−→ qn to denote the run
ofM on u. Each Moore machine defines a total function fM that maps an
input-word u ∈ Σ∗ to the output of the state thatM reaches after reading
u; more precisely, we define fM(u) = λ(q) where M : q0

u−→ q. Finally, we
call a function f : Σ∗ → Γ Moore machine computable if there exists a Moore
machineM such that f = fM.

Let us now describe how one can view QDAs as Moore machines. Recall that
QDAs define two kind of languages, a language of data words and a language
of valuation words. On the level of valuation words, we can understand a
QDA as an automaton that reads the structural part of a valuation word (i.e.,
a symbolic word) and outputs a data formula capturing the data. To make
this intuition more precise, let us introduce another type of words, which we
call formula words.

Definition 5.3.2 (Formula words). Let PV be a finite set of pointer variables,
Y a finite set of universally quantified variables, and F a lattice over a set
F of formulas. A formula word is a finite word (w,ϕ) ∈ (Π∗ × F) where, as
before, Π = Σ× (Y ∪ {−}), and each p ∈ PV and each y ∈ Y occurs exactly
once in w.

Note that a formula word does not contain elements of the data domain—
it simply consists of the symbolic word that depicts the pointers into the
list (modeled using Σ), a valuation for the quantified variables (modeled
using Y ∪ {−}), as well as a formula over lattice F over the data domain.
For example, (({h}, y1)(b,−)(b, y2)({t},−), d(y1) ≤ d(y2)) is a formula word,
where h points to the first element, t to the last element, y1 points to the first
element, and y2 to the third element; and the data formula is d(y1) ≤ d(y2).
We can now view a QDA as an acceptor of formula words.

Definition 5.3.3. A QDA A = (Q, q0,Π, δ, f) over the set F of data formulas
accepts a formula word (w,ϕ) ∈ Π∗×F if A reaches a state q ∈ Q on reading
the symbolic word w and f(q) = ϕ. Given a QDA A, we define the language

78

Lf (A) ⊆ Π∗ × F of formula words accepted by A in the usual way. Moreover,
we call a language Lfor ⊆ Π∗ × F of formula words QDA-acceptable if there
exists a QDA A with Lf (A) = Lfor .

Note that not every language of formula words is QDA-acceptable; for
instance, consider the language

L?for = {(bi(h, y)bi, true) | i ≥ 1}.

A standard pumping argument shows that L?for cannot be accepted by a QDA
since the number of blanks at the beginning and at the end of a word have
to match. Furthermore, words whose symbolic component is not of the form
bi(h, y)bi are not present in L?for but a QDA necessarily assigns a unique
formula to every symbolic word. In fact, every QDA-acceptable language Lfor

of formula words has to fulfill the following constraints:

• For every symbolic word w ∈ Π∗, there exists a formula ϕ such that
(w,ϕ) ∈ Lfor .

• If (w,ϕ) ∈ Lfor and (w,ϕ′) ∈ Lfor , then ϕ = ϕ′.

• There are only finitely many different formulas occurring in formula
words in Lfor .

These constraints allow us to treat QDAs as Moore machines that read
symbolic words and output data formulas. In fact, we make the following
observation.

Observation 5.3.1. A QDA-acceptable language Lfor ⊆ Π∗ × F is an alter-
native representation of a Moore machine-computable mapping f : Π∗ → F

(in the sense that (w,ϕ) ∈ Lfor if and only if f(w) = ϕ).

One easily deduces that two QDAs A and A′ (over the same lattice of
formulas) that accept the same set of valuation words also define the same set
of formula words (assuming that all the formulas in the lattice are pairwise
non-equivalent). Thus, we can easily reduce the problem of actively learning
QDAs to the problem of actively learning Moore machines, as we show in
Section 5.6.

79

q1 q2

q0start q3

q4 q5 q6 q7

true

d(y1) ≤ d(y2)
b

(b, y1)

(b, y2)

b (b, y1)

(b, y2)
b

(b, y2)

b

(b, y2)

b

b

(b, y2)

b

b

(b, y1)

Figure 5.1: A QDA expressing the property over lists that the data on even
positions is sorted. Missing transitions lead to a sink-state labeled with false,
which is not shown for the sake of readability. All states depicted as a single
circle are implicitly labeled with the formula false.

5.3.2 Canonical QDAs

Recall that QDAs define two kinds of languages, namely a language of data
words and a language of valuation words. We begin by observing that we
cannot hope for unique minimal QDA on the level of data words.

To see why, consider the QDAA in Figure 5.1 over PV = ∅ and Y = {y1, y2}.
It accepts all valuation words in which

• d(y1) ≤ d(y2) if y1 occurs before y2 and y1, y2 are both on even positions;
or

• y2 < y1; or

• at least one of y1 and y2 does not occur at an even position.

Hence, A accepts the language of data words that consist of all data words
such that the data on even positions is sorted. Since each QDA has to ensure
that each variable occurs exactly once, the number of states of A is minimal
for defining this language of data words.
However, a QDA in which we replace the transition δ(q6, b) = q5 by the

transition δ(q6, b) = q1 accepts the same language of data words. This new
QDA checks the sortedness only for all y1, y2 with y2 = y1 + 2, which is
sufficient. This shows that the transition structure of a state-minimal QDA
for a given language of data words is not unique.

On the level of valuation words, on the other hand, there exists a minimal
canonical QDA, which is formalized next. This is because the automaton

80

model is deterministic and, since all universally quantified variables are in
different positions, the automaton cannot derive any relation on the data
values during its run. Formally, we can state the following theorem.

Theorem 5.3.4. For each QDA A there is a unique minimal QDA Amin that
accepts the same set of valuation words.

Proof. Consider a language Lval of valuation words that can be accepted by
a QDA, and let w ∈ Π∗ be a symbolic word. Then there must be a formula
ψw in the lattice that characterizes precisely the valuation words v ∈ Lval

that extend w with data (i.e., that satisfy sw(v) = w). Since we assume that
all the formulas in the lattice are pairwise non-equivalent, this formula is
uniquely determined. This formula ψw is obtained by considering for each
valuation word v with sw(v) = w the greatest-lower bound ϕv of all formulas
in the lattice that are satisfied in v, and then taking the least-upper bound
of all these ϕv.
In fact, the formula ψw is independent of the actual QDA. To prove this,

take any QDA A that accepts Lval . Then w leads to some state q in A that
outputs the formula f(q), where f is the final-evaluation function in A. If w
leads to any other formula in another QDA A′, then A′ accepts a different
language of valuation words.

Thus, a language of valuation words can be seen as a function that assigns
to each symbolic word a uniquely determined formula, and a QDA can be
viewed as a Moore machine that computes this function. For each such
Moore machine, there exists a unique minimal one that computes the same
function (see [Koh70]), hence the theorem. � �

5.3.3 Boolean Operations on QDAs

Because of the universal semantics of QDAs, it is easy to see that the class
of QDA-definable data languages is not closed under complement. Since the
universal quantifier does not distribute over disjunctions, the class is also not
closed under union.

Proposition 5.3.5. There is a lattice F that is closed under all Boolean
operations, such that the class of QDA-definable languages of data words over
this lattice is not closed under complement and union.

81

Proof. Take the data domain of the integers, and all Boolean formulas using
the binary predicate ≤. The set of pointer variables is empty. We have
already seen that the set L of data words in which the data is sorted in
ascending order is QDA definable. The complement of this language is
the set of data words in which there are two positions y1 and y2 such that
y1 < y2 and d(y1) > d(y2). Assume that there is a QDA A accepting this
language. We assume here that the QDA uses only two variables y1, y2 but
the argument can easily be extended to any number of variables. Consider
the two data words w1 = (b, 2)(b, 1)(b, 3)(b, 4) and w2 = (b, 1)(b, 2)(b, 4)(b, 3).
Both have to be accepted by A. However, A then also accepts the data word
w = (b, 1)(b, 2)(b, 3)(b, 4) because for each valuation y1, y2 in w there is a
valuation in w1 or w2 that cannot be distinguished from the valuation of w
by A (i.e., the valuation word leads to the same state and satisfies the same
data formulas); for instance, the valuation (b, y1, 1)(b,−, 2)(b, y2, 3)(b,−, 4) in
w cannot be distinguished from (b, y1, 2)(b,−, 1)(b, y2, 3)(b,−, 4) in w1. Thus,
all valuations of w are accepted but w is in L and not in its complement.
For the non-closure under union consider the set L from above, and the

set L′ of data words in which the data is sorted in descending order. An
argument similar to the one from above shows that the union of these two
languages is not QDA definable. � �

Since universal quantification distributes over conjunction, we obtain a
positive result for intersection of data languages.

Proposition 5.3.6. Let F be a formula lattice. If F is closed under con-
junction, then the class of QDA-definable languages of data words is closed
under intersection.

Proof. A standard product construction for A1 and A2 with f(q1, q2) =
f(q1) ∧ f(q2) results in a QDA for the desired language. � �

As for the case of canonical QDAs, we now consider closure properties on
the level of valuation words.

Proposition 5.3.7. Let F be a formula lattice. The class of QDA-definable
languages of valuation words is closed under

1. Complement if F is closed under negation;

82

2. Union if F is closed under disjunction; and

3. Intersection if F is closed under conjunction.

Proof. For the complement, just take the negation of the final formulas. For
union and intersection use a product construction and combine the formulas
by disjunction for union, and conjunction for intersection. � �

This shows that, on the level of valuation words, QDAs behave much
more like standard automata, given that the lattice has the corresponding
properties. For the case of union and intersection, we additionally obtain the
following weaker version of the results if we do not assume the corresponding
closure properties of the lattice.

Proposition 5.3.8. Let F be a formula lattice (with least upper bound and
greatest lower bound operators), and let A1,A2 be two QDAs. There exists
a unique minimal QDA-definable language of valuation words containing
Lval(A1) ∪ Lval(A2), and there is a unique maximal QDA-definable language
of valuation words contained in Lval(A1) ∩ Lval(A2).

Proof. As in Proposition 5.3.7, we use product constructions, now combining
the final formulas using the least upper bound and greatest lower bound
instead of disjunction and conjunction. � �

5.3.4 Decidability Results

The expressive power of QDAs depends on the data domain and the formula
lattice for testing properties of the data. The formula lattices used for ex-
pressing nontrivial properties of data words usually lead to the undecidability
of the emptiness problem for QDAs. For instance, using the integers as data
domain, and an appropriate signature, it is easy to reduce the halting problem
for two-counter machines to the emptiness problem of QDAs. Using blocks of
three successive positions, one encodes the line number, and the two counter
values in the data. The formulas at the final states are used to check that
the data encoding the configurations faithfully simulates the computation of
the given two-counter machine (a data domain with linear arithmetic would
suffice). With a bit more effort, this result can even be extended to formulas
that only use Boolean combinations of equality tests.

83

In contrast, the universality problem, that is, whether a given QDA accepts
all data words (with the appropriate restrictions on the labeling by pointer
variables), is decidable, provided the quantifier-free fragment used to express
the data formulas is decidable. This amounts to a simple check whether there
is a symbolic word that does not admit a run, or leads to a final state with
a formula which is not true (i.e., not a tautology). In this case, one can
construct a valuation word that is not accepted by the QDA, and thus the
corresponding data word is also rejected.

5.4 Elastic Quantified Data Automata

Our aim is to translate the QDAs that are synthesized into decidable logics
such as the decidable fragment of Strand or the array property fragment.
A property shared by both logics is that they cannot test whether two
universally quantified variables are bounded distance away. We capture this
type of constraint by the subclass of elastic QDAs (EQDAs) that have been
already informally described in Section 5.1.

Definition 5.4.1 (Elastic quantified data automata). A QDA A = (Q,Π, q0,

δ, f) is called elastic if each transition on b is a self-loop (i.e., whenever
δ(q, b) = q′ is defined, then q = q′).

If a state in an EQDA does not have any outgoing b-transition, it might
seem that the EQDA could still test whether two universally quantified
variables, say y1 and y2, are bounded distance away (which is the reason for
the undecidability of the emptiness problem for QDAs). However, because of
the universal semantics of the automaton model, such a test is not possible.
This is discussed in more detail in the translation from EQDAs to logic
formulas in Section 5.5, where we introduce the notion of irrelevant self-loop.

The learning algorithm that we use to synthesize QDAs does not construct
EQDAs in general. However, we can show that every QDA uniquely over-
approximated by a language of valuation words that can be accepted by an
EQDA, as stated in the following theorem. This result crucially relies on the
particular structure that elastic automata have, that forces a unique set of
words to be added to the language in order to make it elastic. We will refer
to the construction in Definition 5.4.2 as elastification.

84

To ease the following definition, we introduce a few auxiliary notations:
Given a QDA A = (Q,Π, q0, δ, f), let Rb(q) be the set of state reachable from
q via a (possibly empty) sequence of b-transitions and Rb(S) = ⋃

q∈S Rb(q) for
a set S ⊆ Q. Moreover, we lift the transition function of A to sets of states:
for S ⊆ Q and a ∈ Π, let δ(S, a) = ⋃

q∈S δ(q, a).

Definition 5.4.2 (Elastification). Given a QDA A = (Q,Π, q0, δ, f), we
define the EQDA Ael = (Qel,Π, S0, δel, fel) by

• Qel = {S | S ⊆ Q};

• S0 = Rb(q0);

• fel(S) = ⊔
q∈S f(q); and

• δel(S, a) =

Rb(δ(S, a)) if a , b;

S if a = b and δ(q, b) is defined for some q ∈ S;

undefined otherwise.

Note that this construction is similar to the usual powerset construction
except that we take the “b-closure” after applying the transition function of
A. Moreover, Ael loops in a state S as soon as a b-transition is defined for a
state q ∈ S.

Theorem 5.4.3. For every QDA A one can construct an EQDA Ael such
that

• Lval(A) ⊆ Lval(Ael); and

• for every EQDA B such that Lval(A) ⊆ Lval(B), the inclusion Lval(Ael) ⊆
Lval(B) holds.

Proof. We begin by observing that Ael is elastic by definition of δel. Moreover,
a standard induction over the length of valuation words v = a1 . . . an ∈
(Π×D)∗ shows the following: if the run of A on v is

A : q0
a1−→ q1

a2−→ . . .
an−→ qn,

then the run of Ael on v is

Ael : S0
a1−→ S1

a2−→ . . .
an−→ Sn

85

such that qi ∈ Si for all i ∈ {1, . . . , n}. This implies Lval(A) ⊆ Lval(Ael)
because the implication f(qn)→ fel(Sn) holds by definition of fel.
Let us now show that the language Lval(Ael) is indeed the most precise

elastic over-approximation of Lval(A). To this end, let B = (QB,Π, qB0 , δB, fB)
be an EQDA with Lval(A) ⊆ Lval(B). Additionally, let v ∈ Lval(Ael). Thus,
the task is to prove that v ∈ Lval(B) holds, too.

Let S be the state reached by Ael on reading v and p be the state reached
by B on reading v. We now show that f(q) implies fB(p) for every q ∈ S.
Once we have established this, we obtain that fel(S) implies fB(p) because
fel(S) is the least formula in the formula lattice that is implied by all formulas
f(q) for q ∈ S. Since v ∈ Lval(Ael), the valuation word v satisfies fel(S) and,
hence, also fB(p). Thus, v ∈ Lval(B).
To prove that f(q) implies fB(p) for every q ∈ S, pick a state q ∈ S.

Following the definition of δel, we now construct a valuation word v′ ∈ (D×Π)∗

that satisfies the following properties:

• v′ ∈ Lval(A).

• The run of A on v′ leads to q.

• The run of B on v′ leads to p.

In order to obtain v′, we insert symbols of the form (b, d) into v. Since the
data values at such positions do not occur together with variables, their actual
value is unimportant.

For the construction, let v = a1 · · · an and let

Ael : S0
a1−→ S1

a2−→ . . .
an−→ Sn

be the run of Ael on v (so S = Sn). Let q ∈ S and let q′n := q. Since
δel(Sn−1, an) = Sn and q′n ∈ Sn, there is some state q′n−1 ∈ Sn−1 and qn ∈ Sn
such that δ(q′n−1, an) = qn, and A : qn

bin

−→ q′n for some in ≥ 0. We continue
this construction: if q′j ∈ Sj is defined for j ∈ {1, . . . , n}, we construct q′j−1, qj

and ij as above. For j = 0 we finally pick i0 such that A : q0
bi0
−→ q′0.

Let v′ = bi0a1b
i1a2b

i2 · · · anbin . By construction, the run of A on v′ leads to
q = q′n:

A : q0
bi0
−→ q′0

a1−→ q1
bi1
−→ q′1 . . .

an−→ qn
bin

−→ q′n

86

Since v′ is obtained from v by inserting b, the word v′ also satisfies the formula
f(q) and thus v′ ∈ Lval(A). It remains to show that the run of B on v′ leads
to p. Since B is elastic, the only possibility that v′ does not lead to p in B is
a missing b-loop at a position at which we inserted a non-empty sequence of
b. However, since Lval(A) ⊆ Lval(B), such a position cannot exist.

We conclude that f(q) implies fB(p) using the following argument: If f(q)
does not imply fB(p), then there exists an assignment of data values to the
variables y1, . . . , yk such that f(q) is satisfied but fB(p) is not. By changing
the data values in v′ accordingly, we can produce a valuation word that
is accepted by A but not by B. However, this contradicts the assumption
Lval(A) ⊆ Lval(B). Thus, f(q) implies fB(p). � �

5.5 Modeling Linear Data Structures as Words and
Converting EQDAs to Decidable Logics

In this section, we sketch briefly how to model arrays and lists as data words,
and describe how to convert EQDAs to quantified logical formulas in decidable
logics.

5.5.1 Modeling Program Configurations as Data Words

We model program configurations consisting of scalar variables, pointer or
index variables,1 and one (or more) linear data structures—lists or arrays
in our case—as data words over a finite set of variables. The resulting data
word is over the same domain D as the data in the cells of the data structure.

To simplify our modeling, we replace each scalar variable with an auxiliary
pointer variable that points to a cell containing the data of the scalar variable.
More precisely, for each scalar variable, we introduce a new pointer variable
and extend the data structure with a new cell, which is located before the
actual data structure begins and contains the data of the scalar variable;
the order in which scalar variables are represented in the data structure
is arbitrary but needs to be fixed. To be able to access the data at these
positions (recall that QDAs can only access the data at position pointed

1Index variables occur in the case of arrays and index into arrays.

87

to by universally quantified variables), we amend QDAs with a register for
each such pointer variable and extend the set F of formulas over which the
considered QDA works with the atom d(x) for each scalar variable x.
Let c be a program configuration over a linear data structure and a finite

set PV of pointer or index variables, and let Σ = 2PV . We model c as the
data word

uc = (a1, d1) . . . (an, dn) ∈ (Σ×D)∗,

such that the i-th symbol of the data word corresponds to the i-th cell of
the data structure. In particular, the symbol ai ⊆ PV contains all pointer or
index variables referencing the i-th cell, and di is the data stored in that cell.

In the case of lists, some of the pointer variables might be null or point to
unallocated memory, which cannot be referenced. We capture this situation
in the data word by introducing an auxiliary pointer variable nil that points
to a new cell at the beginning of the list. All pointer variables that are null
or point to unallocated memory occur together with nil. The data value of
the nil cell in the data word is not important and can be set to an arbitrary
element of D.
Similarly, we introduce two new index variables index_le_zero and in-

dex_geq_size for arrays to capture index variables that are out-of-bounds (we
assume that arrays are indexed starting at 0). The variable index_le_zero
occurs together with all index variables that are less than zero, and in-
dex_geq_size occurs with those index variables that are either equal to or
exceed the size of the array. Let the set Aux contain all auxiliary variables
that may occur in our encoding.
To model configurations of programs that manipulate more than one

data structure, one can use one of the following two approaches: the first
approach concatenates the data structures using a special pointer variable
?i to demarcate the end of the i-th data structure; the second approach
models several data structures as one single combined data structure over
an extended data domain by convolution of the original data words (i.e., by
transforming a pair of words into a word over pairs); we refer the reader to
standard textbooks (e.g., Khoussainov and Nerode [KN01]) for more details
about convolution.
Let us illustrate the described translation with an example.

Example 5.5.1. Consider a program that takes as input a scalar variable

88

[
{key}

6

][
{nil}
∗

][
{h1}

1

][
b
2

][
b
3

][
b
4

][
{p}
5

][
{c1}

8

][
b
9

][
b

10

][
{?1}
∗

][
{h2}

6

][
{c2}

7

][
{?2}
∗

]
first list second list

(a) Dataword modeling the concatenation of the two lists of Example 5.5.1.

[
{key}

6

]

�

[
{nil}
∗

]

�

[
{h1}

1

]
[
{h2}

6

]

[
b
2

]
[
{c2}

7

]

[
b
3

]

�

[
b
4

]

�

[
{p}
5

]

�

[
{c1}

8

]

�

[
b
9

]

�

[
b

10

]

�

first list

second list
(b) Dataword modeling the convolution of the two lists of Example 5.5.1. Both �
and � are new auxiliary padding symbols (that must occur at the beginning and
the end of the lists, respectively) used to equal the length of the lists.

Figure 5.2: Two datawords modeling the program configuration described in
Example 5.5.1. A ∗-entry can be populated with an arbitrary data value.

key and a list l and partitions l into two separate lists: the first list contains
all nodes whose data value is less than key and the second list contains
all the remaining nodes of l. The program maintains pointer variables h1

(corresponding to “head”), p, and c1 (corresponding to a “current” pointer) to
point into the first list and h2 and c2 to point into the second list. All nodes
from h1 through p in the first list are less than key. Similarly, all nodes in
the second list (h2 through c2) are greater than or equal to key.

Let us consider a concrete scenario where l is a list with data values
1, 2, . . . , 10 in increasing order, and let key = 6. Moreover, consider the
program configuration where the first seven nodes of the list have been pro-
cessed and c1 is pointing to the node with data value 8. Two data words
corresponding to this program configuration—one using concatenation and
one using convolution—are depicted in Figure 5.2.

89

5.5.2 Converting EQDAs to Strand and the Array Property
Fragment

We now describe a translation of an EQDA A = (Q,Π, q0, δ, f) into a formula
ϕA (in the decidable syntactic fragment of Strand, respectively in the Array
Property Fragment) such that the data word language Ldat(A) corresponds
to the set of program configurations that model ϕA. For brevity, we only
consider the case of EQDAs working over a single list or array; for multiple
lists or arrays, the translation is analogous.

Our translation is based on the notion of simple paths in EQDAs. A simple
path is a sequence

π = q0
a1−→ q1

a2−→ . . .
an−→ qn

of states connected by transitions starting in the initial state such that
δ(qi, ai+1) = qi+1 is satisfies for all i ∈ [n], no state occurs more than once,
and all pointer and universally quantified variables occur exactly once; in
particular, this implies ai , b. Note that there exist only finitely many simple
paths in an EQDA because each state is allowed to occur at most once. We
denote the set of all simple paths in the EQDA A by PA.
To simplify the translation, we assume without restricting the class of

formulas represented by EQDAs that any EQDA A fulfills two structural
properties:

1. Auxiliary variables, such as nil or scalar variables, which might have
been introduced by the encoding of Section 5.5.1, occur in the beginning
of any simple path in the exact same order. Although the exact order
is unimportant, we fix one for the sake of simplicity: scalar variables
occur first (in some fixed order), followed by nil in the case of lists,
respectively index_le _zero and index_geq _size in the case of arrays.

2. Any simple path in A along which a universally quantified variable
occurs together with auxiliary variables leads to a dedicated state
labeled with the formula true. This means that the acceptance of
a data word depends only on such valuations where no universally
quantified variable occurs together with auxiliary variables. Since
auxiliary variables were introduced for technical reasons only, valuation
words in which a universally variable occurs together with auxiliary
variables should, therefore, not influence the formula ϕA.

90

EQDAs can check properties of the beginning and the end of a data
structure, such as whether a pointer variable points to the head or tail of a
list. In order to capture such properties, we use the constants 0 and size in
the case of arrays, respectively head and tail in the case of lists, that point to
the beginning and the end of the considered data structure. We assume that
the size of an array is available as a variable in the scope of the program. For
programs over list structures, the QDA only models the part of the list that
can be accessed by traversing the next pointer from other pointer variables
in the scope of the program. This implies that the head of the list is always
available for reference in the EQDAs. Finally, we can express tail of the list
in Strand by the following formula: ∃tail. (succ(tail, nil) ∧ head→∗ tail).
We are now ready to describe the actual translation. Roughly speaking,

our translation considers each simple path of an EQDA individually, records
the structural constraints of the variables along the path, and relates these
constraints to the data formula of the final state of the path. By doing so,
we construct a path formula ϕπ for each simple path π in A. The resulting
formula ϕA is then the union of all such path formulas and an additional
subformula that captures the valuation words not accepted by A. Since there
exists only finitely many simple path in A, the resulting formula is finite.

Before we can enter the detailed definition of the formulas, we need another
preprocessing of the path under consideration. Basically, we remove self-loops
that on this path do not contribute to the acceptance of data words, which we
call irrelevant self-loops. The precise reason for removing these loops becomes
clear in Case 5 of the translation below.
For the formal definition of irrelevant self-loops, let π be a simple path in
A, and let q, q′ be two states on π such that q′ is the direct successor of q and
the transition connecting q and q′ is δ(q, (b, y)) = q′. If q has a self-loop on
b (i.e., δ(q, b) = q), then we define this self-loop inductively to be irrelevant
on π if either q′ has no self-loop on b or if this self-loop is irrelevant on π;
the former situation is sketched in Figure 5.3a. Symmetrically, we define a
self-loop on b at q′ inductively as irrelevant on π if either q has no self-loop
on b or this self-loop is irrelevant on π (see Figure 5.3b).

If a self-loop is irrelevant on π, it cannot contribute to the acceptance of a
data word. To see why, consider two valuation words

v = v1(b, y)bv2 and v′ = v1b(b, y)v2

91

. . . q q′ . . .(b, y)

b

(a) An irrelevant self-loop in q.

. . . q q′ . . .(b, y)

b

(b) An irrelevant self-loop in
q′.

Figure 5.3: Base cases of the inductive definition of irrelevant self-loops.

with dw(v) = dw(v′) (i.e., v and v′ only differ in the valuation of the universally
quantified variable y by one position). Moreover, assume that v is accepted
along π using an irrelevant self-loop in q′ on the b before v2 (as in Figure 5.3b).
In this situation, A reaches q after reading v1 and hence rejects v′ since q
has no transition on b. Thus, A rejects dw(v′) = dw(v). A similar argument
applies to the other cases of the definition of irrelevant self-loop.
This reasoning shows that one can safely remove irrelevant loops from a

path without changing the accepted language of data words. However, since
being an irrelevant self-loop is a property depending on a path, it can happen
that there are paths π, π′ such that a self-loop in a state q is irrelevant on π
but not on π′. We thus cannot remove irrelevant self-loops from A itself, but
have to work on the level of paths.
For the actual translation into a formula, let π = q0

a1−→ q1
a2−→ . . .

an−→ qn

be a simple path in A with ai ∈ Σ× (Y ∪ {−}) and ai , b for i ∈ {1, . . . , n}.
The path formula corresponding to π is the implication

ϕπ B ψπ → χπ,

where the antecedent ψπ (which we define shortly) serves as a guard that
captures the relative positions of the variables along π and the consequent
χπ = f(qn) is the data formula decorating the final state qn of π (in the case
of a translation into the Array Property Fragment, an overapproximation of
f(q) might be necessary).
We define the path guard ψπ as follows: at each state qi on the path, we

construct local constraints, which describe how individual variables encoded
in the incoming and outgoing transitions of qi are related, and collect them
in the set Ci; the path guard then is the conjunction

ψπ B
n∧
i=1

∧
ψ∈Ci

ψ.

92

For the construction of path guards, we use the following two notations:
First, we use the notation qi−1

ai−→ qi ∈ π, respectively qi−1
ai−→ qi

ai+1−−→ qi+1 ∈ π,
to denote parts of the simple path π = q0

a1−→ q1
a2−→ . . .

an−→ qn. Second, we
use the input-symbol a = (σ, y) ∈ Σ× (Y ∪ {−}) and the set (Σ∪ {y}) \ {−}
of all variables (either pointer variables or universally quantified variables)
occurring in a interchangeably; for instance, we write x ∈ a to denote that
the variable x occurs in a.
We divide the construction of path guards into two parts: The auxiliary

part (i.e., Cases 1 and 2 below) covers the beginning of the path where pointer
variables occur together with auxiliary variables, such as nil; recall that our
encoding of Section 5.5.1 asserts that auxiliary variables occur always in the
beginning of valuation words (and, correspondingly, in simple paths). The
data structure part (i.e., Cases 3 to 6 below) deals with the remainder of the
path, which is related to the actual data structure. The local constraints
at state qi are constructed according to the following (nonexclusive) case
distinction:

Case 1: qi−1
ai−→ qi ∈ π and ai ∩ Aux , ∅

Let z ∈ ai ∩ Aux be the unique auxiliary variable.

• If z models a scalar variable, we set Ci ← Ci ∪ {x = z} for all
x ∈ ai \ {z}. (This case covers the second assumed structural
property of EQDAs, described on Page 90. Note that x can
only be a universally quantified variable and the state qn of the
simple path is labeled with the data formula true.)

• If z = nil, we set Ci ← Ci ∪ {x = nil} for all x ∈ ai \ {z}.

• If z = index_le_size, we set Ci ← Ci ∪ {x < 0} for all x ∈
ai \ {z}.

• If z = index_geq_size, we set Ci ← Ci ∪ {x ≥ size} for all
x ∈ ai \ {z}.

Case 2: qi−1
ai−→ qi

ai+1−−→ qi+1 ∈ π, ai ∩ Aux , ∅, and ai+1 ∩ Aux = ∅

This case covers the boundary between the auxiliary and the data
structure part of a simple path (i.e., processing the actual data
structure starts at qi). Here, we distinguish two cases:

93

• If δ(qi, b) is undefined, we set Ci ← Ci ∪{x = 0} for all x ∈ ai+1

in the case of arrays, respectively Ci ← Ci ∪ {x = head} for all
x ∈ ai+1 in the case of lists.

• If δ(qi, b) = qi, we set Ci ← Ci ∪ {0 ≤ x} for all x ∈ ai+1 in
the case of arrays, respectively Ci ← Ci ∪ {head →∗ x} for all
x ∈ ai+1 in the case of lists.

Cases 3 to 6 below only apply if no auxiliary variables occur in the incoming
or outgoing transitions. Note that such situations indeed occur since we
assume that Y contains at least one variable (which occurs on every simple
path after all auxiliary variables).

Case 3: qi−1
ai−→ qi ∈ π

For all x, x′ ∈ ai with x , x′, we set Ci ← Ci ∪ {x = x′}.

Case 4: qi−1
ai−→ qi

ai+1−−→ qi+1 ∈ π and δ(qi, b) = qi

Let x1 ∈ ai and x2 ∈ ai+1. In the case of arrays, we consider two
cases:

• If x1 < Y or x2 < Y , then we set Ci ← Ci ∪ {x1 < x2}.

• If x1 ∈ Y , x2 ∈ Y , and (ai ∪ ai+1)∩Σ = ∅ (i.e., only universally
quantified variables occur), then the Array Property Fragment
forbids two adjacent universally quantified variables to be related
by the relation <; in this case, we set Ci ← Ci ∪ {x1 ≤ x2} and
χπ ← χπ ∨ (d(x1) = d(x2)). At this point, the translation does
not capture the exact semantics of the EQDA (we comment on
this shortly). Note that ≤ is an elastic relation.

In the case of lists, we set Ci ← Ci ∪ {x1 →+ x2} where →+ is the
transitive closure of the successor relation →. Note that →+ is an
elastic relation.

Case 5: qi−1
ai−→ qi

ai+1−−→ qi+1 ∈ π and δ(qi, b) is undefined

Let x1 ∈ ai and x2 ∈ ai+1. We distinguish two cases:

• Let x1 < Y or x2 < Y . In the case of arrays, we set Ci ← Ci ∪
{x2 = x1 + 1}. In the case of lists, we set Ci ← Ci ∪ {x1 → x2}.

94

• Let x1 ∈ Y and x2 ∈ Y . Since both Strand and the Ar-
ray Property Fragment forbid expressing that two universally
quantified variables are a fixed distance away, we express their
relation indirectly: we identify a state q on the path π that is
closest to qi (the direction is not important) and has a tran-
sition containing a pointer variable p ∈ PV (if PV = ∅, we
use head or tail). Since A does not contain any irrelevant
self-loops, the subpath from qi to q has no self-loops. Thus,
we can constrain the universally quantified variables at qi to
be a fixed distance away from the pointer variable p. For a
translation into the Array Property Fragment, we achieve this
using arithmetic on the pointer variables. For a translation
into the decidable syntactic fragment of Strand, we obtain
the same effect by existentially quantifying monadic predicates
x1, x2, · · · , xd that track the distance d from the universally
quantified variable y at qi to the pointer variable p as follows:
succ(y, x1) ∧ succ(x1, x2) ∧ · · · ∧ succ(xd−1, xd) ∧ xd = p. Since
the distance d between q and qi is bounded, a finite number of
such predicates suffices.

Case 6: qn−1
an−→ qn ∈ π

In this case, qn is the last state of π and δ(qn−1, an) = qn the last
transition. We distinguish two cases:

• If δ(qn, b) is undefined, we set Cn ← Cn ∪ {x = size − 1} for all
x ∈ an in the case of arrays, respectively Cn ← Cn ∪ {x = tail}
for all x ∈ an in the case of lists.

• If δ(qn, b) = qn, we set Cn ← Cn ∪ {x < size} for all x ∈ an in
the case of arrays, respectively Cn ← Cn ∪ {x →∗ tail} for all
x ∈ an in the case of lists.

Since the Array Property Fragment lacks the ability to check whether two
universally quantified variables are different, Case 4 needs to introduce an
overapproximation of the real constraints along a simple path if two universally
quantified variables, say y and y′, are adjacent at a state with a self-loop on
b (i.e., the path guard is incorrectly satisfied even if y = y′ holds). In order

95

to compensate for this, we amend the formula χπ by disjointly adding the
constraint d(y) = d(y′), which ensures that the path formula is satisfied if
y = y′ holds (since y = y′ implies d(y) = d(y′)). This way, the path formula
checks the structural and data constraints of the path if the valuation satisfies
y1 < · · · < yk, but also when universally quantified variables are equal (which
cannot be checked by an EQDA due to fact that the input alphabet of EQDAs
requires universally quantified variables to be at different position). Note
that a path formula with such an approximation is imprecise in general.

The complete translation functions as follows: It collects the sets Ci along
every simple path π ∈ PA and constructs the formulas ψπ and χπ. For a
translation into the decidable syntactic fragment of Strand, it returns the
formula

ϕA B ∀y1 : . . . ∀yk :
 ∧

π∈PA
ψπ → χπ︸ ︷︷ ︸
ϕsp

 ∧
(head →∗ y1 →+ · · · →+ yk →∗ tail) ∧ ¬

 ∨
π∈PA

ψπ

→ false
︸ ︷︷ ︸

ϕ¬sp

;

For a translation into the Array Property Fragment, it returns

ϕA B ∀y1 : . . . ∀yk :
 ∧

π∈PA
ψπ → χπ︸ ︷︷ ︸
ϕsp

 ∧
(0 ≤ y1 ≤ · · · ≤ yk < size) ∧ ¬

 ∨
π∈PA

ψπ

→ ∨
y,y′∈Y,
y,y′

d(y) = d(y′)

︸ ︷︷ ︸
ϕ¬sp

.

The subformula ϕsp is the conjunction of all path formulas whereas the
subformula ϕ¬sp captures valuation words that have the right ordering of
the universally quantified variables but do not admit a run of A (i.e., that
are rejected by A). As in the case of path formulas, the Array Property
Fragment formula ϕ¬sp only approximates the correct semantics of A. Again,
the disjunction constituting the consequent compensates for the necessary
overapproximation in the antecedent (y1 ≤ · · · ≤ yk instead of y1 < · · · < yk).

96

Since the decidable syntactic fragment of Strand allows negating atomic
formulas, ϕA is in this fragment. Though the Array Property Fragment also
allows negation over atomic formulas that relate two pointer variables or a
pointer variable and a universally quantified variable, negation of an atomic
formula of the form y ≤ y′ is not allowed [BMS06]. However, since we assume
both a fixed variable ordering on Y along simple paths and that all other paths
with a different ordering lead to the formula true, we can remove formulas
of the form ¬(y ≤ y′) from ¬

(∨
π∈PA ψπ

)
; as before, considering a different

ordering of the variables in Y is not necessary because these variables are
universally quantified. After removing such subformulas, the formula ϕA falls
into the Array Property Fragment.
When we apply our translation to an EQDA to obtain a formula in the

syntactic decidable fragment of Strand over lists, the obtained formula
exactly characterizes the set of program configurations that correspond to the
language of data words accepted by the given EQDA. However, due to the
necessary abstractions introduced by our translation into the Array Property
Fragment, the formula obtained from translating the EQDA over arrays might
not characterize the semantics of the given EQDA exactly. However, we can
at least assert that all data words accepted by this EQDA correspond to a
program configuration satisfying the formula.
To make this intuition precise, let us introduce the following notations:

Given a program configuration c, let (c) denote the natural translation of c into
an interpretation for formulas in the Array Property Fragment, respectively
in the decidable syntactic fragment of Strand.2 Moreover, let (c, y1, . . . , yk)
denote the interpretation (c) in which the universally quantified variables are
fixed to the values y1, . . . , yk.

The following theorem now summarizes the main result of our translation.

Theorem 5.5.2. Let A be an EQDA, c a program configuration, uc the data
word corresponding to c, and ϕA the formula obtained after the translation
(either in the decidable syntactic fragment of Strand or the Array Property
Fragment).

a) For a translation into the decidable syntactic fragment of Strand, the
2We make sure that the type of an interpretation (i.e., whether it is for formulas in the

Array Property Fragment or in the decidable syntactic fragment of Strand) is always
clear from the context.

97

equivalence
uc ∈ Ldat(A) if and only if (c) |= ϕA

holds.

b) For a translation into the Array Property Fragment, the implication

uc ∈ Ldat(A) implies (c) |= ϕA

holds.

The abstraction along simple paths with y < y′ introduced by our transla-
tion is the reason why Theorem 5.5.2 only holds in one direction for the Array
Property Fragment. For this reason, we first prove Theorem 5.5.2 for the
translation into the decidable syntactic fragment of Strand; based on the
insight gained in the proof, it becomes much easier to prove Theorem 5.5.2
for the translation into the Array Property Fragment.

Decidable syntactic fragment of Strand The pivotal fact on which
Theorem 5.5.2 relies is that the path guard ψπ exactly captures the structural
constraints along π. The next lemma formalizes this intuition.

Lemma 5.5.3. Let A be an EQDA over the finite set PV of pointer variables
and the finite, nonempty set Y of universally quantified variables, π a simple
path in A, and ψπ the corresponding path guard in the decidable syntactic
fragment of Strand. Moreover, let c be a program configuration, y1, . . . , yk

a valuation of Y , and v the valuation word modeling c and y1, . . . , yk. Then,
the following equivalence holds:

the unique run of A on v is along π if and only if (c, y1, . . . , yk) |= ψπ.

Proof. We split the proof into two parts: we first show the direction from left
to right and subsequently the reverse direction. The direction from left to
right is straightforward and simply exploits the fact we only add such local
constraints to a path guard that are obviously satisfied along the given path.
The direction from right to left, however, is more elaborate to prove.

98

From left to right Let

π = q0
a1−→ q1

a2−→ . . .
an−→ qn

a simple path in A and assume that the unique run of A on v is along π.
Since the path guard is the conjunction ∧ni=1

∧
ψ∈Ci

ψ of all local constraints
along π, it is enough to prove that (c, y1, . . . , yk) satisfies each individual local
constraint. To this end, let ψ be a local constraint, say constructed at state
qi of π.
In order to show (c, y1, . . . , yk) |= ψ, we have to distinguish due to which

case of the translation the constraint ψ has been constructed. However, since
most cases are similar, we do not give a thorough proof here but exemplary
consider Case 4.
If ψ has been introduced in Case 4, then ψ B x1 →+ x2 with x1 ∈ ai and

x2 ∈ ai+1. Since the run of A on v is along π, we know that all variables
x ∈ ai occur before the variables x′ ∈ ai+1. Thus, (c, y1, . . . , yk) satisfies
x→+ x′ for all such x, x′. This in turn means (c, y1, . . . , yk) |= ψ.

From right to left Let

π = q0
a1−→ q1

a2−→ . . .
am−→ qm

be a simple path in A and (c, y1, . . . , yk) a model of ψπ. Towards a con-
tradiction, assume that the run of A on v is along a different simple path,
say

π′ = q0
a′1−→ q′1

a′2−→ . . .
a′n−→ q′n.

Then, there exists a position i ∈ N+ at which both paths diverge; that is,
aj = a′j and qj = q′j for all j ∈ [i], ai , a′i, and qi , q

′
i. Note that such a

position always exists because the states of A are “typed” (i.e., A has to
remember which variable it has already read). Figure 5.4 depicts such a
situation.
We observe that all input symbols along the paths π and π′ are different

from b because A is elastic. Thus, if ai , a′i, then there exists a variable
x ∈ PV ∪ Y that is missing in exactly one of ai and a′i (i.e., x ∈ ai if and
only if x < a′i). Without loss of generality, let us assume x ∈ ai and x < a′i.
Since a′i , b, there also exists a variable x′ ∈ a′i that is different from

99

q0start

qi

q′i

qm

q′n

a1 . . . ai−1

a′1 . . . a
′
i−1

ai

a′i

ai+1 . . . am

a′i+1 . . . a
′
n

π

π′

x ∈
x′ ∈

x <, x′ ∈ x ∈

Figure 5.4: Two diverging simple paths π, π′.

x. Moreover, since π′ is a simple path (which implies that all pointer and
universally quantified variables occur exactly once), the variable x also occurs
in π′, but only in one of the inputs a′i+1, . . . , a

′
n; note that x′ might or might

not occur together with x on π.
We now distinguish two cases:

1. An auxiliary variable, say z, occurs in the input-symbol ai on π; that is,
qi belongs to the auxiliary part of π. We first observe that x cannot be
an auxiliary variable because we assume that auxiliary variables appear
never together and always in the same, fixed order. Thus, the following
two cases remain:

(a) The variable x occurs on π′ together with an auxiliary variable,
say z′, that is different from z. Since we assume the run of A on v
to be along π′, this means (c, y1, . . . , yk) |= x = z′. Consequently,
(c, y1, . . . , yk) 6|= x = z because x = z ∧ x = z′ is unsatisfiable if
z , z′. However, the path guard ψπ contains the local constraint
x = z (see Case 1). Thus, (c, y1, . . . , yk) 6|= ψπ, which yields a
contradiction.

(b) The variable x does not occur together with an auxiliary variable
on π′. Since we assume the run of A on v to be along π′, this means
(c, y1, . . . , yk) |= head →∗ x. Consequently, (c, y1, . . . , yk) 6|= x = z

because z is an auxiliary variable that occurs before head. However,
the path guard ψπ contains the local constraint x = z (again, see
Case 1). Thus, (c, y1, . . . , yk) 6|= ψπ, which yields a contradiction.

2. The input-symbol ai on π does not contain an auxiliary variable; that

100

is, qi belongs to the data structure part of π. Since we assume the
run of A on v to be along π′, the variable x′ points to a cell that is
located before the cell pointed to by x. Hence, (c, y1, . . . , yk) |= x′ →+ x.
Consequently, (c, y1, . . . , yk) 6|= x →∗ x′ because x →∗ x′ ∧ x′ →+ x is
unsatisfiable. However, the path guard ψπ implies x→∗ x′ (see Cases 4
and 5) although it might not contain this subformula explicitly. Thus,
(c, y1, . . . , yk) 6|= ψπ, which yields the desired contradiction.

� �

Using Lemma 5.5.3, we can now prove Part (a) of Theorem 5.5.2.

of Theorem 5.5.2(a). Let A be an EQDA over PV and Y , y1 ≺ · · · ≺ yk

the predetermined order in which the universally quantified variables have
to occur in the input of A, and ϕA the formula in the decidable syntactic
fragment of Strand resulting from our translation. In addition, let c be a
program configuration and uc the data word modeling c.
We first show the direction from left to right (i.e., uc ∈ Ldat(A) implies

(c) |= ϕA) and subsequently the reverse direction (i.e., (c) |= ϕA implies
uc ∈ Ldat(A)).

From left to right Let uc ∈ Ldat(A). In order to prove that the inter-
pretation (c) satisfies ϕA B ∀y1 : . . . ∀yk : (ϕsp ∧ ϕ¬sp), we fix an arbitrary
valuation y1, . . . , yk of Y and show

(c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In the case that head →∗ y1 →+ · · · →+ yk →∗ tail does not hold, we
first observe that (c, y1, . . . , yk) does not satisfy any path guard because
each path guard implies head →∗ y1 →+ · · · →+ yk →∗ tail. Hence,
(c, y1, . . . , yk) |= ϕsp since the antecedent of each path formula is unsatis-
fied. Moreover, (c, y1, . . . , yk) does not satisfy the antecedent of ϕ¬sp and,
consequently, (c, y1, . . . , yk) |= ϕ¬sp. Thus, (c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.
In the case that head →∗ y1 →+ · · · →+ yk →∗ tail holds, let v be the

valuation word resulting from extending uc with the valuation y1, . . . , yk

(which implies dw(v) = uc). We proceed the proof by first showing that
(c, y1, . . . , yk) satisfies ϕsp and subsequently that it satisfies ϕ¬sp.

101

1. Since uc ∈ Ldat(A), the valuation word v is also accepted by A, say
along the simple path π. This particularly means that the unique run
of A on v ends in a configuration (q, r) with r |= f(q). By Lemma 5.5.3,
we know (c, y1, . . . , yk) |= ψπ. Moreover, since f(q) = χπ and r |= f(q),
we also know (c, y1, . . . , yk) |= χπ and, thus, (c, y1, . . . , yk) |= ψπ → χπ.
On the other hand, Lemma 5.5.3 asserts that no other path guard is
satisfied by (c, y1, . . . , yk). Thus, (c, y1, . . . , yk) |= ϕsp.

2. The fact that (c, y1, . . . , yk) |= ψπ holds (see above) implies that (c, y1,

. . . , yk) 6|= ¬(∨π∈PA ψπ). Hence, the antecedent of ϕ¬sp is not satisfied
and, therefore, (c, y1, . . . , yk) |= ϕ¬sp.

Thus, (c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.
In total, uc ∈ Ldat(A) implies (c) |= ϕA.

From right to left Let uc be a data word with uc < Ldat(A) and c the
corresponding program configuration. We need to show that c does not satisfy
ϕA.

Since uc < Ldat(A), there exists a valuation y1, . . . , yk and a corresponding
valuation word v (i.e., uc extended by y1, . . . , yk results in v) such that
v < Lval(A). This valuation word is rejected either

1. due to a missing transition; or

2. due to the fact that the run of A on v ends in a configuration (q, r)
with r 6|= f(q).

In the first case, the run of A on v does not lead along a simple path.
By Lemma 5.5.3, this implies (c, y1, . . . , yk) 6|= ψπ for every π ∈ PA. Hence,
(c, y1, . . . , yk) |= ¬(∨π∈PA ψπ). Since we assume that A accepts all valua-
tion words that violate the fixed order of the universally quantified vari-
ables or where at least one of these variables points to nil, we know that
(c, y1, . . . , yk) |= head →∗ y1 →+ · · · →+ yk →∗ tail holds. Thus, (c, y1, . . . , yk)
6|= ϕ¬sp and, consequently, c 6|= ϕA.

In the second case, the run ofA on v leads along a simple path, say π, ending
in the configuration (q, r). By Lemma 5.5.3, this implies (c, y1, . . . , yk) |=
ψπ. However, since r 6|= f(q) = χπ, we have (c, y1, . . . , yk) 6|= χπ. Thus,
(c, y1, . . . , yk) 6|= ϕsp (because (c, y1, . . . , yk) 6|= ψπ → χπ) and, consequently,
c 6|= ϕA.

102

In total, uc < Ldat(A) implies (c) 6|= ϕA (i.e., (c) |= ϕA implies uc ∈
Ldat(A)). � �

Array Property Fragment The approximation in Case 4 of our trans-
lation is the reason why Theorem 5.5.2 holds only in one direction in the
case of a translation into the Array Property Fragment. In order to prove
this direction, we first show that the path guard ψπ overapproximates the
structural constraints of π. The next lemma formalizes this.

Lemma 5.5.4. Let A be an EQDA over the finite set PV of pointer vari-
ables and the finite, nonempty set Y of universally quantified variables, π a
simple path in A, and ψπ the corresponding path guard in the Array Property
Fragment. Moreover, let c be a program configuration, y1, . . . , yk a valuation
of Y , and v the valuation word modeling c and y1, . . . , yk. Then, the following
implication holds:

if the unique run of A on v is along π, then (c, y1, . . . , yk) |= ψπ.

Proof. One can prove Lemma 5.5.4 in the same way as Lemma 5.5.3 (see
Page 98): again, we consider each local constraint ψ of a path guard indi-
vidually and show (c, y1, . . . , yk) |= ψ. In fact, we can reuse the proof of
Lemma 5.5.3 except for a slightly different treatment of Case 4, which we
sketch below.
Assume that ψ has been added at state qi of the simple path π = q0

a1−→
. . .

an−→ qn, and let x1 ∈ ai and x2 ∈ ai+1.
If x1 < Y or x2 < Y , then this situation matches Case 4 of the proof of

Lemma 5.5.3 and immediately yields the desired result.
If x1 ∈ Y , x2 ∈ Y , and both variables do not occur together with a pointer

variable, then the translation adds ψ B x1 ≤ x2 instead of the “correct”
constraint x1 < x2. However, we know that all variables x ∈ ai occur
before the variables x′ ∈ ai+1 because the run of A on v is along π. Thus,
(c, y1, . . . , yk) |= x < x′ for all such x, x′, which implies (c, y1, . . . , yk) |= x1 ≤
x2 (i.e., (c, y1, . . . , yk) |= ψ). � �

We can now prove Part (b) of Theorem 5.5.2.

of Theorem 5.5.2(b). Let A be an EQDA over PV and Y , y1 ≺ · · · ≺ yk the
predetermined order in which the universally quantified variables have to

103

occur in the input of A, and ϕA the formula in the Array Property Fragment
resulting from our translation. Moreover, let c be a program configuration
and uc the data word modeling c. Finally, assume uc ∈ Ldat(A).
We have to show that (c) is a model of ϕA. This proof is similar to the

direction from left to right of the proof of Theorem 5.5.2(a): we again fix an
arbitrary valuation y1, . . . , yk of Y and show

(c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In the case that 0 ≤ y1 ≤ · · · ≤ yk < size does not hold, we again observe
that (c, y1, . . . , yk) does not satisfy any path guard because each path guard
implies 0 ≤ y1 ≤ · · · ≤ yk < size. Hence, (c, y1, . . . , yk) |= ϕsp since the
antecedent of each path formula is unsatisfied. Moreover, (c, y1, . . . , yk) does
not satisfy the antecedent of ϕ¬sp and, consequently, (c, y1, . . . , yk) |= ϕ¬sp.
Thus, (c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In the case that 0 ≤ y1 ≤ · · · ≤ yk < size holds, we distinguish two cases:

1. All universally quantified variables are different; that is, yi , yj holds
for all i, j ∈ {1, . . . , k} with i , j. In this case, let v be the valuation
word resulting from extending uc with the valuation y1, . . . , yk. We
proceed the proof by first showing that (c, y1, . . . , yk) satisfies ϕsp and
subsequently that it satisfies ϕ¬sp.

(a) Since uc ∈ Ldat(A), the valuation word v is also accepted by A,
say along the simple path π. By Lemma 5.5.4, we know that then
(c, y1, . . . , yk) |= ψπ holds. Since v ∈ Lval(A), the registers satisfy
the data formula of the final state of π. Thus, (c, y1, . . . , yk) |= χπ

and, consequently, (c, y1, . . . , yk) |= ψπ → χπ.
To complete this case, we argue that there exists no other path π′ ∈
PA with π′ , π and (c, y1, . . . , yk) |= ψπ′ . Towards a contradiction,
assume the contrary and let π′ such a simple path. By using
arguments similar to those in the direction from right to left of the
proof of Lemma 5.5.3, one can show that this can only happen due
to an overapproximation of the form yi ≤ yj (rather than yi < yj).
This, in turn, implies that there exists i, j ∈ {1, . . . , k} with i < j

and yi = yk, which contradicts the assumption that all universally
quantified variables are different.

104

In total, (c, y1, . . . , yk) satisfies the path formula of each simple
path. Hence, (c, y1, . . . , yk) |= ϕsp.

(b) Since uc ∈ Ldat(A), we know that there exists a simple path π ∈ PA
such that (c, y1, . . . , yk) |= ψπ (see above). Thus, (c, y1, . . . , yk) 6|=
¬(∨π∈PA ψπ) because removing subformulas of the form ¬(y ≤
y′) from a path guard potentially results in more interpretations
satisfying it and, thus, less satisfying its negation. This implies
(c, y1, . . . , yk) |= ϕ¬sp since we assume 0 ≤ y1 ≤ · · · ≤ yk < size.

Thus, (c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

2. There exist i, j ∈ {1, . . . , k} such that i < j and yi = yj. In this case,
there might be a simple path π ∈ PA such that (c, y1, . . . , yk) |= ψπ.
Since universally quantified variables never occur together on a simple
path (due to the choice of the input alphabet of QDAs), (c, y1, . . . , yk)
can only satisfy ψπ due to the overapproximation yi ≤ yj (rather than
yi < yj) introduced by Case 4 of our translation. This means that the
formula χπ is constructed by taking the disjunction of the formulas
f(q) (assuming that q is the final state of π), d(yi) = d(yj), and
potentially other formulas of the form d(y) = d(y′) for y, y′ ∈ Y . Thus,
(d(yi) = d(yj))→ χπ. Since yi = yj, we have d(yi) = d(yj) and, hence,
(c, y1, . . . , yk) |= χπ. This, in turn, means (c, y1, . . . , yk) |= ψπ → χπ.
Since these arguments are true for all simple paths π′ ∈ PA for which
(c, y1, . . . , yk) |= ψπ′ holds, (c, y1, . . . , yk) |= ϕsp.

On the other hand, (c, y1, . . . , yk) |= ϕ¬sp because (c, y1, . . . , yk) sat-
isfies the consequent of ϕ¬sp due to the equality yi = yj. Thus,
(c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In total, uc ∈ Ldat(A) implies (c) |= ϕA. � �

5.6 Learning Likely Invariants over Linear Data
Structures by Passively Learning QDAs

Now that we have studied quantified data automata, their properties, and
introduced a subclass called elastic QDAs that can be translated to decidable
logics, we develop learning algorithms for QDAs and EQDAs that help us

105

learn these automata and, subsequently, learn quantified invariants over linear
data structures. In this section, we develop a passive learning algorithm for
QDAs that learns them from a labeled sample of program configurations
that manifest along dynamic test runs. In the next section, Section 5.7, we
develop an ICE learning algorithm for QDAs and deploy it together with a
verification oracle to robustly learn quantified program invariants over linear
data structures.
In an active black-box learning framework, we look upon the invariant as

a set of configurations of the program, and allow the learner to query the
teacher for membership and equivalence queries on this set. Furthermore,
we fix a particular representation class for these sets, and demand that the
learner learn the smallest (simplest) representation that describes the set. A
learning algorithm that learns in time polynomial in the size of the simplest
representation of the set is desirable. In passive black-box learning, the learner
is given a sample of examples and counterexamples of configurations, and is
asked to synthesize the simplest representation that includes the examples
and excludes the counter-examples. Our motivation for doing passive learning
is that we believe (and we validate this belief using experiments) that in many
problems, a lighter-weight passive-learning algorithm which learns from a few
randomly-chosen small data structures is sufficient to find the invariant. Note
that passive learning algorithms, in general, often boil down to a guess-and-
check algorithm of some kind, and often pay an exponential price in the size
of the property learned. As opposed to developing purely passive algorithms
for learning QDAs, we develop an active learning algorithm a la Angluin
that allows the learner to query the teacher for membership and equivalence
queries and the teacher answers on the set of configurations that belong to an
invariant. We then employ the active learning algorithm in a passive learning
setting where we show that by building an imprecise teacher that answers
the questions of the active learner, we can build effective invariant generation
algorithms that learn simply from a finite set of examples. Designing a
passive learning algorithm using an active learning core allows us to build
more interesting algorithms; in our algorithm, the inacurracy/guessing is
confined to the way the teacher answers the learner’s questions.
The passive learning algorithm works as follows. Assume that we have

a finite set of configurations S, obtained from sampling the program (by
perhaps just running the program on various random small inputs). We

106

are required to learn the simplest representation that captures the set S (in
the form of a QDA). We now use an active learning algorithm for QDAs;
membership questions are answered with respect to the set S (note that this
is imprecise, as an invariant I must include S but need not be precisely S).
When asked an equivalence query with a set I, we check whether S ⊆ I; if
yes, we can check if the invariant is adequate using a constraint solver and
the program.
It turns out that this is a good way to build a passive learning algorithm.

First, enumerating random small data structures that get manifest at the
header of a loop fixes for the most part the structure of the invariant, since
the invariant is forced to be expressed as a QDA. Second, our active learning
algorithm for QDAs promises never to ask long membership queries (queried
words are guaranteed to be less than the diameter of the automaton), and
often the teacher has the correct answers. Finally, note that the passive
learning algorithm answers membership queries with respect to S; this is
because we do not know the true invariant, and hence err on the side of
keeping the invariant semantically small. This inaccuracy is common in most
learning algorithms employed for verification (e.g., Boolean learning [KJD+10],
compositional verification [CGP03,AMN05], etc). This inaccuracy could lead
to a non-optimal QDA being learnt, and is precisely why our algorithm need
not work in time polynomial in the simplest representation of the concept
(though it is polynomial in the invariant it finally learns).

The proof of the efficacy of the passive learning algorithm rests in the
experimental evaluation. We implement the passive learning algorithm (which
in turn requires an implementation of the active learning algorithm). By
building a teacher using dynamic test runs of the program and by pitting
this teacher against the learner, we learn invariant QDAs, and then over-
approximate them using elastic QDAs (EQDAs). These EQDAs are then
transformed into formulas over decidable theories of arrays and lists. Next, we
describe the details about the active-learning algorithm and how we deploy it
in a passive setting to learn quantified invariants from configurations realized
along dynamic runs.

107

5.6.1 Angluin’s Active Learning Setting

Angluin’s active learning setting, which she has introduced in [Ang87a], is
a framework in which the task is to “learn” a regular language L ⊆ Σ∗

over a fixed alphabet Σ—called target language—by actively querying an
external source for information. The learning takes place between a learning
algorithm—abbreviated learner—and the information source—called teacher.
The teacher can answer two types of queries: membership and equivalence
queries.

Membership query On a membership query, the learner provides a word
u ∈ Σ∗ and the teacher replies “yes” if u ∈ L and “no” if u < L.

Equivalence query On an equivalence query, the learner provides a regular
language, usually given as a DFA A, and the teacher checks whether A
is equivalent to the target language. If this is the case, he returns “yes”.
If this is not the case, he returns a counterexample u ∈ L(A)⇔ u < L

as a witness that L(A) and L are indeed different.

Given a teacher for a regular target language L, the learner’s task is to find a
DFA (usually of minimal size) that passes an equivalence query.

In [Ang87a], Angluin has not only introduced the active learning framework
but also developed a learning algorithm that learns the unique minimal
deterministic automaton that accepts the target language in polynomial
time. This algorithm is based on the Myhill-Nerode congruence of the target
language: given a language L ⊆ Σ∗, the Myhill-Nerode congruence is the
equivalence relation ∼L over words defined by u ∼L v if and only if uw ∈
L⇔ vw ∈ L for all w ∈ Σ∗. Angluin’s pivotal idea is to start with a coarse
approximation of the Myhill-Nerode congruence and refine the approximation,
using membership and equivalence queries, until the Myhill-Nerode congruence
has been computed exactly; since the number of equivalence classes is finite for
every regular language, this approach is guaranteed to terminate eventually.

Internally, Angluin’s algorithm stores the data learned so far in a so-called
observation table O = (R, S, T); the set R ⊆ Σ∗ is a finite, prefix-closed set
of representatives that serve to represent equivalence classes, the set S ⊆ Σ∗

is a finite set of samples that are used to distinguish representatives, and
T : (R ∪R · Σ) · S → {“yes”, “no”} is a mapping that stores the actual table
entries and is filled using membership queries.

108

Angluin’s algorithm proceeds in rounds: In each round, the algorithm
extends the observation table until it is closed and consistent, which roughly
corresponds to the situation that the data stored in the table forms a con-
gruence. Then, Angluin’s algorithm derives a conjecture DFA from the table
(similar to the construction of the minimal DFA from the Myhill-Nerode con-
gruence) and submits this conjecture on an equivalence query. If the teacher
replies “yes”, the learning terminates; if the teacher returns a counterexample,
on the other hand, Angluin’s algorithm adds the counterexample along with
all of its prefixes as new representatives to the table and proceeds with the
next iteration.
We refer the reader to [Ang87a] for an in-depth presentation of Angluin’s

active learning setting and Angluin’s algorithm. Here, we just want to
summarize the main results.

Theorem 5.6.1 (Angluin [Ang87a]). Given a teacher for a regular target
language L ⊆ Σ∗, Angluin’s algorithm learns the minimal DFA accepting L
in time polynomial in the size n of this DFA and the length m of the longest
counterexample returned by the teacher. It asks O(n) equivalence queries and
O(mn2) membership queries.

5.6.2 Actively Learning QDAs as Moore Machines

For actively learning QDAs we take the view of QDAs as Moore machines, as
described in Section 5.3.1. We first describe how to adapt Angluin’s setting
to Moore machines and then explain how to apply this to learning QDAs.
In the context of actively learning Moore machines, the target concept

is a Moore machine computable function f : Σ∗ → Γ. Note that we obtain
Angluin’s original setting for learning regular languages by letting Γ = {0, 1}.

Given A Moore machine computable function f : Σ∗ → Γ, a teacher for f
answers queries as follows.

Membership query On a membership query with a word u ∈ Σ∗, the
teacher replies the classification f(u).

Equivalence query On an equivalence query with a Moore machineM,
the teacher checks whether fM = f is satisfied. Is this the case, he
returns “yes”. If this is not the case, he returns a counterexample u ∈ Σ∗

with fM(u) , f(u).

109

Note that the learner and the teacher do not need to agree a priori on
the output alphabet since the learner can obtain this knowledge through
membership queries.

One can, in a straight forward manner, adapt Angluin’s algorithm—in fact
any observation table-based learning algorithms, such as Rivest and Schapire’s
algorithm [RS93]—to learn Moore machines. The idea is to lift the Myhill-
Nerode congruence to Moore machine computable mappings f : Σ∗ → Γ by
defining

u ∼f v if and only if ∀w ∈ Σ∗ : f(uw) = f(vw),

where u, v ∈ Σ∗. Then, it is indeed enough to adapt the mapping T of an
observation table to T : (R ∪ R · Σ) · S → Γ and the way conjectures are
generated. For the latter, we do no longer produce a DFA as a conjecture but
a Moore machine whose output is defined by the function value f(u) of the
representatives u ∈ R. Chen et al. [CFC+09] demonstrate this adaptation for
the case |Γ| = 3.
In analogy to Angluin’s algorithm (see Theorem 5.6.1), an algorithm

adapted this way learns the unique minimal Moore machine for the tar-
get function in time polynomial in this minimal Moore machine and the
length of the longest counterexample returned by the teacher. Thus, we
obtain the following remark.

Remark 5.6.2. Given a teacher for a Moore machine computable function
that can answer membership and equivalence queries, the unique minimal
Moore machine for this function can be learned in time polynomial in the size
of this minimal Moore machine and the length of the longest counterexample
returned by the teacher.

We can now simply apply this setting to QDAs viewed as Moore machines.
Reformulating the setting for this specific case, we assume that the teacher
has access to a QDA-acceptable language Lfor ⊆ Π∗ × F of formula words
and answers queries as follows.

Membership query. On a membership query, the learner provides a sym-
bolic word w ∈ Π∗, and the teacher returns the unique formula ϕ ∈ F
with (w,ϕ) ∈ Lfor . Note that such a formula word is guaranteed to
exist since Lfor is a QDA-acceptable language.

110

Equivalence query. On an equivalence query with a QDA A, the teacher
checks whether Lf (A) = Lfor is satisfied. If this is the case, he returns
“yes”. If this is not the case, then there exists a formula word (w,ϕ)
such that (w,ϕ) ∈ Lf(A)⇔ (w,ϕ) < Lfor (since both Lf(A) and Lfor

contain a formula word of the form (w′, ϕ′) for every w′ ∈ Π∗), and the
teacher returns w as counterexample.

Such a teacher for QDAs answers queries in the same manner as a teacher
for Moore machines, hence we have reduced the learning of QDAs to learning
of Moore machines (using the correspondence from Observation 5.3.1 in
Section 5.3.1). This allows us to adapt off-the-shelf learning algorithms, such
as Angluin’s or Rivest and Schapire’s algorithm, and we immediately obtain
the following result.

Theorem 5.6.3. Given a teacher for a QDA-acceptable language of formula
words that can answer membership and equivalence queries, the unique minimal
QDA for this language can be learned in time polynomial in the size of this
minimal QDA and the length of the longest counterexample returned by the
teacher.

5.6.3 Learning Quantified Invariants from Dynamic runs

We apply the active learning algorithm for QDAs, described above, in a
passive learning framework in order to learn quantified invariants over lists
and arrays from a finite set of samples S obtained from dynamic test runs.
In this section, we present the implementation details and the experimental
results of our evaluation.

Implementing the Teacher:

In an active learning algorithm, the learner can query the teacher for member-
ship and equivalence queries. In order to build a passive learning algorithm
from a sample S, we build a teacher, who will use S to answer the questions
of the learner, ensuring that the learned set contains S.

The teacher knows S and wants the learner to construct a small automaton
that includes S; however, the teacher does not have a particular language of
data words in mind, and hence cannot answer questions precisely. We build a

111

teacher who answers queries as follows: On a membership query for a word
w, the teacher checks whether w belongs to S and returns the corresponding
data formula. The teacher has no knowledge about the membership for words
which were not realized in test runs, and she rejects these. She also does
not know whether the formula she computes on words that get manifest can
be weaker; but she insists on that formula. By doing these, the teacher errs
on the side of keeping the invariant semantically small. On an equivalence
query, the teacher just checks that the set of samples S is contained in the
conjectured invariant. If not, the teacher returns a counter-example from S.

Note that the passive learning algorithm hence guarantees that the automa-
ton learned will be a superset of S, and the running time of the algorithm is
guaranteed to be polynomial in the size of the learned automaton. We show
the efficacy of this passive learning algorithm using experimental evidence
later in this section.

Implementation of a Passive Learner of Invariants:

We first take a program and using a test suite, extract the set of concrete data
structures that get manifest at loop-headers (for learning loop invariants)
and at the beginning and end of functions (for learning pre/post-conditions).
The test suite is generated by enumerating all possible arrays/lists of a small
bounded length, and with data-values in them from a small bounded domain.
We then convert the data structures into a set of formula words, as described
below, to get the set S on which we perform passive learning.
We first fix the formula lattice F over data formulas to be the Cartesian

lattice of atomic formulas over relations {=, <,≤}. This is sufficient to capture
the invariants of many interesting programs such as sorting routines, searching
a list, in-place reversal of sorted lists, etc. Using lattice F , for every program
configuration which is realized in some test run, we generate a formula word
for every valuation of the universal variables over the program structures.
We represent these formula words as a mapping from the symbolic word,
encoding the structure, to a data formula in the lattice F . If different inputs
realize the same structure but with different data formulas, we associate the
symbolic word with the join of the two formulas.

112

Implementing the Learner:

We used the libALF library [BKK+10] as an implementation of the active
learning algorithm [Ang87a]. We adapted its implementation to our setting
by modeling QDAs as Moore machines. If the learned QDA is not elastic,
we elastify it as described in Section 5.4. The result is then converted to a
quantified formula over Strand or the APF (see Section 5.5.2) and we check
if the learned invariant is adequate and inductive. Due to the unavailability
of an implementation of the Strand decision procedure, we checked the
inductiveness of the invariants learned over list data-structures by manually
inspecting the learned QDAs. For programs over arrays, we checked the
inductiveness of the learned invariants by manually generating the verification
conditions and validating them using the Z3 solver [dMB08] . In the case
of arrays, the APF formula that corresponds to a QDA and presented in
Section 5.5 over-approximates the semantics of the EQDA. To obtain better
results in the implementation, we used a more precise formula in which ϕ¬sp

is replaced by the formula [(0 ≤ y1 < . . . < yk < size)∧¬(∨π∈PA ψπ)]→ false.
Although this formula does not fall in the APF, the constraint solver was
able to handle it in our experiments.

Experimental Results:

We evaluate our approach on a suite of programs for learning invariants and
preconditions. Our experimental results are tabulated in Table 5.1 3. For
every program, we report the number of lines of C code, the number of test
inputs and the time (Tteach) taken to build the teacher from the samples
collected along these test runs. We next report the number of equivalence and
membership queries answered by the teacher in the active learning algorithm,
the size of the final elastic automata in terms of the number of states, whether
the learned QDA required any elastification or not and, finally, the time
(Tlearn) taken to learn the QDA.

The first part of the table presents results for programs manipulating arrays
like finding a key in an array, copying and comparing two arrays and simple
sorting algorithms over arrays. The inner and outer suffix in insertion and

3The benchmark suite and the source code of our implementation is available at
http://www.cs.uiuc.edu/~madhu/cav13/

113

Program LOC #Test Tteach # # # Elasti Tlearn
inputs (s) Eq. Mem. states ified? (s)

Learning Loop Invariants

array-find 25 310 0.05 2 121 8 no 0.00
array-copy 25 7380 1.75 2 146 10 no 0.00
array-compare 25 7380 0.51 2 146 10 no 0.00
insertion-sort-outer 30 363 0.19 3 305 11 no 0.00
insertion-sort-innner 30 363 0.30 7 2893 23 yes 0.01
selection-sort-outer 40 363 0.18 3 306 11 no 0.01
selection-sort-inner 40 363 0.55 9 6638 40 yes 0.05

list-sorted-find 20 111 0.04 6 1683 15 yes 0.01
list-sorted-insert 30 111 0.04 3 1096 20 no 0.01
list-init 20 310 0.07 5 879 10 yes 0.01
list-max 25 363 0.08 7 1608 14 yes 0.00
list-sorted-merge 60 5004 10.50 7 5775 42 no 0.06
list-partition 70 16395 11.40 10 11807 38 yes 0.11
list-sorted-reverse 25 27 0.02 2 439 18 no 0.00
list-bubble-sort 40 363 0.19 3 447 12 no 0.01
list-fold-split 35 1815 0.21 2 287 14 no 0.00
list-quick-sort 100 363 0.03 1 37 5 no 0.00
list-init-complex 80 363 0.05 1 57 6 no 0.01

lookup_prev 25 111 0.04 3 1096 20 no 0.01
add_cachepage 40 716 0.19 2 500 14 no 0.01
Glib sort (merge) 55 363 0.04 1 37 5 no 0.00
Glib insert_sorted 50 111 0.04 2 530 15 no 0.01
devres 25 372 0.06 2 121 8 no 0.00
rm_pkey 30 372 0.06 2 121 8 no 0.00
GNU Coreutils sort 2500 1 File 0.00 17 4996 5 yes 0.07

Learning Method Preconditions

list-sorted-find 20 111 0.01 1 37 5 no 0.00
list-init 20 310 0.02 1 26 4 no 0.00
list-sorted-merge 60 329 0.06 3 683 19 no 0.01

Table 5.1: Experimental Results.

selection sort corresponds to learning loop-invariants for the inner and the
outer loops in those sorting algorithms. In the second part of the table, we
present results for programs that manipulate lists and includes programs to
find a key in a sorted list, insert a key in a sorted list such that the resulting
list is sorted, initialize all nodes in a list with the value of a key, return the
maximum data value in a list, merge two disjoint sorted lists such that the
resulting list is also sorted, partition a list into two lists such that one list
consists of elements that satisfy a given predicate and the other list consists
of nodes that do not, and an in-place reversal of a sorted list where we check

114

whether the output list is reverse-sorted. The programs bubble-sort, fold-split
and quick-sort are taken from [BDES12]. The program list-init-complex sorts
an input array using heap-sort and then initializes a list with the contents of
this sorted array. Since heap-sort is a complex algorithm that views an array as
a binary tree, none of the current automatic white-box techniques for invariant
synthesis can handle such complex programs. However, our learning approach
being black-box, we are able to learn the correct invariant, which is that the
list is sorted. Similarly, synthesizing post-condition annotations for recursive
procedures like merge-sort and quick-sort is in general difficult for white-box
techniques, like interpolation, which require a post-condition. Further more,
many white-box tools based on interpolation, such as Safari [ABG+12],
cannot handle list-structures, and also cannot handle array-based programs
with quantified preconditions, which precludes verifying the array variants of
programs like list-sorted-find, list-sorted-insert, etc., which we can handle.
In the third part of the table we present results for verifying methods or

code fragments picked from real-world programs. The methods lookup_prev
and add_cachepage are from the module cachePage in ExpressOS, which is
a verified-for-security OS platform for mobile applications [MPX+13]. The
module cachePage maintains a cache of the recently used disc pages as a
priority queue based on a sorted list. Next, the method sort is a merge sort
implementation and insert_sorted is a method for inserting a key into a
sorted list. Both these methods are from the Glib library, which is a low-
level C library that forms the basis of the Gtk+ toolkit and the Gnome
environment. The methods devres and rm_pkey are methods adapted from
the Linux kernel and an Infiniband device driver, both mentioned in [KJD+10].
Finally, we learn the sortedness property (with respect to the method compare
that compares two lines) of the method sortlines which lies at the heart of the
GNU core utility to sort a file. The time taken by our technique to learn an
invariant, being black-box, largely depends on the complexity of the property
and not the size of the code, as is evident from the successful application of
our technique to this large program. In this particular case, we ran the sort
utility on an input text file which called the method sortlines multiple times
with different array inputs; formula words obtained from these concrete array
configurations, as described earlier in this section, form the sample S that
the teacher uses to learn an invariant. We also used our learning approach
for learning method preconditions, given a test suite; the results for those

115

experiments are presented in the fourth part of the table. Several methods in
our collection of programs have the same method preconditions such as the
input argument points to a list or that the input argument points to a sorted
list; we only report results in the table for three methods that have different
preconditions.
All experiments were completed on an Intel Core i5 CPU at 2.4GHz with

6GB of RAM. For all examples, our prototype implementation learns an
adequate invariant really fast. Though the learned QDA might not be the
smallest automaton representing the samples S (because of the inaccuracies
of the teacher), in practice we find that they are reasonably small (fewer than
50 states). Moreover, we verified that the learned invariants were adequate
for proving the programs correct by generating verification conditions and
validating them using an SMT solver (these verified in less than 1s). It is
possible that SMT solvers can sometimes even handle non-elastic invariants
and VCs; however, in our experiments, the Z3 SMT solver we used was not
able to handle such formulas without giving extra triggers, thus suggesting the
necessity of the elastification of QDAs. It is important to note that the learned
invariants might not always be inductive, even though this situation did not
arise in our experiments. Exploring automated test generation techniques
such as Klee [CDE08] to create a more exhaustive test suite that prevents
this situation from arising is an interesting direction for future work. In the
current setting, if the invariant learned is not inductive or is inadequate we
try to learn from an improved test suite by running the program on more test
inputs. ICE learning [GLMN14], as we described in Chapter 2, is an active
learning model in which the teacher answers equivalence queries only and
refutes the current invariant hypothesis, if it is not adequate or inductive,
by adding a positive, negative or an implication counter-example. The ICE
learning algorithms for QDAs are more robust that the one presented here
and ensure that the invariants learned are adequate and inductive (covered
in Section 5.7 [GLMN14]).
Learnt invariants are complex in some programs; for example, Figure 5.5

contains a graphical depiction of the invariant EQDA we learned for the
program list-sorted-find. If we read the rightmost simple path in the EQDA
from state q0 to q1 to state q14, and then to q3 and q9, it handles the case
when head = cur , nil and head→+ y1 and y1 →+ y2 and the EQDA asserts
that the data at location pointed to by y1 is less than or equal to the data at

116

Figure 5.5: The learned EQDA that corresponds to the loop invariant of the
program list-sorted-find.

y2. In totality, the EQDA corresponds to the following formula:
head , nil∧(∀y1y2.head→∗ y1 →∗ y2 ⇒ d(y1) ≤ d(y2))∧((cur = nil∧∀y1.head→∗

y1 ⇒ d(y1) < k) ∨ (head→∗ cur ∧ ∀y1.head→∗ y1 →+ cur ⇒ d(y1) < k)).
As opposed to the automata-based passive algorithm for learning likely

invariants we have propose in this section, Daikon [ECGN00] is a very mature
work, which also learns likely invariants over a set of atomic formulas, by
enumerating all formulas and checking which ones satisfy the samples and
where scalability is achieved in practice using several heuristics that reduce
the enumeration space which is doubly-exponential. However, for quantified
invariants over data-structures, such heuristics are not very effective, and
Daikon often restricts learning only to formulas of very restricted syntax, like

117

formulas with a single atomic guard, etc. In our experiments, Daikon was,
for instance, not able to learn an adequate loop invariant for the selection
sort algorithm.

5.7 ICE Learning QDAs

In this section, we develop an ICE learning algorithm for learning QDAs and,
together with a verification oracle as a teacher, deploy the learning algorithm
for robustly synthesizing quantified invariants over linear data structures.
Recall that neither active learning nor passive learning (covered in Section 5.6)
are robust learning frameworks for synthesizing invariants, since there is no
way for the teacher to ensure that the learned invariants are inductive. As
opposed to these models– ICE learning, which proposes an active learning
framework using positive, negative and implication counterexamples, with
correctness queries only, is a robust model for synthesizing invariants (see
Chapter 2).

A lower bound for ICE learning of EQDAs:

The goal of this section is to develop an iterative ICE learner for concepts
represented by EQDAs. We start by a result showing that we cannot hope
for a polynomial time iterative ICE learner, when the set of pointers and
quantified variables is unbounded.

Theorem 5.7.1. There is no polynomial time iterative ICE learner for
EQDAs, when the alphabet size is unbounded.

The theorem can be proven by adapting a lower-bound result by Angluin,
from [Ang90], namely that there is no polynomial time learning algorithm for
DFAs that only uses equivalence queries (no membership queries). The gist of
the proof is as follows. One constructs a family Ln of languages, where each
language in Ln is defined by a DFA of quadratic size in n, with the following
property. For each learner that runs in polynomial time (meaning that it uses
polynomially many rounds in the size of the target concept and each round
only takes polynomial time in the size of the current sample), there is an n
such that the teacher can answer the equivalence queries in such a way that

118

after the polynomial number of rounds available to the learner, there is more
than one language left in Ln that is still consistent with the answers of the
teacher. This means that the learner cannot, in general, identify each target
concept from Ln.
This proof can be adapted to EQDAs (using just the formulas true and

false) because the DFAs used to define the classes Ln are acyclic. However,
for each class Ln a different alphabet is needed because for a fixed alphabet
there are only finitely many EQDAs.
This shows that there is no hope of obtaining an iterative ICE learner

for EQDAs (or even QDAs) in the style of the well-known L∗ algorithm
of Angluin, which learns DFAs in polynomial time using equivalence and
membership queries. Recall that membership queries cannot be answered
honestly by an ICE teacher and thus we only have equivalence (or correctness)
queries. Note that in Section 5.6 [GLMN13] a learning algorithm for (E)QDAs
based on Angluin’s L∗ is developed. However, this algorithm uses a dishonest
teacher that answers queries in an arbitrarily chosen way if it does not know
the answer. The goal of this section is to develop a robust setting in which
the teacher can answer all queries honestly.

Adapting the heuristic RPNI algorithm for EQDAs:

Though we cannot hope for a polynomial time iterative ICE learner, we
develop a (non-iterative) ICE learner that constructs an EQDA from a given
sample in polynomial time. In the iterative setting this yields a learner for
which each round is polynomial, while the number of rounds is not polynomial,
in general. For the case of learning DFAs from samples of positive and negative
examples, such a heuristic is the passive RPNI algorithm [OG92]. It takes as
input a sample (E,C), where E is a set of positive example words and C is a
set of negative counterexample words, and constructs a DFA consistent with
(E,C), that is, accepting all words in E and rejecting all words in C. Our
ICE learning algorithm is adapted from the classical RPNI passive learning
algorithm [OG92].

RPNI can be viewed as an instance of an abstract state merging algorithm
that is sketched as Algorithm 4. In this general setting, the algorithm takes a
finite collection S of data, called a sample, as input and produces a Moore

119

Algorithm 4: Generic State Merging algorithm.
Input: A sample S
Output: A Moore machine A that passes test(A)

1 Ainit = (Q,Σ,Γ, q0, δ, f)← init(S);
2 (q0, . . . , qn)← order(Q);
3 ∼0← {(q, q) | q ∈ Q};
4 for i = 1, . . . , n do
5 if qi /i−1 qj for all j ∈ {0, . . . , i− 1} then
6 j ← 0;
7 repeat
8 Let ∼ be the smallest congruence that

contains ∼i−1 and the pair (qi, qj);
9 j ← j + 1;

10 until test(Ainit/∼);
11 ∼i←∼;
12 else
13 ∼i←∼i−1;
14 end
15 return Ainit/∼n ;

machine (i.e., a DFA with output) that is consistent with the sample (we
define this formally later). In the case of classical RPNI, S = (E,C) consists
of two finite sets of positive and negative counterexample words, the resulting
Moore machine is interpreted as a DFA, and we require that all words in E
be accepted whereas all words in C be rejected by the DFA.
Algorithm 4 proceeds in two consecutive phases. In Phase 1 (Lines 1 and

2), it calls init(S) to construct an initial Moore machine Ainit from S that
satisfies the sample (assuming that this is possible). Then, it picks a total
order q0 < . . . < qn on the states of Ainit, which determines the order in which
the states are to be merged in the subsequent phase. The actual state merging
then takes place in Phase 2 (Lines 3 to 14). According to the given order,
Algorithm 4 tries to merge each state qi with a “smaller” state qj (i.e., j < i)
and calls test on the resulting Moore machine to check whether this machine
still satisfies the sample; since a merge can cause nondeterminism, it might be
necessary to merge further states in order to restore determinism. A merge
is kept if the Moore machine passes test; otherwise the merge is discarded,
guaranteeing that the final Moore machine still satisfies sample. Note that
we represent merging of states by means of a congruence relation ∼⊆ Q×Q
over the states (i.e., ∼ is an equivalence relation that is compatible with the

120

transitions) and the actual merging operation as constructing the quotient
Moore machine Ainit/∼ in the usual way. Note that in the case of DFAs, each
merge increases the language and thus can be seen as a generalization step in
the learning algorithm.
It is not hard to verify that RPNI indeed produces a consistent DFA: it

starts with the prefix tree acceptor of E, which is clearly consistent with
(E,C) because E and C are disjoint (otherwise there is no DFA consistent
with (E,C)), and only keeps merges that do not violate the consistency.
Moreover, the resulting DFA is never larger than the prefix acceptor for
(E,C) because RPNI exclusively merges states. Note that RPNI does not
construct the smallest DFA consistent with the sample because an early merge
might prevent later merges which could have produced a smaller automaton.

We are now ready to describe our new ICE learning algorithm for EQDAs
that extends the above Algorithm 4, handling both EQDAs and implica-
tion samples. Recall that in the data-set based ICE for learning quantified
properties (Chapter 2), as in our setting, a sample is of the form (Ê, Ĉ, Î)
where Ê, Ĉ are sets of sets of valuation words and Î contains pairs of sets of
valuation words. From Section 5.3.1 we know that EQDAs can be viewed as
Moore machines that read valuation words and output data formulas. Hence
we can adapt the RPNI algorithm to learn EQDAs, as explained below.

For the initialization init(S) we construct an EQDA whose language is
the smallest (w.r.t. inclusion) EQDA-definable language that is consistent
with the sample S. To do this, we consider the set of all positive examples, i.e.,
the set E := ⋃

Ê. This is a set of valuation words, from which we strip off the
data part, obtaining a set E ′ of symbolic words only made up of pointers and
universally quantified variables. We start with the prefix tree of E ′ using the
prefixes of words in E ′ as states (as the original RPNI does). The final states
are the words in E ′. Each such word w ∈ E ′ originates from a set of valuation
words in E (all the extensions of w by data that result in a valuation word in
E). If we denote this set by Ew, then we label the state corresponding to w
with the least formula that is satisfied in all valuation words in Ew (recall that
the formulas form a lattice). This defines the smallest QDA-definable set that
contains all words in E. If this QDA is not consistent with the sample, then
either there is no such QDA, or the QDA is not consistent with an implication,
that is, for some (X, Y) ∈ Î it accepts everything in X but not everything in
Y . In this case, we add X and Y to Ê and restart the construction (since

121

every QDA consistent with the sample must accept all of X and all of Y).
To make this QDA A elastic, all states that are connected by a b-transition

are merged. This defines the smallest EQDA-definable set that contains all
words accepted by A (see [GLMN13]). Hence, if this EQDA is not consistent
with the sample, then either there is no such EQDA, or an implication
(X, Y) ∈ Î is violated, and we proceed as above by adding X and Y to Ê and
restarting the computation. This adapted initialization results in an EQDA
whose language is the smallest EQDA-definable language that is consistent
with the sample.

Once Phase 1 is finished, our algorithm proceeds to Phase 2, in which it
successively merges states of Ainit, to obtain an EQDA that remains consistent
with the sample but has less states. When merging accepting states, the new
formula at the combined state is obtained as the lub of the formulas of the
original states. Note that merging states of an EQDA preserves the self-loop
condition for b-transitions. Finally, the test routine simply checks whether
the merged EQDA is consistent with the sample.

It follows that the hypothesis constructed by this adapted version of RPNI
is an EQDA that is consistent with the sample. Hence we have described
a consistent learner. For a fixed set of pointer variables and universally
quantified variables there are only a finite number of EQDAs. Therefore
by Lemma 2.2.1 we conclude that the above learning is strongly convergent
(though the number of rounds need not be polynomial).

Theorem 5.7.2. The adaption of the RPNI algorithm for iterative set-based
ICE learning of EQDAs strongly converges.

Experimental Results

We implemented a prototype of the set-based ICE learning algorithm for
learning quantified invariants over arrays and lists, that we just described
above in this section. Now, we first describe the implementation details of the
teacher, followed by the description of the implementation of the RPNI-based
learner.

Given a conjectured hypothesis, the role of the teacher is to check whether
the conjectured invariant is adequate or not. In our case, the learner con-
jectures an EQDA as a hypothesis. The teacher first converts the EQDA to

122

Program White-Box Black-Box

SAFARI (s) R |Q| ICE(s)

copy 0.0 4 8 0.7
copy-lt-key × 5 13 1.2
init 0.7 4 8 0.6
init-partial × 8 12 1.5
compare 0.1 9 8 1.3
find 0.2 9 8 1.2
max 0.1 3 8 0.4
increment × 5 8 0.7
sorted-find × 8 17 5.1
sorted-insert × 6 21 2.0
sorted-reverse × 18 17 9.4
devres [KJD+10] 0.1 3 8 0.7
rm_pkey [KJD+10] 0.3 3 8 0.7

Table 5.2: RPNI-based ICE learning for quantified array invariants. R: #
rounds of iterative-ICE; |Q| : # states in final EQDA. × means a timeout of
5 min.

a quantified formula in the array property fragment (APF) [BMS06] or the
decidable Strand fragment over lists [MPQ11], as described in Section 5.5.2.
Then the teacher uses a constraint solver to check if the conjectured EQDA
corresponds to an adequate invariant or not. If the answer is no, the teacher
finds positive, negative and implication counterexamples over concrete data
words that need to be added to the sample of the learner for the next iteration
of iterative ICE. However, because of the quantified setting, the sample is
defined over sets of valuation words and not data words. Therefore, for every
data word, the teacher obtains a set of valuation words and then adds these
sets, or pair of sets in the case of implications, to the sample.

The learner is an RPNI-based ICE learner which given a set-based sample
(Ê, Ĉ, Î) conjectures an EQDA that is consistent with the sample. Let us
first fix the formula lattice over data formulas to be the Cartesian lattice
of atomic formulas over relations {=, <,≤}. To check whether a valuation
word v is rejected by an EQDA, the learner should just read v and check
if its data values satisfy the data formula ϕv that the EQDA outputs on
reading v. However, the learner actually implements this check in a slightly
different manner. Given a valuation word v, the learner finds the smallest
data-formula in the formula lattice which includes the data values in v, and
rejects the word only if that formula is unsatisfiable in conjunction with

123

ϕv. With this criterion of rejecting valuation words, words which should be
actually rejected by the EQDA might not be rejected under this new criterion.
In terms of the RPNI-based learner which merges states only if the EQDA
still rejects all C ∈ Ĉ, the new rejection criterion leads to fewer states being
merged. The new criterion is therefore more conservative and it ensures that
the EQDA learned by the learner still remains consistent with the sample.
Apart from this modification, the learner is implemented exactly as described
in the previous subsection.

To start the learning process, the teacher in the beginning runs the program
on a few random input lists/arrays and collects the concrete data words that
manifest at the program locations for which we want to synthesize an invariant.
Each such data word is converted to a set of valuation words and together they
form the set of positive examples Ê in the sample with which the iterative
ICE learning is initialized (Ĉ and Î are empty to begin with).
We adapted the RPNI algorithm from the libALF library [BKK+10]

to support the above described set-based ICE learning algorithm. We use
Z3 [dMB08] (which supports APF) as the constraint solver in the teacher for
checking the adequacy of the quantified array invariants. We evaluated the
learning algorithm on several array-based programs (see Table 5.2). Since we
did not have an implementation of the decision procedure for the decidable
fragment of Strand for lists, we could not build the teacher for lists and
evaluate the learning algorithm over list-manipulating programs.
In Table 5.2 we report for each program the number of rounds taken

by the iterative learning algorithm; the number of positive amd negative
counterexamples and implications added to the sample of the learner, over
all rounds; the number of states in the final EQDA conjectured and the total
time taken to learn that EQDA. The program sorted-find finds the presence
of a key in a sorted array; the program sorted-insert reads an array which is
sorted from the second position onwards and inserts the first element of the
array at its correct position such that the entire array becomes sorted; the
program devres and rm_pkey are methods adapted from the Linux kernel
and an Infiniband device driver, both mentioned in [KJD+10].
In section 5.6 we developed an L∗ based learning algorithm for learning

quantified invariants over arrays and lists. As compared to the ICE algorithm
we have presented in this section, the algorithm from Section 5.6 does not use
an honest teacher. The teacher does not know an invariant before hand and

124

therefore answers L∗ membership queries in an arbitrarily chosen way when
it does not know the answer. Secondly, the L∗-based algorithm learns from
only positive configurations that manifest themselves in test runs. Hence, the
invariants synthesized in Section 5.6 are only likely invariants (and might not
actually be invariants). On the other hand, the learning algorithm we present
here is based on the ICE paradigm and uses an honest teacher. The algorithm
is robust and guarantees convergence to the actual invariant, regardless of the
way the teacher answers equivalence queries. Though our learning algorithm
is more complex than the L∗-based algorithm, we show through experiments
that our algorithm learns an adequate invariant in reasonable time, requiring
only a few number of rounds and a small sample size.
We compare our results to Safari [ABG+12], a verification tool based

on interpolation in array theories. Safari, in general, cannot handle list
programs, and also array programs like sorted-find that have quantified pre-
conditions. On the others, Safari diverges for some programs, and probably
needs manually provided term abstractions to achieve convergence. The
results show that our ICE learning algorithm for quantified invariants is
effective, in addition to promising polynomial-per-round efficiency, promising
invariants that fall in decidable theories, and promising strong convergence.

125

CHAPTER 6

SYNTHESIZING INVARIANTS FOR LISTS
USING ABSTRACT INTERPRETATION

In the previous section we developed learning techniques, including a conver-
gent ICE learning algorithm, for synthesizing quantified invariants over linear
data structures such as arrays and lists. As opposed to learning, which has
been the main focus in this thesis, in this section, we develop a completely
different way of synthesizing quantified invariants for lists using abstract
interpretation [CC77]. We propose a new approach to heap analysis through
an abstract domain of automata, called automatic shapes. Automatic shapes
are modeled after a particular version of quantified data automata on skinny
trees (QSDAs), that allows to define universally quantified properties of
programs manipulating acyclic heaps with a single pointer field, including
data-structures such singly-linked lists. QSDAs are extensions of quantified
data automata, we introduced in Chapter 5, to acyclic heaps. To ensure
convergence of the abstract fixed-point computation, we introduce a subclass
of QSDAs called elastic QSDAs, which forms an abstract domain. We
evaluate our approach on several list manipulating programs and we show
that the proposed domain is powerful enough to prove a large class of these
programs correct.

Abstract analysis of the heap is hard because abstractions need to represent
the heap which is of unbounded size, and must capture both the structure of
the heap as well as the unbounded data stored in the heap. While several
data-domains have been investigated for data stored in static variables, the
analysis of unbounded structure and unbounded data that a heap contains
has been less satisfactory. The primary abstraction that has been investigated
is the rich work on shape analysis [SRW02]. However, unlike abstractions
for data-domains (like intervals, octagons, polyhedra, etc.), shape analysis
requires carefully chosen instrumentation predicates to be given by the user,
and often are particular to the program that is being verified. Shape analysis
techniques typically merge all nodes that satisfy the same unary predicate,

126

achieving finiteness of the abstract domain, and interpret the other predi-
cates using a 3-valued (must, must not, may) abstraction. Moreover, these
instrumentation predicates often require to be encoded in particular ways (for
example, capturing binary predicates as particular kinds of unary predicates)
so as to not lose precision.

For instance, consider a sorting algorithm that has an invariant of the form:
∀x, y. ((x→∗next y ∧ y →∗next i)⇒ d(x) ≤ d(y))

which says that the sub-list before pointer i is sorted. In order to achieve
a shape-analysis algorithm that discovers this invariant (i.e., captures this
invariant precisely during the analysis), we typically need instrumentation
predicates such as p(z) = z →∗next i, s(x) = ∀y.((x →∗next y ∧ y →∗next i) ⇒
d(x) ≤ d(y)), etc. The predicate s(x) says that the element that is at x is
less than or equal to the data stored in every cell between x and i. These
instrumentation predicates are clearly too dependent on the precise program
and property being verified.
In this chapter, we investigate an abstract domain for heaps that works

without user-defined instrumentation predicates (except we require that the
user fix an abstract domain for data, like octagons, for comparing data
elements). Our abstract domain is modeled after a particular kind of automata,
called quantified data automata, that define, logically, universally quantified
properties of heap structures. In this work, we restrict our attention to acyclic
heap structures that have only one pointer field; our analysis is hence one
that can be used to analyze properties of heaps containing lists, with possible
aliasing (merging) of them, especially at intermediate stages in the program.
One-pointer acyclic heaps can be viewed as skinny trees (trees where the
number of branching nodes is bounded).

Automata, in general, are classical ways to capture an infinite set of objects
using finite means. A class of (regular) skinny trees can hence be represented
using tree automata, capturing the structure of the heap. While similar ideas
have been explored before in the literature [HHR+11], our main aim is to also
represent properties of the data stored in the heap, building automata that can
express universally quantified properties on lists, in particular those of the form

∧
i ∀x. (Guardi(p, x)⇒ Datai(d(p), d(x)))

where p is the set of static pointer variables in the program. The Guardi

127

formulas express structural constraints on the universally quantified variables
and the pointer variables, while the Datai formulas express properties about
the data stored at the nodes pointed to by these pointers. In this work,
we investigate an abstract domain that can infer such quantified properties,
parameterized by an abstract numerical domain Fd for the data formulas and
by the number of quantified variables x.

The salient aspect of the automatic shapes that we build is that (a) there
is no requirement from the user to define instrumentation predicates for the
structural Guard formulas; (b) since the abstraction will not be done by
merging unary predicates and since the automata can define how data stored
at multiple locations on the heap are related, there is no need for the user
to define carefully crafted unary predicates that relate structure and data
(e.g., the unary predicate s(x) defined above that says that the location x is
sorted with respect to all successive locations that come after x but before i).
Despite this lack of help from the user, we show how our abstract domain can
infer properties of a large number of list-manipulating programs adequately
to prove interesting quantified properties.
The crux of our approach is to use a class of automata, called quantified

data automata on skinny trees (QSDA), to express a class of single-pointer
heap structures and the data contained in them. QSDAs read skinny trees
with data along with all possible valuations of the quantified variables, and
for each of them check whether the data stored in these locations (and the
locations pointed to by pointer variables in the program) relate in particular
ways defined by the abstract data-domain Fd.

We show, for a simple heap-manipulating programming language, that we
can define an abstract post operator over the abstract domain of QSDAs.
This abstract post preserves the structural aspects of the heap precisely (as
QSDAs can have an arbitrary number of states to capture the evolution of
the program) and that it soundly abstracts the quantified data properties.
The abstract post is nontrivial to define and show effective as it requires
automata-theoretic operations that need to simultaneously preserve structure
as well as data properties; this forms the hardest technical aspect of this work.
We thus obtain an effective sound transfer function for QSDAs. However, it
turns out that QSDAs are not complete lattices (infinite sets may not have
least upper-bounds), and hence do not form an abstract domain to interpret
programs. Furthermore, typically, in each iteration, the QSDAs obtained

128

would grow in the number of states, and it is not easy to find a fixed-point.
Traditionally, in order to handle loops and reach termination, abstract

domains require some form of widening. Our notion of widening is founded
on the principle that lengths of stretches of the heap that are neither pointed
to by program variables nor by the quantified variables (in one particular
instantiation of them) must be ignored. We would hence want the automaton
to check the same properties of the instantiated heap no matter how long
these stretches of locations are. This notion of abstraction is also suggested in
the previous chapter work where we have shown that such abstractions lead to
decidability; in other words, properties of such abstracted automata fall into
decidable logical theories [MPQ11,GLMN13]. Assume that the programmer
computes a QSDA as an invariant for the program at a particular point,
where there is an assertion expressed as a quantified property p over lists
(such as “the list pointed to by head is sorted”). In order to verify that
the abstraction proves the assertion, we will have to check if the language
of lists accepted by the QSDA is contained in the language of lists that
satisfy the property p. However, this is in general undecidable. However,
this inclusion problem is decidable if the automata abstracts the lengths of
stretches as above. Our aim is hence to over-approximate the QSDA into a
larger language accepted by a particular kind of data automata, called elastic
QSDA (EQSDA) that ignores the stretches where variables do not point to,
and where "merging" of the pointers do not occur [MPQ11,GLMN13].
This elastification will in fact serve as the basis for widening as well, as

it turns out that there are only a finite number of elastic QSDAs that
express structural properties, discounting the data-formulas. Consequently,
we can combine the elastification procedure (which over-approximates a
QSDA into an elastic QSDA) and widening over the numerical domain
for the data in order to obtain widening procedures that can be used to
accelerate the computation for loops. In fact, the domain of EQSDAs is an
abstract domain and a complete lattice (where infinite sets also have least
upper-bounds), and there is a natural abstract interpretation between sets
of concrete heap configurations and EQSDAs, where the EQSDAs permit
widening procedures. We show a unique elastification theorem that shows
that for any QSDA, there is a unique elastic QSDA that over-approximates
it. This allows us to utilize the abstract transfer function on QSDAs (which
is more precise) on a linear block of statements, and then elastify them to

129

EQSDAs at join points to have computable fixed-points.
We also show that EQSDA properties over lists can be translated to

a decidable fragment of the logic Strand [MPQ11] over lists, and hence
inclusion checking an elastic QSDA with respect to any assertion that is
also written using the decidable sublogic of Strand over lists is decidable.
As mentioned above, the notion of QSDAs and elasticity are extensions of
the work we presented in Chapter 5, where such notions were developed for
words (as opposed to trees) and where the automata were used for learning
invariants from examples and counterexamples.
We implement our abstract domain and transformers and show, using a

suite of list-manipulating programs, that our abstract interpretation is able
to prove the naturally required (universally-quantified) properties of these
programs. While several earlier approaches (such as shape analysis) can tackle
the correctness of these programs as well, our abstract analysis is able to do
this without requiring program-specific help from the user (for example, in
terms of instrumentation predicates in shape analysis [SRW02], and in terms
of guard patterns in the work by Bouajjani et al [BDES11]).

6.1 Programs Manipulating Heap and Data

We consider sequential programs manipulating acyclic singly-linked data
structures. A heap structure is composed of locations (also called nodes).
Each location is endowed with a pointer field next that points to another
location or it is undefined, and a data field called data that takes values from
a potentially infinite domain D (i.e. the set of integers). For simplicity we
assume a special location, called dirty, that models an un-allocated memory
space. We assume that the next pointer field of dirty is undefined. Besides
the heap structure, a program also has a finite number of pointer variables
each pointing to a location in the heap structure, and a finite number of data
variables over D. In our programming language we do not have procedure
calls, and we handle non-recursive procedures calls by inlining the code at call
points. In the rest of the section we formally define the syntax and semantics
of these programs.

130

〈prgm〉 ::= pointer p1, . . . , pk; data d1, . . . , d`; 〈pc_stmt〉+

〈pc_stmt〉 ::= pc : 〈stmt〉;
〈stmt〉 ::= 〈ctrl_stmt〉 | 〈heap_stmt〉
〈ctrl_stmt〉 ::= di :=<data_expr> | skip | assume(〈pred〉)
| if 〈pred〉 then 〈pc_stmt〉+ else 〈pc_stmt〉+ fi
| while 〈pred〉 do 〈pc_stmt〉+ od

〈heap_stmt〉 ::= new pi | pi := nil | pi := pj
| pi := pj → next | pi → next := nil | pi → next := pj
| pi → data := 〈data_expr〉

Figure 6.1: Simple programming language.

Syntax. The syntax of programs is defined by the grammar of Figure 6.1.
A program starts with the declaration of pointer variables followed by a
declaration of data variables. Data variables range over a potentially infinite
data domain D. We assume a language of data expressions built from data
variables and terms of the form pi → data using operations over D. Predicates
in our language are either data predicates built from predicates over D or
structural predicates concerning the heap built from atoms of the form
pi == pj, pi == nil, pi → next == pj and pi → next == nil, for some
i, j ∈ [1, k]. Thereafter, there is a non-empty list of labelled statements of the
form pc :〈stmt〉 where pc is the program counter and 〈stmt〉 defines a language
of either C-like statements or statements which modify the heap. We do not
have an explicit statement to free locations of the heap: when a location is no
longer reachable from any location pointed by a pointer variable we assume
that it automatically disappears from the memory. For a program P , we
denote with PC the set of all program counters of P statements. Figure 6.2(a)
shows the code for program sorted list-insert which is a running example in
this chapter. The program inserts a key into the sorted list pointed to by
variable head.

Semantics. A configuration C of a program P with set of pointer variables
PV and data variables DV is a tuple 〈pc, H, pval, dval〉 where

• pc ∈ PC is the program counter of the next statement to be executed;

• H is a heap configuration represented by a tuple (Loc, next, data) where
(1) Loc is a finite set of heap locations containing special elements called

131

nil and dirty, (2) next : Loc 7→ Loc is a partial map defining an edge
relation among locations such that the graph (Loc, next) is acyclic, and
(3) data : Loc 7→ D is a map that associates each non-nil and non-dirty
location of Loc with a data value in D;

• pval : P̂V → Loc, where P̂V = PV ∪ {nil, dirty}, associates each
pointer variable of P with a location in H. If pval(p) = v we say
that node v is pointed by variable p. Furthermore, each node in Loc
is reachable from a node pointed by a variable in PV . There is no
outgoing (next) edge from location dirty and there is a next edge
from the location pointed by nil to dirty (henceforth we use use PV
everywhere instead of the P̂V);

• dval : DV → D is a valuation map for the data variables.

Figure 6.2(b) graphically shows a program configuration which is reachable
at program counter 8 of the program in Figure 6.2(a) (as explained later we
encode the data variable key as a pointer variable in the heap configuration).
The transition relation of a program P , denoted stmt−−→P for each statement stmt
of P , is defined as usual. The control-flow statements update the program
counter, possibly depending on a predicate (condition). The assignment
statements update the variable valuation or the heap structure other than
moving to the next program counter. Let us define the concrete transformer
F \ = λC.{C ′ | C stmt−−→P C ′}. The concrete semantics of a program is given as
the least fixed point of a set of equations of the form ψ = F \(ψ).
To simplify the presentation of our work, we assume that our programs

do not have data variables. This restriction, indeed, does not reduce their
expressiveness: we can always transform a program P into an equivalent
program P ′ by translating each data variable d into a pointer variable that
will now point to a fresh node in the heap structure, in which the value d
is now encoded by d→ data. The node pointed by d is not pointed by any
other pointer, further, d → next points to dirty. Obviously, wherever d is
used in P will now be replaced by d→ data in P ′.

132

Figure 6.2: (a) sorted list-insert program P ; (b) shows a P configuration at
program counter 8; (c) is the heap skinny-tree associated to (b); (d) is a
valuation tree of (c).

6.2 Quantified Skinny-Tree Data Automata

In this section we define quantified skinny-tree data automata (QSDAs, for
short), an accepting mechanism of program configurations (represented as
special labelled trees) on which we can express properties of the form∧
i ∀y1, . . . , y`. Guardi ⇒ Datai, where variables yi range over the set of

locations of the heap, Guardi represent quantifier-free structural constraints
among the pointer variables and the universally quantified variables yi, and
Datai (called data formulas) are quantifier-free formulas that refer to the
data stored at the locations pointed either by the universal variables yi or the
pointer variables, and compare them using operators over the data domain.
In the rest of this section, we first define heap skinny-trees which are a suitable
labelled tree encodings for program configurations; we then define valuation
trees which are heap skinny-trees by adding to the labels an instantiation of
the universal variables. Quantified skinny-tree data automata is a mechanism
designed to recognize valuation trees. The language of a QSDA is the set
of all heap skinny-trees such that all valuation trees deriving from them are
accepted by the QSDA. Intuitively, the heap skinny-trees in the language
defined by the QSDA are all the program configurations that verify the
formula ∧i ∀y1, . . . , y`.Guardi ⇒ Datai.

Let T be a tree. A node u of T is branching whenever u has more than one

133

child. For a given natural number k, T is k-skinny if it contains at most k
branching nodes.

Heap Skinny-Trees. Let PV be the set of pointer variables of a program P

and Σ = 2PV (let us denote the empty set with a blank symbol b). We associate
with each P configuration C = 〈pc, H, pval, dval〉 with H = (Loc, next, data),
the (Σ × D)-labelled graph H = (T, λ) whose nodes are those of Loc, and
where (u, v) is an edge of T iff next(v) = u (essentially we reverse all next
edges). From the definition of program configurations, since all locations are
required to be reachable from some program variable, it is easy to see that T
is a k-skinny tree where k = |PV |. The labeling function λ : Loc → (Σ× D)
is defined as follows: for every u ∈ Loc, λ(u) = (S, d) where S is the set of all
pointer variables p such that pval(p) = u, and d = data(u). We call H the
heap skinny-tree of C.

Heap skinny-trees are formally defined as follows.

Definition 6.2.1 (Heap Skinny-Trees). A heap skinny-tree over a set of
pointer variables PV and data domain D, is a (Σ× D)-labelled k-skinny tree
(T, λ) with Σ = 2PV and k = |PV |, such that:

• for every leaf v of T , λ(v) = (S, d) where S , ∅;

• for every p ∈ PV ∪ {nil}, there is a unique node v of T such that
λ(v) = (S, d) with p ∈ S and some d ∈ D;

• for a node v of T such that λ(v) = (S, d), if nil∈ S then v is one of
the children of the root of T ; if v is the root of T then S = {dirty}. �

Figure 6.2(c) shows the heap skinny-tree corresponding to the program
configuration of Figure 6.2(b). Note that though the program handles a singly
linked list, in the intermediate operations we can get trees. However they are
special trees with bounded branching. This example illustrates that program
configurations of list manipulating programs naturally correspond to heap
skinny-trees. It also motivates why we need to extend automata over words
introduced in Chapter 5 to quantified data automata over skinny-trees. We
now define valuation trees.

134

Valuation Trees. Let us fix a finite set of universal variables Y . A valuation
tree over Y of a heap skinny-tree H is a (Σ× (Y ∪ {−})× D)-labelled tree
obtained from H by adding an element from the set Y ∪ {−} to the label,
in which every element in Y occurs exactly once in the tree. We use the
symbol ‘−’ at a node v if there is no variable from Y labelling v. A valuation
tree corresponding to the heap skinny-tree of Figure 6.2(c) is shown in
Figure 6.2(d).
Quantified skinny-tree data automata are a mechanism to accept skinny-

trees. To express properties on the data present in the nodes of the skinny-
trees, QSDAs are parameterized by a set of data formulas F over D which
form a complete-lattice F = (F,vF ,tF ,uF , false, true) where vF is the
partial-order on the data-formulas, tF and uF are the least upper bound and
the greatest lower bound and false and true are formulas required to be in F
and correspond to the bottom and the top elements of the lattice, respectively.
Also, we assume that whenever α vF β then α⇒ β. Furthermore, we assume
that any pair of formulas in F are non-equivalent. For a logical domain as
ours, this can be achieved by having a canonical representative for every set
of equivalent formulas. Let us now formally define QSDAs.

Definition 6.2.2 (Quantified Skinny-Tree Data Automata). A quan-
tified skinny-tree data automaton (QSDA) over a set of pointer variables
PV (with |PV |= k), a data domain D, a set of universal variables Y , and a
formula lattice F , is a tuple A = (Q,Π,∆, T , f) where:

• Q is a finite set of states;

• Π = Σ× Ŷ is the alphabet where Σ = 2PV and Ŷ = Y ∪ {−};

• ∆ = (∆0,∆1, . . . ,∆k) where, for every i ∈ [1, k], ∆i : (Qi × Π) 7→ Q is
a partial function and defines a (deterministic) transition relation;

• T : Q→ 2PV ∪Y is the type associated with every state q ∈ Q;

• f : Q→ F is a final-evaluation. �

A valuation tree (T, λ) over Y of a program P , where N is the set of
nodes of T , is recognized by a QSDA A if there exists a node-labelling map
ρ : N 7→ Q that associates each node of T with a state in Q such that for
each node t of T with λ(t) = (S, y, d) the following holds (here λ′(t) = (S, y)
is obtained by projecting out the data values from λ(t)):

135

• if t is a leaf then ∆0(λ′(t)) = ρ(t) and T (ρ(t)) = S ∪ {y} \ {−}.

• if t is an internal node, with sequence of children t1, t2, . . . , ti then

– ∆i ((ρ(t1), . . . , ρ(ti)), λ′(t)) = ρ(t);

– T (ρ(t)) = S ∪ {y} \ {−} ∪
(⋃

j∈[1,i] T (ρ(tj))
)
.

• if t is the root then the formula f(ρ(t)), obtained by replacing all
occurrences of terms y → data and p→ data with their corresponding
data values in the valuation tree, holds true.

A QSDA can be thought as a register automaton that reads a valuation
tree in a bottom-up fashion and stores the data at the positions evaluated for
Y and locations pointed by elements in PV , and checks whether the formula
associated to the state at the root holds true by instantiating the data values
in the formula with those stored in the registers. Furthermore, the role of
map T is that of enforcing that each element in PV ∪ Y occurs exactly once
in the valuation tree.
A QSDA A accepts a heap skinny-tree H if A recognizes all valuation

trees of H. The language accepted by A, denoted L(A), is the set of all heap
skinny-trees H accepted by A. A language L of heap skinny-trees is regular if
there is a QSDA A such that L = L(A). Similarly, a language L of valuation
trees is regular if there is a QSDA A such that L = Lv(A), where Lv(A) is
the set of all valuation trees recognized by A.

QSDAs are a generalization of quantified data automata introduced in
Chapter 5 which handle only lists, as opposed to QSDAs that handle skinny-
trees. We now introduce various characterizations of QSDAs which are used
later in the chapter.

Unique Minimal QSDA. In Chapter 5, we show that it is not possible
to have a unique minimal (with respect to the number of states) quantified
data automaton over words which accepts a given language over linear heap
configurations. The proof gives a set of heap configurations over a linear heap-
structure that is accepted by two different automata having the same number
of states. Since QSDAs are a generalization of quantified data automata,
the same counter-example language holds for QSDAs. However, under the
assumption that all data formulas in F are pairwise non-equivalent, there

136

does exist a canonical automaton at the level of valuation trees. In Chapter 5,
we prove the canonicity of quantified data automata, and their result extends
to QSDAs in a straight forward manner.

Theorem 6.2.3. For each QSDA A there is a unique minimal QSDA A′

such that Lv(A) = Lv(A′).

We give some intuition behind the proof of Theorem 6.2.3. First, we
introduce a central concept called symbolic trees. A symbolic tree is a
(Σ × (Y ∪ {−}))-labelled tree that records the positions of the universal
variables and the pointer variables, but does not contain concrete data values
(hence the word symbolic). A valuation tree can be viewed as a symbolic tree
augmented with data values at every node in the tree. There exists a unique
tree automaton over the alphabet Π that accepts a given regular language
over symbolic trees. It can be shown that if the set of formulas in F are
pairwise non-equivalent, then each state q in the tree automaton, at the root,
can be decorated with a unique data formula f(q) which extends the symbolic
trees with data values such that the corresponding valuation trees are in the
given language of valuation trees.

Hence, a language of valuation trees can be viewed as a function that maps
each symbolic tree to a uniquely determined formula, and a QSDA can be
viewed as a Moore machine (an automaton with output function on states)
that computes this function. This helps us separate the structure of valuation
trees (the height of the trees, the cells the pointer variables point to) from
the data contained in the nodes of the trees. We formalize this notion by
introducing formula trees.

Formula Trees. A formula tree over pointer variables PV , universal vari-
ables Y and a set of data formulas F is a tuple of a Σ × (Y ∪ {−})-
labelled tree (or in other words a symbolic tree) and a data formula in
F . For a QSDA which captures a universally quantified property of the form∧
i ∀y1, . . . , y`.Guardi ⇒ Datai, the symbolic tree component of the formula

tree corresponds to guard formulas like Guardi which express structural con-
straints on the pointers pointing into the valuation tree. The data formula
in the formula trees correspond to Datai which express the data values with
which a symbolic tree (read Guardi) can be extended so as to get a valuation
tree accepted by the QSDA. In our running example, consider a QSDA with

137

a formula tree which has the same symbolic tree as the valuation tree in
Figure 6.2(d) (but without the data values in the nodes) and a data-formula
ϕ = y1 → data ≤ y2 → data ∧ y1 → data < key ∧ y2 → data ≥ key.
This formula tree represents all valuation trees (including the one shown in
Figure 6.2(d)) which extend the symbolic tree with data values which satisfy
ϕ.

By introducing formula trees we explicitly take the view of a QSDA as an
automaton that reads symbolic trees and outputs data formulas. We say a
formula tree (t, ϕ) is accepted by a QSDA A if A reaches the state q after
reading t and f(q) = ϕ. Given a QSDA A, the language of valuation trees
accepted by A gives an equivalent language of formula trees accepted by A
and vice-versa. We denote the set of formula trees accepted by A as Lf (A). A
language over formula trees is called regular if there exists a QSDA accepting
the same language.

Theorem 6.2.4. For each QSDA A there is a unique minimal QSDA A′

that accepts the same set of formula trees.

6.3 A Partial Order over QSDAs

In the previous section we introduced quantified skinny-tree data automata
as an automaton model for expressing universally quantified properties over
heap skinny-trees. In this section, we first establish a partial order over the
class of QSDAs and then show that QSDAs do not form a complete lattice
with respect to this partial order. This motivates us to introduce a subclass of
QSDAs called elastic QSDAs which we show, in Section 6.5, form a complete
lattice and can be used to compute the semantics of programs. The partial
order over EQSDAs with respect to which they form a lattice is the same as
the partial order over QSDAs we introduce in this section.
Given a set of pointer variables PV and universal variables Y , let QF be

the class of all QSDAs over the lattice of data formulas F . Clearly QF is a
partially-ordered set where the most natural partial order is the set-inclusion
over the language of QSDAs. However, QSDAs are not closed under unions.
Thus, a least upper bound for a pair of QSDAs does not exist with respect
to this partial order. So we consider a new partial-order on QSDAs which
allows us to define a least upper bound for every pair of QSDAs.

138

If we view a QSDA as a mapping from symbolic trees to formulas in F ,
we can define a new partial-order relation on QSDAs as follows. We say
A1 v A2 if Lf(A1) ⊆ Lf(A2), which means that for every symbolic tree t if
(t, ϕ1) ∈ Lf(A1) and (t, ϕ2) ∈ Lf(A2) then ϕ1 vF ϕ2. Note that, whenever
A1 v A2 implies that L(A1) ⊆ L(A2). QSDAs, with respect to this partial
order, form a lattice. Unfortunately, QSDAs do not form a complete lattice
with respect to this above defined partial order (infinite sets of QSDAs
may not have least upper-bounds). Consequently, we invent a subclass of
QSDAs called elastic QSDAs (or EQSDAs) which we show form a complete
lattice with respect to the above defined partial order. We also show that
EQSDAs form an abstract domain by establishing an abstraction function
and a concretization function between a set of heap skinny-trees and EQSDAs
and showing that they form a Galois-connection. Even though QSDAs do
not form a complete-lattice, we describe next a sound abstract transformer
over QSDAs, a variant of which we use in Section 6.5 for abstracting the
semantics of programs over EQSDAs.

6.4 Abstract Transformer over QSDAs

In this section we describe an abstract transformer over QSDAs which soundly
over-approximates the concrete transformer over heap skinny-trees. We will
later use a variant of this transformer when we compute the semantics of
programs abstractly over EQSDAs.
We first show that it is not possible to capture the most-precise concrete

transformer on QSDAs. A QSDA expresses universally quantified properties
over heap trees, of the form ∀y1, . . . , y`.ψ where ψ is a quantifier-free formula
over the pointer variables PV , the universal variables Y and the data values
at the locations pointed to by these variables. Given a QSDA A, the concrete
transformer F \ guesses a pre-state accepted by A (which involves existen-
tial quantification), and then constrains the post-state with respect to this
guessed pre-state according to the semantics of the statement. For instance,
consider the statement pi := pj. Given a QSDA accepting a universally
quantified property ∀y1, . . . , y`.ψ, its strongest post-condition with respect to
this statement is the formula: ∃p′i.∀y1, . . . , y`.ψ[pi/p′i] ∧ pi = pj. Note that,
an interpretation of the existentially quantified variable p′i in a model of this

139

formula gives the location node pointed to by variable pi in the pre-state, such
that the formula ∀y1, . . . , y`.ψ was satisfied by the pre-state. However it is
not possible to express these precise post-conditions, which are usually of the
form ∃∗∀∗ψ, in our automaton model. So we over-approximate these precise
post-conditions by a QSDA which semantically moves the existential quanti-
fiers inside the universally quantified prefix – ∀y1 . . . y`.∃p′i.ψ[pi/p′i] ∧ pi = pj .
The existential quantifier can now be eliminated using a combination of
automata based quantifier elimination, for the structure, and the quantifier
elimination procedures for the data-formula lattice F . In the above example,
intuitively, the abstract post-condition QSDA guesses a position for the
pointer variable pi for every valuation of the universal variables, such that
the valuation tree augmented with this guessed position is accepted by the
precondition QSDA. More generally, the abstract transformer computes the
most precise post-condition over the language of valuation trees accepted by
a QSDA, instead of computing the precise post-condition over the language
of heap skinny-trees. In fact, we go beyond valuation trees to formula trees;
the abstract transformer evolves the language of formula trees accepted by
a QSDA by tracking the precise set of symbolic trees to be accepted in the
post-QSDA and their corresponding data formulas.

We assume that the formula lattice F supports quantifier-elimination. We
encourage the reader to keep in mind numerical domains over the theory of
integers with constants (0, 1, etc.), addition, and the usual relations (like
<,≤,=) as an example of the formula lattice. Table 6.11 gives the abstract
transformer F]

f which takes a regular language over formula trees Lf and
gives, as output, a set of formula trees. We know from Theorem 6.2.4 that
for any regular set of formula trees there exists a unique minimal QSDA
that accepts it. We show below (see Lemma 6.4.2) that for a QSDA A, the
language over formula trees given by (F]

f) Lf(A) is regular. Hence, we can
define the abstract transformer F] as F] = λA.A′ where A′ is the unique
minimal QSDA such that Lf (A′) = (F]

f) Lf (A).
In Table 6.1, label(t, pi) is the set of pointer and universal variables which

label the same node in t as variable pi. The predicate update(t, stmt, t′) is
true if symbolic trees t and t′ are related such that the execution of statement
stmt updates precisely the symbolic tree t to t′. As an example, the abstract

1The abstract transformer defined in Table 6.1 assumes that there are no memory errors
in the program. It can be extended to handle memory errors.

140

Table 6.1: Abstract Transformer F]
f over the language of formula trees. The

abstract transformer over QSDAs F](A) = A′ where A′ is the unique
minimal QSDA such that Lf (A′) = (F]

f) Lf (A). The predicate update and
the set label are defined below.

Statements Abstract Transformer F]
f on a regular language over

formula trees

pi := nil λLf .
{

(t′, ϕ′) | ϕ′ =
⊔
{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,

update(t, pi := nil, t′)}
}

pi := pj λLf .
{

(t′, ϕ′) | ϕ′ = (pi → data = pj → data) u⊔
{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,

update(t, pi := pj , t
′)}
}

pi := pj → next λLf .
{

(t′, ϕ′) | ϕ′ =
⊔
{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,

update(t, pi := pj → next, t′)}�
{pi → data = v → data | v ∈ label(t′, pi)}

}
pi → next := nil λLf .

{
(t′, ϕ′) | ϕ′ =

⊔
{ϕ | (t, ϕ) ∈ Lf , update(t, pi → next := nil, t′)}

}
pi → next := pj λLf .

{
(t′, ϕ′) | ϕ′ =

⊔
{ϕ | (t, ϕ) ∈ Lf , update(t, pi → next := pj , t

′)}
}

pi → data := λLf .
{

(t, ϕ′) | ϕ′ = ∃d.
(
ϕ[v1 → data/d, . . . , v` → data/d] u

data_expr
�
{v → data = data_expr[v1 → data/d, . . . , v` → data/d] | v ∈ V }

)
,

V = {v1, . . . , v`} = label(t, pi), (t, ϕ) ∈ Lf

}
assume ψstruct λLf .

{
(t′, ϕ′) | (t′, ϕ′) ∈ Lf , t

′ |= ψstruct
}

assume ψdata λLf .
{

(t′, ϕ′) | ϕ′ = ϕ u ψdata, (t′, ϕ) ∈ Lf

}
new pi λLf .

{
(t′, ϕ′) | ϕ′ = (y → data = pi → data)u⊔
{∃d1d2.ϕ[pi → data/d1, y → data/d2] | (t, ϕ) ∈ Lf ,

update(t, new{y} pi, t
′)}, y ∈ Y

}⋃ {
(t′, ϕ′) | ϕ′ =

⊔
{∃d.ϕ[pi → data/d] | (t, ϕ) ∈ Lf ,

update(t, new{−} pi, t
′)}
}

transformer for the statement pi := nil in the first row of Table 6.1 states
that the post-QSDA maps the symbolic tree t′ to the data-formula ϕ′ where
ϕ′ is the join of all formulas of the form ∃d.ϕ[pi → data/d] where ϕ is the
data-formula associated with symbolic tree t in the pre-QSDA such that
update(t, pi := nil, t′) is true.

We now briefly describe the predicate update(t, new{ŷ} pi, t′), where ŷ ∈
Y ∪{−}, which is used in the definition of the transformer for the new statement
and is slightly more involved. The statement new pi allocates a new memory
location. After the execution of this statement, pointer pi points to this
allocated node. Besides, the universal variables also need to valuate over this
new node apart from the valuations over the previously existing locations
in the heap. The superscript {y} in the predicate update(t, new{y} pi, t′)
tracks the case when variable y ∈ Y valuates over the newly allocated node
(analogously, the superscript {-} tracks the case when no universal variable

141

valuates over the newly allocated node). Hence, if update(t, new{y} pi, t′) holds
true then the symbolic trees t and t′ agree on the locations pointed to by all
variables except pi and the universal variable y; both these variables point, in
t′, to a new location v which is not in t and a new edge exists in t′ from the
root to v.
An important point to note is that the abstract transformer for the state-

ment pi → next (i.e., the predicate update(t, pi → next := pj, t
′)) assumes

that the program does not introduce cycles in the heap configurations.
From the construction in Table 6.1 it can be observed that given a language

of valuation trees obtained uniquely from a language of formula trees, F]
f

applies the most-precise concrete transformer on each valuation tree in the
language, and then constructs the smallest regular language of valuation trees
(or equivalently formula trees) which approximates this set. More precisely,
for all formula trees (t, ϕ) ∈ Lf (A), the abstract transformer F]

f applies the
precise concrete transformer on the symbolic tree t (only the structure with
the valuations for universal variables) to obtain t′. And separately, it applies
the precise concrete transformer on the data extensions of t, which is given
by ϕ, to obtain the data formula ϕ′ such that (t′, ϕ′) ∈ (F]

f)Lf (A).
As we have already discussed, the abstract transformer by reasoning over

valuation/formula trees (and not heap skinny-trees) leads to a loss in precision.
To regain some of the lost precision, we define a function Strengthen which
takes a formula language Lf and finds a smaller language over formula trees,
which accepts the same set of heap trees. Here t �y stands for a Π\{y}
-labelled tree which agrees with t on the locations pointed to by all variables
except y.

Strengthen = λy.λLf .
{

(t′, ϕ′) | ϕ′ : ϕ′′ u φ, (t′, ϕ′′) ∈ Lf ,

φ :
�
{∃d.ϕ[y → data/d] | (t, ϕ) ∈ Lf , t �y= t′ �y}

}
We now reason about the soundness of the operator Strengthen. Fix a y ∈ Y .
Consider a QSDA A with a language over formula trees Lf and consider
all symbolic trees t such that t �y= t′ �y. This implies that the trees t have
the pointer variables pointing to the same positions as t′ and have the same
valuations for variables in Y \{y}. Since our automaton model has a universal
semantics, any heap tree accepted by A should satisfy the data formulas
annotated at the final states reached for every valuation of the universal

142

variables. If we look at a fixed valuation for variables in Y \{y} (which is same
as that in t′) and different valuations for y, any heap tree accepted should
satisfy the formula ∃d.ϕ[y → data/d] for all such (t, ϕ) ∈ Lf . Hence the
Strengthen operator can safely strengthen the formula ϕ′′ associated with the
symbolic tree t′ to ϕ′′ u φ. It can be shown that for a given universal variable
y and a regular language Lf , the language over formula trees (Strengthen)
y Lf is regular. In fact, the QSDA accepting the language (Strengthen) y
Lf(A) for a QSDA A can be easily constructed. The abstract transformer
F]
f can thus be soundly strengthened by an application of Strengthen at each

step, for each variable y ∈ Y .
It is clear that the abstract transformer F]

f in Table 6.1 as well as the
function Strengthen are monotonic. We now show that the language over
formula trees given by (F]

f)Lf(A) is a regular language for any QSDA A.
This helps us to construct the abstract transformer F] : QF → QF . And
finally, we show that this abstract transformer is a sound approximation of
the concrete transformer F \.

Lemma 6.4.1. The abstract transformer F]
f is sound with respect to the

concrete semantics.

Lemma 6.4.2. For a QSDA A, the language (F]
f) Lf (A) over formula trees

is regular.

From Lemma 6.4.2 and Theorem 6.2.4, it follows that there exists a QSDA
A′ such that A′ = (F])A. The monotonicity of F], with respect to the partial
order defined in Section 6.3 over QSDAs, follows from the monotonicity of
F]
f . The soundness of F] can be stated as the following theorem.

Theorem 6.4.3. The abstract transformer F] is sound with respect to the
concrete transformer F \.

Hence F] is both monotonic, and sound with respect to the concrete
transformer F \. In the next section we introduce elastic QSDAs, a subclass
of QSDAs, which form an abstract domain and we use the above defined
transformer F] over QSDAs to define an abstract transformer over elastic
QSDAs. Note that the abstract transformer F], in general, might require a
powerset construction over the input QSDA, very similar to the procedure
for determinizing a tree automaton. Hence the worst-case complexity of the

143

abstract transformer is exponential in the size of the QSDA. However our
experiments show that this worst-case is not achieved for most programs in
practice.

6.5 Elastic Quantified Skinny-Tree Data Automata

As we saw in Section 6.3, a least upper bound might not exist for an infinite
set of QSDAs. Therefore, we identify a sub-class of QSDAs called elastic
quantified skinny-tree data automata (EQSDAs) such that elastic QSDAs
form a complete lattice and provide a mechanism to compute the abstract
semantics of programs.
Let us denote the symbol (b,−) ∈ Π indicating that a position does

not contain any variable by b. A QSDA A = (Q,Π,∆, T , f) where ∆ =
(∆0,∆1, . . . ,∆k) is called elastic if each transition on b in ∆1 is a self loop i.e.
∆1(q1, b) = q2 implies q1 = q2.

We first show that the number of states in a minimal EQSDA is bounded
for a fixed set PV and Y . Consider all skinny-trees where a blank symbol
b occurs only at branching points. Since the number of branching points
is bounded and since every variable can occur only once, there are only a
bounded number of such trees. Consider any minimal EQSDA. Consider all
states that are part of the run of the EQSDA on the trees of the kind above.
Clearly, there are only a bounded number of states in this set. Now, we argue
that on any tree, the run on that tree can only use these states. For any tree
t, consider the tree t′ obtained by removing the nodes of degree one marked
by blank. The run on tree t will label common states of t and t′ identically,
and the nodes that are removed will be labeled by the state of its child, since
blank transitions cannot cause state-change. Since in any minimal automaton,
for any state, there must be some tree that uses this state, we know that the
number of state is also bounded.
We next show the following result that every QSDA A can be most

precisely over-approximated by a language of valuation trees (or equivalently
formula trees) that can be accepted by an EQSDA Ael. We will refer to
this construction, which we outline below, as elastification. This result is
an extension of the unique over-approximation result for quantified data
automata over words (see Chapter 5). Using this result, we can show that

144

elastic QSDAs form a complete lattice and there exists a Galois-connection
〈α, γ〉 between a set of heap skinny trees and EQSDAs. This lets us define
an abstract transformer over the abstract domain EQSDAs such that the
semantics of a program can be computed over EQSDAs in a sound manner.
Let A = (Q,Π,∆, T , f) be a QSDA such that ∆ = (∆0,∆1, . . . ,∆k) and

for a state q let Rb(q) := {q′ | q′ = q or ∃q′′.q′′ ∈ Rb(q) and ∆1(q′′, b) = q′}
be the set of states reachable from q by a (possibly empty) sequence of
b-unary-transitions. For a set S ⊆ Q we let Rb(S) := ⋃

q∈S Rb(q).
The set of states of Ael consists of sets of states of A that are reachable

by the following transition function ∆el (where ∆i(S1, . . . , Si, a) denotes the
standard extension of the transition function of A to sets of states):

∆el
0 (a) = Rb(∆0(a))

∆el
1 (S, a) =

Rb(∆1(S, a)) if a , b

S if a = b and ∆1(q, b) is defined for some q ∈ S

undefined otherwise.

∆el
i (S1, . . . , Si, a) = Rb(∆i(S1, . . . , Si, a)) for i ∈ [2, k]

Note that this construction is similar to the usual powerset construction
except that in each step we apply the transition function of A to the current
set of states and take the b-closure. However, if the input letter is b on a
unary transition, Ael loops on the current set if a b-transition is defined for
some state in the set.

It can be argued inductively, starting from the leaf states, that the type for
all states in a set is the same. Hence we define the type of a set S as the type
of any state in S. The final evaluation formula for a set is the least upper
bound of the formulas for the states in the set: f el(S) = ⊔

q∈S f(q). We can
now show that Ael is the most precise over-approximation of the language of
valuation trees accepted by QSDA A.

Theorem 6.5.1. For every QSDA A, the EQSDA Ael satisfies Lv(A) ⊆
Lv(Ael), and for every EQSDA B such that Lv(A) ⊆ Lv(B), Lv(Ael) ⊆ Lv(B)
holds.

The proof of Theorem 6.5.1 is similar to the proof of a similar theorem
in Chapter 5 for the case of words. The above theorem can also be stated
over a language of formula trees in the same way, that Ael is the most precise
over-approximation of the language of formula trees accepted by QSDA A.

145

We can now show that EQSDAs form a complete lattice (QF el,v,t,u,
⊥,>). The partial order on EQSDAs is the same as the partial order on
QSDAs but now restricted to only elastic QSDAs. For EQSDAs A1 and
A2, A1 v A2 if Lf(A1) ⊆ Lf(A2), meaning that for every symbolic tree t if
(t, ϕ1) ∈ Lf(A1) and (t, ϕ2) ∈ Lf(A2) then ϕ1 vF ϕ2. Given EQSDAs A1

and A2 and a symbolic tree t such that (t, ϕ1) ∈ Lf (A1) and (t, ϕ2) ∈ Lf (A2),
the meetA1 uA2 is the EQSDA which maps t to the unique formula ϕ1 uF ϕ2.
The algorithm to construct this EQSDA involves the product-construction
and is very similar to the algorithm to intersect finite-state automata. Given
elastic QSDAs (which have only self-loops on states on a b-transition), the
data automaton obtained by the above mentioned product construction is
also elastic and is the greatest lower bound. The meet for EQSDAs, A1 tA2,
is obtained by constructing a QSDA which maps the symbolic tree t to the
formula ϕ1 tF ϕ2 followed by its unique elastification to obtain an EQSDA.
The construction of the intermediate QSDA is very similar to the greatest
lower bound construction we described above, using a product-construction.
Note that the number of states in this QSDA is bounded as its structure
is almost elastic except for single occurrences of b-transitions which do not
self-loop. Using the most precise over-approximation result, the EQSDA
obtained by the elastification of this QSDA is the least upper bound of the
set of EQSDAs. The bottom and the top elements in the lattice QF el over
EQSDAs are the EQSDAs taking every symbolic tree to the formulas false
and true respectively.
We can now view the space of EQSDAs as an abstraction over sets of

heap skinny trees. Let us define an abstraction function α : H → QF el

and a concretization function γ : QF el → H such that (H, α, γ,QF el) form
a Galois-connection. Note that, abstract interpretation [CC77] requires
that the abstraction function α maps a concrete element (a language of
heap skinny-trees) to a unique element in the abstract domain and that α
be surjective; similarly γ should be an injective function. Also note that
given a regular language of heap skinny-trees there might be several QSDAs
(and thus EQSDAs) accepting that language. In such a case defining a
surjective function α is not possible. Therefore, we first restrict ourselves to
a set of EQSDAs in QF el where each EQSDA accepts a different language.
Under this assumption, we define an α and a γ as follows: for a set of heap
configurations H, α(H) = �

{A | H ⊆ L(A)} and γ(A) = L(A). Note

146

that both α and γ are order-preserving; α is surjective and γ is an injective
function. Also for a set of heap configurations H, H ⊆ γ(α(H)) and for an
EQSDA A, A = α(γ(A)). Hence (H, α, γ,QF el) forms a Galois-connection.

Theorem 6.5.2. Let (H,⊆) be the class of sets of heap skinny-trees and
(QF el,v) be the class of EQSDAs (accepting pairwise inequivalent languages)
over data formulas F , then (H, α, γ,QF el) forms a Galois-connection.

Let us define the abstract transformer over EQSDAs as F]
el : QF el →

QF el = Fel ◦F] where Fel is the elastification operator which returns the most
precise EQSDA over-approximating a language of valuation trees accepted
by a QSDA. The soundness of F]

el follows from the soundness of F] (and the
fact that Fel is extensive, i.e., Fel(A) w A). Similarly its monotonicity follows
from the monotonicity of F] and the monotonicity of Fel. The semantics of a
program can be thus computed over the abstract domain QF el as the least
fix-point of a set of equations of the form ψ = F]

el(ψ). Since the number of
states in an EQSDA is bounded (for a given set of program variables PV and
universal variables Y), this least fix-point computation terminates (modulo
the convergence of the data formulas in the formula lattice F in which case
termination can be achieved by defining a suitable widening operator on the
data formula lattice).

6.5.1 From EQSDAs to a Decidable Fragment of Strand

In this section we show that EQSDAs can be converted to formulas that
fall in a decidable fragment of first order logic, in particular the decidable
fragment of Strand over lists. Hence, once the abstract semantics has been
computed over EQSDAs, the invariants expressed by the EQSDAs can be
used to validate assertions in the program that are also written using the
decidable sublogic of Strand over lists. We assume that the assertions in our
programs express quantified properties over disjoint lists, like sortedness of
lists, etc. and properties relying on mutual sharing or aliasing of list-structures
are not allowed.
Given an EQSDA A and for every pointer variable p, we construct a

QSDA over words that are projections of trees accepted by A and where
the first node is p. A key property in the decidable fragment of Strand is
that universal quantification is not permitted to be over elements that are

147

only a bounded distance away from each other, or in other words universally
quantified variables are only allowed to be related by elastic relations. As a
result, we can safely elastify the constructed QSDA over words and obtain an
EQSDA over words expressing quantified properties in the decidable sublogic
of Strand. In Chapter 5 we have detailed the translation from an EQSDA
over words to a quantified formula in the decidable fragment of Strand
over lists. Using the same translation, we obtain a formula in Strand that
precisely corresponds to the QSDA that is the abstract semantics of the
program at the point of the assertion we want to verify. Since the translation
ensures this formula falls in the decidable fragment of Strand, we can use
the underlying decision procedure to prove the program correct.

6.6 Experimental Evaluation

We implemented the abstract domain over EQSDAs presented in this chap-
ter, and evaluated it on several list-manipulating programs. We now first
present the implementation details followed by our experimental results. Our
prototype implementation along with the experimental results and programs
can be found at http://web.engr.illinois.edu/~garg11/qsdas.html.

Implementation Details. Given a program P we compute the abstract
semantics of the program over the abstract domain QF el over EQSDAs. A
program is a sequence of statements as defined by the grammar in Figure 6.1.
In addition to those statements, a program is also annotated with a pre-
condition and a bunch of assertions. The pre-condition formulas belong to
a fragment of Strand over lists and can express quantified properties over
disjoint lists (aliasing of two list-structures is not allowed), like sortedness of
lists, etc. Given a pre-condition formula ϕ, we construct the EQSDA which
accepts all the heap skinny-trees which satisfy ϕ. This EQSDA precisely
captures the set of initial configurations of the program. Starting from
these configurations we compute the abstract semantics of the program over
QF el. The assert statements in the program are ignored during the fix-point
computation. Once the convergence of the fix-point has been achieved, the
EQSDAs can be converted back into decidable Strand formula over lists
(as described in Section 6.5.1) and the Strand decision procedure can be

148

Table 6.2: Experimental results. Property checked — List: the return pointer
points to a list; Init: the list is properly initialized with some key; Max: returned
value is the maximum of all data values in the list; Gek: the list (or some parts of
the list) have data values greater than or equal to a key k; Sort: the list is sorted;
Last: returned pointer is the last element of the list; Empty: the returned list is
empty.

Programs #PV #Y #DV Property #Iter Max. size Time (s)
checked of QSDA

init 2 1 1 Init, List 4 19 0.0
add-head 2 1 1 Init, List - 11 0.1
add-tail 3 1 1 Init, List 4 29 0.1
delete-head 2 1 1 Init, List - 10 0.0
delete-tail 4 1 1 Init, List 5 51 0.5
max 2 1 1 Max, List 4 19 0.1
clone 4 1 1 Init, List 4 44 0.7
fold-clone 5 1 1 Init, List 5 57 3.2
copy-Ge5 4 1 0 Gek, List 9 53 2.6
fold-split 3 1 1 Gek, List 4 33 0.3
concat 4 1 1 Init, List 5 44 0.7
sorted-find 2 2 2 Sort, List 5 38 0.3
sorted-insert 4 2 1 Sort, List 6 163 5.8
bubble-sort 4 2 1 Sort, List 5/18 191 42.8
sorted-reverse 3 2 0 Sort, List 5 43 1.5
expressOS-lookup-prev 3 2 1 Sort, List 6 73 2.2

gslist-append 4 0 1 List 8 3 0.0
gslist-prepend 2 0 1 List - 3 0.0
gslist-last 3 0 0 Last, List 3 7 0.0
gslist-free 3 0 0 Empty, List 1 3 0.0
gslist-position 4 0 0 List 3 13 0.0
gslist-reverse 3 0 0 List 3 5 0.0
gslist-custom-find 3 1 1 Gek, List 4 29 0.1
gslist-nth 3 0 1 List 3 7 0.0
gslist-remove 4 0 1 List 4 10 0.0
gslist-remove-link 5 0 0 List 4 16 0.0
gslist-remove-all 5 1 1 Gek, List 5 51 0.6
gslist-insert-sorted 5 2 1 Sort, List 6 279 27.4

used for validating the assertions.
We recall that the abstract transformer F]

el is a function composition of the
abstract transformer F] over QSDAs and the unique elastification operator
Fel. So that we are as precise as possible, for every statement in the program
we apply the more precise transformer F] (and not F]

el). However, we apply
the elastification operator Fel at the header of loops before the join to ensure
convergence of the computation of the abstract semantics. The intermediate
semantic facts (QSDAs) in our analysis are thus not necessarily elastic.

Our abstract domains are parameterized by a quantifier-free domain F over
the data formulas. In our experiments, we instantiate F with the octagon
abstract domain [Min01] from the Apron library [JM09]. It is sufficient to

149

capture the pre/post-conditions and the invariants of all our programs.

Experimental Results. We evaluate our abstract domain on a suite of
list-manipulating programs (see Table 6.2). For every program we report
the number of pointer variables (PV), the number of universal variables (Y),
the number of data variables (DV) and the property being checked for the
program. We also report the number of iterations required for the fixed-point
to converge, the maximum size of the intermediate QSDAs and finally the
time taken, in seconds, to analyze the programs.
The names of the programs in Table 6.2 are self-descriptive, and we only

describe some of them. The program copy-Ge5, from [BDES11], copies
all those entries from a list whose data value is greater than or equal to 5.
Similarly, the program fold-split [BDES11] splits a list into two lists – one
which has entries whose data values are greater than or equal to a key k

and the other list with entries whose data value is less than k. The program
expressOS-lookup-prev is a method from the module cachePage in a
verified-for-security platform for mobile applications [MPX+13]. The module
cachePage maintains a cache of the recently used disc pages as a priority
queue based on a sorted list. This method returns the correct position in the
cache at which a disc page could be inserted. The programs in the second
part of the table are various methods adapted from the Glib list library which
comes with the GTK+ toolkit and the Gnome desktop environment. The
program gslist-custom-find finds the first node in the list with a data
value greater or equal to k and gslist-remove-all removes all elements
from the list whose data value is greater or equal to k. The programs
gslist-insert-sorted and sorted-insert insert a key into a sorted list.
All experiments were completed on an Intel Core i5 CPU at 2.4GHz with

6Gb of RAM. The number of iterations is left blank for programs which do
not have loops. bubble-sort program converges on a fix-point after 18
iterations of the inner loop and 5 iterations of the outer loop. The size of
the intermediate QSDAs depends on the number of universal variables and
the number of pointer variables and largely governs the time taken for the
analysis of the programs. For all programs, our prototype implementation
computes their abstract semantics in reasonable time. Moreover we manually
verified that the final EQSDAs in all the programs were sufficient for proving
them correct (this validity check is currently not mechanized due to the

150

unavailability of the decision procedure for Strand but can be done in the
future). The results show that the abstract domain we propose in this chapter
is reasonably efficient and powerful enough to prove a large class of programs
manipulating singly-linked list structures.

6.7 Related Work

In this chapter we introduce a class of data automata called quantified data
automata for skinny-trees (QSDA) to capture universally quantified properties
over skinny-trees. The QSDA model is an extension of the QDA model we
introduced in Chapter 5 [GLMN13] to capture quantified data properties
over words, as opposed to trees. Also, the QDA model in [GLMN13] is
parameterized by a finite set of data formulas and is used for learning invariants
from examples and counterexamples. In contrast, QSDAs extend the QDA
model with an (possibly-infinite) abstract domain over data formulas and, in
this chapter, we develop a theory of abstract interpretation over QSDAs.

151

CHAPTER 7

VERIFYING SHARED MEMORY
CONCURRENT PROGRAMS

In this thesis, we have developed novel techniques for verifying sequential
programs by learning inductive invariants. In this and the subsequent chapter,
we will develop techniques to verify concurrent programs. In this chapter, in
particular, we will address the problem of verifying shared memory concurrent
programs. Given a concurrent program with a safety specification, we would
like to sequentialize it, i.e., reduce the problem of verifying the concurrent
program to the verification of a sequential program. Consequently, we can use
techniques for verifying sequential programs, including learning algorithms for
synthesizing inductive invariants for sequential programs covered in this thesis,
to verify concurrent programs. The most important aspect of this reduction
is that we seek a sequential program that does not simply simulate the global
evolution of the concurrent program as that would be quite complex and
involve taking the product of the local state-spaces of the processes. Instead,
we seek a sequential program that tracks a bounded number of copies of the
local and shared variables, where the bound is independent of the number of
parallel components.

The appeal of sequentialization is that it allows using the existing class of
sequential verification tools to verify concurrent programs. A large number
of sequential verification techniques and tools, like deductive verification,
abstraction-based model-checking, static data-flow analysis, and invariant
synthesis immediately come into play when a sequentialization is possible.
Of course, such sequentializations are not possible for all concurrent pro-

grams and specifications. In fact, in the presence of recursion and when
variables have bounded domains, concurrent verification is undecidable while
sequential verification is decidable, which proves that an effective sequential-
ization is in general impossible.
The currently known sequentializations have hence focussed on capturing

under-approximations of concurrent programs. Lal and Reps [LR08] showed

152

that given a concurrent program with finitely many threads and a bound k,
the problem of checking whether the concurrent program is safe on all execu-
tions that involve only k context-rounds can be reduced to the verification of
a sequential program. A lazy sequentialization for bounded context rounds
that ensures that the sequential program explores only states reachable by
the concurrent program was defined by La Torre et al [LMP09]. A sequential-
ization for unboundedly many threads and bounded round-robin rounds of
context-switching is also known [SLP12]. Lahiri, Qadeer and Rakamarić have
used the sequentialization of Lal and Reps to check concurrent C-programs
by unrolling loops in the sequential program a bounded number of times, and
subjecting them to deductive SMT-solver based verification [LQR09,GHR10].
In this chapter, we show a general sequentializability result that is not

restricted to under-approximations. We show that any concurrent program
with finitely many threads can always be sequentialized provided there exists a
compositional proof of correctness of the concurrent program. More precisely,
we show that given a concurrent program C with assertions and a set of
auxiliary variables A, there is a sequentialization of it, SC,A with assertions,
and that C can be shown to compositionally satisfy its assertions by exposing
the auxiliary variables A if and only if SC,A satisfies its assertions. The
notion of C compositionally satisfying its assertions using auxiliary variables
A is defined semantically, and intuitively captures the rely-guarantee proofs
pioneered by Jones [Jon83]. Rely-guarantee proofs of concurrent programs
are very standard, and perhaps the best known compositional verification
technique for concurrent programs. In these proofs, auxiliary variables can
be seen as local states that get exposed in order to build a compositional
rely-guarantee proof.
Compositional proofs of programs may not always exist, and since our

sequentialization only produces sequential programs that are precise when a
compositional proof exists over the fixed auxiliary variables A, proving its
sequentialization correct can be seen as a sound but incomplete mechanism
for verifying the concurrent program. Note that our sequentialization does
not require the compositional proof to be given; it is only parameterized by
the auxiliary variables A. In fact, if the sequential program is correct, then
we show that the concurrent program is always correct. Conversely, if the
concurrent program is correct and has a compositional proof using variables
A, then we show that the sequential program is guaranteed to be correct as

153

well.
The salient aspect of our sequentialization is that it can be used to

prove concurrent programs entirely correct, as opposed to checking under-
approximations of it. Moreover, though our sequentializations are sound
but incomplete, we believe they are useful on most practical applications
since concurrent programs often have compositional proofs. Our result also
captures the cost of sequentialization (i.e. the number of variables in the
sequentialization) as directly proportional to the number of auxiliary variables
that are required to build a compositional proof. Concurrent programs that
are “loosely coupled” often require only a small number of auxiliary variables
to be exposed, and hence admit efficient sequentializations.

We also describe our experience in applying our sequentialization to prove
a suite of concurrent programs entirely correct by using deductive verifi-
cation of their sequentializations. More precisely, we wrote rely-guarantee
proof annotations for some concurrent programs by formulating the rely and
guarantee conditions, the loop invariants, and pre- and post-conditions for
every function. We then sequentialized the concurrent program and also
transformed the rely-guarantee proof annotations to corresponding proof an-
notations on the sequential program. As we show, in this translation, rely and
guarantee conditions naturally get transformed to pre- and post-conditions of
methods, while loop invariants and pre- and post-conditions get translated
to loop invariants and pre- and post-conditions in the sequential program.
Then, using an automatic sequential program verifier Boogie, we verified
the sequentializations correct. Boogie takes our programs with the proof
annotations, generates verification conditions, and discharges them using an
automatic theorem prover (SMT solver).
The above use of sequentialization for deductive verification is not the

best use of our sequentializations, as given rely-guarantee proofs, simpler
techniques for statically verifying them are known [FFQ02]. However, our
sequentializations can be applied even when the rely-guarantee proofs are not
known, provided the sequential verification tool is powerful to prove it correct.
An important corollary is that if we have a learning algorithm that synthesizes
inductive loop invariants and pre-/post-condition annotations for sequential
programs, we can use the same learner for synthesizing compositional rely-
guarantee proofs for the given concurrent program. Indeed, we have used
the sequentialization followed by sequential verification, using an automatic

154

predicate-abstraction tool SLAM [BR02], to prove some concurrent programs
correct.

In summary, the result presented in this chapter shows a surprising connec-
tion between compositional proofs and sequentializability. We believe that
this constitutes a fundamental theoretical understanding of when concurrent
programs are efficiently sequentializable, and offers the first efficient sequen-
tializations that work without underapproximation restrictions, enabling us
to verify concurrent program entirely using sequentializations.

7.1 A Compositional Abstract Semantics for
Concurrent Programs

We define a non-standard compositional semantics for concurrent programs,
different from the traditional semantics, in order to capture when a parallel
composition of programs can be argued compositionally to satisfy a specifi-
cation. This semantics is parameterized by a set of auxiliary variables, and
is the semantic analog of compositional rely-guarantee proofs pioneered by
Jones [Jon83].

Let us fix two processes P1 and P2, working concurrently, with local variables
L1 and L2 respectively, and a set of shared variables S (assume L1, L2 and
S are pairwise disjoint, without loss of generality). For any set of (typed)
variables V , let ValV denote the set of valuations of V to their respective data-
domains (data-domains are finite or countably infinite). For any u ∈ ValV ,
let u ↓V ′ denote the valuation u restricted to the variables in V ∩ V ′. We
extend this notation to sets of valuations, U ↓V ′. Also, for any u ∈ ValV
and u′ ∈ ValV ′ , where V ∩ V ′ = ∅, let u ∪ u′ denote the unique valuation in
ValV ∪V ′ that extends u and u′ to V ∪ V ′.

Let Init ⊆ (ValL1 ×ValL2 ×ValS) be the set of initial global configurations
of P1||P2. Let δ1 ⊆ (ValL1 × ValS × ValL1 × ValS) and δ2 ⊆ (ValL2 × ValS ×
ValL2 × ValS) be the local transition relations of P1 and P2, respectively.

The natural (interleaving) semantics of P1||P2 is, of course, defined by
the function δ ⊆ (ValL1 × ValL2 × ValS × ValL1 × ValL2 × ValS), where
δ(l1, l2, s, l′1, l′2, s′) holds iff δ1(l1, s, l′1, s′) holds and l′2 = l2, or δ2(l2, s, l′2, s′)
holds and l′1 = l1. The set of reachable states according to this relation, Reach,
is defined as the set of global states that can be reached from the initial state.

155

Let us now define the non-standard compositional semantics of P1||P2. This
definition is parameterized by a set of auxiliary variables A ⊆ L1 ∪ L2.

Definition 7.1.1. The semantics of the compositional semantics of parallel
composition with respect to the set of auxiliary variables A, denoted P1||AP2,
is defined using the four sets:

R1 ⊆ (ValL1 × ValS × ValA∩L2),
R2 ⊆ (ValL2 × ValS × ValA∩L1),

Guar1,Guar2 ⊆ (ValS × ValA × ValS × ValA),

which are defined as the least sets that satisfy the following conditions:

a) Initialization:

- R1 contains the set {(l1, s, t) | l1 ∪ s ∪ t ∈ Init ↓ (L1 ∪ A ∪ S)}.

- R2 contains the set {(l2, s, t) | l2 ∪ s ∪ t ∈ Init ↓ (L2 ∪ A ∪ S)}.

b) Transitions of P1: If (l1, s, t) ∈ R1 and δ1(l1, s, l′1, s′) holds, then

- Local update: (l′1, s′, t) ∈ R1.

- Update to guarantee: (s, l1 ↓A ∪ t, s′, l′1 ↓A ∪ t) ∈ Guar1.

c) Transitions of P2: If (l2, s, t) ∈ R2 and δ2(l2, s, l′2, s′) holds, then

- Local update: (l′2, s′, t) ∈ R2

- Update to guarantee: (s, l2 ↓A ∪ t, s′, l′2 ↓A ∪ t) ∈ Guar2.

d) Interference:

- If (l1, s, t) ∈ R1 and (s, l1 ↓A ∪ t, s′, t′) ∈ Guar2, then (l1, s′, t′ ↓
L2) ∈ R1.

- If (l2, s, t) ∈ R2 and (s, l2 ↓A ∪ t, s′, t′) ∈ Guar1, then (l2, s′, t′ ↓
L1) ∈ R2.

The set of reachable states according to the non-standard compositional
semantics with respect to the set of auxiliary variables A is defined as

ReachA = {(l1, s, l2) | (l1, s, l2 ↓A) ∈ R1 and (l2, s, l1 ↓A) ∈ R2}. �

156

Intuitively, under the compositional semantics, we track independently the
view of P1 (and P2) using valuations of its local variables, shared variables,
and the subset of the other process’s local variables declared to be auxiliary
(using the sets R1 and R2). Furthermore, we keep the set of guarantee
transition-relations Guar1 and Guar2 that summarize what transitions P1

and P2 can take, but restricted to the auxiliary and shared variables only.
The guarantee-relation of P1 is used to update the view of P2 (i.e. R2), and
vice versa. The crucial aspect of the definition above is that it ignores the
correlation between local variables of P1 and P2 that are not defined to be
auxiliary variables. The computation of P1||AP2 hence proceeds mostly locally,
with updates using the guarantee relation of the other process (which affects
shared and auxiliary variables only), and is combined in the end to get the
set of globally reachable configurations.
It is not hard to see that Reach ⊆ ReachA, for any A. Hence, the compo-

sitional semantics is an over-approximation of the set of reachable states of
the program, and proving that a program is safe under the compositional
semantics is sufficient to prove that the program is safe. Moreover, when the
auxiliary variables include all local variables (including the program counter
and local call stack), the compositional semantics coincides with the natural
semantics.

The above definitions and rules can be generalized to k processes running
in parallel, and we can define the compositional semantics P1||AP2||A . . . ||APn
where A is subset of local variables of each process.

The rely-guarantee proof method of Jones:
The rely-guarantee method of Jones [Jon83] essentially builds compositional

rely-guarantee proofs using a similar abstraction. Given sequential programs P1

and P2, and a pre-condition pre and a post-condition post for P1||P2, the rely-
guarantee proof technique over a set of auxiliary variables A involves providing
a pair of tuples, (pre1, post1, rely1, guar1) and (pre2, post2, rely2, guar2), where
pre1, post1, pre2, and post2 are unary predicates defining subsets of states,
and rely1, guar1, rely2, guar2 are binary relations defining transformations
of the shared variables and the auxiliary variables A. The meaning of the
tuple for P1 is that, when P1 is started with a state satisfying pre1 and in an
environment that could change the auxiliary variables and shared variables
allowed by rely1, P1 would make transitions that accord to guar1, and if it

157

terminates, will satisfy post1 at the exit. An analogous meaning holds for
P2. Note that rely1, rely2, guar1 and guar2 are defined over shared variables
and the auxiliary variables. The programs P1 and P2 are proved to satisfy
these conditions using a local proof by considering each Pi interacting with
a general environment satisfying relyi; in particular invariants of Pi needed
to establish the Hoare-style proof of Pi should be invariant or stable with
respect to relyi.
The following proof rule can then be used to prove partial correctness of
P1||P2:

guar1 ⇒ rely2, guar2 ⇒ rely1,

P |= (pre, post1, rely1, guar1), Q |= (pre, post2, rely2, guar2)

P ||Q |= (pre, post1 ∧ post2)

The rely-guarantee method works also for nested parallellism compositionally;
see [Jon83,XdRH97] for details.

It is easy to see that a compositional rely-guarantee proof of P1||P2, over a
set of auxiliary variables A, is really a proof that the compositional semantics
of P1||AP2 is correct. Note that if P1||AP2 is correct, it does not imply a
rely-guarantee proof exists, however, as proofs have limitations of the logical
syntax used to write the rely and guarantee conditions, and hence do not
always exist.

The main result:
We can now state the main result of this chapter. We show that, given a
parallel composition of sequential programs P1||P2|| . . . ||Pn with assertions,
and a set of auxiliary variables A, we can build a sequential program S with
assertions such that S has the following properties:

• At any point, the scope of S contains at most one copy of the local
variables of a single process Pi, three copies of the auxiliary variables,
and at most three copies of the shared variables.

• The compositional semantics of P1||AP2||A . . . ||APn with respect to the
auxiliary variables A satisfies its assertions iff S satisfies its assertions.

• If S satisfies its assertions, then P1||P2|| . . . ||Pn also satisfies its asser-
tions.

158

The first remark above says that the sequentialized program has less
variables in scope than the naive product of the individual processes; the
sequentialization intuitively simulates the processes separately, keeping track
of only an extra copy of auxiliary variables and shared variables. Second,
the sequentialization is a precise reduction of the verification problem, pro-
vided the concurrent program can be proved compositionally (i.e. if the
auxiliary variables are sufficient to make the compositional semantics of the
program be assertion-failure free). Finally, the sequential program is an
over-approximation of the behaviors of the parallel program for any set of
auxiliary variables, and hence proving it correct proves the parallel program
correct.

The above result will be formalized in the sequel (see Theorem 1) for a class
of parallel programs that has sequential recursive functions, but with no thread
creation or dynamic memory allocation (the result can be extended to dynamic
data-structures but will require mechanisms to cache heap-structures and
compare them for equality). Our main theorem hence states that any parallel
program that is amenable to compositional reasoning can be sequentialized,
where the number of new variables added in the sequentialization grows
with the number of auxiliary variables required to prove the program correct.
We utilize the sequentialization result in one verification context, namely
deductive verification, to build a compositional deductive verification tool for
concurrent programs using the sequential verifier Boogie.

7.2 A High-level Overview of the Sequentialization

In this section, we give a brief overview of our sequentialization. For ease of
explanation, let us consider a concurrent program consisting of two processes
P1 and P2. Let A be the set of auxiliary variables and assume that the
compositional semantics of the concurrent program is correct with respect to
A.
Assume we had functions G1(s∗, a∗) (and G2(s∗, a∗)) that somehow takes

a shared and auxiliary state (s∗, a∗) and non-deterministically returns all
states (s, a) such that (s∗, a∗, s, a) ∈ Guar1 (respectively Guar2), where Guar1

and Guar2 are guarantees for the processes as defined in Definition 1. Then
we could write a function that computes the states that P1 can reach in

159

accordance with the compositional semantics (i.e. R1 in Definition 1) using
the following code:

while(*) {
if (*) then

<<simulate a transition of P1>>
else

(s,a) := G2(s,a);
fi

}
return (s,a);

In other words, we could write a sequential program that returns precisely
the states in R1, by interleaving simulations of P1 with calls to G2 to compute
interference according to Guar2 (see Definition 1). We can similarly implement
the sequential code that explores R2 using calls to G1.
Note that on two successive calls to G2(), there is no preservation of the

local states of P2, except its variables declared to be auxiliary. However, we
do not have to preserve the exact local state of P2 as we are not simulating
the natural semantics of the program, but only its compositional semantics
with respect to auxiliary variables A. This is the crux of the argument as to
why we can sequentially compute R1 without simultaneously tracking all the
local variables of P2.

Now, turning to the function G2 (and G1), consider Definition 1 again, and
notice that, given (s∗, a∗), in order to compute (s, a) such that (s∗, a∗, s, a) ∈
Guar2, we must essentially be able to find a local state l2 such that (l2, s∗, a∗ ↓
L1) ∈ R2 where l2 ↓A = a∗ ↓L2 , and then we can take its transitive closure
with respect to δ2. We can hence write G2 using the following sequential code:

G2(s*,a*) {
<<initialize variables of P2>>
while(*) {

if (*) then
<<simulate a transition of P2>>

else
(s,a) := G1(s,a);

fi
}
assume (local and shared state is consistent with s*,a*);
while(*) {

<<simulate a transition of P2>>

160

}
return (s,a);

}

Intuitively, G2 starts with the initial state of P2 and sets about recomputing
a state (l2, s2) that is compatible with its given input (s∗, a∗) (i.e. with s2 = s∗

and l2 ↓A= a∗ ↓L2). It does this by essentially running the code for R2 (i.e.
by simulating P2 and calling G1). Once it has found such a state, it simulates
P2 for a while longer, and returns the resulting state.
We hence get four procedures that compute R1, R2, Guar1 and Guar2,

respectively, with mutually recursive calls between the functions computing
Guar1 and Guar2. The correctness of the sequential programs follow readily
from Definition 1, as it is a direct encoding of that computation. Our
sequentialization transformation essentially creates these functions G1 and
G2. However, since our program cannot have statements like “simulate a
transition of P2”, we perform a syntactic transformation of the concurrent
code into a sequential code, where control code is inserted between statements
of the concurrent program in order to define the functions G1 and G2. This
complication combined with the handling of recursive functions makes the
translation quite involved; however, the above explanation captures the crux
of the construction.

7.3 Sequential and Concurrent Programs

Our language for concurrent programs consists of a parallel composition of
recursive sequential programs. Variables in our programs are defined over
integer and Boolean domains. The syntax of programs is defined by the
following grammar:

161

〈conc-pgm〉 ::= 〈decl〉∗〈pgm-list〉
〈pgm-list〉 ::= 〈pgm-list〉 || 〈pgm-list〉 | 〈pgm〉
〈pgm〉 ::= 〈decl〉∗〈proc〉∗

〈proc〉 ::= f(x) begin 〈decl〉∗〈stmt〉 end
〈stmt〉 ::= 〈stmt〉; 〈stmt〉 | skip | x := expr(x) | x := f(y) |

f(x) | return x | assume b-expr | assert b-expr |
if b-expr then 〈stmt〉 else 〈stmt〉 fi |
while b-expr do 〈stmt〉 od | atomic {〈stmt〉}

〈decl〉 ::= int 〈var-list〉; | bool 〈var-list〉;
〈var-list〉 ::= 〈var-list〉, 〈var-list〉 | 〈literal〉

A concurrent program consists of k sequential program components P1...Pk

(for some k) communicating with each other through shared variables S. These
shared variables are declared in the beginning of the concurrent program (we
assume integer variables are initialized to 0 and Boolean variables to false).
Each sequential component consists of a procedure called main and a list of
other procedures. The control flow for all sequential components Pi starts in
the corresponding main procedure, which we call maini. The main for all
sequential components has zero arguments and no return value.

Each procedure is a declaration of local variables followed by a sequence of
statements, where statements can be simultaneous assignments, function calls
(call-by-value) that take in multiple parameters and return multiple values,
conditionals, while loops, assumes, asserts, atomic, and return statements. In
the above syntax, x represents a vector of variables. We allow non-determinism
in our programs; boolean constants are true, false and ∗, where ∗ evaluates
non-deterministically to true or false.

The safety specifications for both concurrent and sequential programs are
expressed in our language as assert statements. The semantics of an assume
statement is slightly different. If the value of the boolean expression (b-
expr) evaluates to true, then the assume behaves like a skip. Otherwise, if
the boolean expression evaluates to false, the program silently terminates.
Synchronization and atomicity are achieved by the atomic construct. All the
statements enclosed in the atomic block are executed without any interference
by the other processes. Locks can be simulated in our syntax by modeling a
lock l as an integer variable l and by modeling Pi acquiring l using the code:

atomic { assume(l=0); l := i;}

162

and modeling the release with the code:
atomic { if (l=i) then l := 0;}

We assume programs do not have nested atomic blocks.
The syntax of sequential programs is the same as the syntax of concurrent

programs except that we disallow the parallel composition operator || and
the atomic construct.

7.4 The Sequentialization

In this section, we describe our sequentialization for concurrent programs and
argue its correctness.
Let us fix a concurrent program with shared variables S and auxiliary

variables A; we assume auxiliary variables are global in each thread Pi. Let
the concurrent program be composed of k sequential components.

The sequential program corresponding to the concurrent program will have
a new function main, and additionally, as explained in Section 7.2, will have
a procedure Gi for each sequential component Pi of the concurrent program
that semantically captures the guarantee Guari of Pi. The procedure Gi takes
a shared state (s∗) and auxiliary state (a∗) as input and returns (s, a) such
that (s∗, a∗, s, a) ∈ Guari. Finally, each Gi() is formed using procedures that
are obtained by transforming the process Pi (using the function τi[] shown
below that essentially inserts the interference code Ii shown in Figure 7.1
between the statements of Pi).

The shared variables and auxiliary variables are modeled as global variables
in the sequential program. Furthermore, we have an extra copy of the shared
and auxiliary variables (s∗ and a∗) that are used to pass shared and auxiliary
states between the processes Gi(). We also have a copy of shared and auxiliary
variables (s′ and a′) that are declared to be local in each procedure to store
a shared and auxiliary state and restore it after a call to a function Gj() to
compute interference. Besides these, the sequential program also uses global
Boolean variables z and term; intuitively, z is used to keep track of when
the shared and auxiliary state s∗ and a∗ has been reached and term (for
terminate) is used to signal that Gi() has finished computing and wants to
return the value.

• Global variable declarations are:

163

// insert declaration for s, a, s∗, a∗ as global
variables

decl bool term, z;

• The function main() is defined as:
main() begin G_1() end

• Each function Gi() is defined as below:
G_i() begin

z := false; term := false;
s∗ := s; a∗ := a;
// insert code to initialize s, a
main_i();
assume (term = true);
return

end

• The function τi that transforms the program for Pi is defined as:

– τi[f(x) begin decl stmt end] =
f(x) begin decl

// insert declaration of s′, a′ as local
variables.

τi[stmt]
end

– τi[S1; S2] = τi[S1]; τi[S2]

– τi[S] = Ii; S where S is an assignment, skip statement, assume
statement, assert statement, a function call or a return statement.

– τi[while b-expr do S od] = Ii; while b-expr do τi[S]; Ii od

– τi[if b-expr then S1 else S2 fi] =
Ii; if b-expr then τi[S1] else τi[S2] fi

– τi[atomic {S}] = Ii; S

The procedure main in the sequential program simply calls the method G1.
The procedure Gi is obtained from the corresponding program component
Pi by a simple transformation. At a high level, this procedure first copies
the incoming shared and auxiliary state into the variables s∗ and a∗. It then

164

computes a local state of Pi which is consistent with the state (s∗, a∗) (at
which point z turns to true), and then non-deterministically simulates the
transitions of Pi from this local state, to return a reachable shared state s
and auxiliary state a. Every time Gi is called, it starts from its initial state,
and simulates Pi, interleaving it with the control code Ii given in Figure 7.1.

The interference code Ii (Figure 7.1) keeps track of whether the incoming
state (s∗, a∗) has been reached through a boolean variable z which is initialized
to false. If z is false (i.e. the state (s∗, a∗) has not been reached), then before
any transition of Pi, the control code can non-deterministically choose to
invoke its environment (in doing so, in order to preserve its input s∗, a∗, it
stores them in a local state and restores them after the call returns and
restores its variables z and term to false).

if(term = true) then return fi
if(!z & *) then

while(*) do
// call G1

if(*) then
s′ := s∗; a′ := a∗;
G_1();
z := false;
term := false;
s∗ := s′; a∗ := a′

fi
Similarly call G2 . . . Gk except Gi

od
fi
if(!z & s = s∗ & a = a∗ & *) then

z := true fi
if(z & *) then

term := true; return
fi

Figure 7.1: The interference control code Ii

When the state (s∗, a∗) is
reached, z can be non-determinis-
tically set to true, from which
point no interference code Gj

can be called, and only local
computation proceeds, till non-
deterministically the program de-
cides to terminate by setting
term to true. Once term is true,
the code pops the control-stack
all the way back to reach the
function Gi which then returns
to its caller, returning the new
state in (s, a). Note that the
state z = false, term = false cor-
responds to the first while loop
in the code for the guarantee G2

in Section 7.2. Similarly, setting
term to true corresponds to the
termination of the second while
loop. We conclude this section by stating our main theorem:

Theorem 7.4.1. Let C be a concurrent program with auxiliary variables A
(assumed global), and let SC,A be its sequentialization with respect to A. Then

165

the compositional semantics of C with respect to the auxiliary variables A has
no reachable state violating any of its assertions iff SC,A violates none of its
assertions. �

decl int x, pc1, pc2;

main_1() main_2()
begin begin

atomic { atomic {
x := x + 1; x := x + 2;
pc1 := 1 pc2 := 1

} }
assert(spec1); assert(spec2);
return return

end end

spec1: pc1 = 1 && ((pc2 = 0 && x = 1) || (pc2 = 1 && x = 3))
spec2: pc2 = 1 && ((pc1 = 0 && x = 2) || (pc1 = 1 && x = 3))

Figure 7.2: An example program

Illustration of the sequentialization:
Figure 7.2 shows a concurrent program consisting of two threads, say P1 and
P2. The program consists of a shared variable x whose initial value is zero.
Both the threads atomically increment the value of x. Let A = {pc1, pc2}
be the auxiliary variables capturing the control position in the respective
processes and let the initial value of these variables also be zero. In general,
new auxiliary variables may be needed for performing compositional proofs;
these new variables are written to but never read from in the program, and
hence do not affect the semantics of the original program; see [Jon83,OG76].
It can be easily seen that the compositional semantics of this program

with respect to the auxiliary variables A is correct. Figure 7.3 shows the
sequential program obtained from the sequentialization of this concurrent
program with respect to these auxiliary variables. Our result allows us to
verify the concurrent program in Figure 7.2 by verifying the correctness
of its sequentialization with respect to the auxiliary variables A, shown in
Figure 7.3.

166

decl int x, pc1, pc2;
decl int x∗, pc1∗, pc2∗;
decl bool z, term;
main begin

G_1();
return

end

Ii: if(term = true) then
return fi

if(!z & *) then
x′, pc1′, pc2′ :=

x∗, pc1∗, pc2∗;
G_{3-i}();
z, term:=false, false;
x∗, pc1∗, pc2∗ :=

x′, pc1′, pc2′

fi
if(x = x∗ & pc1 = pc1∗ &
pc2 = pc2∗ & *) then
z := true

fi
if(z & *) then
term := true; return

fi

G_1() begin
z, term:=false, false;
x∗, pc1∗, pc2∗ :=

x, pc1, pc2
x, pc1, pc2 := 0, 0, 0;
main_1();
assume(term = true);
return

end

main_1() begin
decl int x′, pc1′, pc2′;
I1

x := x + 1;
pc1 := 1;
I1

assert(spec1);
I1

return
end

G_2() begin
z, term:=false, false;
x∗, pc1∗, pc2∗:=

x, pc1, pc2
x, pc1, pc2:=0, 0, 0;
main_2();
assume(term = true);
return

end

main_2() begin
decl int x′, pc1′, pc2′;
I2

x := x + 2;
pc2 := 1;
I2

assert(spec2);
I1

return
end

Figure 7.3: The sequential program obtained from sequentializing the concurrent
program in Figure 7.2.

7.5 Experience

The sequentialization used in this chapter can be used to verify a concurrent
program using any sequential verification tool. This includes tools based on
abstract interpretation and predicate abstraction, those based on bounded
model-checking, those based on deductive-verification based extended static
checking as well as those based on invariant synthesis using learning (developed
in this thesis).

Deductive verification: We used the sequentialization for proving concur-
rent programs using deductive verification. Given a concurrent program and
its Jones-style rely-guarantee proof annotations (pre, post, rely, guar, and
loop-invariants), we sequentialized it with respect to the auxiliary variables
and syntactically transformed the user-provided proof annotations to obtain
the proof annotations (pre-conditions and post-conditions of methods and
loop invariants) of the sequential program. In general, the pre-condition of
method Gi asserts that “term= false” and its post-condition asserts that the

167

guarantee guari is true across the function (if term is true). Furthermore,
the pre-conditions and post-conditions of every function in Pi gets translated
to pre-conditions and post-conditions in its sequentialization with the extra
condition that guari is true when term is equal to true.
These annotated sequential programs were fed to the sequential verifier

Boogie that generates verification conditions that are in turn solved by an
SMT solver (Z3 in this case). If the sequential program is proved correct, it
proves the correctness of the original concurrent program. Note that though
similar static extended checking techniques are known for the rely-guarantee
method [FFQ02], our technique allows one to use just a sequential verifier like
Boogie to prove the program correct, and requires no other decision problems
to be solved (the checking in [FFQ02], for example, requires a separate call
to a theorem prover to check guarantees are reflexive and transitive, etc.)
We used this technique to prove correct the following set of concurrent

programs: X++ (Figure 7.2), Lock [FQ03], Peterson’s mutual exclusion
algorithm, the Bakery protocol, ArrayIndexSearch [Jon83], GCD [Fen09], and
a simplified version of a Windows NT Bluetooth driver. Lock is a simple
example program consisting of two threads that modify a shared variable
after acquiring a lock; the safety condition in the example asserts that these
modifications cannot occur concurrently. The same safety specification is
proved for the Peterson’s and the Bakery mutual exclusion protocols. The
program ArrayIndexSearch finds the least index of an array such that the
value at that index satisfies a given predicate, and consists of two threads,
one that searches odd indices and the other that searches even indices, and
communicate on a shared variable index that is always kept updated to the
current least index value. GCD is a concurrent version of Euclid’s algorithm
for computing the greatest common divisor of any two numbers; here the two
concurrent threads update the pair of integers.

The Windows NT bluetooth driver is a parameterized program (i.e. has an
unbounded number of threads). It consists of two types of threads: there is
one stopper-thread and an unbounded number of adder-threads. A stopper
calls a procedure to halt the driver, while an adder calls a procedure to
perform I/O in the driver. The I/O is successfully handled if the driver is
not stopped while it executes. The program, though small, has an intricate
global invariant that requires a shared variable to reflect the number of active
adder threads.

168

Concurrent pgm Sequential pgm
Programs #Threads #LOC #Lines of #LOC #Lines of Time

annotations annotations
X++ 2 38 5 113 6 8s
Lock 2 50 9 184 10 122s

Peterson 2 52 35 232 36 145s
Bakery 2 55 8 147 13 18s

ArrayIndexSearch 2 74 17 222 21 126s
GCD 2 78 23 279 29 869s

Bluetooth unbdd 69 20 276 55 107s

Table 7.1: Experimental Results. Evaluated on Intel dual-core 1.6GHz, 1Gb
RAM.

Table 1 gives the experimental results1. For each program, we report the
number of threads in the concurrent program, the number of lines of code
in the concurrent program and its sequentialization, the number of lines of
annotations in both the concurrent program (which includes rely/guarantee
annotations and loop invariants) and its sequentialization, and the time taken
by Boogie to verify the sequentialized program.

Boogie was able to verify the correctness of all our programs. All these
programs except the Windows NT bluetooth driver consist of two threads
and are sequentialized as detailed in Section 5. The Bluetooth driver is
an example of a parameterized program running any number of instances
of the adder threads. In our sequentialization, we model the environment
consisting of all the adder threads together with a single procedure. If we
keep track of the number of adders at a particular program location (counter
abstraction [Lub84]) and expose these auxiliary variables, it turns out that
the device driver can be proved correct under compositional semantics. We
used this rely-guarantee proof, sequentialized the program, and used Boogie
to prove the Bluetooth driver correct in its full generality.

Predicate abstraction: We have also used our sequentialization followed
by the predicate-abstraction tool SLAM [BR02] to prove programs auto-
matically correct. In this case, we need no annotations and just the set of
auxiliary variables. We were able to automatically prove the correctness of
the programs X++, Lock, Peterson and the Bakery protocol, in negligible
time. Since the sequentialization covered in this chapter is not tied to any

1Experiments available at http://www.cs.uiuc.edu/∼garg11/tacas11

169

verification technique, instead of predicate abstraction, we can also learn
rely-guarantee proofs by learning pre/post-conditions and loop invariants for
the obtained sequential program using algorithms we have developed earlier
in this thesis.

7.6 Related Work

Thread-modular verification [FFQ02,FQ03] is in fact precisely the same as
compositional verification á la Jones, and has been adapted to both model-
checking [FQ03] and extended static checking [FFQ02]. Our result can be
hence seen as showing how thread-modular verification of concurrent programs
can be reduced to pure sequential verification. There has also been work
on using counter-example guided predicate-abstraction and refinement for
rely-guarantee reasoning [CN07], and building rely-guarantee interfaces using
learning [CGP03,AMN05].

Concurrent with our work, Gupta et al. [GPR11a,GPR11b,GPR11c] de-
veloped predicate abstraction and refinement techniques for compositional
verification of multi-threaded programs. They describe constraints on the
desired environment transition predicates using recursion-free Horn clauses
and develop general algorithms for solving these constraints. Solving Horn
clauses over predicates is also the fundamental problem that needs to be
solved when verifying sequential programs with procedures [GLPR12]. This
reestablishes the tight connection between compositional verification of con-
current programs and sequential verification. In fact, Grebenshchikov et al.
show in [GLPR12] that one can build automatic software verifiers provided
proof rules for the verification of the given class of programs, including proof
rules for verifying concurrent programs in a compositional manner.
Subsequent to our work, a sequentialization, different from ours, for com-

positional Owicki-Gries proofs [OG76] of concurrent programs, has been
implemented in Boogie [BCD+05]. The sequential program obtained from
this sequentialization is non-recursive, but is not an executable program;
the procedures in the program are tied to each other through compositional
proof predicates that form part of the pre/post-condition annotations for
the sequential program. While this sequentialization is better than ours for
deductive verification, our sequentialization is a better facilitator for auto-

170

matic verification using model-checking or predicate abstraction. Custom
sequentializations have also been developed to verify concurrent programs for
specific properties, such as verifying GPU kernels [BCD+12] or data-parallel
programs [KMM11] for data-race freedom.

171

CHAPTER 8

VERIFYING ASYNCHRONOUS
PROGRAMS BY SYNTHESIZING

ALMOST-SYNCHRONOUS INVARIANTS

Writing correct asynchronous event-driven programs, which involve concur-
rently evolving components communicating using messages and reacting to
input events, is difficult. One approach to testing and verification of such
programs is using model-checking, where the state-space of the program (or
the program coupled with a test harness) is explored systematically. State-
space explosion occurs due to several reasons— explosion of the underlying
data-space domain, explosion due to the myriad interleavings caused due to
concurrency, and explosion due to the unbounded message buffers used for
communication.
In this chapter, our aim is to build model-checking techniques that syn-

thesize invariants to provably verify asynchronous event-driven programs
against local assertions. In particular, we are interested in proving programs
written in a recently proposed programming language P [DGJ+13], which is
an actor-based programming language which provides abstractions that hide
the underlying data and device manipulations, thus exposing the high-level
protocol. Our primary concern is to tackle the asynchrony of message passing
which causes unbounded message buffers. Our goal is to effectively and
efficiently prove (as opposed to systematically test) event-driven programs
correct, when the number of processes and the local data are bounded, but
when message buffers are unbounded.

The classical approach to tackle state-space explosion when systematically
testing concurrent programs using model-checking is partial-order reduc-
tion [God95,FG05]. A concurrent program’s execution can be viewed as a
partial order that captures causality between events. Local state reachability
can then be checked by exploring only one linearization of every partial order,
and partial-order techniques which give methods that explore one (or a few)
of these linearizations per partial order can result in considerable savings.
In the setting where we want to prove protocols correct using model-

172

checking, the key criterion to achieve termination is to detect cycles in the
state-space. However, in message passing systems, global state-spaces are
infinite, even when the local data domains and number of processes are
bounded, as the message buffers get unbounded. Consider the simple scenario
where a machine p sends a machine q unboundedly many messages, like
in a producer-consumer setting. Even in this simple scenario, systematic
model-checkers (based on partial-order reduction or otherwise) would fail
to terminate checking local assertions, even when the local data stored at p
and q is finite, since message buffers get unbounded [God95]. Consequently,
techniques such as partial-order reduction do not typically help, as they are
not aimed at exploring a finite subset of the infinite reachable state-space that
can guarantee correctness. In this section, we aim to synthesize and explore
such an adequate finite subset, which we call almost-synchronous invariants
(ASI).

Almost-synchronous Invariants: Our primary thesis is that almost-
synchronous invariants often suffice to prove asynchronous event-driven pro-
grams correct, and furthermore, a search for these invariants is also more
effective in finding bugs. Intuitively, almost-synchronous states are those
where the message buffers are close to empty, and almost-synchronous in-
variants are collections of such states that ensure that all local states have
been discovered. For instance, in the producer-consumer example above,
exploring the sends of p immediately followed by the receive in q discovers
an almost-synchronous invariant where message buffers are bounded by one,
though blindly exploring the state-space would never lead to termination.
The primary contribution of our work is a sound and complete reduction

scheme that discovers almost-synchronous invariants using model-checking.
The key idea is to explore interleavings that keep the message buffers small,
while at the same time finding a closure argument that argues that all local
states have been discovered, at which point we can terminate. Intuitively,
for any partial order described by the system, we aim to “cover” this using a
linearization that has small buffer sizes.

Verifying Asynchronous Event-driven Programs in P: One of our pri-
mary motivations in this work is to verify real-world asynchronous event-driven
device-driver programs written in P against a property called responsiveness.

173

Asynchronous event-driven programs typically have layers of design, where
the higher layers reason with how the various components (or machines)
interact and the protocol they follow, and where lower layers manage more
data-intensive computations, controlling local devices, etc. However, the
programs often get written in traditional languages that offer no mechanisms
to capture these abstractions, and hence over time leads to code where the
individual layers are no longer discernible. High level protocols, though often
first designed on paper using clean graphical state-machine abstractions,
eventually get lost in code, and hence verification tools for such programs
face the daunting task of extracting these models from the programs.
The natural solution to the above problem is to build a programming

language for asynchronous event-driven programs that preserves the protocol
abstractions in code. Apart from the difficulty in designing such a language,
this problem is plagued by the reluctance of programmers to adopt a new
language of programming and the discipline that it brings. However, this
precise solution was pioneered in a new project at Microsoft Research recently,
where, during the development of Windows 8, the team building the USB
driver stack decided to use a domain-specific language for asynchronous event-
driven programs called P [DGJ+13]. Programs written in P capture the high-
level protocol using a collection of interacting state machines that communicate
with each other by exchanging messages. The machines, internally, also have
to do complex tasks such as process data and perform low level control of
devices, reading sensors or controlling devices, etc., and these are modeled
using external foreign functions written in C.
The salient aspect of P is that it is a programming paradigm where the

protocol model and the lower level data and control are simultaneously
expressed in the same language. P programs can be compiled to native code
for execution, while the protocol model itself can be extracted cleanly from
the code in order to help perform analysis, especially those relevant to finding
errors in the protocol. Writing code in P gives immediate access to designers
to correct errors found by analysis tools during the design phase itself, and
significantly contributed to building a more reliable USB stack [DGJ+13].
Maintenance of the code in P automatically keeps these models up to date,
enabling verification mechanisms to keep up with evolving code.

The main specification that P programs are required to satisfy in [DGJ+13]
is responsiveness. Each state in a P program declares the precise set of

174

messages a machine can handle and the precise set of messages it will defer,
implicitly asserting that all other messages are not expected by the designer
to arrive when in this state. Receiving a message outside these sets hence
signals an error, and in device drivers, often leads drivers to crash. The work
reported in [DGJ+13] includes a systematic testing tool for the models using
model-checking, where the system is explored for hundreds of thousands of
states to check for errors. However, such model-checking seldom succeeds in
proving the program correct, since there are many sources of infinity, including
message buffer sizes.

In this work, we present a reduction based on almost-synchronous invariants
for a model called event-driven automata, which closely resembles P programs
(our algorithm can be easily adapted to other actor-based concurrency models
as well). We show that our reduction can prove P programs correct, for
arbitrary message buffer sizes. We also show that our reduction works faster,
despite handling unbounded buffers, than the naive systematic exploration
over reasonably bounded buffers. Our reduction also helps in finding bugs
in incorrect P programs, exploring less states and performing faster than
iterated depth-first search techniques. The high point of our experiments is
the complete verification of the USB Windows Phone Driver, which our tool
can prove responsive with no bound on message buffers, a proof that has
hitherto been impossible to achieve using current model-checkers.

8.1 Motivation

The key idea of this work is that almost-synchronous invariants often suffice to
find proofs of local assertions in event-driven asynchronous programs. Given
an asynchronous program with local assertions, we would like to explore a
set of reachable global states that covers all reachable local states. However,
this set of global states need not be the set of all reachable global states
(partial-order reduction [God95,FG05] also works this way; all global states
are not explored, but all local states are covered).
Synchronous states, intuitively, is the set of global states where message

buffers are empty. From the perspective of rely-guarantee reasoning [Jon83],
when a machine p sends a message to machine q, p is not quite concerned
with what the state of q is when the send-event happens, but rather is

175

concerned with the state of q when it receives/dequeues the message it sends,
which is essentially what synchronous states capture. However, synchronous
invariants (invariants containing synchronous states) may themselves not
suffice to prove a system correct for two reasons: (a) in order to ensure
that all synchronous states have been explored, we may need to explore
asynchronous states (where message buffers are not empty), and (b) certain
local states may manifest themselves only in asynchronous states. Almost-
synchronous invariants are invariants of the system expressed using global
states where message buffers are close to empty, but for which inductiveness
of the invariant is provable and which covers all local states. The primary
thesis of this work is that almost-synchronous invariants (ASI) often exist
for event-driven asynchronous programs, and proofs that target finding such
invariants can prove their correctness efficiently.

We will present, in Section 8.3, a reduction scheme (called almost-synchron-
ous reduction) that will explore a selective set of interleavings that leads to
the discovery of ASIs and simultaneously proves their inductiveness. The
primary aim of the reduction is to explore interleavings that keep the message
buffers to the minimal size needed, while still ensuring that all local states are
eventually explored. The reduction will be sound and complete— all errors
will be detected (if the search finishes) and all reported errors will be real
errors.

Figure 8.1:
Producer-consumer
Scenario

At a very basic level, almost-synchronous reduc-
tions (presented in detail in Section 8.3) schedule
receive-events whenever they are enabled, suppress-
ing send-events. This rule ensures that messages are
removed from message queues (which are FIFO and
one per process) as soon as possible, thus ensuring
message buffers are contained, and as we show in
practice, often bounded. Moreover, this prioritiza-
tion is sound as receive events that are enabled do
not conflict, a la partial-order reduction [God95],
with other receive or send events.

To appreciate this prioritization, consider the
producer-consumer scenario on the right, where pro-
cess p sends an unbounded number of messages to
q, which q receives (p could do this by having a recurring state send out

176

messages received by a recurring state of q). The reduction that we propose
will explore this scenario (partial-order) using the linearization consisting of
an unbounded number of rounds, where in each round p sends to q followed
by q immediately receiving the message from p, thus exploring an essentially
synchronous interleaving where the message buffer is bounded by one. Fur-
thermore, and very importantly, when exploring this interleaving, the search
will discover that the global state repeats, which includes the local states of
all machines and the contents of all message buffers. This is entirely because
the message buffer gets constantly depleted causing the global state to recur.

Similarities and Differences with Partial-order Reduction: Note
that techniques such as partial-order reduction [God95,FG05] do not neces-
sarily help in this scenario. Even an optimal static or dynamic partial-order
reduction that promises to explore every partial-order using just one lineariza-
tion, cannot assuredly help. In the above example, if the linearization chosen
is the one where the sends from p are all explored first (or a large number
of them are explored) before the corresponding receives are explored, then
each global state along this execution would be different because the message
buffer content is different in each step. This turns out to be true for both
depth-first and breadth-first searches with partial-order reduction. Note that
this problem does not, in general, arise when systems communicate through
bounded shared memory only; it is message-passing that causes the problem.
Partial-order reduction techniques are targeted to reducing the number

of interleavings of every partially ordered execution explored, but are not
aimed at choosing the interleavings explored carefully so as to reduce the
global configuration, in particular the size of message buffers. Our almost-
synchronous reduction, on the other hand, chooses interleavings that reduce
message-buffer sizes.

Despite the above differences, our reduction has many similarities to partial-
order reductions. In particular, the proof that our reduction is sound and
complete in discovering all local states is similar to the corresponding proofs
for partial-order reduction— we show that for every execution that reaches
a local state, there is another execution within our reduced system that is
equivalent (respects the same partial order) and hence reaches the same local
state.
As in the scenario of Figure 8.1, if a system readily always presents syn-

177

chronous events (all sends enabled always have the matching receive events
immediately enabled in the receiving process), one can solely explore the
executions with synchronous events only and keep the sum of all message
buffer sizes to one. While this often happens, it does not typically happen all
the time in a system’s evolution, which is why we need almost-synchronous
global states to be explored.
In Section 8.3, we introduce the concept of destination sets to determine

which events need to be scheduled in our reduction, in a given system config-
uration. A destination set is a subset of processes that is defined for every
system configuration. For configurations in which none of the receive events
are enabled, we construct its destination set and explore only those events that
send messages to a process in the destination set. Destination sets are defined
in a manner such that the above exploration covers all local states reached
along linearizations that involve events which send messages to processes in
the destination set. However, any form of selective exploration, such as the
one we propose above using destination sets, is, in general, unfair and can
completely miss local states that are reached along linearizations that involve
only the events that have not been explored [God95,Val91]. To ensure that
our search is not unfair with respect to some linearizations, our reduction
also enables a transition that blocks processes whose events were chosen to be
selectively explored. The use of blocked processes is a unique aspect of our
reduction, and crucially relies on the semantics of message passing. A generic
reduction technique, such as partial-order reduction, which works by handling
shared memory and message passing uniformly cannot achieve such reductions,
as what we do strays away from the normal semantics of transitions on the
global state. In other words, we are under-approximating the global state
description itself, while preserving soundness and completeness.

A simple P program: Figure 8.5 presents a toy example in P, that
implements the distributed commit protocol. The system consists of a Client
machine, a Coordinator and two Replica machines. The client sends new
transaction (newTran) requests to the coordinator machine. The coordinator
machine dequeues these requests and processes them by coordinating with
the replicas in the system. It does so by sending Commit requests to the
replica machines and waiting for a Vote from them. Once the coordinator has
received votes from both the replicas, it sends a nextTran message back to the

178

SendRequest

Deferred:
Action:

send(Coordinator ,newTran);

start nextTran

(a) Client Machine

WaitTran
Deferred:
Action:

skip

start

AskReplicas

Deferred:
Action:

send(Replica 1 ,Commit);
send(Replica 2 ,Commit);

CollectVote
Deferred:
Action:

skip

AckToClient
Deferred:
Action:

send(Client ,nextTran);
raise(unit);

newTran

vote
unit

vote

(b) Coordinator Machine

Init
Deferred:
Action:

skip

start

SendVote
Deferred:
Action:

send(Coordinator ,Vote);
raise(unit);

Commit

unit

(c) Replica Machine

Figure 8.2: Distributed Commit Protocol in P

client. Only after receiving this message can the client send a new transaction
to the coordinator. In this way, the protocol ensures that the client machine
sends a newTran request only after the coordinator has finished processing
the previous transaction. Note that the set of messages deferred in any state
of the above P program is empty; our reduction can also handle P programs
with non-empty deferred sets.

Figure 8.3 shows the queuing architecture for the distributed commit
protocol indicating the communication pattern amongst the machines in the
system. An edge from p to q represents that p is a potential sender of q. In
this particular example, the client can only send a message to the coordinator;
the coordinator sends a message to the client and to both the replicas, and
the replicas in turn send messages back to the coordinator. In section 8.3, we
use this example to describe our reduction algorithm.

179

Figure 8.3: The queuing architecture for the Distributed Commit Protocol in
Figure 8.5.

8.2 Event-driven Automata Model

In this section we introduce an automaton model, called event-driven automata
(EDA), for modeling event-driven programs, inspired by and very similar to
P programs. Event-driven automata are however a lot simpler, allowing us to
define the reductions and prove precise theorems about them. We will then
lift the reductions to general programs, including programs written in P (see
Section 8.4).

In our automaton model, a program is a finite collection of state machines
communicating via messages. Each state machine is a collection of states,
has local variables and has a set of actions. Each machine also has a single
FIFO queue into which other machines can enqueue messages. We will not
restrict any of the sets (states, domain of local variables, payload on messages,
etc.) to be finite; all of them can be infinite, and hence our automata can
model event-driven software. For instance, P programs allow function calls in
local machines; these can be modeled in our automata using an appropriate
encoding of the call-stack in the state. Also, for simplicity, we will assume
there is no process/machine creation; our reduction does extend to this setting,
but for simplicity we explain our algorithms without these complications.
Section 8.4 describes how we extend our algorithms to work on general P
programs.

A message is modeled as a pair π = (m, l), consisting of a message type m
(from a finite set) and an associated payload l belonging to some (finite or
infinite) domain. Let M be a finite set of message types and let DomM be
the payload domain. Then, a message π belongs to Π = M ×DomM . We fix
M , DomM , and Π for the rest of this chapter.

180

Let Dom be the domain for the local variables in the state machines.
Without loss in generality, we assume that each machine in the program has
a single local variable, and fix Dom for the rest of this chapter. Also let us
denote fT to be the class of all (computable) functions of type T .

Event-driven automata (EDA): An event-driven automaton over Π =
(M × DomM) and Dom is a tuple P = ({Pi}i∈N), where N = {1, · · · , n},
n ∈ N, and each Pi = (Qs

i , Q
r
i , Q

int
i , q0

i , val
0
i , Ti,Defi, qerri), where

- Qi = Qs
i]Qr

i]Qint
i] {qerri } is the set of states, partitioned into states

that send a message Qs
i , states that receive messages Qr

i , internal states
Qint
i , and an error state qerr

i .

- q0
i ∈ Qs

i ∪Qr
i is the initial state of Pi;

- val0i ∈ Dom is the initial valuation for the local variable in Pi;

- Ti is the set of transitions for Pi and is partitioned into send transitions
T si , receive transitions T ri and internal transitions T inti .
Send transitions are of the form:
T si : Qs

i −→ (Qint
i ∪ {qerr

i })× (N\{i})×M × fDom−→DomM

Receive transitions are of the form:
T ri : Qr

i ×M −→ (Qint
i ∪ {qerr

i })× fDom×DomM−→Dom

Internal transitions are of the form:
T inti : Qint

i −→ 2(Qs
i∪Q

r
i∪{q

err
i })×f

Dom−→Dom ;

- Defi : Qr
i −→ 2M associates a deferred set of messages to each receive

state. �

When T si (q) = (q′, j,m, f), this means that machine Pi, when in state q
and local variable valuation v can transition to q′, sending the message of
type m with a payload f(v) to machine Pj . Note that a machine cannot send
messages to itself (we assume this mainly for technical convenience). Similarly,
when T ri (q,m) = (q′, f), this means that Pi can receive message (m, l) when in
state q and valuation v, and update its state to q′ and local variable to f(v, l).
When T int

i (q) contains (q′, f), it means that Pi can (non-deterministically)
transition from state q and local variable valuation v to state q′ and local
valuation f(v).

181

Note that, by definition, send transitions are deterministic, and receive tran-
sitions are deterministic for any received message; true local non-determinism
is only present in internal transitions. Also note that every send or receive
transition takes the control of the machine to an internal state and is immedi-
ately followed by an internal transition which non-deterministically transitions
the machine to a send or a receive state. From the way we have defined
transitions, the automaton can transition from any state to the error state
qerr
i and from the error state, no further transitions are enabled.
As we noted above, in our automaton model, messages sent to a machine are

stored in a FIFO queue. However, as in P programs, we allow the possibility
to influence the order in which the messages are received by deferring them.
In a given receive state q in machine Pi, some messages can be deferred, which
is captured by the set Defi(q). When a machine is in this state, it skips all
the messages that are in its deferred set and dequeues the first message that
is not in its deferred set.
The communication model we follow is that whenever a machine sends

a message to another machine, the message is immediately added to the
receiver’s queue. This is the same communication model as in P, which was
mainly designed to model event-driven programs running on a single machine,
for example an operating system driver. Note that this communication model
is, however, general enough and can be used to also model distributed systems
where messages sent by a machine reach the receiving machine after arbitrary
time delay (but in FIFO order). One can model such a system by introducing
a separate channel process between every pair of machines. This process
dequeues messages from its sender and immediately forwards it to the receiver.
Since there are multiple channel processes forwarding messages to a given
machine, interleavings between them has the same effect as having messages
delivered with delay.

8.2.1 Formal semantics of Event-drive Automata

A (global) configuration of an event-driven automata (EDA) consisting of
n machines is a tuple C = ({Ci}i∈N) , where N = {1, · · · , n}, and where
Ci (denoted as C[i]) is the local configuration of the ith machine. The
configuration C[i] belongs to (Qi × Dom × Π∗). The first and the second

182

C[i] =
(
qi, vi, µi

)
(q′i, f) ∈ T int

i (qi)

C
i−→ C[i 7→ (q′i, f(vi), µi)]

internal

C[i] = (qi, vi, µi) C[j] = (qj, vj, µj)
T si (qi) = (q′i, j,m, f)

C
i!j−→ C

[
i 7→ (q′i, vi, µi)

][
j 7→

(
qj, vj, µj (m, f(vi))

)] send

C[i] =
(
qi, vi, µi (m, l) µ′i

)
µi ∈ [Defi(qi)× DomM]∗ m < Defi(qi)

T ri (qi,m) = (q′i, f)
C

i?−→ C[i 7→ (q′i, f(vi, l), µi µ′i)]
receive

→ = i−→] i!j−→] i?−→

Figure 8.4: Semantics of EDA

component of C[i] refer to the current state of the i’th machine and the value
of its local variable; the third component is the incoming message queue to
machine Pi, modeled as a sequence of pairs of a message type and a payload.
For a given configuration C and a local configuration of the i’th machine C ′i,
let C[i 7→ C ′i] be the configuration which is the same as C except that its ith

configuration is C ′i.
The initial configuration of the EDA is Cinit where Cinit[i] = (q0

i , val
0
i , ε) for

all i ∈ N . The rules for the operational semantics of EDAs are presented in
Figure 8.4. The rules for the send and the internal transitions are straight-
forward; the rule for a receive transition is slightly more complex. From a
receive state qi, machine Pi skips all the messages in its queue that are in its
deferred set and dequeues the first message m from its queue that is not in
its deferred set. The state of the machine and the value of its local variable
is updated according to the semantics of the receive transition.
Let ReachG be the set of global configurations of the EDA that can be

reached from its initial configuration, and it can be computed as lfp(λS. Cinit∪
{C ′ | C → C ′, C ∈ S}). Let BadG = {C | C[i] = (qerr

i , vi, µi) for some vi,

µi, and i ∈ N} be the set of error configurations of the EDA. Then we say
that the EDA is safe or correct if ReachG ∩BadG = ∅. Note that even when
the states, Dom and DomM are finite, the problem of checking whether a

183

given EDA is safe is an undecidable problem [BZ83].

8.3 Almost-Synchronous Invariants for Event-driven
Automata

Given an event-driven automaton, we describe in this section a reduction
scheme that selectively explores a subset of the global reachable configurations
of the EDA, such that the exploration is sufficient to cover all the local states
that can be reached by the EDA. Our reduction mechanism does so by
constructing almost-synchronous invariants, which are invariants for proving
local assertions in asynchronous programs and are expressed as a set of
global configurations of the system where the message buffers are close to
empty 1. Finally, we argue in this section that our reduction is both sound
and complete and can be effectively used for verifying local assertions in
asynchronous/distributed programs.
Given an automaton P, we present a construction of a transition system
PR such that the set of reachable states of PR correspond to a reduced set
of global configurations of P that form an almost-synchronous invariant of
the system. Unlike standard reductions, the states as well as transitions will
be different than that of the automaton. States in PR are of the form (C,B)
where C is a configuration of the automaton P and is of the form ({Ci}i∈N),
Ci ∈ (Qi × Dom×Π∗), and B ⊆ N is a subset of blocked machines.
As briefly motivated in Section 8.1, transitions in PR prioritize receive

actions over send transitions, thereby ensuring that the message queues remain
small. From a configuration that cannot receive any further messages from its
queues, PR enables a subset of send transitions whose choice depends on the
communication pattern amongst the machines in the current configuration as
well as the system-wide global communication pattern amongst machines that
is determined statically. Naively enabling only a subset of send transitions
will miss out on exploring states that can be reached on taking transitions
that are never enabled. To circumvent this problem, PR allows at every step
a move that blocks those machines whose send transitions were prioritized.

1Almost-synchronous invariants are not actually global invariants! They are in fact a
subset of reachable configurations that cover all local states and that can be used to prove
that no other local states are reachable.

184

Blocked machines remain forever blocked and can take no transitions.
Furthermore, messages sent to blocked machines do not end up in its queue,
but are lost to ether, since the blocked machine will anyway not receive
them. Consequently, these transitions deviate from the semantics of EDA,
but we will show that nevertheless the reduced transition system is sound
and complete in discovering all local states.

Before we give the construction of PR, let us first introduce certain concepts
that are important for understanding the construction.

Definition 8.3.1 (Senders). For a given machine j ∈ N and a configuration
C of the EDA, senders(j, C) is the set of machines i ∈ N such that C[i] =
(qi, vi, µi) and T si (qi) = (q′i, j,m, f), for some qi, q′i, vi, µi,m, f . �

Intuitively, senders(j, C) is the set of all machines i that are sending
a message to machine j in configuration C. This is used to capture the
communication pattern amongst the machines in the current configuration.

Definition 8.3.2 (Potential-Senders). For a given machine j ∈ N , potential-
senders(j) is the set of machines i ∈ N such that there exists a send state
qi ∈ Qs

i such that T si (qi) = (q′i, j,m, f) for some q′i,m, f . �

Unlike senders, the notion of potential senders is independent of the current
configuration. The potential senders of a machine j is the set of all machines
that can possibly send a message to it. This depends on the system-wide
global communication pattern amongst the machines which can be statically
determined.

Definition 8.3.3 (Unblocked-Senders). For a given machine j ∈ N and
an extended configuration (C,B), unblocked-senders(j, C,B) is the set of
machines i ∈ N such that i < B and i ∈ senders(j, C). �

For a state (C,B) of the transition system PR, unblocked - senders(j, C,B) =
senders(j, C) \ B. Given that the machines in B are blocked and not allowed
to transition, unblocked-senders(j, C,B) captures the set of machines that are
allowed to send a message to j from the current state (C,B).

Definition 8.3.4 (isReceiving). Given a machine j ∈ N and a configuration
C such that C[j] = (qj, vj, µj), the predicate isReceiving(j, C) is true iff
qj ∈ Qr

j .

185

Example 8.3.5. Consider the producer-consumer scenario in Figure 8.1 and
let C be its starting configuration. Then, senders(q, C) = {p}, senders(p, C) =
∅, and p ∈ potential-senders(q). Also, isReceiving(p, C) = false while
isReceiving(q, C) = true.

Secondly, consider the scenario in Figure 8.5b and let C be its start-
ing configuration. Then, senders(r, C) = {q}, senders(q, C) = {p}, and
potential-senders(r) = {p, q}. Further, senders(p, C) = ∅, isReceiving(r, C) =
true and isReceiving(q, C) = isReceiving(p, C) = false.

(a) (b)

Figure 8.5: Various communication scenarios– (a) process p sends message to
q and process q sends message to p (b) process p sends message to q, q sends
message to r, which is in a receiving state, process p sends message to r in a
state different from the state it is currently in.

We now introduce an important concept, called destination sets. From
an extended configuration (C,B) of the transition system PR, our reduction
mechanism only explores a subset of the possible send transitions. From a
state (C,B) of PR, our algorithm enables only those transitions that send a
message to machines in a destination set, which is defined below.

Definition 8.3.6 (Destination sets). Given an extended configuration (C,B),
X ⊆ N , a subset of machines, is a destination set if X contains at least one
machine x ∈ N such that unblocked-senders(x,C,B) , ∅ and for all machines
y such that there is an x′ ∈ X with y ∈ potential-senders(x′) and y < B, the
following conditions hold:

1. if isReceiving(y, C) is true, then y ∈ X,

2. if for some machine z ∈ N , y ∈ unblocked-senders(z, C,B), then z ∈
X. �

186

In other words, for an extended configuration (C,B), a destination set X
is a set that includes a machine who has at least one unblocked sender, and
for every machine x ∈ X, if y is a potential sender of x, then (1) if y is in
receive mode, then y ∈ X, and (2) if y is unblocked and in send mode, then
the machine it is sending to is in X.

Note that there could be many destination sets for an extended configuration.
Also, note that the set of all machines is always a destination set, provided
there is at least one machine with an unblocked sender.
Further, note that the two conditions on X are monotonic, and hence we

can start with a single machine x that has at least one unblocked sender, and
close it with respect to the two conditions to get the least set containing x
that is a destination set.

We now fix a particular choice of destination set for every extended config-
uration (C,B) that has a machine with at least one unblocked sender. This
could be the one obtained by choosing a canonical machine with an unblocked
sender and closing it with respect to the two conditions, as described above.

In any case, let us fix a function destination-set that maps every extended
configuration (C,B) to a destination set if there is at least one machine with
an unblocked sender, and to the empty set otherwise.

Example 8.3.7. In the scenario in Figure 8.5a, let C be the starting config-
uration and let the blocked set B be empty. Then we can argue that one of
the destination sets is {q}. This can be computed by taking q, which has an
unblocked sender, and closing it with respect to the conditions, which doesn’t
add any more machines. Note that {p} is also a destination set.

Thus, in the reduction, if we choose the destination set {q}, then we will
enable the send from p to q. Now if p after sending the message gets to a
receive state, the destination set constructed for this new state will be {p},
which will force us to enable the other send, from q to p.

Example 8.3.8. In the scenario in Figure 8.5b, let C be the starting con-
figuration and let the blocked set B be empty. Then notice that {r, q} is a
destination set, with r having an unblocked sender. However, {r} is not a
destination set, and in fact {r, q} is the smallest destination set including {r}.
If we choose this destination set, then our reduction will enable all the send
transitions to them, i.e., the sends from p to q and from q to r. Notice the fact
that p being a potential sender to r forces our reduction to also enable the send

187

transition from p to q. If our reduction had not enabled the send transition
from p to q, we would have not covered the behavior in which process p sends
message m to q, followed by process p sending a message to r from a future
state, followed by process r receiving that message before process q can send
message m′ to process r.

The Reduction

We are now ready to define the reduction. The informal algorithm for the
reduction is as follows.

Given that the system is in an extended configuration (C,B), we will explore
the following transitions from it:

• If any machine is in receive mode and there is an undeferred message
on its incoming queue, then we will schedule all such receive events and
disable all send events.

• If no receives can happen, then we construct the set X where X =
destination-set(C,B). Then we schedule all sends that send to some
machine in X, including sends emanating from X. Furthermore, we
also enable a transition that blocks the unblocked senders to X.

The first rule prioritizes receives over sends. The second one selects a subset
of sends to enable, depending on the destination set computed. Furthermore,
it also enables blocking the unblocked senders to X, which results in a new
configuration where senders to X will not be explored, while other send events
can be explored. Also, note that sends to blocked machines will have their
messages sent to ether.
Figure 8.6 describes the construction of the transition system PR with a

transition relation −→⊆ (C × 2N) × (C × 2N). The initial state of PR is
(Cinit, ∅) where Cinit is the initial configuration of the EDA P and the set of
blocked machines is empty. Let us define ReachR, in the natural way, as the
set of states reachable by PR from its initial state. By definition, ReachR

188

receive C
i?−→ C ′

(C,B) −→ (C ′, B)

send-to-unblocked

NoReceivesEnabled(C) C
i!j−→ C ′

j ∈ destination-set(C,B) i, j < B

(C,B) −→ (C ′, B)

send-to-blocked

NoReceivesEnabled(C) C
i!j−→ C ′

j ∈ destination-set(C,B) i < B j ∈ B
(C,B) −→

(
C
[
i 7→ C ′[i]

]
, B
)

block

NoReceivesEnabled(C)
B′ =

{
i | i ∈ unblocked-senders(j, C,B), j ∈ destination-set(C,B)

}
B′ , ∅

(C,B) −→ (C,B ∪B′)

where
NoReceivesEnabled(C) : for all k, if C[k] = (qk, vk, µk) and

isReceiving(k, C) = true, then µk ∈ [Defk(qk)× DomM]∗

Figure 8.6: The reduced transition system PR whose reachable states
ReachR is an almost-synchronous reduction that includes all local states
reachable in P .

is an almost-synchronous reduction of the set of configurations that can be
reached by P .
If PR is in state (C,B) such that a receive transition is enabled from

the configuration C of EDA P, PR prioritizes the receive transition (rule
Receive in Figure 8.6). The other three rules in Figure 8.6– send-to-
unblocked , send-to-blocked and block apply only when no receive
transitions are enabled from configuration C (captured by the condition
NoReceivesEnabled(C)). In this case, our reduction mechanism first constructs
the destination set for the current state (C,B). Then, PR enables all send
transitions that send a message to a machine j belonging to this set. This
case is split into two rules: the rule send-to-unblocked handles the case
where j is not blocked and the second rule send-to-blocked handles the
case where j is blocked and the message sent is not enqueued but is lost to
ether. In the latter case, note that the configuration of the sender machine i

189

is only updated, and the receiver j’s configuration is unaffected. At the same
time, to ensure that our selective exploration does not miss any behaviors,
from the state (C,B), PR also blocks the machines i whose send transitions
to machines j were selectively enabled (rule Block). Note that Figure 8.6
does not depict the internal transitions. However, PR does include internal
transitions ((C,B) can transition to (C ′, B) if any internal transition takes
C to C ′), and in fact these internal transitions are prioritized so that they
immediately happen. Since there is no shared state, we do not need to
interleave internal transitions in different machines, and hence they happen
atomically with the earlier send/receive transition.

Observe that whenever a machine is added to the blocked set, it is in a send
state (the rule block in Figure 8.6). It follows that a machine, if blocked,
remains forever blocked and can take no further transitions.
We now turn to the soundness and completeness argument for our ASI

reductions. Let BadR = {(C,B) | C ∈ BadG}. Also let −→∗⊆ (C × 2N) ×
(C × 2N) be the transitive closure of the single step transition relation −→
of PR. We next argue that only exploring states that are reachable in PR
is both sound and complete with respect to proving the correctness of the
automaton P . In other words, a local state is reachable in the program iff it
is reachable in the reduced transition system.

Theorem 8.3.9 (Soundness). If some state (Ce, Be) ∈ ReachR ∩BadR, then
there exists a configuration C ′ ∈ ReachG ∩BadG.

Proof sketch: Consider the PR-reachable, error trace (Cinit, ∅) −→ · · · (C,B)
−→ · · · (Ce, Be) where (Ce, Be) ∈ BadR. Then we can show that essentially
the same set of actions can be mimicked in P as well, except that the con-
figurations may contain a bit more information on certain message buffers.
As we traverse the trace in PR, at any point, we construct a P-reachable
configuration C ′ which is same as C except for the queue contents of machines
that have been already blocked along the error trace. For receive, send-
to-unblocked and block transitions along the error trace, the update to
C ′ is straight forward. On a send-to-blocked transition along the error
trace, the update to C ′ departs from the update to (C,B). The update to
C ′, in this case, follows the semantics of EDA P and enqueues the message
into the queue of the blocked machine. As we know that machines that
have been blocked cannot take any further transitions, this means that the

190

message enqueued in the blocked machine’s queue will be never received by it
as we move forward along the error trace. Hence, though C ′ differs from C it
never diverges away from it (i.e., a PR-transition enabled from (C,B) will be
always enabled from configuration C ′; also the states of machines in C ′ are
the same as the states of machines in C). Since Ce ∈ BadR, it follows that
configuration C ′e we end up with is such that C ′e ∈ ReachG ∩BadG. �

We next argue the completeness of our reduction mechanism. For that, let
us introduce →B⊆ C × C for B ⊆ N such that C →B C ′ if configuration
C ′ of automaton P is reachable from C along a P-trace that involves no
transition by any of the machines in the set B. Formally,

→B= (⋃i<B i−→) ∪ (⋃i<B i!j−→) ∪ (⋃i<B i?−→)
and let →∗B be the transitive closure of →B. The completeness result, Theo-
rem 8.3.11, follows essentially from the following lemma. This lemma asserts
that whenever we can reach an error configuration from a configuration C in
the original program without involving any transition of machines in the set
B, we can reach an error configuration in the reduced transition system from
the extended configuration (C,B).

Lemma 8.3.10. If for configurations C,Ce and set B ⊆ N such that C →∗B
Ce where Ce ∈ BadG, then there exists C ′, B′ such that (C,B) −→∗ (C ′, B′)
and (C ′, B′) ∈ BadR.

Proof sketch: First, we will assume that C < BadG, for otherwise the lemma is
obvious. The proof is by contradiction. Assume that there are configurations
C,Ce and set B ⊆ N such that C →∗B Ce where Ce ∈ BadG, and that there is
no PR-state (C ′, B′) ∈ BadR such that (C,B) −→∗ (C ′, B′). Let us consider
an ordering over the space of C,Ce and B. Let this ordering be the standard
lexicographic ordering over (N × N × N), where the first component is the
length of the trace C →∗B Ce; the second component is the sum (over all
machines) of the messages pending in the queues in configuration C; and
the third component is size of the complement of the blocked set B. This
is a well-founded ordering. Let us pick configurations C,Ce and set B that
satisfy all the assumptions and is smallest with respect to this lexicographic
ordering.

We show that we can always make “progress” along the C →∗B Ce trace via
a PR-transition, thereby getting a smaller counter-example with respect to

191

the lexicographic ordering, leading to a contradiction.
We split using two cases, the first when a receive is enabled in configuration

C, and the second when no receive is enabled.

Case 1 : Let us first consider the case when machine i (i < B) in configuration
C is ready to receive a message from its queue. Let the →∗B-trace be τ :
C →B · · · →B Ce. Now, consider the case where there is a transition of
machine i in the sequence τ . Then the first transition of machine i in τ

must be a receive event. Consider the trace τ ′ = C
i?−→B C1 →B · · · →B Ce

obtained from τ by moving this receive transition to the front; this is a valid
→∗B-trace. Using rule receive in the reduced transition system, it follows
that (C,B) −→ (C1, B) and also that there exists no state (C ′, B′) ∈ BadR
such that (C1, B) −→∗ (C ′, B′). Note that τ ′-suffix from C1 to Ce has a
shorter length than τ . This means that the choice C1, Ce and B is a strictly
smaller counter-example, which is a contradiction.

When no transition of i is present along τ , the trace τ1 : C →B · · ·Ce
i?−→B

C ′e obtained from τ by augmenting it with transition i? is a valid →∗B-trace
such that C ′e ∈ BadG. As before, trace τ ′1 = C

i?−→B C1 →B · · ·C ′e is also a
valid →∗B-trace but one whose suffix from C1 to C ′e has the same length as τ .
However, note that C1 has one less message pending in its queues compared
to C. Using the same argument as the one above, the choice C1, C

′
e and B

is a counter-example and is strictly smaller than C,Ce and B, which is a
contradiction.

Case 2 : Now consider the second case when no receive transitions are enabled
in configuration C. Let X = destination-set(C,B).

Consider the subcase where the →∗B-trace τ : C →B · · · →B Ce contains a
transition that sends a message to x ∈ X. Let p!x be the first such transition
occurring along τ . We will argue that the transition p!x in this case can be
commuted to the beginning and it is possible to construct a valid →∗B-trace
τ ′ : C p!x−→B C1 · · · →B Ce. From the rules send-to-unblocked or send-
to-blocked, it follows that (C,B) −→ (C1, B). We can argue that C1, Ce

and B is a smaller counter-example (since the suffix of τ ′ from C1 is shorter),
leading to a contradiction. Now let us argue that the first transition of p in τ
is p!x (if this is so, it is easy see that p!x can be commuted to the front). By
definition, p ∈ potential-senders(x) and p < B. We will show that in C, p is
in a state sending to x. If p is in a receive state in C, then by the definition

192

of destination sets, p ∈ X (since x ∈ X, p ∈ potential-senders(x), and p is in
a receive state). This implies that in τ , before the send event by p happens,
there must be a send-event by some machine to p (since we are in the case
where the buffers to enabled receivers are empty). Since p ∈ X, this send is
a send event to X, which contradicts the assumption that p!x was the first
transition along τ sending a message to a machine in X. If p is in a send state
in C but it is sending a message to a machine y , x, then from the definition
of destination sets, y ∈ X. Again, this implies that τ has a transition p!y for
y ∈ X before the p!x event, which is again a contradiction. The only option
left is that p!x is enabled in configuration C.
We still need to arrive at a contradiction when the →∗B-trace τ : C →B

· · · →B Ce contains no transition that sends a message to a machine x ∈
X. Let B′ = ⋃

x∈X unblocked-senders(x,C,B) for x ∈ X. Since τ has no
transitions sending messages to X, τ involves no transitions by machines in
B′. Now let us show that B′ is non-empty. Note that the machine involved
in the first transition along τ is an unblocked sender. This implies that
X = destination-set(C,B) is non-empty. Hence, there must be an unblocked
sender to X (by definition of destination sets). Hence B′ is non-empty. From
the rule block, it follows that (C,B) −→ (C,B ∪B′) . Also, C →∗B∪B′ Ce is
true. Since B ∪B′ is strictly larger than B, the counter-example C,Ce and
B ∪B′ is smaller, which is a contradiction. �

Theorem 8.3.11 (Completeness). If some configuration C ∈ ReachG∩BadG,
then there exists C ′, B′ such that (C ′, B′) ∈ ReachR ∩BadR.

Proof: The theorem follows directly from the above lemma by substituting B
in the lemma to be the empty set and C to be the initial state Cinit of the
automaton P . �

8.4 Lifting ASI Reductions to P Programs

A P program [DGJ+13] is a collection of state machines communicating via
asynchronous events or messages. Each state machine in P is a collection
of states; it has a set of local variables whose values are retained across
the states of the machine, has an entry method which is the state in which
the control transfers to on the creation of a new machine and finally, has

193

a FIFO incoming queue through which other machines can send messages
to it. Each state in a P state machine has an entry function which is the
sequence of statements that are first executed whenever the control reaches
that state. Additionally, each state has a set of transitions associated with
incoming message types, has a set of action handlers associated with the
incoming message types, as well as a classification of certain message types
as being deferred or ignored in the given state. After the entry function has
been executed, the P machine continues to remain in the same state till it
receives a message in its queue. The machine dequeues the first message
from its queue that is not deferred and checks if the message is ignored in
the current state. If it is, the message is simply dropped from the queue,
and the machine continues to remain in the same state. If the message is
not ignored, the machine dequeues the message; the next state to which the
machine transitions to along with the update to its local state on dequeuing
the message is determined by the state’s transitions and action handlers. P
statements include function calls and calls to foreign functions that are used
to model interaction with the environment. A P state machine can have call
statements and call transitions in it which are used to implement hierarchical
state machines.
We will describe next the mapping between P features and the EDA

we introduced in Section 3. EDAs do not support dynamic creation and
deletion of machines. We did not find this to be a serious limitation as most
driver programs written in P and distributed protocols we modeled in P had
a statically determined, bounded, number of machines. Hence the global
communication pattern, amongst the machines in the EDA, required for our
reductions can also be determined statically.
Also note that we do not restrict the domain Dom for the local variables

in the state machines to be finite. The entry statement in each state can
have multiple sends which can be encoded as a separate send state in EDA
connected by local internal transitions. The nondeterministic choice statement
can be encoded in the form of nondeterminism on internal transitions. The set
of outgoing transition in each P state can be easily mapped on to transitions
in EDA. Actions in P can be expanded as a state transition logic implementing
the action handler. Similarly, the call statements and call transitions can be
handled by repeating the sub-state machines at all call points. By encoding
a stack in the local state of the machines, we can model function calls in P

194

programs, in our automaton.
Every machine Pi in an EDA has an error state qerri that can be used to

model local assertions in the P program. An important safety property in P
programs is to check the responsiveness of the system, i.e., for every receive
state, if m is the first message in the queue that is not deferred, then there
should be a receive action enabled from this state that handles m. Checking
if a P program is responsive can be easily reduced to checking that the error
state qerri is not reachable, for all i ∈ N .
The upshot of the above relationship is that the reduction algorithms for

EDAs described in the earlier sections can be easily lifted to P programs.
States in P can perform multiple actions within the state (such as internal
actions and sending multiple messages), but these can be broken down into
smaller states to simulate our reduction.

8.5 Implementation and Evaluation

We have implemented our ASI reductions by adapting the Zing model-
checker [AQR+04]. The P compiler translates P programs into Zing models,
preserving the input programs execution model. The explorer in Zing sup-
ports guided-search based on a scheduler that is external to the model checker.
The ASI reduction in Zing is implemented in the form an external ASI
scheduler that guides the explorer on which set of actions are enabled in the
current state and the explorer then iterates over these actions. The Zing
program is instrumented appropriately to communicate the current state
configuration information to the ASI scheduler. This instrumentation is
performed automatically by our modified P compiler. The model is instru-
mented to pass information such as (1) the current state of each state machine,
whether its in a send or a receive state (2) size of the message queues, etc.
Based on the current state of each state machine, and the communication
pattern amongst the machines, the ASI scheduler calculates the destination
set mentioned in Section 8.3. Using this destination set, the set of next actions
to be performed are prioritized by the ASI scheduler and executed by the
Zing explorer.
The implementation of the reduction can be seen as a composition of

an almost synchronous ASI scheduler and the asynchronous Zing model,

195

exploring only the state space of the composite system. Most part of the
ASI reduction can be implemented as being external to the model checker
except for the case when a state machine is pushed into a blocked state. The
blocking of a state machine is part of the state of the system and is handled
as a special case. A special state machine called blocking-state-machine is
created with respect to each state machine in the model. The job of the
blocking-state-machine is to enqueue a special event block in the associated
state machine. Each state machine in P is extended to handle block event in
all states, such that on dequeuing the block event it enters a new state where
it keeps dropping all enqueued messages. Now the ASI scheduler can block a
state machine by simply scheduling the corresponding blocking-state-machine
and atomically executing the transitions enqueuing and dequeueing the block
event.

8.5.1 Evaluation

We now present an empirical evaluation of the ASI reduction approach for
verifying P programs and also evaluate it for finding bugs in them. All the
experiments reported are performed on Intel Xeon E5-2440, 2.40GHz, 12 cores
(24 threads), 160GB machine running 64 bit Windows Server OS. The Zing
model checker can exploit multiple cores during exploration as its iterative
depth-first search algorithm is highly parallel [UDR11]. We report the timing
results in this section for the configuration when Zing is run with 24 threads
and uses iterative depth bounding by default for exploring the state space.

In order to thoroughly evaluate our ASI technique, we evaluate it on models
from various domains. We used P for writing all our benchmarks, and used
the P compiler to generate Zing models for verification. Our benchmark
suite includes:

- the Elevator controller model described in [DGJ+13],

- the OSR driver used for testing USB devices,

- the Truck Lifts distributed controller protocol,

- Time Synchronization standards protocol used for synchronization of
nodes in distributed systems,

196

- the German cache coherence protocol, and

- the Windows Phone (WP) USB driver, which is the actual driver shipped
with the Windows Phone operating system.

Note that the lines of code reported in Table 8.1 are for the models when
written in P, which is a domain specific language in which protocols can be
written very compactly. We could not evaluate our ASI reduction approach
on the Windows 8 USB driver used in [DGJ+13] as it was not available to
us. We, however, evaluated our technique on the Windows Phone USB driver
under a license agreement.

Verifying P programs: Message buffers in P programs can become un-
bounded and their systematic exploration by Zing will fail to prove such
programs correct in the presence of such behaviors [DGJ+13]. In general, the
queues can become unbounded when a state machine pushes events into them
at arbitrarily fast rates. For Zing to be able to explore such models, P users
are allowed to provide a bound on the maximum number of occurrences of an
event in a message queue. This indirectly bounds the queue size of each state
machine during the state space exploration.

Table 8.1 shows the results for the Zing Bounded Model Checker [DGJ+13]
as well as our ASI based reduction technique. The Zing results are only
for an under-approximation of the state space, restricted by bounding the
maximum number of occurrences of an event to a constant value that was
picked by the P developers on the basis of domain knowledge [DGJ+13]. On
the other hand, our results for ASI reduction are for the complete verification
of the models, where message buffers are unbounded. For ASI, we report the
total number of states explored, the time taken by the tool, and whether it
was able to prove the programs correct or not.

Our ASI reduction was able to verify completely the Windows Phone (WP)
driver and the German protocol, while the Zing bounded model checker
failed to explore the state space completely (even when message buffers we
bounded) for these models. The P language is being mainly used in Microsoft
currently for the development of the Windows Phone USB drivers. The most
surprising result here is that our reduction-based technique was able to verify
that this driver is responsive (i.e., there is no reachable configuration where a
machine receives a message that it cannot handle).

197

M
od

el
s

Li
ne

s
Zi
ng

M
od

el
C
he

ck
er

A
lm

os
t-
sy
nc
hr
on

ou
s
In
va
ria

nt
s

of
co
de

(w
ith

bu
ffe

r
bo

un
ds
)

(w
ith

no
bu

ffe
r
bo

un
ds
)

in
P

B
ou

nd
on

m
ax

To
ta
l

T
im

e
St
at
e-
sp
ac
e

To
ta
l

T
im

e
Pr

og
ra
m

oc
cu

rr
en

ce
of

an
nu

m
be

r
of

(h
:m

m
)

ex
ha

us
tiv

el
y

nu
m
be

r
of

(h
:m

m
)

Pr
ov
ed

ev
en

t
in

qu
eu

e
st
at
es

Ex
pl
or
ed

?
st
at
es

C
or
re
ct
?

El
ev
at
or

27
0

2
1.

4
×

10
6

0:
22

Ye
s

2.
8
×

10
4

0:
08

Y
es

O
SR

37
7

2
3.

1
×

10
5

0:
16

Ye
s

3.
9
×

10
3

0:
02

Y
es

Tr
uc
k
Li
ft
s

29
0

2
3.

3
×

10
7

2:
07

Ye
s

1.
1
×

10
5

0:
24

Y
es

T
im

e
Sy

nc
(L

in
ea
r
To

po
lo
gy

)
22

00
4

7.
4
×

10
10

5:
34

Ye
s

1.
0
×

10
7

3:
07

Y
es

G
er
m
an

28
0

3
>

1
×

10
12

*
N
o

4.
7
×

10
8

2:
32

Y
es

W
in
do

w
s
Ph

on
e
U
SB

D
riv

er
14

40
3

>
1
×

10
12

*
N
o

2.
4
×

10
9

3:
48

Y
es

*
de
no

te
s
tim

eo
ut

af
te
r
12

ho
ur
s

Ta
bl
e
8.
1:

R
es
ul
ts

fo
r
pr
oo

fb
as
ed

on
al
m
os
t-
sy
nc
hr
on

ou
s
in
va
ria

nt
s
fo
r
P.

198

For comparatively smaller models, ASI was able to prove the models correct
much faster than Zing because of the large state space reduction obtained.
Zing is a state of the art explicit-state model checker tuned for efficiently
exploring P programs. It uses state caching to avoid re-explorations. However
it does not implement partial-order reduction techniques as prior experience
suggested they were not very useful in this domain. As described in Section 2,
partial-order reduction can easily fail to keep message buffers small (as in
the producer-consumer scenario) and hence often lead to infinite state-spaces,
which precludes exhaustive search.

We found in the ASI exploration that, for our benchmark programs, the
size of message queues never exceeded four, thus indicating that the queues
remain bound to a small size under our reduction. On the other hand, even
after bounding the queue sizes, Zing bounded model checker could not prove
large P programs correct or took a very long time. It is important to note
that exploring the system with message-buffers bounded by four does not
prove the system correct for arbitrary buffer sizes. Our technique proves
the system correct, and in the end we get to know what buffer size would
have been enough (it is not possible to compute message buffer bounds
that ensure completeness without doing the exploration). The experimental
results illustrate that testing exhaustively even a highly under-approximated
reachable space takes more time. This highly under-approximated search is
the current testing strategy for P programs, where developers had chosen
bounds on duplicate messages in queues based on system knowledge, to
explore using Zing.

Finding bugs in P programs: To demonstrate the soundness of our
approach, we created buggy versions of the models in our benchmark suite by
introducing known safety errors in them. Table 8.2 shows results in terms of
the number of states explored and the time taken before finding the bug, with
and without ASI. The search terminates as soon as a bug is found. The table
shows that our reduction technique explores orders of magnitude less states
and also finds bugs faster for all the models. For the Time Synchronization
model with nodes in a ring topology, Zing bounded model checker failed to
find the bug while ASI was able to find it. The comparison of ASI with naive
iterative DFS and the results we obtain suggest that almost-synchronous
reductions may also be a good reduction strategy for finding bugs faster. Note

199

B
ug

gy
Zi
ng

B
ou

nd
ed

M
od

el
C
he

ck
er

A
lm

os
t-
sy
nc
hr
on

ou
s
In
va
ria

nt
s

M
od

el
s

(w
ith

bu
ffe

r
bo

un
ds
)

(w
ith

no
bu

ffe
r
bo

un
ds
)

B
ou

nd
on

m
ax

oc
cu

rr
en

ce
To

ta
ln

um
be

r
T
im

e
B
ug

To
ta
ln

um
be

r
T
im

e
B
ug

of
an

ev
en

t
in

qu
eu

e
of

st
at
es

(h
:m

m
)

Fo
un

d?
of

st
at
es

(h
:m

m
)

Fo
un

d?
Tr

uc
k
Li
ft
s

2
95

00
05

1:
17

Ye
s

13
45

3
0:

14
Ye

s
T
im

e
Sy

nc
(R

in
g
To

po
lo
gy

)
4

*
*

N
o

12
99

73
1:

37
Y

es
G
er
m
an

3
59

57
23

0:
44

Ye
s

23
45

0:
10

Ye
s

W
in
do

w
s
Ph

on
e
U
SB

D
riv

er
3

16
16

15
7

2:
04

Ye
s

23
45

2
0:

38
Ye

s

*
de
no

te
s
tim

eo
ut

af
te
r
12

ho
ur
s

Ta
bl
e
8.
2:

R
es
ul
ts

fo
r
bu

g
fin

di
ng

us
in
g
al
m
os
t-
sy
nc
hr
on

ou
s
in
va
ria

nt
s
fo
r
P

200

that several bounding techniques have been studied earlier in the context of
finding concurrent bugs [TDB14,EQR11,MQ07]. Finding better exploration
strategies that combine these bounding techniques with ASI is an interesting
direction for future work.

8.6 Remarks

Figure 8.7:

We would like to emphasize here that our technique
is incomplete and there are simple scenarios where the
ASI reduction might not terminate and thus fail to
prove a program correct. Figure 8.7 shows such a sce-
nario where p sends an unbounded number of messages
to r followed by a message sent to q. The process q
receives the message from p, then sends a message to r.
The process r receives this message from q before it re-
ceives the (unbounded number of) messages that p has
sent to it. In this system configuration, the destination
set is {q, r}, and hence the event sending message from
p to r would be explored successively, leading to an
unbounded number of messages in r’s queue, and the exploration will not
terminate.

However, as we have shown, for many real-world asynchronous event-driven
programs, exploring almost-synchronous interleavings that grow the buffers
only when they really need to grow captures more interesting linearizations,
discovers smaller adequate invariants, and leads to faster techniques to both
prove and find bugs in programs.

8.7 Related Work

The reachability problem for finite state machines communicating via un-
bounded fifo queues is undecidable [BZ83]. The undecidability stems from
the fact that the unbounded queues can be used to simulate the tape of a
Turing machine. To circumvent this undecidability barrier, there has been
work in several directions. It has been shown that the problem becomes

201

decidable under certain restrictions like when the finite state machines com-
municate via unbounded lossy fifo queues that may drop messages in an
arbitrary manner [AJ93], when the communication is via a bag of messages
and not via fifo queues [SV06, JM07a], when only one kind of message is
present in the message queues [PP92], when the language of each fifo queue
is bounded [GGLR87], or when the communication between the machines
adheres to a forest architecture [LMP08]. For verification of these machines
communicating via messages, techniques that over-approximate the set of
reachable states have also been studied [BZ83,PP91]. The verification problem
is also decidable when the queue contents for every reachable control state
of the protocol can be described by a recognizable expression [Pac87], and
Boigelot et al. [BG99] develop a new data structure QDD for representing
(possibly infinite) set of queue-contents in a symbolic manner, and build a
model-checking procedure over QDDs that terminates even when the state
space for such communicating protocols is infinite.
Several under-approximate bounding techniques have been explored to

find bugs, even when the machines have shared memory, including depth-
bounding [God97], bounded context-switching reachability [QW04,QR05,
LMP08], bounded-phase reachability [BE12], preemption-bounding [MQ07],
delay-bounding [EQR11], bounded-asynchrony [FHMP08], etc. These tech-
niques systematically explore a bounded space of reachable states of the
concurrent system and are used in practice for finding bugs. It has also
been shown that several of these bounding techniques admit a decidable
model-checking problem even when the underlying machines have recur-
sion [QR05,LMP07,MP11]
Unlike the above bounding techniques which are not complete, partial

order reduction (POR) methods retain completeness while trying to avoid
exploring interleavings that have the same partial order [God95,Maz86]. POR
techniques use persistent/stubborn sets [GP93,Val91] or sleep sets [GW93]
to selectively search the space of reachable states of the concurrent sys-
tem in a provably complete manner. Dynamic POR [FG05] and its vari-
ants [TKL+12,PGK07,LKMA10,LDMA09] including the recently proposed
optimal one [AAJS14] significantly improve upon the earlier works by con-
structing these sets dynamically. Dynamic POR for restrictions of MPI
programs where synchronous moves are sufficient have also been explored
in [Sie05,SA05,PGK07].

202

Message sequence charts (MSC), which provide a specification language
for specifying scenarios of different communication behaviors of the system,
have a partial order semantics, and high-level message sequence charts can
combine them with choice and recursion. While checking linear time properties
of scenarios of these graphs is undecidable [AY99], surprisingly, checking
MSO properties over MSCs directly was shown to be decidable in [Mad01].
Furthermore, this kind of model-checking can be done using linearizations that
keep the message buffers bounded [MM01], similar to the almost-synchronous
interleavings explored in this chapter.

The work reported in [JM07a] solves the problem of data flow analysis for
asynchronous programs using an under-approximation and over-approximation
bounding the counters representing the pending messages, where messages
are delivered without in non-fifo order. The authors in [BBO12,BB11] present
a technique where choreography of asynchronous machines can be checked
when the asynchronous communication can be replaced by synchronous
communication. The authors use their analysis technique for verifying channel
contracts in the Singularity operating system [HL07]. Though our approach
of almost-synchronous reduction has a similar flavor, we do not restrict our
analysis to systems where asynchronous message passing can be entirely
replaced by synchronous communication.
Our present work builds on top of P [DGJ+13], which is a language for

writing asynchronous event-driven programs. While [DGJ+13] uses a model
checker to systematically test P programs for responsiveness, our reduction
technique provides a methodology for verifying P programs. In addition, our
experiments strongly suggest that our reductions can be also used to find
bugs much faster.

203

CHAPTER 9

CONCLUSIONS

In the preceding chapters of this thesis, we investigate learning approaches to
synthesize inductive invariants of programs towards automatically verifying
them. As we have argued in the introduction, learning presents an approach
that is complementary to white-box invariant generation techniques such
as interpolation, abstract interpretation, etc. The main advantage of the
learning approach is that even complicated language constructs (like nonlinear
arithmetic operations, operations over the heap, etc.) can be handled elegantly
as the actual learner is agnostic to the considered language and the semantics
of the program.

Learning approaches have been investigated before for invariant synthesis,
and also in the other verification contexts such as learning likely invariants,
learning rely-guarantee contracts and learning stateful interfaces for programs.
However, prior learning approaches were unduly influenced by traditional
machine learning models that learned concepts from positive and negative
counterexamples. In this thesis, we theoretically argue that these models
are not robust for synthesizing invariants. This has been acknowledged
before by several authors as progress in prior learning approaches was almost
always achieved at the cost of introducing arbitrary bias in the learning
process and possible divergence, and was also experimentally validated by us.
Consequently, we propose in this thesis a new learning model for synthesizing
inductive program invariants called ICE, which learns invariant concepts
from positive, negative and also implication counterexamples. We argue
ICE is robust for learning inductive invariants for procedures in a program,
and develop algorithms in this model for learning invariants belonging to
various different concept classes and apply it towards automatic verification
of programs.
We, first, develop algorithms for learning numerical program invariants

based on constraint solving and machine learning algorithms for learning

204

decision trees. We show that our learning algorithms are promising and
compare favorably to various other invariant synthesizers, including those
based on interpolation, abstract interpretation, white-box template-based
invariant synthesis, and other black-box learners including those based on
geometric techniques and randomized search, on a suite of programs taken
from the software verification competition that require complicated numerical
invariants for their verification.

We next develop learning algorithms for synthesizing quantified invariants
of linear data-structures, such as arrays and lists, using automata learning al-
gorithms. Our work makes interesting theoretical contributions, which include
introducing a new automata model called quantified data automata (QDA)
to capture quantified data properties of linear data-structures, identifying a
subclass of QDAs called elastic QDAs that are translatable to decidable heap
logics and hence amenable to deductive verification and also form an abstract
domain for analyzing heap properties using abstract interpretation, and de-
veloping automata based learning algorithms to learn QDAs and EQDAs.
Besides these theoretical contributions, we deploy the developed learning
algorithms to verify various programs over arrays and lists, which are taken
from the literature and real-world projects including a secure mobile operat-
ing system, Linux device drivers and the Gnu library, correct. The learning
algorithms are extremely fast and we show they can synthesize invariants
to prove certain data-structure programs that are out of reach of current
invariant synthesis techniques, such as those based on interpolation.

Finally, we investigate techniques to verify concurrent programs and show
that deductive verification of shared memory concurrent programs (under
the over-approximate compositional semantics) can be reduced to sequential
verification. Similarly, synthesizing rely-guarantee annotations for concurrent
programs can be reduced to synthesizing invariants for sequential programs,
which can possibly be done using the learning approach we discuss in this
thesis. Further, for asynchronously-communicating message-passing systems,
we develop an invariant synthesis technique which like the learning approach
described before is based on constructing an invariant (called almost syn-
chronous invariants) over concrete system configurations. Our approach is
based on explicit model checking; we show that almost synchronous invariants
for most systems can be represented finitely, and can be thereby constructed,
including for the USB driver that ships with Microsoft Windows phone,

205

leading to provably correct system implementations.
Despite the work we present in this thesis and build up on, using learning

as an approach for synthesizing program invariants is still in its infancy and
there are several interesting directions to pursue this line of research further.
A current shortcoming of the ICE learning model is that, though it can
be used to prove correct programs correct, it cannot find bugs in incorrect
programs. Over the years, model checking has evolved into a good bug-finding
technique which searches for violations of the specification over increasingly
longer executions traces of the program. Integrating model-checking with
learning based invariant synthesis is a very interesting research direction that
combines the best of both worlds– bug finding and verification. In fact, this
integration can be very tightly coupled where model checkers can be used in
the ICE teacher to generate new data points for the learner.

Though we describe several advantages that black-box learning provides over
white-box invariant generation, white-box program analysis techniques have
their own advantages. Invariant synthesizers based on abstract interpretation
over simple properties, such as constant propagation or interval analysis, are
very fast polynomial-time algorithms. Integrating such white-box synthesizers
for simple properties, and also other program analysis techniques such as data-
flow analysis, program slicing, etc., with black-box learning-based invariant
generation for more complicated properties, we believe, is the most promising
direction forward for automatic program verification using invariant synthesis.
Finally, it would be interesting to see if one can use the learning algo-

rithms we have developed to synthesize other kinds of invariants, such as
data-structure invariants expressed in separation logic. We believe that build-
ing custom invariant-generation tools for particular domains, using domain
knowledge to identify interesting Boolean and numerical predicates using
which invariants can be synthesized, would bring our techniques to bear on
larger programs. GPUVerify [BCD+12], a race-checker for GPU programs
does precisely this and uses Houdini to generate conjunctive invariants. Find-
ing more domains where such invariant synthesis will scale is, practically, the
most interesting direction for future work.

Apart from annotating inductive program invariants, deductive verification
of programs has other manual burdens of annotations. Specifying auxiliary
variables in the program and writing auxiliary code that manipulates and
maintains them is another huge burden on the programmer wishing to de-

206

ductively verify large real-world programs. Synthesizing auxiliary state and
the program code that maintains it, though outside the scope of this thesis,
is an interesting research direction that may not only lead to more practical
deductive verification, but also lead to a rich source of mostly unaddressed
challenging problems in program verification.

207

REFERENCES

[AAJS14] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos
Sagonas. Optimal dynamic partial order reduction. POPL ’14,
pages 373–384, New York, NY, USA, 2014. ACM.

[ABG+12] Francesco Alberti, Roberto Bruttomesso, Silvio Ghilardi, Silvio
Ranise, and Natasha Sharygina. Safari: Smt-based abstraction
for arrays with interpolants. In CAV, volume 7358 of LNCS.
Springer, 2012.

[ABJ+13] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Mar-
tin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. In FMCAD, pages 1–17, 2013.

[ACH+10] Christopher Ackermann, Rance Cleaveland, Samuel Huang,
Arnab Ray, Charles P. Shelton, and Elizabeth Latronico. Auto-
matic requirement extraction from test cases. In RV, pages 1–15,
2010.

[ACMN05] Rajeev Alur, Pavol Cerný, P. Madhusudan, and Wonhong Nam.
Synthesis of interface specifications for java classes. In POPL,
pages 98–109. ACM, 2005.

[AJ93] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs
with unreliable channels. In LICS, pages 160–170, 1993.

[AM13] Aws Albarghouthi and Kenneth L. McMillan. Beautiful inter-
polants. In Proceedings of the 25th International Conference on
Computer Aided Verification, CAV’13, pages 313–329, 2013.

[AMN05] Rajeev Alur, P. Madhusudan, and Wonhong Nam. Symbolic
compositional verification by learning assumptions. In CAV,
volume 3576 of LNCS, pages 548–562. Springer, 2005.

[Ang87a] Dana Angluin. Learning regular sets from queries and counterex-
amples. Inf. Comput., 75(2):87–106, 1987.

208

[Ang87b] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1987.

[Ang90] Dana Angluin. Negative results for equivalence queries. Machine
Learning, 5:121–150, 1990.

[Apt81] Krzysztof R. Apt. Ten years of hoare’s logic: A survey - part 1.
ACM Trans. Program. Lang. Syst., 3(4):431–483, 1981.

[AQR+04] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof,
and Yichen Xie. Zing: A model checker for concurrent software.
In CAV, pages 484–487, 2004.

[Av11] Rajeev Alur and Pavol Černý. Streaming transducers for algo-
rithmic verification of single-pass list-processing programs. In
POPL, pages 599–610, 2011.

[AY99] Rajeev Alur and Mihalis Yannakakis. Model checking of message
sequence charts. CONCUR ’99, pages 114–129, London, UK, UK,
1999. Springer-Verlag.

[BB11] Samik Basu and Tevfik Bultan. Choreography conformance via
synchronizability. WWW ’11, pages 795–804, New York, NY,
USA, 2011. ACM.

[BBO12] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchroniz-
ability for verification of asynchronously communicating systems.
In VMCAI, pages 56–71, 2012.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano,
Peter W. O’Hearn, Thomas Wies, and Hongseok Yang. Shape
analysis for composite data structures. In CAV, pages 178–192,
2007.

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart
Jacobs, and K. Rustan M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In FMCO, pages 364–387,
2005.

[BCD+12] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer,
and Paul Thomson. Gpuverify: A verifier for gpu kernels. SIG-
PLAN Not., 47(10):113–132, October 2012.

[BCI11] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: Memory
safety for systems-level code. In CAV, pages 178–183, 2011.

[BDES11] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela
Sighireanu. On inter-procedural analysis of programs with lists
and data. In PLDI, pages 578–589, 2011.

209

[BDES12] Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela
Sighireanu. Abstract domains for automated reasoning about
list-manipulating programs with infinite data. In VMCAI, volume
7148 of LNCS, pages 1–22. Springer, 2012.

[BE12] Ahmed Bouajjani and Michael Emmi. Bounded phase analysis
of message-passing programs. TACAS’12, pages 451–465, Berlin,
Heidelberg, 2012. Springer-Verlag.

[BG99] Bernard Boigelot and Patrice Godefroid. Symbolic verification
of communication protocols with infinite statespaces using qdds.
Form. Methods Syst. Des., 14(3):237–255, May 1999.

[BHZ04] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Widening
operators for powerset domains. In Bernhard Steffen and Giorgio
Levi, editors, VMCAI, volume 2937 of Lecture Notes in Computer
Science, pages 135–148. Springer, 2004.

[BK11] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for
configurable software verification. In CAV, pages 184–190, 2011.

[BKK+10] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin
Leucker, Daniel Neider, and David R. Piegdon. libalf: The
Automata Learning Framework. In CAV, volume 6174 of LNCS,
pages 360–364. Springer, 2010.

[BM98] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled
data with co-training. In Proceedings of the Eleventh Annual
Conference on Computational Learning Theory, COLT’ 98, pages
92–100, 1998.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Com-
putation: Decision Procedures with Applications to Verification.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s
decidable about arrays? In VMCAI, volume 3855 of LNCS, pages
427–442. Springer, 2006.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project:
debugging system software via static analysis. In POPL, pages
1–3. ACM, 2002.

[Bra11] Aaron R. Bradley. SAT-based model checking without unrolling.
In VMCAI, volume 6538 of LNCS, pages 70–87. Springer, 2011.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state
machines. J. ACM, 30(2):323–342, April 1983.

210

[BZM08] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. Csisat:
Interpolation for LA+EUF. In Computer Aided Verification, 20th
International Conference, CAV 2008, Princeton, NJ, USA, July
7-14, 2008, Proceedings, pages 304–308, 2008.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In POPL, pages 238–252.
ACM, 1977.

[CCL11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A para-
metric segmentation functor for fully automatic and scalable
array content analysis. In POPL, pages 105–118. ACM, 2011.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE:
unassisted and automatic generation of high-coverage tests for
complex systems programs. In 8th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2008, December
8-10, 2008, San Diego, California, USA, Proceedings, pages 209–
224, 2008.

[CDH+09] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinen-
bach, Michal Moskal, Thomas Santen, Wolfram Schulte, and
Stephan Tobies. Vcc: A practical system for verifying concurrent
c. In TPHOLs, pages 23–42, 2009.

[CFC+09] Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen
Tsay, and Bow-Yaw Wang. Learning minimal separating dfa’s for
compositional verification. In TACAS, pages 31–45, 2009.

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S.
Pasareanu. Learning assumptions for compositional verification.
In TACAS, volume 2619 of LNCS, pages 331–346. Springer, 2003.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of
linear restraints among variables of a program. In POPL, pages
84–96. ACM, 1978.

[CN07] Ariel Cohen and Kedar S. Namjoshi. Local proofs for global
safety properties. In Computer Aided Verification, 19th Interna-
tional Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,
Proceedings, pages 55–67, 2007.

[CNS13] Wontae Choi, George C. Necula, and Koushik Sen. Guided gui
testing of android apps with minimal restart and approximate
learning. In OOPSLA, pages 623–640, 2013.

211

[CR08] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive
shape analysis. In POPL, pages 247–260, 2008.

[CSS03] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma.
Linear invariant generation using non-linear constraint solving.
In CAV, volume 2725 of LNCS, pages 420–432. Springer, 2003.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[CW12] Yu-Fang Chen and Bow-Yaw Wang. Learning boolean functions
incrementally. In CAV, volume 7358 of LNCS, pages 55–70.
Springer, 2012.

[DGJ+13] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer,
Sriram K. Rajamani, and Damien Zufferey. P: safe asynchronous
event-driven programming. In PLDI, pages 321–332, 2013.

[dMB07] Leonardo Mendonca de Moura and Nikolaj Bjørner. Efficient
e-matching for smt solvers. In CADE, pages 183–198, 2007.

[dMB08] Leonardo Mendonca de Moura and Nikolaj Bjørner. Z3: An
efficient smt solver. In TACAS, pages 337–340, 2008.

[DOY06] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local
shape analysis based on separation logic. In Tools and Algorithms
for the Construction and Analysis of Systems, 12th International
Conference, TACAS 2006 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 25 - April 2, 2006, Proceedings, pages
287–302, 2006.

[ECGN00] Michael D. Ernst, Adam Czeisler, William G. Griswold, and
David Notkin. Quickly detecting relevant program invariants. In
ICSE, pages 449–458. ACM, 2000.

[Eij98] C. A. J. Van Eijk. Sequential equivalence checking without state
space traversal. In DATE, pages 618–623, 1998.

[EQR11] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. Delay-
bounded scheduling. POPL ’11, pages 411–422, New York, NY,
USA, 2011. ACM.

[Fen09] Xinyu Feng. Local rely-guarantee reasoning. In Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, Savannah, GA, USA,
January 21-23, 2009, pages 315–327, 2009.

212

[FFQ02] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Thread-
modular verification for shared-memory programs. In Program-
ming Languages and Systems, 11th European Symposium on
Programming, ESOP 2002, held as Part of the Joint European
Conference on Theory and Practice of Software, ETAPS 2002,
Grenoble, France, April 8-12, 2002, Proceedings, pages 262–277,
2002.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order
reduction for model checking software. POPL ’05, pages 110–121,
New York, NY, USA, 2005. ACM.

[FHMP08] Jasmin Fisher, Thomas A. Henzinger, Maria Mateescu, and Nir
Piterman. Bounded asynchrony: Concurrency for modeling cell-
cell interactions. In FMSB, pages 17–32, 2008.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an anno-
tation assistant for ESC/Java. In FME, volume 2021 of LNCS,
pages 500–517. Springer, 2001.

[Flo67] Robert Floyd. Assigning meaning to programs. In J. T. Schwartz,
editor, Mathematical Aspects of Computer Science, number 19 in
Proceedings of Symposia in Applied Mathematics, pages 19–32.
AMS, 1967.

[FQ02] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for
software verification. In POPL, pages 191–202, 2002.

[FQ03] Cormac Flanagan and Shaz Qadeer. Thread-modular model
checking. In Model Checking Software, 10th International SPIN
Workshop. Portland, OR, USA, May 9-10, 2003, Proceedings,
pages 213–224, 2003.

[FR99] Gilberto Filé and Francesco Ranzato. The powerset operator on
abstract interpretations. Theor. Comput. Sci., 222(1-2):77–111,
1999.

[GGLR87] M. G. Gouda, E. M. Gurari, T. H. Lai, and L. E. Rosier. On dead-
lock detection in systems of communicating finite state machines.
Comput. Artif. Intell., 6(3):209–228, July 1987.

[GHK+06] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan,
Aditya V. Nori, and Sriram K. Rajamani. Synergy: a new
algorithm for property checking. In SIGSOFT FSE, pages 117–
127. ACM, 2006.

213

[GHR10] Naghmeh Ghafari, Alan J. Hu, and Zvonimir Rakamaric. Context-
bounded translations for concurrent software: An empirical eval-
uation. In Model Checking Software - 17th International SPIN
Workshop, Enschede, The Netherlands, September 27-29, 2010.
Proceedings, pages 227–244, 2010.

[GKT13] Pierre-Loïc Garoche, Temesghen Kahsai, and Cesare Tinelli. Incre-
mental invariant generation using logic-based automatic abstract
transformers. In NASA Formal Methods, pages 139–154, 2013.

[GLMN13] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider.
Learning universally quantified invariants of linear data structures.
In CAV, pages 813–829, 2013.

[GLMN14] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider.
ICE: A robust framework for learning invariants. In CAV 2014,
volume 8559 of LNCS, pages 69–87. Springer, 2014.

[GLPR12] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and
Andrey Rybalchenko. Synthesizing software verifiers from proof
rules. In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12,
pages 405–416, 2012.

[GMR09] Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko.
From tests to proofs. In TACAS, pages 262–276, 2009.

[GMT08] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting
abstract interpreters to quantified logical domains. In POPL,
pages 235–246. ACM, 2008.

[GNMR15] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth.
Learning invariants using decision trees and implication coun-
terexamples. Technical report, University of Illinois at Urbana-
Champaign, May 2015. http://hdl.handle.net/2142/77025.

[GNS+13] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søn-
dergaard, and Peter J. Stuckey. Abstract interpretation over
non-lattice abstract domains. In SAS 2013, volume 7935 of
LNCS, pages 6–24. Springer, 2013.

[God95] Patrice Godefroid. Partial-Order Methods for the Verification
of Concurrent Systems - An Approach to the State-Explosion
Problem. PhD thesis, University of Liege, 1995.

[God97] Patrice Godefroid. Model checking for programming languages
using verisoft. POPL ’97, pages 174–186, New York, NY, USA,
1997. ACM.

214

[Gol78] E. Mark Gold. Complexity of automaton identification from given
data. Information and Control, 37(3):302–320, 1978.

[GP93] Patrice Godefroid and Didier Pirottin. Refining dependencies
improves partial-order verification methods (extended abstract).
CAV ’93, pages 438–449, London, UK, UK, 1993. Springer-Verlag.

[GPR11a] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko.
Predicate abstraction and refinement for verifying multi-threaded
programs. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL ’11, pages 331–344, 2011.

[GPR11b] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko.
Solving recursion-free horn clauses over LI+UIF. In Programming
Languages and Systems - 9th Asian Symposium, APLAS 2011,
Kenting, Taiwan, December 5-7, 2011. Proceedings, pages 188–
203, 2011.

[GPR11c] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko.
Threader: A constraint-based verifier for multi-threaded pro-
grams. In Proceedings of the 23rd International Conference on
Computer Aided Verification, CAV’11, pages 412–417, 2011.

[GR09] Ashutosh Gupta and Andrey Rybalchenko. Invgen: An efficient
invariant generator. In CAV, volume 5643 of LNCS, pages 634–
640. Springer, 2009.

[GRS05] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework
for numeric analysis of array operations. In POPL, pages 338–350,
2005.

[GSV08] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkate-
san. Program analysis as constraint solving. In PLDI, pages
281–292. ACM, 2008.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.
Automata, Logics, and Infinite Games, volume 2500. Springer,
2002.

[GVA07] Bolei Guo, Neil Vachharajani, and David I. August. Shape
analysis with inductive recursion synthesis. In PLDI, pages 256–
265, 2007.

[GW93] Patrice Godefroid and Pierre Wolper. Using partial orders for the
efficient verification of deadlock freedom and safety properties.
Formal Methods in System Design, 2(2):149–164, 1993.

215

[HHR+11] Peter Habermehl, Lukás Holík, Adam Rogalewicz, Jirí Simácek,
and Tomás Vojnar. Forest automata for verification of heap
manipulation. In CAV, pages 424–440, 2011.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Grégoire Sutre. Lazy abstraction. In POPL, pages 58–70. ACM,
2002.

[HL07] Galen C. Hunt and James R. Larus. Singularity: Rethinking
the software stack. SIGOPS Oper. Syst. Rev., 41(2):37–49, April
2007.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[HP08] Nicolas Halbwachs and Mathias Péron. Discovering properties
about arrays in simple programs. In PLDI, pages 339–348. ACM,
2008.

[IS] Franjo Ivancic and Sriram Sankaranarayanan. NECLA
Benchmarks. http://www.nec-labs.com/research/system/
systems_SAV-website/small_static_bench-v1.1.tar.gz.

[JKDW01] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Èric Walter. Ap-
plied Interval Analysis. Springer-Verlag, London, 2001.

[JKWY10] Yungbum Jung, Soonho Kong, Bow-Yaw Wang, and Kwangkeun
Yi. Deriving invariants by algorithmic learning, decision proce-
dures, and predicate abstraction. In Verification, Model Checking,
and Abstract Interpretation, 11th International Conference, VM-
CAI 2010, Madrid, Spain, January 17-19, 2010. Proceedings,
pages 180–196, 2010.

[JM06] Ranjit Jhala and Kenneth L. McMillan. A practical and complete
approach to predicate refinement. In TACAS, volume 3920 of
LNCS, pages 459–473. Springer, 2006.

[JM07a] Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of
asynchronous programs. POPL ’07, pages 339–350, New York,
NY, USA, 2007. ACM.

[JM07b] Ranjit Jhala and Kenneth L. McMillan. Array abstractions from
proofs. In CAV, volume 4590 of LNCS, pages 193–206. Springer,
2007.

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numer-
ical abstract domains for static analysis. In CAV, pages 661–667,
2009.

216

[Jon83] C. B. Jones. Tentative steps toward a development method
for interfering programs. ACM Trans. Program. Lang. Syst.,
5(4):596–619, October 1983.

[Kar76] Michael Karr. Affine relationships among variables of a program.
Acta Inf., 6:133–151, 1976.

[KJD+10] Soonho Kong, Yungbum Jung, Cristina David, Bow-Yaw Wang,
and Kwangkeun Yi. Automatically inferring quantified loop
invariants by algorithmic learning from simple templates. In
APLAS. Springer, 2010.

[KLR10] Daniel Kroening, Jérôme Leroux, and Philipp Rümmer. In-
terpolating quantifier-free presburger arithmetic. In Logic for
Programming, Artificial Intelligence, and Reasoning - 17th Inter-
national Conference, LPAR-17, Yogyakarta, Indonesia, October
10-15, 2010. Proceedings, pages 489–503, 2010.

[KMM11] Rajesh K. Karmani, P. Madhusudan, and Brandon M. Moore.
Thread contracts for safe parallelism. In Proceedings of the
16th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 2011, San Antonio, TX, USA,
February 12-16, 2011, pages 125–134, 2011.

[KN01] Bakhadyr Khoussainov and Anil Nerode. Automata Theory and
Its Applications. Birkhauser Boston, 2001.

[Koe] Andrew Koenig. Loop Invariants And Testing: Often
Possible, Often Difficult. http://www.drdobbs.com/cpp/
loop-invariants-and-testing-often-possib/240169122.

[Koh70] Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill,
1970.

[KPW15] Siddharth Krishna, Christian Puhrsch, and Thomas Wies. Learn-
ing invariants using decision trees. CoRR, abs/1501.04725, 2015.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An introduction to
computational learning theory. MIT Press, Cambridge, MA, USA,
1994.

[LB07] Shuvendu K. Lahiri and Randal E. Bryant. Predicate abstraction
with indexed predicates. ACM Trans. Comput. Log., 9(1), 2007.

[LDMA09] Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha.
A framework for state-space exploration of java-based actor pro-
grams. ASE ’09, pages 468–479, Washington, DC, USA, 2009.
IEEE Computer Society.

217

[Lit87] Nick Littlestone. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
2(4):285–318, 1987.

[LKMA10] Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and
Gul Agha. Evaluating ordering heuristics for dynamic partial-
order reduction techniques. FASE’10, pages 308–322, Berlin,
Heidelberg, 2010. Springer-Verlag.

[LMP07] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro
Parlato. A robust class of context-sensitive languages. In LICS,
pages 161–170, 2007.

[LMP08] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato.
Context-bounded analysis of concurrent queue systems. In
TACAS, pages 299–314, 2008.

[LMP09] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Re-
ducing context-bounded concurrent reachability to sequential
reachability. In Computer Aided Verification, 21st International
Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings, pages 477–492, 2009.

[LQR09] Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamarić.
Static and precise detection of concurrency errors in systems
code using smt solvers. In Proceedings of the 21st International
Conference on Computer Aided Verification, CAV ’09, pages
509–524, 2009.

[LR08] Akash Lal and Thomas W. Reps. Reducing concurrent analysis
under a context bound to sequential analysis. In Computer Aided
Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, pages 37–51, 2008.

[Lub84] Boris D. Lubachevsky. An approach to automating the verification
of compact parallel coordination programs I. Acta Inf., 21:125–
169, 1984.

[Mad01] P. Madhusudan. Reasoning about sequential and branching
behaviours of message sequence graphs. ICALP ’01, pages 809–
820, London, UK, UK, 2001. Springer-Verlag.

[Man10] Linda Mannila. Invariant based programming in education -
an analysis of student difficulties. Informatics in Education,
9(1):115–132, 2010.

[Maz86] Antoni W. Mazurkiewicz. Trace theory. In Advances in Petri
Nets, pages 279–324, 1986.

218

[McM92] Kenneth L. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. PhD thesis, Pittsburgh, PA, USA,
1992. UMI Order No. GAX92-24209.

[McM03] Kenneth L. McMillan. Interpolation and SAT-Based model check-
ing. In CAV, volume 2725 of LNCS, pages 1–13. Springer, 2003.

[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In
CAV 2006, volume 4144 of LNCS, pages 123–136. Springer, 2006.

[McM08] Kenneth L. McMillan. Quantified invariant generation using
an interpolating saturation prover. In TACAS, volume 4963 of
LNCS, pages 413–427. Springer, 2008.

[Min01] Antoine Miné. The octagon abstract domain. In WCRE, pages
310–, 2001.

[Mit97a] Tom M. Mitchell. Machine learning. McGraw-Hill, 1997.

[Mit97b] Tom M. Mitchell. Machine learning. McGraw Hill series in
computer science. McGraw-Hill, 1997.

[MM01] P. Madhusudan and B. Meenakshi. Beyond message sequence
graphs. In FSTTCS, pages 256–267, 2001.

[MP11] P. Madhusudan and Gennaro Parlato. The tree width of auxiliary
storage. In POPL, pages 283–294, 2011.

[MPQ11] P. Madhusudan, Gennaro Parlato, and Xiaokang Qiu. Decidable
logics combining heap structures and data. In POPL, pages
611–622. ACM, 2011.

[MPX+13] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and
Parthasarathy Madhusudan. Verifying security invariants in
expressos. In ASPLOS, pages 293–304, 2013.

[MQ07] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding
for systematic testing of multithreaded programs. PLDI ’07, pages
446–455, New York, NY, USA, 2007. ACM.

[MQ11] P. Madhusudan and Xiaokang Qiu. Efficient decision procedures
for heaps using STRAND. In SAS, volume 6887 of LNCS, pages
43–59. Springer, 2011.

[MRS10] Bill McCloskey, Thomas W. Reps, and Mooly Sagiv. Statically
inferring complex heap, array, and numeric invariants. In SAS,
pages 71–99, 2010.

219

[MYRS05] Roman Manevich, Eran Yahav, Ganesan Ramalingam, and
Shmuel Sagiv. Predicate abstraction and canonical abstraction
for singly-linked lists. In VMCAI, pages 181–198, 2005.

[Nei14] Daniel Neider. Applications of Automata Learning in Versification
and Synthesis. PhD thesis, RWTH Aachen University, April 2014.

[NKWF12] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and
Stephanie Forrest. Using dynamic analysis to discover poly-
nomial and array invariants. In ICSE, pages 683–693. IEEE,
2012.

[OG76] Susan S. Owicki and David Gries. An axiomatic proof technique
for parallel programs I. Acta Inf., 6:319–340, 1976.

[OG92] J. Oncina and P. Garcia. Inferring regular languages in polynomial
update time. Pattern Recognition and Image Analysis, pages 49–
61, 1992.

[Pac87] Jan K. Pachl. Protocol description and analysis based on a state
transition model with channel expressions. In Proceedings of
the IFIP WG6.1 Seventh International Conference on Protocol
Specification, Testing and Verification VII, pages 207–219, 1987.

[PGK07] Robert Palmer, Ganesh Gopalakrishnan, and Robert M. Kirby.
Semantics driven dynamic partial-order reduction of mpi-based
parallel programs. PADTAD ’07, pages 43–53, New York, NY,
USA, 2007. ACM.

[PP91] Wuxu Peng and S. Puroshothaman. Data flow analysis of com-
municating finite state machines. ACM Trans. Program. Lang.
Syst., 13(3):399–442, July 1991.

[PP92] Wuxu Peng and S. Purushothaman. Analysis of a class of com-
municating finite state machines. Acta Inf., 29(6/7):499–522,
1992.

[PQM14] Edgar Pek, Xiaokang Qiu, and P. Madhusudan. Natural proofs
for data structure manipulation in c using separation logic. In
PLDI, page 46, 2014.

[PW10] Andreas Podelski and Thomas Wies. Counterexample-guided
focus. In POPL, pages 249–260, 2010.

[QGSM13] Xiaokang Qiu, Pranav Garg, Andrei Stefanescu, and
Parthasarathy Madhusudan. Natural proofs for structure, data,
and separation. In PLDI, pages 231–242, 2013.

220

[QR05] Shaz Qadeer and Jakob Rehof. Context-bounded model check-
ing of concurrent software. TACAS’05, pages 93–107, Berlin,
Heidelberg, 2005. Springer-Verlag.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine Learning,
1(1):81–106, 1986.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[QW04] Shaz Qadeer and Dinghao Wu. Kiss: keep it simple and sequential.
In PLDI, pages 14–24, 2004.

[RE] Zvonimir Rakamaric and Michael Emmi. SMACK: Static Modular
Assertion Checker. https://github.com/smackers/smack.

[RKJ08] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala.
Liquid types. In PLDI, pages 159–169, 2008.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for
information storage and organization in the brain. Psychological
Review, 65(6):386–408, 1958.

[RS93] Ronald L. Rivest and Robert E. Schapire. Inference of finite
automata using homing sequences. Inf. Comput., 103(2):299–347,
1993.

[RS10] Andrey Rybalchenko and Viorica Sofronie-Stokkermans. Con-
straint solving for interpolation. J. Symb. Comput., 45(11):1212–
1233, 2010.

[RSY04] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. Symbolic
implementation of the best transformer. In VMCAI, pages 252–
266, 2004.

[SA05] Stephen F. Siegel and George S. Avrunin. Modeling wildcard-free
mpi programs for verification. In PPOPP, pages 95–106, 2005.

[SA14] Rahul Sharma and Alex Aiken. From invariant checking to
invariant inference using randomized search. In CAV 2014, volume
8559 of LNCS, pages 88–105. Springer, 2014.

[SGH+13a] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken,
Percy Liang, and Aditya V. Nori. A data driven approach for
algebraic loop invariants. In ESOP, volume 7792 of LNCS, pages
574–592. Springer, 2013.

221

[SGH+13b] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken,
and Aditya V. Nori. Verification as learning geometric concepts.
In SAS, volume 7935 of LNCS, pages 388–411. Springer, 2013.

[Sha48] C. E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423, 623–656, 1948.

[Sie05] Stephen F. Siegel. Efficient verification of halting properties for
mpi programs with wildcard receives. VMCAI’05, pages 413–429,
Berlin, Heidelberg, 2005. Springer-Verlag.

[SISG06] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and
Aarti Gupta. Static analysis in disjunctive numerical domains.
In SAS 2006, volume 4134 of LNCS, pages 3–17. Springer, 2006.

[SL08] Armando Solar Lezama. Program Synthesis By Sketching. PhD
thesis, EECS Department, University of California, Berkeley, Dec
2008.

[SLP12] P. Madhusudan S. La Torre and G. Parlato. Sequentializing
parameterized programs. CoRR, abs/1207.4271v1, 2012.

[SLTB+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A.
Seshia, and Vijay A. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, pages 404–415, 2006.

[SNA12] Rahul Sharma, Aditya V. Nori, and Alex Aiken. Interpolants as
classifiers. In CAV, volume 7358 of LNCS, pages 71–87. Springer,
2012.

[SPW09] Mohamed Nassim Seghir, Andreas Podelski, and Thomas Wies.
Abstraction refinement for quantified array assertions. In SAS,
volume 5673 of LNCS, pages 3–18. Springer, 2009.

[SRW02] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Para-
metric shape analysis via 3-valued logic. ACM Trans. Program.
Lang. Syst., 24(3):217–298, 2002.

[SV06] Koushik Sen and Mahesh Viswanathan. Model checking multi-
threaded programs with asynchronous atomic methods. CAV’06,
pages 300–314, Berlin, Heidelberg, 2006. Springer-Verlag.

[svc] Competition on Software Verification (SV-COMP) benchmarks.
https://svn.sosy-lab.org/software/sv-benchmarks/tags/
svcomp14/loops/.

222

[TDB14] Paul Thomson, Alastair F. Donaldson, and Adam Betts. Concur-
rency testing using schedule bounding: An empirical study. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, pages 15–28,
New York, NY, USA, 2014. ACM.

[Tho97] Wolfgang Thomas. Languages, automata, and logic. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Language
Theory, volume III, pages 389–455. Springer, 1997.

[TKL+12] Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel
Legay, Darko Marinov, and Gul Agha. Transdpor: A novel
dynamic partial-order reduction technique for testing actor pro-
grams. FMOODS’12/FORTE’12, pages 219–234, Berlin, Heidel-
berg, 2012. Springer-Verlag.

[TLLR13] A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that:
Attaining most-precise inductive invariants. Technical Report
TR1790, University of Wisconsin, Madison, WI, Apr 2013.

[UDR11] Abhishek Udupa, Ankush Desai, and Sriram K. Rajamani. Depth
bounded explicit-state model checking. In SPIN, pages 57–74,
2011.

[UM14] Caterina Urban and Antoine Miné. A decision tree abstract
domain for proving conditional termination. In Static Analysis
- 21st International Symposium, SAS 2014, Munich, Germany,
September 11-13, 2014. Proceedings, pages 302–318, 2014.

[Val91] Antti Valmari. Stubborn sets for reduced state space generation.
In Proceedings of the 10th International Conference on Applica-
tions and Theory of Petri Nets: Advances in Petri Nets 1990,
pages 491–515, London, UK, UK, 1991. Springer-Verlag.

[Var06] Abhay Vardhan. Learning To Verify Systems. PhD thesis, Dept.
of Computer Science, University of Illinois at Urbana-Champaign,
2006.

[VHMK97] Pascal Van Hentenryck, David McAllester, and Deepak Kapur.
Solving polynomial systems using a branch and prune approach.
SIAM J. Numer. Anal., 34(2):797–827, April 1997.

[VV07] Abhay Vardhan and Mahesh Viswanathan. Learning to verify
branching time properties. Formal Methods in System Design,
31(1):35–61, 2007.

223

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic
approach to automatic program verification (preliminary report).
In LICS, pages 332–344, 1986.

[Weg74] Ben Wegbreit. The synthesis of loop predicates. Commun. ACM,
17(2):102–113, February 1974.

[XdRH97] Qiwen Xu, Willem P. de Roever, and Jifeng He. The rely-
guarantee method for verifying shared variable concurrent pro-
grams. Formal Asp. Comput., 9(2):149–174, 1997.

[Yao15] Learning bayesian network parameters under equivalence con-
straints. Artificial Intelligence, (0):–, 2015.

[YBS06] Greta Yorsh, Thomas Ball, and Mooly Sagiv. Testing, abstraction,
theorem proving: better together! In ISSTA, pages 145–156,
2006.

224

