
A Compass to Controlled Graph Rewriting

D E M FA C H B E R E I C H E L E K T R O T E C H N I K U N D I N F O R M AT I O N S T E C H N I K

D E R T E C H N I S C H E N U N I V E R S I TÄT D A R M S TA D T

Z U R E R L A N G U N G D E S A K A D E M I S C H E N G R A D E S

E I N E S D O K T O R S D E R N AT U RW I S S E N S C H A F T E N (D R . R E R . N AT.)

G E N E H M I G T E D I S S E RTAT I O N

V O N

G É Z A K U L C S Á R , M . S C .

G E B O R E N A M

9 . S E P T E M B E R 1 9 8 8 I N C E G L É D , U N G A R N

R E F E R E N T: P R O F. D R . R E R . N AT. A N D R E A S S C H Ü R R

K O R R E F E R E N T: P R O F. D R . A N D R E A C O R R A D I N I (U N I V E R S I TÄT P I S A)

TA G D E R E I N R E I C H U N G : 2 0 1 9 - 0 1 - 2 2

TA G D E R D I S P U TAT I O N : 2 0 1 9 - 0 6 - 0 7

D 1 7

D A R M S TA D T 2 0 1 9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/237502271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The work of Géza Kulcsár was partially supported by the Corporate
Research Center (CRC) 1053 Multi-Mechanismen-Adaptation für das
künftige Internet (MAKI) of the Deutsche Forschungsgemeinschaft (DFG)
(https://www.maki.tu-darmstadt.de).

Kulcsár, Géza
A Compass to Controlled Graph Rewriting
Darmstadt, Technische Universität Darmstadt
Year of publication at TUprints: 2019

URN: urn:nbn:de:tuda-tuprints-93049

URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/9304
Disputation date: 2019-06-07

Published under CC BY-SA 4.0 International
https://creativecommons.org/licenses/

©2019

https://www.maki.tu-darmstadt.de
https://tuprints.ulb.tu-darmstadt.de/id/eprint/9304
https://creativecommons.org/licenses/

D E C L A R AT I O N O F AU T H O R S H I P

The following paragraphs are in German to conform to the General
Doctoral Degree Regulations of the TU Darmstadt.

Erklärungen laut Promotionsordnung

• § 8Abs. 1 lit. c PromO: Ich versichere hiermit, dass die elektroni-
sche Version meiner Dissertation mit der schriftlichen Version
übereinstimmt.

• § 8Abs. 1 lit. d PromO: Ich versichere hiermit, dass zu einem
vorherigen Zeitpunkt noch keine Promotion versucht wurde. In
diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule,
Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen.

• § 9Abs. 1PromO: Ich versichere hiermit, dass die vorliegende
Dissertation selbstständig und nur unter Verwendung der ange-
gebenen Quellen verfasst wurde.

• § 9Abs. 2PromO: Die Arbeit hat bisher noch nicht zu Prüfungs-
zwecken gedient.

I hereby grant the Real-Time Systems Lab the right to publish, repro-
duce and distribute my work.

Darmstadt, 2019-01-22

Géza Kulcsár

P R E FA C E A N D A C K N O W L E D G M E N T S

This thesis summarizes about two years of research endeavors carried
out at the Technical University of Darmstadt in Germany and at the
University of Pisa in Italy. I thank all my colleagues at our group
FG Echtzeitsysteme in Darmstadt for making me feel at home during
my five years in Germany as far as it was possible. I’d like to thank
Andy Schürr (leader of the group and also the first referee of this
thesis) for a countless things; in particular, for giving me complete
freedom to pursue my interests, even if they had a habit of frequent
change at some points; and, in turn, for sparking my interest and
tirelessly deepen my understanding in topics related to controlled
graph rewriting. I’m also greatly indebted to Malte Lochau, who is
responsible for introducing me to the second big pillar of the present
work: the theory of process algebra. Malte was an immense help, an
unwearying discussion partner and frequent co-author throughout
the years spent with developing RePro, the process calculus being
the subject of this thesis. It was also Malte who, by a brave talk on a
yet unripe topic, made it possible that RePro captures the attention
of Andrea Corradini (becoming the second referee of the thesis), the
next person my deepest gratitude goes to: his decades of experience,
his sharp sight and uncompromising rigor, but also his incomparable
hospitality and compassion made me leave a piece of my heart in Pisa,
after three months of intense research on RePro, when, in particular,
the idea of compasses has been born. Any theoretical work has to
be brought to life by an adequate practical illustration: I thank my
colleague Roland Kluge and others in the research project MAKI, from
whom I learned a lot about wireless sensor networks.

Still, all those efforts would have remained fruitless if I don’t have
the perfect background for it in my life: I dedicate all my contributions
to my wonderful wife Klára, whose loving company, cheerful spirit
and endless care have magnified my joyful days and helped to get
through the tough ones. Thank you for embarking on this journey
with me—to Germany and in our whole life. I thank all other members
of my colorful family for surrounding me with love and unconditional
support—believing in me even when I couldn’t. Above all, I thank
my parents for teaching me, from the very first days I can recall, to
always live my dream. I thank all my friends for just being who they
are. (And a special thanks to David Tibet for manifesting the musical
scenery for writing this thesis.)

Budapest, on the 21st of January 2019, the Feast of Saint Maximus the
Confessor

A B S T R A C T

With the growing complexity and autonomy of software-intensive sys-
tems, abstract modeling to study and formally analyze those systems
is gaining on importance. Graph rewriting is an established, theo-
retically founded formalism for the graphical modeling of structure
and behavior of complex systems. A graph-rewriting system consists
of declarative rules, providing templates for potential changes in the
modeled graph structures over time. Nowadays complex software
systems, often involving distributedness and, thus, concurrency and
reactive behavior, pose a challenge to the hidden assumption of global
knowledge behind graph-based modeling; in particular, describing
their dynamics by rewriting rules often involves a need for additional
control to reflect algorithmic system aspects. To that end, controlled
graph rewriting has been proposed, where an external control lan-
guage guides the sequence in which rules are applied. However,
approaches elaborating on this idea so far either have a practical, im-
plementational focus without elaborating on formal foundations, or a
pure input-output semantics without further considering concurrent
and reactive notions.

In the present thesis, we propose a comprehensive theory for an
operational semantics of controlled graph rewriting, based on well-
established notions from the theory of process calculi. In the first
part, we illustrate the aforementioned fundamental phenomena by
means of a simplified model of wireless sensor networks (WSN). After
recapitulating the necessary background on DPO graph rewriting,
the formal framework used throughout the thesis, we present an
extensive survey on the state of the art in controlled graph rewriting,
along the challenges which we address in the second part where
we elaborate our theoretical contributions. As a novel approach,
we propose a process calculus for controlled graph rewriting, called
RePro, where DPO rule applications are controlled by process terms
closely resembling the process calculus CCS. In particular, we address
the aforementioned challenges: (i) we propose a formally founded
control language for graph rewriting with an operational semantics,
(ii) explicitly addressing concurrency and reactive behavior in system
modeling, (iii) allowing for a proper handling of process equivalence
and action independence using process-algebraic notions.

Finally, we present a novel abstract verification approach for graph
rewriting based on abstract interpretation of reactive systems. To that
end, we propose the so-called compasses as an abstract representa-
tion of infinite graph languages and demonstrate their use for the
verification of process properties over infinite input sets.

Z U S A M M E N FA S S U N G

Heutzutage, die Relevanz abstrakter Modellierungsansätze für die for-
male Analyse komplexer Rechnersysteme gewinnt durch wachsende
Komplexität und Autonomie auch zunehmend an Bedeutung. Gra-
phersetzungssysteme stellen einen etablierten, theoretisch fundierten
Formalismus zur Modellierung der graphischen Struktur und des
Verhaltens solcher Systeme dar. Ein Graphersetzungssystem besteht
aus deklarativen Regeln, die als Vorlage für potentielle Änderungen
während der Evolution der modellierten Systemstruktur fungieren.
Darüber hinaus stellen heutige komplexe Softwaresysteme oft zusätz-
liche Anforderungen bezüglich Nebenläufigkeitseigenschaften und
reaktivem Verhalten dar, welche oft mit der verborgenen Annahme,
dass die graphische Abstraktion das System vollständig repräsentiert,
kollidieren. Insbesondere fordert die Beschreibung der dynamischen
Systemaspekte oft zusätzliche externe Kontrollkonstrukte zur Steue-
rung der Anwendung von Graphersetzungs-Regeln. Um diese Her-
ausforderungen anzugehen, kontrollierte Graphersetzungssysteme
wurden in der Literatur vorgeschlagen, versehen mit einer externen
Kontrollsprache für die Beschreibung der zugelassenen Regelsequen-
zen. Allerdings haben bisherige Ansätze entweder einen starken Fokus
auf die Implementierung ohne näher auf formale Grundlagen einzuge-
hen, oder sie beschränken sich auf eine reine Ein-/Ausgabe-Semantik
ohne tiefergehende Betrachtung reaktiven und nebenläufigen Verhal-
tens.

In der vorliegenden Arbeit schlagen wir daher eine ganzheitliche
Theorie zur Formalisierung einer operationellen Semantik von kontrol-
lierter Graphersetzung vor. Dabei verwenden wir etablierte Begriffe
und Resultate der Theorie nebenläufiger Prozess-Kalküle als Grund-
lage für die Spezifikation unserer Kontrollsprache. Im ersten Teil
der Arbeit illustrieren wir zunächst die vorgehende fundamentale
Phänomene anhand eines simplifizierten Modells für drahtlose Sen-
sornetzwerke (wireless sensor networks, WSN). Nachdem wir die
Grundlagen der sog. DPO-Graphersetzung rekapituliert haben, prä-
sentieren wir einen ausführlichen Überblick über bisherige Ansätze
und offene Probleme im Bereich, und leiten daraus die für uns anste-
hende Herausforderungen ab. Im zweiten Teil präsentieren wir unsere
theoretische Hauptresultate: wir schlagen ein Prozess-Kalkül namens
RePro für kontrollierte Graphersetzung vor. In RePro werden Sequen-
zen von möglichen DPO-Regelanwendungen eingeschränkt durch die
Transitionen eines zusätzlichen Kontrollprozesses, dessen Syntax und
Semantik an das Prozess-Kalkül CCS angelehnt ist. Insbesondere be-
trachten wir die folgenden Herausforderungen: (i) RePro stellt eine

formal fundierte Kontrollsprache mit einer operationellen Semantik,
(ii) die auch Nebenläufigkeit und reaktives Verhalten explizit adres-
siert und (iii) das Definition formaler Begriffe für Prozessäquivalenz
und Unabhängigkeit von Aktionen ermöglicht.

Zum Schluss wird auf diesen Grundlagen ein Ansatz zur sym-
bolischen Verifikation dieser Prozesse vorgestellt, basierend auf das
Rahmenwerk der abstrakten Interpretation (abstract interpretation).
Hierfür schlagen wir sog. Kompasse (compasses) als abstrakte Re-
präsentation unendlicher Graphmengen vor, und demonstrieren ihre
Eignung zur Verifikation gewisser Prozesseigenschaften für unendli-
che Eingabemengen.

C O N T E N T S

i introduction

1 concurrent abstractions : graph models and net-
works 3

1.1 Motivation: A Pluralistic Universe 3

1.2 Mobile Ad Hoc Networks and Topology Control 4

1.3 Modeling as Abstractions over Real-Life Domains 8

1.3.1 Topology Representation 9

1.3.2 Dynamic Behavior 10

1.4 Concurrency: Embracing Pluralism 13

1.5 Thesis Outline 15

2 background 19

2.1 Origins of Algebraic Graph Rewriting 19

2.2 The Double-Pushout (DPO) Approach: Rules, Deriva-
tions, Independence 20

3 controlled graph rewriting : state of the art 29

3.1 History of (Controlled) Grammars 29

3.2 Existing Approaches to Controlled Graph Rewriting 31

3.2.1 Graph Programs 31

3.2.2 Porgy 36

3.2.3 Progres 39

3.2.4 Graph Transformation Units 42

3.2.5 Henshin 44

3.2.6 Groove 46

3.3 Summary and Challenges 48

ii a calculus of controlled graph rewriting

4 control processes for graph rewriting 55

4.1 WSN Behavior by Control Processes 57

4.2 Formal Definition of Control Processes 60

5 repro : a calculus for controlled graph rewrit-
ing 69

5.1 WSN Topology Simulation by RePro Processes 69

5.2 Formal Definition of RePro 72

6 properties of the repro calculus 75

6.1 Equivalence 76

6.2 Independence 82

6.2.1 Direct Approach 83

6.2.2 Asynchronous Approach 87

6.3 RePro as a Control Language: Expressiveness 97

7 analysis of controlled graph-rewriting processes 109

7.1 Example: WSN Overlay Verification 111

7.2 Compasses: An Abstract Domain for RePro Processes 114

7.3 Abstract Interpretation of RePro by Compasses 127

8 discussion and related work 137

8.1 Related Work 137

8.2 Discussion 145

9 conclusion and future work 155

bibliography 161

Part I

I N T R O D U C T I O N

1
C O N C U R R E N T A B S T R A C T I O N S : G R A P H M O D E L S
A N D N E T W O R K S

1.1 motivation : a pluralistic universe

[...] as a number of persons born blind perceiving the
elephant through touching its different parts, come to
have diverse notions regarding it [...]

Adi Shankaracharya, from his bashya on the verse
5.18.1 of the Chandogya Upanishad[104]

Starting from ancient times, people realized again and again that,
as an inherent property of our condition humaine, everyday human
perception and rational thinking is not able to capture the world
as a whole—our picture of it is necessarily fragmentary (both in its
momentary and persistent forms). It is, however, crucial to notice here
that any such statement necessarily contains an implicit assumption
about a unitary, universal Whole, a One, being the ultimate object of
our perception.

Due to this inherent limitedness of observing that Whole, the re-
sulting fragmentariness also descends and goes over to some smaller,
seemingly more well-defined, units within the whole, i. e., even if
considering a smaller set or domain of real-life objects, we as perceivers
face the same problem of not being able to gain monolithic, integrated,
homogeneous – simply: complete – knowledge. Moreover, during that
process of contemplation, perceivers perceive perceivers: the fragmentari-
ness disperses among the (a priori also unknown) plurality of perceivers.
Thus, given a domain assumed to have a universal interpretation, in
reality, there arises a co-existence of different fragments related to the
knowledge acquired on that domain.

In our current epoch, the same phenomena are easily observable
even in our ways of approaching and connecting to the digital world.
The term ubiquitous computing has become a commonplace since the
original vision of Mark Weiser [113]. (Also, cf. [57] on emphasizing the
protean character of ubiquitous computing.) His essay coined another
important term, though less frequently quoted: embodied virtuality.
The Internet as a virtual space and, generally, each form of digital
interaction has almost seamlessly fused into our perceived, everyday,
commonplace reality. This is meant by virtuality being em-bodied:
the connections and the devices used for connecting are everywhere,

3

4 1 concurrent abstractions : graph models and networks

on and around us, they are not only visible but tangible and always
within reach—despite their essentially non-physical ontology, their ap-
pearance is interwoven with the body of physical reality and achieved
perfect mimicry.

Indeed, the un-mediated presence of digital technology leads to an
interplay between the physical and the digital world: we do not only
leave the physical plane to contemplate the virtual world per se (as it
was the case in the early days of Internet), but also vice versa, elements
of the digital world help us in connecting (back) to our physical reality:
our carry-on mobile devices have become the single most important
way to communicate with others, and we gather a large amount of
environmental data through devices installed for that purpose.

Due to those circumstances – the fragmentariness of knowledge, the
co-existence of those fragments, and the immediacy of technology –
computer science has not only to develop methods providing a correct,
adequate behavior of the involved devices, but also has to provide
means to cope with the overall scenario described above: to have
means for representing in a concise manner the overall knowledge about
a given domain1, and, using that representation, to faithfully capture
those concurrent (internal or external) perceptions of the domain.

In the following, based on the above musings, we elaborate and
make more specific those concepts relevant to underpin and motivate
the theoretical advances described in Part II of the thesis. In particular,
we give a high-level description of those networks arising on the
border between people and their environment, through the example
of wireless sensor networks (Sect. 1.2). Then, we demonstrate the use of
modeling techniques for such abstract model representations using the
example of wireless sensor networks (Sect. 1.3). Finally, we emphasize
again a crucial aspect of modeling of such scenarios, motivating and
guiding our technical contribution in Part II: we consider how the
natural concurrency arising in self-organizing multi-agent systems
can be embraced and faithfully reflected by well-founded modeling
paradigms (Sect. 1.4).

1.2 mobile ad hoc networks and topology control

The Latin phrase ad hoc (lit. “for this”, i.e., for the present conditions)
has been used in various contexts, also within computer science, and,
particularly, in network theory and practice. In that latter context,
the notion of an ad hoc network has been widely studied and applied
for various different networking scenarios, mostly within the context
of wireless mobile networks due to their high degree of adaptability.

1 To what extent is such a representation useful or meaningful, being necessarily
exposed to the same fragmentariness of knowledge as the represented domain itself?
This question would deserve an elaborate treatment on its own, but is out of scope
here.

1 .2 mobile ad hoc networks and topology control 5

Indeed, mobile ad hoc networks (MANET) are self-configuring, decentral-
ized networks of mobile devices; thus, the MANET concept involves
some autonomy of the network regarding its ability to self-organize
itself without any central administration [17].

As a direct consequence, the topology of such a network is highly
dynamic. Those dynamics are influenced by three factors:

• Mobility: Inherently, the devices of such a network are typically
non-stationary, also influencing their possible connections (i.e.,
the network topology).

• Instability of wireless connections: As a wireless connection cannot
rely on any protected transmission media, it is more exposed to
environmental effects causing the links to become instable.

• Proactive topology optimization: As link maintenance is a central
concern in MANET, often, monitoring and control mechanisms
are applied to optimize the topology according to various quality
criteria. The corresponding topology decisions might naturally
collide with the stochastic topology dynamics arising due to the
other two factors above.

According to the observations above, ad hoc networks demonstrate
in an adequate manner the general observations in Sect. 1.1: In a
MANET, the network participants (devices, agents, etc.) are simulta-
neously the perceivers of (their own view on) the network, and the
objects being perceived by others. Thus, autonomy implies a diffusion
of object and subject.2

The actual kind of devices and connection technologies used heavily
depends on the application contexts where a MANET is employed.
There is a diverse range of scenarios, differing to a large extent w.r.t.
the applied hardware as well as software solutions and technologies,
still, each adhering to the aforementioned MANET principles. Typical
application scenarios include vehicular ad hoc networks to enhance com-
munication between traffic participants and roadside units, smartphone
ad hoc networks to facilitate a direct communication in the absence of
traditional network infrastructure or for privacy reasons, Internet-based
ad hoc networks for extending Internet services themselves, and many
others.

In the following, we describe in detail another typical instance of
mobile ad hoc networks: wireless sensor networks (WSN). The choice
of WSN as a concrete scenario is motivated by the fact that topology
control (i.e., proactive topology optimization) has been thoroughly
studied in the case of WSN, and the main principles behind topology
decisions aptly demonstrate the inherent abstractional representation

2 We point out that the term ad hoc, although fixed in the technical jargon, is rather
counterintuitive in this case: stronger autonomy would rather imply a stronger ability
to cope with any environmental situation, not only with “this” (hoc).

6 1 concurrent abstractions : graph models and networks

qualities of our model-based approach as elaborated in the upcoming
Sect. 1.3.

Wireless sensor networks (WSN) are employed in various contexts
such as environmental data collection, smart buildings and cities, zoo-
logical and agricultural monitoring, construction monitoring, military
applications, etc. [17, 72]. In a WSN, autonomous sensor nodes are
deployed in a given environment in order to fetch and aggregate
measurement data.

The sensors autonomously organize their communication to share
and distribute the data being collected. The communication is per-
formed through wireless channels, i.e., communication links, where
the overall topology (i.e., the network graph) emerges as the result
of both the physical context of the deployed nodes (node proximity,
wireless connection possibilities) and the consensual accumulation of
decisions of single nodes about their own link preferences. In fact,
maintaining each possible communication link might be unnecessarily
energy-consuming for nodes and thus have negative effects on WSN
lifetime.

Topology control is a diversely applicable and widely used tech-
nique to optimize a WSN topology according to some quality criteria.
According to a survey of Li et al. [72], the two major optimization
objectives in the field of WSN topology control are the following:

• Coverage: For coverage optimization techniques, the goal is to in-
fluence the spatial configuration of sensor nodes to improve how
well the physical target area is monitored by the WSN. There are
various metrics being used for this purpose, e.g., blanket, barrier
or sweep coverage (for details, refer to [72]).

• Power management: Sensors in WSN are typically low-cost and,
accordingly, low-capacity devices both in terms of calculations
as well as battery lifetime. After a WSN has been deployed,
usually, no new nodes are added to the network and thus, the
overall WSN lifetime is determined by the lifetime of the single
nodes the WSN consists of [30]. In any WSN application, the
lifetime of the network is a crucial aspect of their effective use;
therefore, it is a central concern in WSN research to propose
dynamic techniques for nodes in order to save battery lifetime.
To this end, the major technique is to reduce the number of links
maintained by the nodes.

More recently, in parallel to the growing scale of application scenar-
ios and, thus, also of accumulated data, a third major topology control
objective arose [54, 56]:

• Data freshness: In contrast to the aforementioned objectives, data
freshness is concerned with the measurement of data accumu-
lated in a WSN instead of its physical deployment and config-
uration. Data freshness refers to the potential accuracy of data

1 .2 mobile ad hoc networks and topology control 7

distributed among sensor nodes; thus, optimizing towards data
freshness might involve establishing new routing paths. There-
fore, such content-centric topology control mechanisms would
necessarily interfere with, e.g., power management considera-
tions if applied simultaneously in a single WSN.

In case of the first two optimization objectives, a common underly-
ing criterion is to preserve some basic connectivity properties of the
network. However, a crucial difference lies in the operations applied
to the network in order to optimize: For coverage, nodes are directly
forced to change their physical location, whereas in the case of power
management, locality might be abstracted away as it is the status
of physically available links which gets changed. When performing
those optimization operations, mostly affecting single nodes and their
local context, connectivity preservation usually involves constraints
formulated over the whole network.3

Thus, connectivity constraints shed light on an inherent, implicit
discrepancy of the assumptions behind topology control, very much
in the spirit of our observations in Sect. 1.1: Whereas topology control
decisions are necessarily based on an assumed knowledge on the
overall status (comprising node properties, location, topology, etc.) of
the WSN, this complete knowledge is never at hand in reality and
decisions thus have to be made on the basis of a local knowledge frag-
ment. This discrepancy might be mildened, but not fully eliminated by
describing topology control operations for single nodes based solely
on their local context: even there, the assumptions behind a decision
might not hold anymore at the time of its execution.

In the following, we mainly focus on the power management aspect
of topology control, as in that case, more details of the physical setting
and the hardware can be left out of consideration by still retaining
a satisfyingly realistic level of network representation (cf. also the
upcoming Sect. 1.3). In particular, we examine topology control algo-
rithms whose aim is to achieve a save on battery lifetime in nodes by
reducing link redundancy [44, 111, 112]. Within this family of algo-
rithms, the complexity of redundancy criteria largely varies, even if we
consider a more specific setting, pattern-based redundancy detection,
where the presence of a given geometrical link structure, usually a
triangle of links, indicates redundancy and results in an operation
eliminating that configuration. The aforementioned triangle elimi-
nation constitutes the basic principle of the kTC family of topology
control algorithms. In the case of kTC, the goal is explicitly to reduce
the number of links attached to each node whenever possible, by

3 Connectivity constraints might be either hard or soft in a given application context,
distinguishing if deterioration is tolerated to some degree. E.g., it is usually a hard
constraint that each node can reach each other along some path; whereas, for smaller
components, one might consider some further metric constraints on the length of
those paths as a soft criterion. For details, cf. [65, 107].

8 1 concurrent abstractions : graph models and networks

detecting link triangles in the neighborhood of nodes and inactivating
one of their links [103]. The decision on which edge to eliminate is
based on a weighting which, in turn, relies on physical measurements
in a real-life implementation.

In the field of WSN, it is inevitable to study topology control algo-
rithms and the overall (potential or predictable) network behavior also
a priori, i.e., before the actual WSN deployment, in order to uncover
mistakes in the algorithm design or to detect potential conflicts with
environmental events. One possibility is to deploy real WSN hardware
in a controlled simulation testbed; however, for many scenarios, even
such a simulation is rather resource-consuming, with results having
limited relevance to an actual real-life deployment. Therefore, there is
a necessity to develop WSN analysis techniques which are completely
hardware-independent, but are still able to faithfully capture relevant
non-physical aspects of WSN behavior.

Thus, after having recalled the motivation and purpose of topology
control in general and narrowing the scope to fit the concrete example
presented in the thesis, in the following section, we present a graph-
based model for WSN and a rule-based description of topology control
within that model.

1.3 modeling as abstractions over real-life domains

As motivated above, analyzing the behavior of a real-life system
domain, like that of a WSN, requires an abstract representation of the
domain itself as well as formal techniques for reasoning about WSN
behavior and, in particular, topology control. Model-Driven Engineering
(MDE) is a software engineering paradigm which advocates the use of
models, i.e., structured domain representations, as artifacts on which
the analysis can be carried out directly. Therefore, in general, MDE
requires modeling techniques which are adaptable to any analysis
scenario w.r.t. the level of abstraction involved, also providing a
formally founded reasoning methodology for both single domain
states and their evolution over time.

Representing a structure in a formally (i.e., even mathematically)
well-founded way amounts to relying on some kind of graph structure.
A graph (i.e., a net of nodes and edges in between) immediately pro-
vides an abstraction over real-life domains: graph nodes correspond
to real-life objects and edges represent (any kind of) relations between
them. Moreover, this correspondence between reality and abstraction
becomes very apparent if the domain being the subject of modeling
is a network, as in our WSN example above. In the following, we
describe a concrete WSN modeling case study which will be used
throughout the thesis for demonstration purposes.

1 .3 modeling as abstractions over real-life domains 9

n1

n3n2

n4
n5

n6

n7 n8

n9
L

S
S

LL

L L

L SL

S

Figure 1.1: Example Topology

1.3.1 Topology Representation

We consider an autonomous sensor network consisting of homoge-
neous sensor nodes without any centralized control, thus, each node
in our model represents the same kind of device.4 Although sen-
sor nodes distinguish themselves through a high degree of mobility,
capturing (patterns of) their location changes in a model necessarily
involves sophisticated stochastic methods, which belong to a different
modeling approach than the subject of the present thesis. Thus, we
provide a WSN model where node locations are not directly reflected.5

Regarding the communication links, in the thesis, we rely on a
widely used WSN modeling assumption: unit disk graph (UDG). Ac-
cording to UDG, each sensor node has a uniform transmission range
and there is a bidirectional communication link between two nodes
whenever they are mutually in the transmission range of each other.
However, for presenting an abstract version of the kTC topology con-
trol algorithm (originally relying on edge weighting based on physical
properties), we consider different link lengths; for demonstrating the
kTC mechanism, it suffices to consider short (S) and long (L) links. At
this point, we are already able to present a (yet preliminary) topology
model, shown in Figure 1.1, where the black dots represent nodes and
(undirected) edges between them are bidirectional communication
links, labeled with their respective lengths.

The purpose of topology control and, in particular, kTC is to monitor
the topology and proactively change which available communication
links should be actively maintained, i.e., used for communication

4 Note that we exploit the ambiguity of the coinciding meanings of the term node here
and refer by it both to the sensor nodes itself and to the graph nodes which represent
them. However, if a distinction is needed, we specify which kind of node is meant.

5 Still, we are able to capture the effect of node movements on the topology by intro-
ducing link creation and deletion events into the description of the environment as
shown in the next section.

10 1 concurrent abstractions : graph models and networks

purposes. Therefore, an edge of the topology graph represents the
physical possibility to establish a connection, whereas the current
status of the link from a network perspective is represented by a fur-
ther edge attribute: active (a) indicates the link is currently used for
communication, inactive (i) denotes links that are not in use, i.e., they
should currently not be maintained according to topology control.
Topology control mechanisms, also kTC, often rely on an additional
marking principle, reducing the risk that crucial links get inactivated
without verifying the decision. For this purpose, we introduce an
intermediate edge status: links with the status unclassified (u) can still
be used for communication, but require status revision by topology
control (e.g., due to environmental changes). In turn, as an algorithm
design principle, topology control performs each activation and inacti-
vation step through this intermediate status. Thus, our model includes
six different edge types in total, denoted S;a, S;i, S;u, L;a, L;i

and L;u.
To address topology constraints whose scope goes beyond physical

link patterns, topology control usually considers a two-layered model of
WSN. In this setting, the aforementioned physical edges constitute the
so-called underlay network layer, while the overlay consists of virtual
edges. In a real-life WSN, those virtual edges can be used to imple-
ment complicated transport and routing mechanisms, potentially even
connecting the WSN to the Internet; in turn, the overlay concept might
also reflect data freshness criteria as introduced above. However, in
this thesis, it is sufficient to conceive of virtual edges as the represen-
tations of further constraints on active underlay paths: there should
be at least one underlay path of active (or at least unclassified) edges
between the end nodes of a virtual edge (where virtual edges are also
considered bidirectional). Thus, although representing data freshness
optimization mechanisms is not covered to a full extent in the thesis,
the concept is abstractly represented through virtual edges.

The origins of this simplistic WSN model go back to our earlier
work in the field of model-based reasoning about WSN [65]. In turn,
that line of research reached maturity through the work of Kluge et
al. [58].

Fig. 1.2b shows our topology example enriched with edge statuses
and virtual edges (dashed lines): while the virtual edge n7n8 is satis-
fied, there is no active path for n6n9 as there is at least one i-edge on
each possible path.

1.3.2 Dynamic Behavior

In the previous subsection, we described the static component of
our model, i.e., the way we represent a given state of a topology
in an abstract manner using graph structures. In the following, we

1 .3 modeling as abstractions over real-life domains 11

x

zy

S;aS;a

L;u

LHS

x

zy

RHS

S;aS;a

L;i

(a) kTC Rule for Inactivating an Unclassified Edge

n1

n3n2

n4n5

n6

n8n7

n9
L;a

S;u
S;a

L;iL;i

L;u L;a

S;a S;aL;u

S;a

(b) Example Topology with Edge Sta-
tuses and Virtual Edges

n1

n3n2

n4n5

n6

n8n7

n9
L;a

S;u
S;a

L;iL;i

L;u L;a

S;a S;aL;i

S;a

(c) Example Topology after Rule Applica-
tion at Triangle n2n3n7

Figure 1.2: WSN Topology Example and kTC Edge Inactivation Rule

intuitively describe the rule-based specification of the network behavior
itself, i.e., the dynamics of our model.

Indeed, as modeling describes a domain abstractly by summarizing
the structure of each potential instance of that domain, dynamic be-
havior is necessarily described by using rules, i.e., abstract behavioral
patterns applicable to each possible domain instance. Model transfor-
mation is a paradigm considering rule-based specifications of model
dynamics as well as execution techniques for those rules. Considering
models with graph-like structure just as in the case of our WSN ex-
ample, graph rewriting provides a mathematically rigorous foundation
for modeling and model transformation.6 Graph rewriting itself is the
main topic of this thesis: In Part II, we present extensions to the exist-
ing theory along with new results, motivated by the considerations
and examples in the present chapter. Although we first recapitulate
the theory of graph rewriting in the next chapter, we provide an intu-
ition for rule-based network behavior in the following. Thereby, we
give names to basic topology control operations (written in italic) for
later reference.

The three dynamic components of a WSN underlay model are:

6 In turn, graph rewriting can be seen as a general model transformation framework,
as a large variety of system structures and semantics can be expressed abstractly in a
graphic form, regardless of their original shape and implementation details.

12 1 concurrent abstractions : graph models and networks

• Node behavior: The movement of nodes is modeled through
the changes they induce in the link topology. In particular, a
Create Link operation represents that a new connection becomes
available due to nodes getting close enough, and a Delete Link
operation represents that two nodes lost sight of each other.

• Link behavior: In addition, independently of node movement,
some environmental events might make it necessary to revise the
status of a link. This is represented by the Unclassify operation,
turning an active or inactive link to unclassified.

• Topology control: According to the triangle elimination princi-
ple in the kTC algorithm as introduced in Sect. 1.2, the Resolve
Unclassified Link operation inactivates an unclassified long link if
there is an alternative active 2-hop path between its end nodes,
where both links are short.7

The dynamic components of a WSN overlay model comprise the
following:

• Administrator interaction: Modeling the interaction of an ad-
ministrator with the network comprises a Create Virtual Link
operation for creating a new requirement by setting a virtual
link, as well as a Delete Virtual Link operation for removing a
virtual link if it is not needed anymore.

• Routing maintenance: For any virtual link, the Search Active
Path operation should first look if there is a path between the
end nodes consisting solely of active (or unclassified) links. Af-
terwards, all the unclassified edges on such a path should get
activated (Activate Unclassified on Path) in order to avoid the risk
of path inactivation. Or, if there are only paths with inactive
edges, then those should get unclassified to enable their potential
activation (Unclassify on Path).

To conclude this chapter, we give an intuitive example for specifying
the topology control operation Resolve Unclassified Link using graph
rewriting. Figure 1.2a represents the rule to express the operation
mentioned above, being applicable to any topology conforming to our
model. The rule consists of a left-hand side (LHS) and a right-hand side
(RHS). The application of this rule to a given topology model consists
in the following:

(i) Match phase: Searching an occurrence (a so-called match) of the
LHS in the topology.

7 Note that this is a rather strict variant of kTC; there are formulations where the links
on the alternative path do not have to be active, if longer alternative paths are also
tolerated. However, having a more relaxed resolution mechanism usually involves
more obligations when reasoning about correctness.

1 .4 concurrency : embracing pluralism 13

(ii) Deletion phase: Removing elements from the match if the corre-
sponding rule element is not present in the RHS.

(iii) Creation phase: Adding to the topology elements corresponding
to elements in the RHS which are not present in the LHS.

Thus, the application of the rule in Figure 1.2a looks for a triangle
with an unclassified long edge yz and two active short edges xy and xz.
Then, the unclassified long edge corresponding to yz gets replaced by
an inactive long edge. For example, applying the rule to the topology
in Figure 1.2b results in the topology shown in Figure 1.2c: the edge
n3n7 turned inactive as the triangle n3n7n2 is a match of the LHS. On
the contrary, even if n5n6 is an L;u-edge too, n5n6n4 is not a match as
there is no short edge present in the triangle.

1.4 concurrency : embracing pluralism

Looking at the WSN modeling example in the previous section, we
might immediately observe that nothing of our knowledge-pluralism
and observational pluralism (cf. Sect. 1.1) is reflected in the abstraction:
when shifting from the domain to be represented towards a rigorous
representation of it, the immanent multiplicity of agents (observers
and actors) diffuses into an apparently unified, in fact rather petrified,
monolithic representation, capable of evolution but devoid of any of
its original inherent ambiguity.

Indeed, this discrepancy has been, directly or indirectly, discovered
by philosophers of pragmatism and of science on the one hand, and
theoretical computer scientists on the other hand, from different per-
spectives and sometimes in a broader context. Classical modeling
theory, rooted in the pragmatic school of philosophy, advocates a view
that a model is essentially a mapping of some parts of the world (i.e.,
of what we called a domain) into a purpose-defined (i.e., pragmatic)
representational framework [55, 97, 105].

Here, we see an example of a widely practiced engineering method-
ology having relevant and deep philosophical consequences—and/or
vice versa. Another such branch of computer science is concurrency
theory, which is in itself to a large extent a modeling activity: although
proposing a formal model to capture concurrency of events is feasible
(and is indeed done) without explicitly articulating an underlying ref-
erence to the human perception, such an understanding of the notion
of concurrency is necessarily present. The case of Carl Adam Petri,
whose namesake the famous Petri nets are, is particularly interesting:
in his late work, he became explicit on his general take on knowledge
and models [89]. Petri refused the widespread view of a model as an
abstractional mapping, and instead emphasized that a model is essen-
tially a translation of an informal (but potentially already pluralistic,
diffuse, chaotic, etc.) shared understanding of a domain into a formal

14 1 concurrent abstractions : graph models and networks

representation of the same knowledge base. We want to follow Petri
in embracing pluralism in modeling.8

Catching up on the consequences of the interplay between con-
currency and modeling in the work of Petri, Giorgio De Michelis
even arrives to the conclusion that Petri nets “reflect the irreducible
presence of the observer” [78]. Indeed, as also demonstrated by our
general observations in Sect. 1.1, the observer and the boundaries of
the observing capabilities stand in the center of any take on concur-
rency:

• From an empirical, positivistic perspective, concurrency boils
down to the question of (in)distinguishability of events from the
perspective of the observer, along the lines of the famous Car-
napian notion of empirical indifference [15].

• From a strictly computational perspective, concurrency is ob-
servable through the notion of mutual exclusion of Dijkstra [31],
claimed by Leslie Lamport in a Turing Lecture in 2015 to consti-
tute the beginning of concurrency theory [66].

• From a communicational perspective as apparent also in our
motivational scenario of ubiquitous computing, concurrency is
living together with distributedness: the observation horizon is
limited, the context of system components might be unknown,
still, they have to be prepared for reacting to relevant events and,
thus, never lose awareness.

This last, reactive and distributed, perspective is that of Robin
Milner, whose work is heavily relied on also in our main technical
contribution in Part II. Being the (co-)author of several major pro-
cess calculi, in his later work, he tried to address the challenge of
ubiquitous computing by a unifying, yet pluralism-embracing formal
framework [80].9 On a general note, Milner proposes to split the
modeling task into the co-existing regions of space (i.e., where things
are) and motion (i.e., how they interact). Thus, as a major consequence,
interaction should not be affected by causal constraints introduced by
space, even after translation into the model domain.

Note that this is in accordance with the paradigm shift proposal
of Petri as well: for faithfully representing such systems, it is not
sufficient to forge selected aspects into an abstractional mapping, but
rather the model should be a reflection of the domain including its
distributedness, with all its consequences.

8 Note that Petri rejected a philosophical interpretation of his work and was an ardent
empiricist; for him, Petri nets directly demonstrate his epistemology and no further
philosophical mediation is needed. Still, formalisms like Petri nets deserve the
attention of philosophers of science and of knowledge in general.

9 This framework is that of bigraphs, still used for concurrent system modeling, but the
details are out of scope here.

1 .5 thesis outline 15

To summarize, and to emphasize the motivational focus for the
work we undertake in the present thesis: There is an inherent dis-
crepancy between graph-based modeling approaches, which build
on a monolithic world-view, and describing distributed systems by
concurrency. A unifying approach for graph-based modeling of such
systems, with a goal of taking both aspects into account, therefore has
to possess a clear vocabulary of the relevant notions. We conclude the
section by enumerating those central notions of concurrency, with a
unifying theoretical explanation to each, as a philosophical guideline
for the rest of the thesis.

• Parallelism: The most basic form of interaction. Parallelism does
not have to involve real distributedness or causal independence;
nevertheless, some separated components are present with a
capacity to interact.

• Concurrency: Causal independence; from an observational point
of view, concurrency is the empirical indifference of events.
Some components are concurrent if they are able to act such
that no temporal distinction is possible; thus, there is no causal
interaction between their events.

• Distribution: The notion of distribution has a different premise
than the above ones and pervades both: here, some observer
or even specifier (i.e., an observer actively designing some part
of the system) has an awareness of pluralism and bases his
decisions on that awareness.

• Reactiveness: Here, each component is designed with the explicit
goal of constantly anticipating interaction with a potentially un-
known context of further distributed components. This involves
an adaptive operation mechanism and, ideally, a permanent
functioning.

1.5 thesis outline

The rest of the thesis is structured as follows.
The remainder of Part I, presenting introductory material, consists of

Chapters 2 and 3. Part II, the main theoretical part, contains Chapters 5

to 8, as well as a concluding Chapter 9.

• Chapter 2, titled Background, contains a short summary on
the history and divisions of the literature on graph rewriting,
and mainly serves as a repository of the formal foundations of a
specific branch of graph rewriting we use throughout the thesis,
algebraic Double-Pushout (DPO) graph rewriting.

• Chapter 3, titled Controlled Graph Rewriting: State of the

Art, contains again a historical summary on how and why the

16 1 concurrent abstractions : graph models and networks

idea of control permeated rewriting approaches. In its main
part, it is an analytic survey of major existing controlled graph-
rewriting approaches, some rather formal, some rather practical,
with the aim of distilling challenges for advancing the field of
controlled graph rewriting by observing trends and deficits in
state of the art; those challenges conclude the chapter.

• Chapter 4, Control Processes for Graph Rewriting, is the
first part of our main contribution, a process calculus for con-
trolled graph rewriting called RePro. This chapter describes the
calculus of pure control processes.

• Chapter 5, RePro: A Calculus for Controlled Graph Rewrit-
ing, presents the core of our RePro definition: the combination
of process-algebraic semantics and algebraic graph rewriting.

• Chapter 6, Properties of the RePro Calculus discusses the
following theoretical facets of RePro:

– Section 6.1 explores RePro from a process-theoretic per-
spective, focusing on equivalence notion, particularly trace
equivalence and bisimulation.

– Section 6.2 reasons about independence notions coming
from both underlying theories. In particular, parallel inde-
pendence of graph rewriting [38] and asynchronous transition
systems [83] are considered.

– Section 6.3, in contrast, reasons about the expressiveness of
RePro as a control language.

• Chapter 7, titled Analysis of Controlled Graph-Rewriting

Processes, describes a novel abstract verification approach for
controlled graph rewriting. After introducing the abstract inter-
pretation framework which we utilize to finitely represent infinite
graph languages, we proceed as follows:

– Section 7.1 provides an example from the WSN domain to
illustrate our novel notion for graph language characteriza-
tion, called compasses.

– Section 7.2 formally defines compasses and their semantic
equivalence classes.

– Section 7.3 presents the main results on how to accommo-
date compasses into an abstract interpretation framework
for RePro: we show that temporal properties of processes
can indeed be verified in an abstract manner such that they
are preserved by any conforming concrete RePro processes.

• Chapter 8, Discussion and Related Work, gives a thorough
overview on the potentials and limitations of RePro in the larger
context of related approaches.

1 .5 thesis outline 17

• Finally, Chapter 9 concludes the thesis and outlines future work.

2
B A C K G R O U N D

2.1 origins of algebraic graph rewriting

Graph rewriting (or graph transformation) originated as early as the 60s,
as a product of efforts towards a rigorous theory for handling non-
linear data structures of increasing complexity [98]. In fact, graph
rewriting can be seen as a generalization of term rewriting to graph-
like structures, i.e., for domains whose objects are not appropriately
described by terms. Formally, there is a diverse range of approaches
to describe and reason about rewriting of graph-like structures.

A common characteristics of all (not just graphic) rewriting ap-
proaches is their rule-based nature. A rewriting system or grammar is a
collection of declarative rewriting rules, where each approach adheres
to some extent to a replacement behavior of rules: whenever some
structure is found in an object, then the rule describes how to replace
it with something else, yielding a rewritten object. This is called the
application of a rule. These general characteristics are also shared by
approaches to graph rewriting.

The present thesis is built on the foundations of algebraic graph
rewriting, specifically in its Double-Pushout (DPO) variant. The frames
of the thesis only allow for a short enumeration of approaches other
than the algebraic one.

• Replacement grammars are the most straightforward generaliza-
tions of term-rewriting systems: labels within the graph are
divided into terminals and non-terminals, where non-terminals
get replaced by rule applications with arbitrary further graph
structures, such that the rule also exactly specifies the connec-
tions of the new elements to the preserved ones. There are two
major sub-divisions of replacement grammars:

– node replacement grammars apply the above principle to sin-
gle nodes of a graph, whereas

– hyperedge replacement grammars consider a more general
setting and allow for the replacement of hyperedges.

• The logical approach coined by Bruno Courcelle captures (classes
or properties of) graphs as monadic second-order formulas and, in
turn, their evolution by the rewriting of those formulas.

• The theoretical framework of 2-structures has been proven to
be appropriate to study some phenomena in graph rewriting,

19

20 2 background

prominently those related to graph and rule composition and
decomposition.

Algebraic graph rewriting has been proposed in the 70s through the
endeavors of Hartmut Ehrig, Michael Pfender and Hans J. Schneider
(TU Berlin) to provide a generalization of Chomsky grammars for
graphs in the setting of category theory [36]. The major distinguishing
feature, in comparison to replacement grammars, is the absence of
the context-free distinction of symbols—instead, each graph struc-
ture plays an equal role in rewriting derivations. Throughout the
years, there have been proposed numerous applications and cross-
fertilizations in other fields of computer science [37]. It is also within
this setting that parallelism and synchronization in graph rewriting as
well as different flavors of concurrent graph-rewriting semantics has
been considered [6], resonating to our thoughts presented in Sect. 1.4
and, thus, making the algebraic approach a particularly appropriate
choice of foundation for the present thesis.

In turn, two major variants of the algebraic approach emerged, shar-
ing their outlines but differing in formalization details and practical
consequences of those.1

• The Double-Pushout (DPO) approach [36], the first one proposed
by the “Berlin school”, is based on a strict separation of deletion
and creation within the application of a single rule (also in this
strict order). Thereby, deletion is not allowed to produce non-
graphic structures, e.g., by deleting a node without deleting
the adjacent edges. Due to its well-studiedness in a number of
aspects relevant to the thesis, we build on the DPO approach in
the following and recapitulate its formal details in the upcoming
Section 2.2.

• The Single-Pushout (SPO) approach [73] instead follows a simpler
rule application schema, thus resulting in more side effects, e.g.,
edges being implicitly deleted along with their adjacent nodes.

From the next section on throughout the thesis, by graph rewriting
we usually specifically mean the algebraic Double-Pushout (DPO)
approach.

2.2 the double-pushout (dpo) approach : rules , deriva-
tions , independence

We introduce the fundamental definitions of graph rewriting according
to the algebraic Double-Pushout (DPO) approach: (typed) graphs, rules

1 Later on, more expressive variants of those major ones have been proposed, like the
Sesqui-Pushout approach [22] or Agree rewriting [23], whose presentation is out of
scope.

2 .2 the double-pushout (dpo) approach : rules , derivations , independence 21

and their applications, notions of parallelism: parallel rules, parallel
derivations and parallel independence, as well as the Local Church-
Rosser and Parallelism Theorems [38]. When defining the parallel
composition of rules (parallel rules, Definition 2.3), we slightly depart
from earlier definitions to fit our approach more smoothly. In this
section, we make extensive use of notions from elementary category
theory; for a short summary of those, we refer the reader to the
appendix of [38]; a more elaborate treatment can be found in a number
of textbooks, e.g., in [4].

Obviously, the definition of a graph plays a central role in the formal
framework for graph rewriting. Particularly, as algebraic (and, thus,
also DPO) graph rewriting is formalized in a categorical setting, a
function-based definition works the best for defining graph morphisms
as structure-preserving mappings between graphs. The categorical
setting also allows for a neat formalization of node and edge typing,
where any graph can be typed over a given type graph by providing a
morphism to the type graph, whose elements, in turn, represent types.
Note that typing is similar to, but more expressive than, usual graph
labeling, as the type graph might also constrain type adjacency.

Definition 2.1 (Graphs and Typed Graphs). A (directed) graph is a
tuple G = 〈N, E, s, t〉, where N and E are finite sets of nodes and edges, and
s, t : E→ N are the source and target functions. The components of a graph
G are often denoted by NG, EG, sG, tG. A graph morphism f : G → H
is a pair of functions f = 〈 fN : NG → NH, fE : EG → EH〉 such that
fN ◦ sG = sH ◦ fE and fN ◦ tG = tH ◦ fE. A graph morphism f : G ↪→ H,
is a monomorphism, indicated by the hooked arrow ↪→, if both fN and fE

are injective; it is an epimorphism if both fN and fE are surjective; it is an
isomorphism if both fN and fE are bijective.

Graphs G and H are isomorphic, denoted G ' H, if there is an isomor-
phism f : G → H. We denote by [G] the class of all graphs isomorphic to
G, and we call it an abstract graph. We denote by Graph the category of
graphs and graph morphisms, by |Graph| the set of its objects, that is all
graphs, and by [|Graph|] the set of all abstract graphs.

The category of typed graphs over a type graph T is the slice category
(Graph ↓ T), also denoted GraphT [18]. That is, objects of GraphT
are pairs (G, t) where t : G → T is a typing morphism, and an arrow
f : (G, t)→ (G′, t′) is a morphism f : G → G′ such that t′ ◦ f = t.

As an example for a type graph, consider the type graph TTop for
WSN topologies (cf. Sect. 1.3) in Figure 2.1. As our WSNs have a
homogeneous node set, TTop has a single node. The six loop edges
represent the WSN link types presented in Sect. 1.3 (length;status,
Long-Short and active-inactive-unclassified, respectively), identified
by labels for readability. Along the thesis, we will work with typed
graphs, thus, when clear from the context, we omit the word “typed”
and the typing morphisms. In particular, each WSN example through-
out the thesis contains graphs implicitly typed over TTop, with edge

22 2 background

S;a

S;iS;u

L;a

L;i L;u

TTop

Figure 2.1: Type Graph TTop

types often indicated as labels. Figure 1.2 already contained some
examples of graphs typed over TTop with this notation.

A (DPO) graph-rewriting rule is a generic description of a rewriting
operation on graphs; categorically, it is a span (i.e., a pair of morphisms
sharing their source) of (typed) graphs. A DPO rule (or often shortly
rule in the following) follows the mechanism already informally intro-
duced in Sect. 1.3: if we find a match (morphism) of the left-hand side
of a rule to an input graph, then the further components of the rule
describe what to delete and what to create to yield the output graph.

In particular, a rule (L l← K r→ R) (with L, K, R ∈ |Graph|) has L as
left-hand side (LHS), K as interface and R as right-hand side (RHS).

For modeling a system or a domain using graph rewriting, usually,
a set of rules (typed over a common type graph) is provided, declara-
tively describing the overall (evolutionary) system behavior. Such a
collection is called a graph-rewriting system. Although we use our own
established terminology throughout the thesis, we use some different
terms for this notion in some parts, due to historical reasons and in
order to maintain alignment to the literature.

First, we adopt the alternative term graph transformation system, and
particularly the abbreviation GTS, for a graph-rewriting system, due
to its omnipresence in the literature. Second, sometimes and most
prominently in the historical overview in Chapter 3, the term grammar
is used to denote a collection of rewriting rules; thus, a graph grammar
is essentially a GTS (sometimes understood as including a start graph).

Formally, in addition to fixing the type graph and providing the rule
spans, a GTS also gives names to the rules for easier identification.

Definition 2.2 (DPO Rule, Graph Transformation System). A (T-typed

DPO graph-rewriting) rule is a span (L l← K r→ R) in GraphT where l
is mono. The graphs L, K, and R are called the left-hand side, the interface,
and the right-hand side of the rule, respectively. A graph transformation
system (GTS) is a tuple G = 〈T,R, π〉, where T is a type graph, R is a
finite set of rule names, and π maps each rule name in R into a rule.

2 .2 the double-pushout (dpo) approach : rules , derivations , independence 23

x

yz

S;aS;a

L;u

x

yz

S;aS;a

x

yz

S;aS;a

L;i

Figure 2.2: DPO Rule pkTC for Resolving Unclassified Links by Inactivation

For example, the rule corresponding to the Resolve Unclassified Link
operation in our WSN scenario, already specified in an informal
notation in Figure 1.2a, is shown in Figure 2.2 as a proper DPO rule
pkTC (with graph names omitted).

In the following, we usually assume that G = 〈T,R, π〉 denotes an
arbitrary but fixed GTS and omit explicit references to its ingredients.

In a concurrent scenario like that of WSNs, parallel composition
of rules takes a central role. Although different notions have been
proposed in the graph-rewriting literature for rule parallelism (cf. [6]),
a usual and straightforward way of composing rules is to “glue”
them together disjointly in a well-defined manner. The categorical
framework allows for such a definition of the parallel rules by taking
the coproduct of the corresponding spans.

Definition 2.3 (Parallel Rules). Given a GTS G = 〈T,R, π〉, the set of
parallel rule names R∗ is the free commutative monoid generated by R,
R∗ = {p1| . . . |pn | n ≥ 0, pi ∈ R}, with monoidal operation “ |” and unit
ε. We use ρ to range over R∗. Each element of R∗ is associated with a span
in GraphT, up to isomorphism, as follows:

1. ε : (∅← ∅→ ∅), where ∅ is the empty graph;

2. p : (L l← K r→ R) if p ∈ R and π(p) = (L l← K r→ R);

3. ρ1|ρ2 : (L1 + L2
l1+l2←−− K1 + K2

r1+r2−−−→ R1 + R2) if ρ1 : (L1
l1←− K1

r1−→
R1) and ρ2 : (L2

l2←− K2
r2−→ R2), where G + H denotes the coproduct

(i.e., the disjoint union) of graphs G and H, and if g : G → G′ and
h : H → H′ are morphisms, then g + h : G + H → G′ + H′ denotes
the obvious mediating morphism.

For ρ ∈ R∗, we denote by 〈ρ〉 the set of rule names appearing in ρ, defined
inductively as 〈ε〉 = ∅, 〈p〉 = {p} if p ∈ R, and 〈ρ1|ρ2〉 = 〈ρ1〉 ∪ 〈ρ2〉.

Clearly, the same rule name can appear several times in a paral-
lel rule name. Note that the effect of a parallel rule is clear by the

above construction: the parallel rule span (L1 + L2
l1+l2←−− K1 +K2

r1+r2−−−→
R1 + R2) is uniquely defined up to isomorphism by the coproduct con-
struction and applications of those isomorphic rule copies would result
in isomorphic outputs. However, the rule application mechanism of
graph rewriting is based on concretely given graphs (cf. Definition 2.5).
Therefore, we exploit a technique of “canonization” proposed in [21]

24 2 background

x

yz

S;aS;a

L;u

x

yz

S;aS;a

x

yz

S;aS;a

L;i

x

yz

w

S;aS;a

L;u

L;a

S;a

x

yz

w

S;aS;a

L;a

S;a

x

yz

w

S;aS;a

L;i

L;a

S;a

Figure 2.3: An Application of pkTC

to guarantee that the parallel rule span is indeed given in terms of
concrete graphs and morphism.

Given a category C, a skeleton subcategory S of C is a full, isomor-
phism-dense subcategory in which no two distinct objects are isomor-
phic [2]. Isomorphism-dense means that each object in S is isomorphic
to some object of C. The existence of a skeleton subcategory of C
follows from the Axiom of Choice.

Definition 2.4 (Canonical Graphs). The category CanGraph of canonical
graphs, is an arbitrarily chosen but fixed skeleton subcategory of Graph,
equipped with a functor Can : Graph→ CanGraph such that Can ◦ I =
IdCanGraph and for each graph G, Can(G) ' G, where I : CanGraph →
Graph is the inclusion functor. For a graph G ∈ |Graph| we call Can(G)

its canonical graph.

It follows also that for each isomorphic pair of graphs G ' H,
Can(G) = Can(H) [6]. We overload Can also for the analogous defini-
tion for typed graphs. In the Appendix of [6] an effective procedure
is presented for constructing the canonical graph of a finite labelled
graph, following the ideas proposed in [75].

Given a functor Can as in Definition 2.4, any parallel rule ρ1|ρ2

has (Can(L1 + L2)
Can(l1+l2)←−−−−− Can(K1 + K2)

Can(r1+r2)−−−−−−→ Can(R1 + R2))

as associated span, based on an arbitrary choice of concrete coproduct
objects and morphisms. However, as a slight abuse of notation, we

keep referring to the parallel span as (L1 + L2
l1+l2←−− K1 +K2

r1+r2−−−→ R1 +

R2) for the sake of notational clarity, denoting a concrete canonical
representative.

A rule application is a formal representation of the effect of a rule
described above: applying a rule ρ to a graph G consists in (i) looking
for a match m : Lρ → G, and potentially (ii) deleting some parts of

G as described by the morphism L l←− K and (iii) creating new graph
elements according to the morphism K r−→ R. Categorically, a rule

2 .2 the double-pushout (dpo) approach : rules , derivations , independence 25

L2 K2l2

G

m2

D2f2

k2

R

H2

r2

n2

g2

L1K1 l1

m1

D1 f1

k1

R1

H1

r1

n1

g1

d2 d1

Figure 2.4: Parallel Independence of Rule Applications H1
δ1⇐= G

δ2=⇒ H2

application corresponds to a pair of pushout diagrams (hence the
name Double-Pushout approach).

Definition 2.5 (Rule Application, Derivations). Let G be a graph, let

ρ : (L l← K r→ R) be a possibly parallel rule, and let m be a match,
i.e., a (possibly non-injective) graph morphism m : L → G. A DPO rule
application from G to H via ρ (based on m) is a diagram δ as in the diagram
below, where both squares are pushouts in GraphT.

L Kl

G

m

D

(PO)

f

k

R

H

r

n

g

(PO)

In this case we write G δ
=⇒ H, with denoting the underlying rule of δ by

ρ(δ) and its underlying match by m(δ). We denote by D the set of DPO
diagrams, ranged over by δ. For a rule p ∈ R and a graph G, we write G 6 p=⇒
if there is no DPO diagram δ such that G δ

=⇒ H for some graph H.
A (parallel) derivation ϕ from a graph G0 is a finite sequence of rule

applications ϕ = G0
δ1=⇒ G1 · · ·Gn−1

δn=⇒ Gn, via ρ1, . . . , ρn ∈ R∗. A
derivation is linear if ρ1, . . . , ρn ∈ R.

As an example, Figure 2.3 shows an application of pkTC to a smaller
input graph instead of our running example due to reading conve-
nience (and omitting graph and morphism names).

Regarding the semantics of graph-rewriting systems, the most preva-
lent interpretation is based on derivations and formulated relatively
to a given start graph: the semantics of a GTS on a graph G is the set
of derivations starting from G. Operationally, this might be conceived
of as a transition system where states are graphs, and transitions are
valid rule applications from the given GTS to their source graph, hav-
ing their output graph as target. This interpretation, even if usually
remaining informal, can be rightly labeled as the standard semantics of
graph rewriting, a term which we use throughout the thesis.

Besides semantics, another important aspect of graph-rewriting the-
ory is the analysis of rule applications w.r.t. their connections and

26 2 background

G

H1 H2

H12 ' H ' H21

δ1 δ2

δ′2 δ′1

δ

Figure 2.5: Local Church-Rosser and Parallelism Properties of Rule Applica-

tions H1
δ1⇐= G

δ2=⇒ H2

properties. Due to our concurrent setting, the notion of parallel indepen-
dence is of special importance to us. Intuitively, two rule applications
starting from the same graph are parallel independent if they can be
sequentialized arbitrarily with isomorphic results. This property is
captured categorically by the following definition [38].

Definition 2.6 (Parallel Independence). Given two rules ρ1 : (L1
l1←−

K1
r1−→ R1) and ρ2 : (L2

l2←− K2
r2−→ R2) and two matches L1

m1−→ G m2←− L2 in
a graph G, the resulting rule applications δ1 and δ2 are parallel independent
if there exist arrows d1 : L1 → D2 and d2 : L2 → D1 such that m1 = f2 ◦ d1

and m2 = f1 ◦ d2 as in Figure 2.4, where the double squares represent the

two rule applications H1
δ1⇐= G δ2=⇒ H2.

As recalled by the next result, two parallel independent rule appli-
cations can be applied in any order to a graph G obtaining the same
resulting graph, up to isomorphism. Furthermore, the same graph
can be obtained by applying to G the parallel composition of the two
rules, at a match uniquely determined by the coproduct construction.

Proposition 2.1 (Local Church-Rosser and Parallelism Theorems [38]).

Given two parallel independent rule applications H1
δ1⇐= G δ2=⇒ H2 with

matches m1 : L1 → G and m2 : L2 → G, there exist the following matches:

(i) m′1 : L1 → H2 with m′1 = g2 ◦ d1 as in Figure 2.4,

(ii) m′2 : L2 → H1 with m′2 = g1 ◦ d2 as in Figure 2.4, and

(iii) m : L1 + L2 → G, where m is the arrow uniquely determined by m1

and m2 (as in Figure 2.4) through the coproduct construction

such that there are rule applications

(i) H1
δ′2=⇒ H12 over ρ2 based on m′2,

(ii) H2
δ′1=⇒ H21 over ρ1 based on m′1, and

2 .2 the double-pushout (dpo) approach : rules , derivations , independence 27

(iii) G δ
=⇒ H over ρ1|ρ2 based on m

such that H12, H21 and H are pairwise isomorphic, as shown in Figure 2.5.

3
C O N T R O L L E D G R A P H R E W R I T I N G : S TAT E O F T H E
A RT

In this chapter, after providing some background on the concepts
of controlled graph rewriting (CGR), we recapitulate and informally
analyze a number of CGR approaches.

3.1 history of (controlled) grammars

Grammars, i.e., sets of rewriting rules have been a major subject of
study since the beginnings of computer science.1 Famously, it was
Chomsky who coined the treatment of grammars in a formal context
by introducing his hierarchy of fundamental importance [16].

Although delving into the details of the Chomsky hierarchy and
related research is out of scope here, there are two major approaches
to the classification of grammars, distinguished if grammars are char-
acterized by the form of their rules or by properties of the (words
in the) language they describe (i.e., generate). Although the original
approach of Chomsky primarily falls into the former category (with
connected results regarding the latter approach), language properties
also have essential importance if a grammar is used to describe, e.g.,
syntax. Indeed, there is a direct connection between the form of the
rules used in a grammar and the arising language structure.

Another aspect of the study of grammars is the language generation
process itself. Usually, this process starts from a given starting state
and continues sequentially until some termination criteria are reached.
In each step within that sequence, a rule of the grammar is applied to
rewrite the current state, yielding a subsequent one. In turn, (a subset
of) those states represent the words or elements of the language we
describe. Thereby, in any formal context, it is essential to give answers
to the following questions.

(i) Which arising states belong to the language we describe?

(ii) How and when might a rule be applied to a state?

(iii) Which rules are available in the next step and which rule se-
quences arise?

Regarding question (i), we just remark here that DPO graph rewrit-
ing (cf. Chapter 2) departs from the majority of grammatic approaches

1 ...and before: the first known grammarian, Panini (4th c. BC) already made use of a
rule-based description of the syntax and morphology of classical Sanskrit; some even
likened his approach to the Turing machine [40].

29

30 3 controlled graph rewriting : state of the art

where the alphabet is divided into terminals and non-terminals such
that the absence of non-terminals is used as a natural inclusion cri-
terion.2 Instead, each reachable state (even those in non-terminating
sequences) is part of the language associated with the grammar. The
answer to question (ii) has been thoroughly described in Chapter 2.

In the present thesis, we focus on phenomena connected to ques-
tion (iii) above. In traditional approaches, independently of the un-
derlying state structure, it is usually assumed that any rule can be
applied in any state for which a step is defined. Controlled grammars
have been proposed to cope with situations where this assumption
might have negative consequences in the given context and, thus,
more accurate and explicit control on rule availability is desired or
even necessary [28]. Despite substantial differences, each approach to
controlled grammars shares a conceptual feature: the presence of an
external control grammar over the alphabet of rule names, i.e., names
associated with rewriting rules of the original grammar.

The situation is nothing different in the context of controlled graph
rewriting. Already in 1978, Horst Bunke proposed to enhance graph
grammars with control structures (also coining the alternative termi-
nology programmed graph rewriting) [13]. Although the topic gained
on relevance as graph rewriting has found its way into real-world
software engineering applications, mostly within the frames of model-
driven software engineering, there was not much work done towards
a unifying formal foundation of control in graph rewriting. There
is a number of competing approaches, almost each of them being
complemented by practical tool support. A part of those approaches
come equipped with an explicit formal semantics, while others are
completely pragmatical and tooling-centered with control semantics
remaining implicit. In turn, in the following section, we recall a num-
ber of relevant major CGR approaches, grouping them based on how
their control semantics is conceptually given. To maintain the con-
nection of state-of-the-art to our contribution presented in Part II, we
present languages whose underlying rewriting formalism is rooted in
the algebraic approach to graph rewriting—note, however, that there
is a number of alternatives w.r.t. the theoretical foundations of graph
rewriting; for a comprehensive overview, refer to [98].

The first group is that of approaches having a structural operational
semantics (SOS), i.e., an inductive transition semantics formally adher-
ing to the principles originally proposed by Plotkin [90]. The second
group reflects an attitude typical for graph rewriting in general, where
semantics is given in terms of a relation on graphs, consisting of input-
output pairs of (sequences of) graph-rewriting steps. As a control
language with an inductive syntax is also present, these input-output

2 Note that, however, there are further, widely used approaches to graph rewriting
which follow the idea of (non-)terminal symbols, such as vertex replacement gram-
mars or hyperedge replacement grammars [98].

3 .2 existing approaches to controlled graph rewriting 31

semantics are also provided in an inductive manner. The third group
contains those practical approaches for which no formal semantic
foudnation is given a priori, and the behavior is implicitly defined
by the implementation itself. These are tools enabling to create CGR
applications, thus, obviously having an underlying, implementation-
defined semantics—the aim of such a distinction is just to underline
that providing a formal semantic domain is not among the goals of
such approaches and, indeed, meaningful practical CGR activities
might arise even in the absence of a formal semantic definition.

Our selection of related work presents two of the arguably most
prominent approaches in each of the above categories:

1. Structural operational semantics

a) Graph Programs (GP, Sect. 3.2.1)

b) Porgy (Sect. 3.2.2)

2. Input-output semantics

a) Progres (Sect. 3.2.3)

b) Graph Transformation Units (GTU, Sect. 3.2.4)

3. Implementation-based semantics

a) Henshin (Sect. 3.2.5)

b) Groove (Sect. 3.2.6)

3.2 existing approaches to controlled graph rewriting

In this section, we recall the goals and properties of each mentioned
major CGR approaches. Thereby, in each case, we elaborate on the
following aspects:

• Origins and goals

• Control constructs

• WSN example: feasibility and limitations

• Definition of the control semantics

• Analysis and verification facilities

3.2.1 Graph Programs

origins and goals . Graph Programs (GP) have been proposed and
first implemented by Detlef Plump, Sandra Steinert and Greg Manning
around 2007-2009 as “a rule-based, nondeterministic programming
language for solving graph problems at a high level of abstraction,
freeing programmers from handling low-level data structures” [91].

32 3 controlled graph rewriting : state of the art

Further on, motivated by case studies conducted with the first version
of the language, Plump and many others created a usability-focused
extended version called GP 2 [92]. As our main interest are the
fundamental language characteristics, we will concentrate on features
of the original proposal.

Note that as a slight abuse of terminology, later on in Sect. 6.3, we
are going to use the term Graph Programs and the abbreviation GP
for a related, but smaller and differently defined language, as it was
presented in a 2001 paper of Habel and Plump [49]. In contrast to
GP as above, the aim of that paper was to provide a formal reference
language being minimal, yet complete.

As emphasized by the above quote, the intention of GP is to provide
high-level programming facilities by enabling to directly operate on
graphs, which in turn might represent complicated data structures
in a compact, still well-founded manner. In turn, a lot of examples
and case studies published by the authors deal with algorithms for
deciding complicated graph properties (e.g., being a tree, connected-
ness, linearity), which are not decidable by uncontrolled grammars
(without changing the graph structure).

control constructs . The leading design principle of GP is
slenderness: instead of giving the user a diversity of configuration
options, GP is focusing on highly reusable essentials. A graph program
(i.e., a program in GP) is given in a textual syntax, composed of rule
names from a given set of graph-rewriting rules as well as operators
representing control. The execution of a graph program requires an
input graph; each step of the execution consists in performing a rule
application as well as proceeding in the graph program, such that
the choice of the rule conforms to the graph program. The execu-
tion produces an output graph if the program successfully terminates;
otherwise, it goes to a failure state or does not terminate at all.

The following control constructs are present in the core of GP (with
GP ranging over graph programs and p over rule names):

• Non-deterministic choice: This is the most basic form of a graph
program, and also the basis for further constructs. Syntactically,
a choice consists of a set of rule names, written as

GP := {p1, p2, . . .}

The semantics is that one of those rules gets (non-deterministi-
cally) chosen and applied to the current graph state. (The deter-
ministic application of a single rule is indeed a special case of a
choice with one member.) Graph programs of this form as GP
above are called elementary.

• Sequence: Any two graph programs can be combined in a se-
quence, i.e., if the execution of the first graph program is success-
ful, the output graph is passed as input to the second program

3 .2 existing approaches to controlled graph rewriting 33

in the sequence. Syntactically, graph programs GP1 and GP2 are
joined in a sequence by the semicolon operator:

GP1; GP2

• Maximal iteration: This is the only kind of loop employed in
graph programs: the execution is iterated as long as possible, i.e.,
the output of an iteration is taken as the input of the next one
until an output gets produced on which the program cannot be
executed successfully; then, that output graph is the result of
the maximal iteration. Consequently, such a program always
terminates successfully. For a program GP, its maximal iteration
is written as

GP!

There is a limitation of the use of maximal iteration: it cannot be
performed on a maximally iterated program directly, i.e., GP!! is
not a valid graph program.

• If-then-else: Conditional branching, widely known as simply if-
then-else for the well-known programming keywords associated
with it, is an essential construct in any imperative program-
ming language. Informally speaking, when arriving at such a
branching point, the decision on where the execution continues
depends on the evaluation of a condition (if); whenever the
condition is evaluated as true, the then branch of the program
is taken, otherwise the execution continues with the else branch.
Although the then and the else blocks are disjoint, the execution
might join again at a later point and continue as a common
branch.

Specific to graph programs is how the condition is evaluated:
although the condition itself is also a full-fledged graph program
which gets executed when the condition is reached, its output
does not influence the further program run. If the condition
program might be executed successfully on the input graph, that
graph is passed to the then branch, otherwise to the else branch
(assuming that the condition program terminates). The well-
known keywords also appear in the syntax of GP, an if-then-else
written as

if GPcond then GPtrue else GPfalse

As an example to see those constructs at work, we examine a simple
graph program checking if the (directed) input graph is a forest.3

The underlying graph-rewriting system consists of three rules, de-
picted in Figure 3.1: RemoveLeaf deletes a node without outgoing

3 Example found at https://www.cs.york.ac.uk/plasma/wiki/index.php?title=GP_
(Graph_Programs), last accessed Nov 11, 2018.

https://www.cs.york.ac.uk/plasma/wiki/index.php?title=GP_(Graph_Programs)
https://www.cs.york.ac.uk/plasma/wiki/index.php?title=GP_(Graph_Programs)

34 3 controlled graph rewriting : state of the art

n1
x

n4
y

out n1
x

n1
x

(a) RemoveLeaf

n1
x

n1
x

n1
x

(b) Loop

n1
x

n4
y

? n1
x

n4
y

? n1
x

n4
y

?

(c) Edge

Figure 3.1: DPO Rules for the CheckIfForest Graph Program

edges, while Loop and Edge simply check the existence of a loop
edge and a non-loop edge, respectively, without transforming the
graph. The corresponding graph program specification is called
CheckIfForest, having also NotNull as sub-program. The literals
No and Yes are used as return values, as here, we are not interested in
the output graph, but a property of the input graph.

NotNull := {Loop, Edge}

CheckIfForest := {RemoveLeaf}!; if NotNull then No else Yes

wsn example and limitations . Next, we consider the follow-
ing question: To what extent are the language features of GP usable
for modeling concurrent and reactive behavior, as motivated by our
WSN example in Chapter 1?

The main challenges of such a complex behavior modeling task just
as WSN are the following:

(i) to control the rule application sequences in order to guarantee
correct algorithmic behavior,

(ii) while allowing for reactive specifications, interacting with the
environment in a non-terminating manner, and

(iii) to reflect the concurrent and distributed system structure, being
faithful to causal (in-)dependencies.

Arguably, GP (and each of the following major CGR approaches)
lives up to challenge (i): the usual control constructs such as those
presented above suffice to design imperative algorithms over graph-
rewriting rules, both from a theoretical and practical perspective,

3 .2 existing approaches to controlled graph rewriting 35

while challenges (ii) and (iii) might pose a more severe problem to
state-of-the-art CGR approaches such as GP.

Regarding (ii), we should consider the difference between iterativity
and reactiveness. In particular, an iterated graph program with mixed-
in environmental actions comes close to simulate a reactive system;
however, graph programs are still designed to terminate. For example,
as a simplified view of WSN for exposing the problem, imagine
elementary graph programs GPnode for node behavior and GPTC for
topology control, respectively (cf. Sect. 1.3), as well as their intendedly
reactive combination

(GPnode; GPTC)!

Then, although each execution path of this program represents an
interactive and iterative interplay between a WSN and its surroundings
(here, only addressing the node aspect), this graph program will end
up in a failure state as soon as either component is unable to answer
a preceding action of the other one. Instead, what we would like to
see is that both system and environment are capable of waiting for the
other side; they might get stuck but never terminate by failure. Such
behaviors can only be captured appropriately by a notion of parallelism
which is absent in GP.

As for challenge (iii), the issue is connected to the one raised for
challenge (ii). In the above example, the necessary sequentialization of
system and environment behavior introduces a causal dependency to
them which is not justified conceptually. Again, causal independence
of different system or model components, a central topic in concur-
rency theory, are only expressed faithfully by means of parallelism.

control semantics . The goal of graph programs is to either
enumerate the possible output graphs for a given input, i.e., to work as
a graph language generator, or even just to verify successful termination
for a set of inputs, i.e., to work as a graph language acceptor. For
both of those roles, it is sufficient to provide a semantic domain of
relations between input graphs and output graphs. Nevertheless, for
elaborating on the semantic effect of syntactic operators, Plump and
Steinert propose the semantics of GP using an SOS-style inference rule
system.4

A graph program state 〈GP, G〉 consists of a graph program term GP
and a graph instance G. If the program is elementary, the semantics
produces a terminal state 〈GPε, H〉 after one step, being an output
graph (i.e., an empty program GPε with a terminal graph instance H)
if one of the rules are applicable to the graph. Otherwise, the program
terminates in a dedicated failure state 〈fail, G〉.

The semantics of the further operators are built upon these basic
steps. We defer the formal presentation of the actual semantic def-

4 Note that we use the same style in our main contribution in Part II, even if in a
different motivational context.

36 3 controlled graph rewriting : state of the art

inition until Sect. 8.2, after the corresponding presentation of our
own semantics, as it is instructive to examine them side-by-side more
closely. We just remark here that the way semantics is handled in GP
can be seen, intuitively, being “halfway” towards process algebra: an
(unlabeled) transition system is provided with an expressive seman-
tics, although without direct support for labeling-based concepts, e.g.,
trace analysis or Kripke structures for model checking.

analysis and verification. As indicated by the closing remark
of the previous paragraph, while most CGR approaches employ for
verification purposes some form of model checking based on transition
systems, GP has a unique take on verification [94] by providing a
correctness proof system inspired by Hoare logic [52].

Thereby, the correctness notion of GP is interpreted as the preserva-
tion of graph properties during program execution. More precisely,
for verification purposes, programs are equipped with a precondition
and a postcondition, both being properties of graphs; a program is said
to be correct if for each input graph fulfilling the precondition, each
output graph fulfills the postcondition.

The basic construction for the deductive proof system is that for
any single rule and a given postcondition, it is possible to calculate
the weakest precondition based on the rule-application semantics. A
failing graph program has the literal false as single valid postcondition.
All the other operators are handled by building upon those basic
conclusions. The Hoare-style verification of GP provides a powerful
deductive property verification procedure; however, we do not delve
into further details here, as it contrasts with our own goals of analyzing
graph-rewriting processes in an explicitly operational manner.

3.2.2 Porgy

origins and goals . Porgy has been conceived and introduced in
2009-2010 as “a visual environment that allows users to define graphs
and graph rewriting rules, and to experiment with a graph rewriting
system in a visual and interactive way” [42]. To that end, Porgy offers
specification, debugging, simulation and analysis facilities within the
tool of the same name. However, Porgy is proposed in a slightly
different context than usual for algebraic graph rewriting because
of two reasons. First, Porgy directly builds on results from term
rewriting and aims at reusing concepts in a more general graphic
setting. Second, the applications of Porgy are focused on some specific
scenarios such as biochemical reactions and social networks [41, 110],
where the techniques of port graph rewriting are claimed to facilitate
the specification of graph-rewriting systems. In short, a port graph is
a graph with a third intermediate component: edges connect to nodes
at specific points, the so-called ports. In the present thesis, we omit

3 .2 existing approaches to controlled graph rewriting 37

the presentation of port graph rewriting as those are not essential for
recalling the control capabilities of Porgy.

control constructs . To a large extent, the constructs in Porgy

resemble those of GP presented above. A control term in Porgy is
called a strategy and is built from the following constructs (with S
ranging over strategies and T over rule names):

• Choice: As in GP, we have the possibility to provide a set of
which one element will be selected for execution. In contrast to
GP and similarly to a process-algebraic choice operator, that set
might consist of other arbitrary strategies (and not only single
rules as in the case of GP), but also of single rules. Syntactically,
the choice set is written as the parameter list of a function ppick,
e.g.,

ppick(S1, . . . , Sn)

In newer versions of Porgy, choice has become probabilistic, i.e.,
an additional distribution function can be provided for guiding
the selection process; however, this detail is irrelevant to the
considerations in the thesis.

• Sequence: Any strategies can be combined into a sequence by the
semicolon operator as in GP by writing, e.g.,

S1; S2

• Iteration: Compared to GP, Porgy offers a larger variety of control
loops: while loops (while(S)do(S′)) and optional loop counters.
In turn, Porgy also offers a maximal iteration construct, simply by
setting no upper bound for the number of iterations by writing,
again in a function-like syntax,

repeat(S)

for a strategy S.

• If-then-else: Just as GP, Porgy also has a conditional branching
construct with the same behavior as GP:

if Scond then Strue else Sfalse

Note that the above constructs correspond to the language GP with
slight generalizations. In addition, we have a restricted notion of
parallelism present in Porgy, although only at the level of rules and
not for arbitrary strategies.

38 3 controlled graph rewriting : state of the art

• Rule-level parallelism: Any rule T in Porgy might either be a plain
rule from the given graph-rewriting system or consist of the
parallel composition of other (potentially parallel) rules:

T := (T1 || T2)

According to the rule-application semantics of Porgy, T can be
applied if there are disjoint matches of T1 and T2 in the current
input graph. Note that this notion is, thus, more restrictive than
the usual parallel independence of DPO graph rewriting (cf. Def-
inition 2.6), where overlapping of matches is allowed as long as
the single rule applications do not destroy the other match by
deleting something from it. (Note that in principle, parallel rule
semantics might even agree on deleting some elements, although
this is not considered in the literature.)

wsn example and limitations . Essentially, as Porgy control
constructs directly reflect the capabilities of GP to a large extent,
similar considerations can be met about using Porgy for the graph-
based modeling of WSN. The rule-level parallelism does not provide
additional expressive power w.r.t. this case study; on the contrary,
explicitly parallelizing rules from different parts of the model is against
the spirit of separating conceptually different behaviors.

However, there is another additional expressiveness feature which
improves on the alignment of a (fictive) WSN model to our modeling
requirements: as choice is available over arbitrarily complex strategies,
e.g., Snode for node behavior and STC for topology control, the overall
strategy

repeat(ppick(Snode, STC))

does not contain an artificial sequential dependency, even if concur-
rency and distribution cannot be addressed in Porgy.

control semantics . Fernandez et al. provide an SOS-style
description of a transition system for Porgy programs [41]. Similarly to
GP, a program configuration consists of a strategy and a graph instance.
A peculiarity of the Porgy semantics, in contrast to conventional
transition-system semantics with non-deterministic branching, is that
here, each state is a multi-set of configurations, thus, even if there
are different subsequent rule applications due to multiple matches or
non-deterministic choices, each of those possibilities are summarized
in a single subsequent transition-system state.

Besides the aforementioned difference, the induction logic is similar
to that of GP: the basic rule of the inductive semantics generates the set
of each subsequent configurations, and the rules for further operators
build upon that basic rule. We discuss the semantics of Porgy in
detail, along with GP and our own formal semantics (introduced in
Chapter 5) in Section 8.2.

3 .2 existing approaches to controlled graph rewriting 39

analysis and verification. The goal of specifying controlled
graph-rewriting systems in Porgy is not so clearly articulated as in
the case of GP. The creators of Porgy continuously provide typical
application scenarios where their specification style excels. However,
despite the aforementioned formal semantics, it is rather fuzzy what
it means to “experiment” with a graph rewriting system and to what
extent the semantics contributes to the results.

The Porgy tool provides an attractive user interface for specifying
(port graph) rewriting rules and to generate the corresponding tran-
sition systems, displayed in an intuitive manner. Although in some
cases, the goal of the user might simply be to observe a system model
specification at work, unfortunately, Porgy does not go beyond that
by pinning down formal verification criteria (such as Hoare properties
in the case of GP).

3.2.3 Progres

origins and goals . Progres has been called forth at the advent
of modern-day software engineering in the 90s, where the growing
demand for support of large-scale, integrated software development
solutions led researchers from several fields of computer science to
define a comprehensive conceptual and practical framework for this
aim, within the project IPSEN [84].

As such systems heavily rely on evolving visual components with a
wish for controlling that evolution, controlled graph grammars have
been considered. The controlled graph grammar language and tool
Progres has reached maturation within the IPSEN project, providing a
solid technical background on the internal modeling and specification
aspects. However, earlier versions of Progres have been proposed
and discussed before, and a comprehensive formal semantics has been
presented in the PhD thesis of Andy Schürr [99].

Progres also had a corresponding tool with both visual and tex-
tual syntaxes and comprehensive control capabilities. Unfortunately,
due to maintenance issues, tool development has been discontinued;
nonetheless, the Progres concept (and its semantic baseline) lives on
in the Story-Driven Modeling (SDM) language as part of the tool suites
Fujaba [85] and eMoflon [70].

control constructs . Again, the basic constructs of Progres

are similar to the ones above. Here, for the sake of compactness, we
follow the presentation from a paper of Andy Schürr, which in turn
provides a reduced syntax with the intention of neatly formalizing the
semantics of the full-fledged Progres system [100]. Thus, although the
full Progres language and tool has more (syntactic) constructs than
presented below, those constructs shown here represent an essential

40 3 controlled graph rewriting : state of the art

core of Progres(and we refer to that core as Progres below). In the
following, A and B range over Progres control terms.

• Choice: As in Porgy, the choice is unrestricted, i.e., arbitrary
expressions can be combined in a choice by means of a binary
operator:

A[]B

• Sequence: As in the above cases, by writing

A; B

• Iteration: As for iterative behavior, Progres goes farther then
the aforementioned languages by considering a general recursion
construct. To that end, control expressions can be equipped
with identifiers and those identifiers can appear within terms,
resulting in a recursive “call” to the expression being defined.
E.g., having a definition

IdA = A,

the term
A; IdA

iteratively repeats the execution of A as long as possible, thus
representing maximal iteration. Also in general, recursion sub-
sumes most of the aforementioned loop constructs.

However, classical if-then-else is missing as a syntactical ingredient.
Again, we have a more general construct instead, which factors out
the idea of conditional guards as a syntactic element:

• def/undef operators: The def () operator takes terms as parameter.
E.g.,

def (A)

verifies if the execution of A is able to terminate. Then, the
overall execution proceeds, but the effect of A is not considered.
The negative guard variant is expressed by the undef () operator:

undef (A)

is considered to be successful whenever A cannot be executed
successfully. Now, among others, conventional if-then-else is
easily encoded as

(def (Acond); Atrue)[](undef (Acond); Afalse)

Even more interestingly, going beyond the aforementioned langua-
ges, a notion of general parallelism appears in Progres.

3 .2 existing approaches to controlled graph rewriting 41

• Parallelism: Progres builds on a widely used semantic assump-
tion in concurrency theory (holding in a number of process
calculi), viz. that the parallel execution of two processes has the
same effect as the choice between any of their sequentualizations.
In Progres terms,

A&B

means that A and then B, or, B and then A is executed if either
of those sequentializations can be successfully executed.

wsn example and limitations . While retaining the validity
of our foregoing considerations, let us consider if those two previous
features, unparalleled in GP and RePro, increase the expressiveness
and alignedness to real-world systems of our WSN model. Although
conditionals do not appear as general concept in WSN, the general
parallel operator might improve on behavorial expressiveness.

Having Progres terms Anode and ATC for node behavior and topol-
ogy control, respectively, the specification

Anode & ATC

admits those execution paths where node behavior does not interfere
with topology control, but omits those conflicting ones where some
step of one side would hinder further execution of the other side. Thus,
although Progres takes a step further towards general parallelism, its
parallel construct still relies on an implicit causal dependency of the
parallel components.

control semantics . As indicated in Sect. 3.1 and in contrast to
GP and Porgy, the semantic domain of Progres is that of a relation on
graphs, containing pairs of input and output graphs admitted by a given
Progres term. In addition, to distinguish potentially non-terminating
executions, in those pairs, the output symbol might also be the ∞
symbol.

Although, as a consequence, the formal approach to Progres called
fixpoint semantics in [100], does not involve concepts of transitions
and traces, still, the semantic function computes those pairs in an
inductive manner, thus, yet resembling the aforementioned semantic
approaches. As expected, for a term with a single rule application,
the semantic relation contains those graphs as inputs on which the
rule can be applied, with the yielded output as a pair. All the further
constructs are defined inductively based on that basic rule application
relation.

analysis and verification. Although Progres and the IPSEN
project considered verification goals as part of their comprehensive
software development scenario, such facilities have never been inte-
grated into the Progres tool. Beyond basic well-formedness checks,

42 3 controlled graph rewriting : state of the art

Progres mainly provided a means to specify and observe graph-
rewriting systems, just as we concluded in the case of Porgy.

3.2.4 Graph Transformation Units

origins and goals . Graph transformation units (GTU), often sim-
ply called transformation units in the literature, has been proposed by
Hans-Jörg Kreowski and Sabine Kuske in 1994 [61] and continuously
studied in a number of publications thereafter. GTU is a “frame-
work [...] which provides syntactic and semantic means for analyzing,
modeling, and structuring all kinds of graph processing and graph
transformation” [62].

GTU essentially reflects the main tenet of controlled graph rewriting
(i.e., control structures over a given set of rules) with an additional
distinguished focus on modular control structures (hence the name
transformation units) and independence from the underlying rule-
application semantics. Regarding the latter, our whole presentation
of state-of-the-art in the present chapter focuses on the control level
and is, thus, inherently independent of rule-application semantics.
As for modularity, although the module structure of GTU necessarily
appears as part of our upcoming examples, modularity represents a
conceptual dimension which is orthogonal to the outline of the thesis,
thus, we do not delve into details here.

control constructs . GTU takes a unique approach also to
the specification of control structures themselves by considering two
different possibilities:

• regular expressions over rule names, and

• so-called stepwise controls being a special form of finite automata
with rule application instructions as transition labels.

There is no point in recalling here the details of the syntax and
semantics of regular expressions; it suffices to say that regular expres-
sions are expressive enough to subsume all the typical core constructs
of the above languages up to parallelism: choice, sequence and iteration.
For the special case of maximal iteration, GTU uses the ∗ operator. The
transitions of stepwise controls are also expressive enough to subsume
those constructs.

As for parallelism, Melanie Luderer in her PhD thesis discusses three
different levels of parallelism for GTU, w.r.t. both aforementioned con-
trol syntaxes [74]. Those three levels are distinguished by increasing
strictness from an operational perspective. Here, parallel composi-
tion of two rule applications means that instead of interleaving, the
corresponding parallel rule is applied if the original applications are
independent. For a pair of GTU, we have the following composition
possibilities:

3 .2 existing approaches to controlled graph rewriting 43

• Weak parallelism allows for parallel composition of any simulta-
neous rule applications, but never requires it.

• Proactive parallelism performs parallel composition whenever
possible. Still, the single rules might also fire otherwise.

• Synchronous parallelism is the strictest form, blocking the execu-
tion if a rule pair cannot be composed in parallel.

In turn, Luderer addresses both control syntaxes by introducing for
each parallelism level (i) fresh regular expression operators and (ii)
automata composition constructs.

Note that the distinction between those levels is orthogonal to
our presentation and thus, irrelevant here; as Luderer focuses on
synchronous parallelism, we also assume that case in the following
and denote the synchronous parallel operator by $.

Finally, we present a simple example to see GTU at work (with
regular expression control), taken from the thesis of Luderer [74].
Given any GTU called P with rules r1, . . . , rk, we specify a compound
GTU which extends P by a parameterized step counter countdown to
bound the number of steps.

countdown :
initial : gr(N)

rules : tic

where gr(N) contains all single-noded graphs with a number of loop
edges, and the rule tic deletes a loop edge. For any GTU specification,
initial is the set of possible start graphs and rules is the set of rules.
Note that countdown contains no control expression as it has only one
rule. Now, we provide the compound GTU, i.e., P with a step counter.

stepcounter(P) :
import : P, countdown

initial : IP + gr(N)

rules : r1, . . . , rk, tic
control : ((r1 | . . . | rk) $ tic)∗

where import takes care of the modular structure by listing the sub-
units, IP contains the initial graphs of P, here composed (by a coprod-
uct construction) with the counter graphs as in countdown. Now, we
also have a control expression, which is a maximal iteration of a choice
over P, synchronously composed with the step counter: synchronous
parallelism guarantees that each step decreases the number of loop
(i.e., counter) edges and thus, only as many steps are possible as there
are loop edges in the start graph.

44 3 controlled graph rewriting : state of the art

wsn example and limitations . By retaining the validity of the
aforementioned issues, we just remark that weak parallelism takes
a step towards realistic WSN modeling, reflecting in the executions
the possibility that actions of different parallel components might
occur simultaneously, i.e., in fact in parallel from the perspective of an
observer. However, the stricter forms of GTU parallelism introduce
causal dependency between components and are, thus, inappropriate
for WSN modeling.

control semantics . As indicated above, the two different con-
trol syntaxes, in turn, induce two different kind of semantics:

• An input-output semantics is given for control terms which are
regular expressions. This approach resembles that of Progres:
taking single rule applications as basic relations, the relations
for arbitrary control terms are derived inductively.

• An operational semantics is proposed for stepwise control, similarly
to the semantic mechanisms of GP: a state consists of an automa-
ton state and a graph instance, where the available transitions
of the automaton describe the available rules; a step consists in
advancing the automaton and transforming the graph accord-
ingly. Still, this similarity is on an informal level and GTU with
stepwise control does not possess a proper SOS semantics as we
have seen for GP and Porgy.

analysis and verification. Unfortunately, GTU does not enjoy
tool support and no reasoning techniques have been proposed beyond
the scope of standard graph-rewriting theory.

3.2.5 Henshin

origins and goals . In contrast to the above approaches, the Hen-
shin project has been initiated as explicitly practical and tool-oriented,
with an articulated emphasis on usability and user-friendli-ness [108].
On the one hand, regarding rule-application semantics, Henshin still
stands on solid ground, directly building upon the Agg algebraic
graph-rewriting engine, being in turn a direct implementation of alge-
braic graph-rewriting theory (cf. Chapter 2). On the other hand, when
it comes to control constructs, the semantics of Henshin remains
implicit and only given by the implementation itself.

Henshin is available as a plug-in of the Eclipse platform and devel-
opment environment.5 The first release (0.8.0) came out in 2011. The
goal of Henshin is to “provide a state-of-the-art model transformation
language for the Eclipse Modeling Framework”, the latter being the

5 https://www.eclipse.org/henshin, last accessed Dec 1, 2018.

https://www.eclipse.org/henshin

3 .2 existing approaches to controlled graph rewriting 45

Figure 3.2: Henshin Example: Model Excerpt

underlying Eclipse framework for model-driven engineering. Accord-
ingly, the core features of Henshin comprise the specification of model
domains, transformation rules and control processes over those rules,
as well as executing controlled model (i.e., graph) transformations on
those models.

The syntax of Henshin is purely visual both for single rules and
their control processes. Although we cannot illustrate the complete vi-
sual syntax of Henshin within the frames of present thesis, we provide
a simple example for reference, found on the Henshin website.

The screenshot in Figure 3.2 shows an excerpt of a Henshin model
for translating Java programs to state machines. On the left-hand side,
the main initialization sequence is shown represented by a control
construct called Sequential Unit. In turn, a Sequential Unit contains
a sequence of further units, which might be single rule applications
as init(sm, cls) or other nested control units such as StatesLoop(cls), a
Loop Unit, whose definition is also depicted in the bottom row. This
loop represents a maximal iteration of a sequence of some other rules,
the first of which is depicted in the upper row of the screenshot to
illustrate the rule syntax of Henshin. Without delving into details of
the actual model semantics here, we just remark that gray elements
are preserved by rule application, green ones are created, while blue
elements represent a negative application condition, i.e., they must not be
present for the rule to apply. (The red color serves for deletion, not part
of this example. Henshin, as usual in model transformation, employs
attributed graphs, hence the further inscriptions within nodes.)

control constructs . As seen in the above example, the control
constructs of Henshin are called units. The language of units has a
purely visual syntax; we omit the syntactic representation of units in
the following and just describe their behavior.

• Choice is represented by the Independent Unit, allowing for nesting
arbitrary further units within.

46 3 controlled graph rewriting : state of the art

• Sequences of arbitrary further units are represented by a Sequential
Unit as seen above.

• Iteration also appears in the usual forms: a Loop Unit represents
a maximal iteration (cf. also Figure 3.2), while the Iterated Unit is
a programming-like, configurable loop with counter and further
termination options.

• If-then-else behavior is captured by a Conditional Unit. The last
unit sort, Priority Unit, can be seen as a special case of nested
conditional units.

wsn example and limitations . As Henshin provides no con-
trol-level parallelism, the same limitations hold here as in the case of
GP.

control semantics . No formal semantics provided; for inter-
preting and using Henshin control units, one has to rely on their
natural-language documentation and their source code.

analysis and verification. The State Space Tools module of
Henshin provides the following features for analysis and verification
purposes:

• Providing a (finite set of) start graph(s), the state space of all the
possible execution paths of a given control unit can be generated
and visualized.

• For analyzing properties of single states (i.e., graphs), formulas
in the Object Constraint Language (OCL) can be specified and
evaluated.

• For a more comprehensive analysis of execution paths, temporal
formulas in the modal µ-calculus over OCL-based state predicates
can be provided for state spaces; however, their evaluation is
performed by binding in an external model checker.

Summarizing, Henshin provides access to the inventory of classical
model checking for controlled graph-rewriting processes. A major
shortcoming is the lack of a symbolic execution semantics, i.e., the
possibility to verify properties for (potentially infinite) classes of start
states.

3.2.6 Groove

origins and goals . Groove is a similarly tool-oriented project as
Henshin, “centered around the use of simple graphs for modelling the
design-time, compile-time, and run-time structure of object-oriented

3 .2 existing approaches to controlled graph rewriting 47

systems”.6 Here, object-orientation should be understood in a broader
sense than referring to object-oriented programming structures—this
use of the term essentially corresponds to model-driven engineering.

Also, the “look and feel” of Groove is very similar to Henshin, with
two major differences: (i) Groove is a stand-alone tool not relying on
any external frameworks or technologies, and (ii) the syntax is mixed:
whereas rules are defined visually, closely resembling Henshin, con-
trol programs possess a more conventional textual syntax. We omit
the presentation of rule syntax here and just provide a simple example:
a control program for a Pac-Man game7 found on the Groove website.

while (gameInProgress) {

ghostMove|pacmanMove;
try (eatPellet|eatPowerPellet);

try (ghostDies|pacmanDies);

}

Rule names are set in italic. Rule gameInProgress verifies a termina-
tion condition of the game, checked in the head of an outermost while
loop. In each turn, either Pac-Man or the ghost moves as expressed by
the choice operator | between the corresponding rules in the second
line. The following lines contain a try block, essentially corresponding
to an if statement in other languages (with an empty else block here).

control constructs . Groove has a rich body of control con-
structs, represented as a mixture of operators and keywords in the
textual syntax. We group them in alignment of the core constructs
considered for the aforementioned languages.

• Choice is offered both on the level of rules as well as of arbi-
trary control programs, although syntactically differentiated:
the | operator is for rules, whereas the choice keyword is for
programs.

• Sequences, as usual, are specified using the ; operator.

• Iteration in its maximal form is, again, syntactically differentiated
for rules and programs: # and alap, respectively. Moreover, for
single rules, non-deterministic zero-or-more and one-or-more
iteration operators (∗ and +, respectively) are offered; and for
programs, programming-like while and do loops.

• If-then-else is available in both the usual flavor, as well as in a
compact try-else form.

wsn example and limitations . The same holds as for Hen-
shin.

6 http://groove.cs.utwente.nl/, last accessed Dec 1, 2018.
7 https://en.wikipedia.org/wiki/Pac-Man, last accessed Jan 21, 2019.

http://groove.cs.utwente.nl/
https://en.wikipedia.org/wiki/Pac-Man

48 3 controlled graph rewriting : state of the art

control semantics . The same holds as for Henshin.

analysis and verification. The Simulator module of Groove

offers essentially the same capabilities as the State Space Tools of Hen-
shin. The main difference is that in the case of Groove, the model
checker is a built-in part of the Groove tool suite itself.

3.3 summary and challenges

In this section, based on the informal challenges posed by a concurrent,
graph-based modeling scenario such as, e.g., wireless sensor networks
(Chapter 1) and the foregoing overview of state-of-the-art approaches
in the field of controlled graph rewriting (CGR), we summarize our
observations in unifying statements and derive challenges which have
to be addressed by our contribution in Part II of the thesis. Thereby,
according to our detailed presentation of state of the art, we address
the aspects of control constructs, particularly highlighting the issue of
parallelism and concurrency, as well as analysis and verification.

control constructs . As it has been already accentuated by the
way we presented and grouped control constructs in the case of each
approach, we identify a common baseline of core CGR constructs. It is
apparent through our survey that for both theory and practice of CGR,
the following constructs are of central relevance.

• Non-deterministic choice,

• sequences,

• maximal iteration, and

• if-then-else.

For judging the further constructs, we have to distinguish between
the language design aspects of expressiveness and usability. Note that
even expressiveness is not meant here in the strictly formal sense used
in complexity theory; regarding that, we remark that even if-then-else
might be left out from the above list, still retaining computational
completeness—a topic we cover formally in Section 6.3. Rather, we
mean a kind of functional expressiveness, i.e., what kind of systems and
algorithms might be faithfully described by the language constructs.
E.g., even if not necessary for completeness, if-then-else cannot be
encoded by the other three core constructs and, thus, represents an
increase in expressiveness by adding conditionals.

Another expressiveness improvement is presented by the concept of
recursion, only present in Progres among the languages we discuss.
General recursion subsumes each loop type and, in addition, allows for

3 .3 summary and challenges 49

potentially non-terminating specifications with guarded termination
criteria (i.e., a condition for when to continue and when to stop).

Further constructs like parameterizable, programming-like loops
and another flavors of conditionals are often considered as part of
the languages, but those only address the aspect of usability, as they
are expressible by using the other (core) constructs, and, thus, are
considered as “syntactic sugar”. We do not delve into the topic
of usability in model-driven engineering here—it is indeed highly
non-trivial how to approach this empirical aspect of MDE, given
the significantly lower amount of evidence compared to traditional
software engineering; we refer the interested reader to [3].

We conclude that while an implicit baseline is present, there has
been no efforts so far for fixing a unifying (meta-)theory of control
in graph rewriting. We argue that a solid theoretical framework like
that of SOS semantics is inevitable to undertake such a comprehen-
sive research endeavor; we contribute to the issue by identifying the
common features of existing SOS semantics of CGR in Section 8.2.

parallelism and concurrency. Recalling our general con-
siderations in Sect. 1.4 about the notions related to parallelism and
concurrency, we identified parallelism as a minimal, yet flexible basic
premise: shortly, there is no concurrency without parallelism, but par-
allelism does not necessarily imply concurrency, as the latter notion
involves causal independence, which might not be given for, e.g., a
purely syntactic parallel composition construct.

In state-of-the-art CGR approaches, some restricted form of paral-
lelism might be present, such as the composition of disjoint matches
in Porgy or arbitrary interleaving in Progres. However, the semantics
of those notions always presupposes knowledge over the other side
of parallel composition and, thus, causal dependence. Concurrency is
never considered in CGR, making the current state of the technique
ineligible for dealing with inherently concurrent modeling scenarios
like our WSN running example. In turn, more sophisticated notions
like distributedness and reactiveness build on the basic assumptions
of concurrency and remained, thus, also unconsidered so far.

reasoning and verification. Although powerful techniques
of classical model checking appear and are extensively used in CGR
practice, we argue that a major shortcoming is the lack of abstract
semantics, proposed for reasoning purposes: if such a semantics is
missing, each (local or temporal) property might only be verified for a
finite collection of graphs. In real-life scenarios, often more is desired:
e.g., for a CGR algorithm specification, one would like to reason about
correctness for each potential (or for an infinite class of) input graph(s).

50 3 controlled graph rewriting : state of the art

Control Reasoning Parallelism

↓ 	 Rec Ver MC Abs Eq Int

GP �X�X �� �� �X�X �� �� �� ��

Porgy �X�X �X�X �� �� �� �� �X�X ��

Progres �X�X �X�X �X�X �� �� �� �X�X ��

GTU �X� �X� �� �� �� �� �X� ��

Henshin ��X ��X �� ��X ��X �� ��X ��

Groove ��X ��X �� ��X ��X �� �� ��

RePro �� �� �X� �� �X� �X� �X� �X�

Table 3.1: Related Work: Feature Summary

summary Table 3.1 provides an overview of the capabilities of the
aforementioned state-of-the-art CGR approaches; in addition and for
a comparative reference, we also included RePro, the graph-rewriting
process calculus whose details constitute the upcoming main Part II
of the present thesis.

The columns of the table are organized according to the above
aspects of CGR theory and practice. In particular, the first three
columns consider control constructs. As every language largely co-
incide in terms of constructs and mainly deviate in their ways to
express iteration, we focus on this aspect here: the first column ↓
stands for maximal (as-long-as-possible) iteration as discussed for GP
in Sect. 3.2.1, the second column () stands for the explicit syntactic
presence of conditional loops known from imperative programming,
such as for, while and similar,8 while the third column (Rec) refers to
syntactic recursion, i.e., the possibility of naming control units and
allow those names to embedded in other control units.

The second group of three columns consider the issue of Reasoning:
the fourth column (Ver) refers to verification approaches for graph
property preservation during CGR executions, the fifth column (MC)
refers to classical state-based model checking [5] involving temporal
expressions over execution paths, and the sixth column (Abs) refers to
abstract reasoning as discussed above, i.e., the ability to perform the
aforementioned reasoning tasks over an abstract domain instead of
concrete graph instances, where the elements of the abstract domain
refer to potentially infinite graph classes.

The third group, Parallelism, consists of the last two columns; here,
the overview is confined to the basic level of parallelism as discussed
in Sect. 1.4, as existing CGR theory and practice does not go beyond

8 Note that even within this single aspect, the practical expressiveness of the different
languages might largely differ: some offer one-two simple conditionals, while others
contain more sophisticated constructs such as loop counters and complex termination
criteria.

3 .3 summary and challenges 51

this point towards process concurrency.9 The basic parallelism offered
by some existing approaches amounts to a concise representation of
equivalent choices between multiple action sequences. A distinction
reflected in our table is if only such a construct (seventh column -
Eq) or if more is available, i.e., a way to express multiple interleaved
execution paths, even if they are not necessarily equivalent (eighth
column - Int).

Each cell of the table contains two checkboxes, where the first one
is ticked if there is foundational theoretical work discussing the corre-
sponding aspect of the language, while the second one is ticked if there
is an available implementation offering a corresponding construct or
principle as a feature.

Beyond the particular details of each approach, we can generally
observe here that RePro does not claim to generally improve on
them; rather, each of the approaches represents a different facet of
the complicated nature of controlled graph rewriting, with differing
focuses and, of course, necessary limitations; thus, our aim with
RePro is also to offer a complementary approach to the state of the
art, addressing some less explored corners of CGR theory.

Based on the foregoing observations and in motivating the upcom-
ing Part II, we summarize our analysis of the state of the art of CGR
by formulating the following open challenges, referred to as C1-3:

• C1: Formal foundations of control. Although control is om-
nipresent in graph-rewriting practice, no serious endeavors have
been made so far to establish a core theory of CGR beyond the
particularities of single approaches.

• C2: Concurrency and reactiveness. Different forms of paral-
lelism have been proposed for graph-rewriting in general and
for CGR in particular. However, no comprehensive approach
exists to faithfully represent concurrent and reactive systems in
the context of graph-based system modeling.

• C3a: Abstract reasoning. Existing analysis and verification tech-
niques are either focused on graph properties and constraint
preservation, or employ traditional model checking to graph-
rewriting systems. In any case, analysis either relies on the
existence of concrete graph instance(s) [45, 108], or is based on
an abstraction over graphs, but do not consider external con-
trol [20, 24, 95, 106]. That is, there is no established means to
analyze control processes itself, independently of their effects
for a given graph, in an abstract way. The need for such an
approach calls forth a related requirement:

9 More elaborate concurrency considerations are a focused distinguishing feature of
RePro as discussed at various points in the thesis.

52 3 controlled graph rewriting : state of the art

• C3b: Operational equivalence notions. Advanced reasoning
techniques as in C3a rely on well-founded process-algebraic
trace concepts, and adaptive, abstract operational equivalence
notions (such as bisimulation) in order to handle control pro-
cess behavior with factoring out irrelevant details which would
obstruct abstract reasoning.

Part II

A C A L C U L U S O F C O N T R O L L E D G R A P H
R E W R I T I N G

4
C O N T R O L P R O C E S S E S F O R G R A P H R E W R I T I N G

This chapter, together with the subsequent one, constitute a central
part of the thesis, providing an introduction to our approach for spec-
ifying concurrent controlled graph-rewriting (CGR) processes, called
RePro (for Rewriting Processes). As demonstrated in Part I and par-
ticularly, in Chapter 1, graph-based system modeling involves a need
to describe graph-rewriting algorithms, i.e., algorithms whose atomic op-
erations are graph-rewriting steps. The process calculus RePro aims
at providing a formally rigorous means to describe such algorithms,
involving concurrency, by building upon the idea of controlled graph
rewriting [91, 101].

In the setting of CGR, graph-rewriting operations retain their rule
application semantics as presented in Chapter 2. In addition, external
control is added to restrict the sequences in which graph-rewriting
rules are applied.

In the majority of state-of-the-art CGR approaches, this control layer
takes the form of a (programming) language whose atoms are graph-
rewriting rules (cf. Chapter 3). Also in RePro, the control language is
expressed by the terms of a process calculus, closely resembling the
CCS calculus proposed by Robin Milner [79]. However, we do not only
draw inspiration from process algebra for the syntax of RePro: in this
chapter, we demonstrate how a number of well-known semantic no-
tions and properties from process algebra are reflected in or preserved
by RePro. As a major contribution, using techniques from process
algebra to describe CGR processes gives us a straightforward means to
specify graph-rewriting algorithms involving concurrency (i.e., causally
independent but potentially synchronized actions) as well as reactive
behavior (i.e., intentionally non-terminating algorithms). Thus, using
RePro, we are able to describe and analyze the graph-rewriting be-
havior of concurrent and reactive systems, as apparent in nowadays
modeling scenarios (e.g., our WSN scenario used for demonstration
purposes throughout the thesis).

In particular, RePro terms represent process and graph states and
their semantics is given by a transition relation between those states
(defined by a system of inference rules), inducing a labeled transition
system. For further details on the underlying definitions, we refer to
the upcoming Sect. 4.2.

The state notion of RePro processes involves two components:

(1) First, control processes are (CCS-style) term specifications for se-
quences of graph-rewriting rule applications; thus, in contrast to a
pure graph-rewriting system according to the standard semantics,

55

56 4 control processes for graph rewriting

Control process
traces

Graph-rewriting
derivations

RePro

Figure 4.1: Schematic Representation of the RePro Concept

it restricts the possibilities of how rules can be sequentialized.
To that end, control processes rely on the syntactical operators
known from process algebra: prefix actions for sequencing, choice
for non-deterministically choosing between different processes,
and parallel composition for specifying a concurrent composition of
two processes. Moreover, control processes incorporate recursion
to enable reactive (i.e., recurrent and potentially non-terminating)
process specifications. Furthermore, we add so-called non-applica-
bility conditions as part of atomic actions to enrich graph-rewriting
algorithms with conditional constructs.

(2) For representing the actual rewriting of graphs, we consider as
a second component a graph instance, representing the concrete
graph state during rewriting. Thus, the semantics of a RePro

process is a transition system whose transitions correspond to
rule applications, but where, in contrast to the standard seman-
tics of graph-rewriting systems, the selection of available rules is
constrained by the control component.

As for the basic concept and operating mechanism of RePro, RePro

utilizes CCS-like process specifications for control and uses process
algebra techniques to generate transitions (i.e., admitted actions) of
control processes. In turn, traces of those actions are utilized to nar-
row graph-rewriting derivations according to the standard semantics
of graph rewriting. This structure is schematically represented in
Figure 4.1.

To summarize, RePro contributes to the following main research
challenges (cf. Sect. 3.3):

• RePro provides a specification language, control processes, for
controlled graph-rewriting processes with a canonical semantics
based on labeled transition systems (cf. Definition 4.3), thus,
addressing C1.

• RePro provides a means to specify and analyze concurrent pro-
cesses, i.e., behavior of processes running in parallel and dis-
tributedly (C2). Particularly, RePro addresses process specifica-
tions with reactive behavior, i.e., intended non-termination with
interaction of asynchronous environmental components (cf. the
WSN example in Sect. 1.3).

4 .1 wsn behavior by control processes 57

• In RePro, existing techniques in process algebra are reused
for analyzing process behavior. Furthermore, RePro facilitates
the integration of graph-rewriting analysis techniques into the
operational framework provided by process algebra. Particularly,
equivalence of graph-rewriting processes and independence of
rewriting actions can be addressed adequately (C3b).1

In the rest of this chapter, we define the syntax and semantics of
RePro control processes along with the necessary background on
labeled transition systems and process calculi.

First, we demonstrate control processes by means of our running
example from the WSN domain (Sect. 4.1). Afterwards, we provide a
formal, process-algebraic definition of control processes (Sect. 4.2).

4.1 wsn behavior by control processes

In Chapter 1, we described in an intuitive manner a graph-based
model of a wireless sensor network (WSN) and, in particular, in
Section 1.3.2, we gave an overview of the dynamic part of the model,
i.e., of the WSN behavior captured and represented by the model.
Now, we first demonstrate the form and functioning of our RePro

control processes by concretizing the behavior description provided
there: each behavioral component becomes a control process, i.e., a
process-algebraic algorithm specification for the purpose of our WSN
modeling scenario.

In this section, we proceed in concretizing our WSN model, intro-
duced using a natural-language description in Chapter 1, by analyzing
the required basic graph-rewriting operations and control constructs,
and, thus, deriving expressiveness requirements for our control lan-
guage. However, although we use a symbolic, term-based syntax
which corresponds to the formal RePro syntax, we retain a certain
degree of informality in this section, as we do not provide a rigorous
language syntax nor a formal semantics (those are defined in the
upcoming Sect. 4.2). Also, we consider DPO graph-rewriting rules
as basic operations. When presenting the rules, we omit the graph
names in the corresponding figures while assuming that a rule name

p is associated with a span (Lp
lp←− Kp

rp−→ Rp).
In the following, we focus on underlay WSN behavior. As intro-

duced in Sect. 1.3.2, underlay dynamics consists of three components:
node behavior, link behavior and topology control.

• Node behavior: The Create Link operation is succinctly repre-
sentable by a DPO rule as shown in Figure 4.2a. Note that in pCr,
we assume created links to be short and unclassified (i.e., new

1 An adequate treatment of C3a is the subject of Chapter 7.

58 4 control processes for graph rewriting

n1
x

n4
y

n1
x

n4
y

n1
x

n4
y

S;u

(a) pCr: Creating WSN Underlay Links

n1
x

n4
y

len; st n1
x

n4
y

n1
x

n4
y

(b) pDel(len, st): Deleting WSN Underlay Links

Figure 4.2: DPO Rules for Link Creation and Deletion

physical links are created only within a short range, but their
status is not known in the moment they appear).

Regarding the Delete Link operation (Figure 4.2b), in the rule
name pDel(len, st), len and st are name variables that can be initial-
ized to refer to a specific edge type as in the type graph for WSN
(cf. Figure 2.1). Those variables appear also in the left-hand side
of the rule. The use of name variables allows for a compact
representation of families of similar rules only differing in typ-
ing, as is the case for deletion, where our specification needs
a deletion rule for any link type. In any process specification
containing this rule, any use of the rule name must be initialized
using the value ranges len ∈ {S,L} and st ∈ {a,i,u} (cf., e.g.,
Pnode below). For example, the rule name pDel(L, a) belongs to a
rule deleting a long active edge.2

We use controlled graph-rewriting processes to model node behavior
based on those rules. As a very first example, we provide
a simple process specification, using a yet informal process-
algebraic syntax, for a process Pcr which performs a single Create
Link operation and then terminates as indicated by the special
process symbol 0:

Pcr := pCr.0

Next, we describe a more realistic process Pnode, which applies
(non-deterministically) one of the rules repeatedly. Using the
same informal syntax as above, we specify this behavior by
writing

Pnode := pCr.Pnode + ∑
len∈{S,L}, st∈{a,i,u}

pDel(len, st).Pnode

2 Formally, each instantiation is a separate rule name, i.e., they all appear in the rule
name set R of their respective graph-rewriting system. Therefore, given the value
ranges and the requirement that only instantiated rule names appear in processes,
there is no ambiguity regarding the handling of rule names with variables.

4 .1 wsn behavior by control processes 59

n1
x

n4
y

len, st n1
x

n4
y

n1
x

n4
y

len;u

(a) pUc(len, st): Unclassifying Active or Inactive Links

x

yz

S;aS;a

L;u

x

yz

S;aS;a

x

yz

S;aS;a

L;i

(b) pkTC: Resolving Unclassified Links by Inactivation

Figure 4.3: DPO Rules for Unclassifying and Resolving Links

In the above term, Pnode is a process name which might appear
again in process terms (as also seen here), expressing recursive
behavior. The dot operator ′′.′′ denotes sequentialization and the
rule names appearing refer to the basic operations, i.e., graph-
rewriting rule applications. The ′′+′′ operator denotes a non-
deterministic choice: for example, Pnode applies either pCr or
one of the instantiations of pDel whose choice is abbreviated
by an indexed sum. Each of those applications in the different
choice branches are followed by recursion as expressed by the
process name Pnode appearing in the specification: as a result, the
execution of Pnode is iterated in a loop.

• Link behavior: The Unclassify operation is also easily repre-
sentable by DPO rules as shown in Figure 4.3a, represented by a
single rule span with variables (cf. Figure 4.2b); however, here
we choose st ∈ {a,i} in order to avoid identity rule applications
(i.e., where the link is already unclassified beforehand).

As in the case of node behavior, we specify link behavior with a
process Plink, specified as

Plink := ∑
len∈{S,L}, st∈{a,i}

pUc(len, st).Plink

• Topology control: In Section 1.2, we have already presented a
part of the Resolve Unclassified Link operation according to the
kTC topology control algorithm: under what circumstances we
want to inactivate an unclassified link. Now, we provide a proper
DPO rule, pkTC, for it (Figure 4.3b).

However, topology control aims at classifying each unclassified
link: if we had only pkTC for this purpose, then unclassified
links not being in such a triangle would remain unclassified.
Therefore, we add rules pActUS and pActUL for activating (short
and long) unclassified links (Figure 4.4). (Note that although
we could present this behavior as a single rule with a length

60 4 control processes for graph rewriting

n1
x

n4
y

S;u n1
x

n4
y

n1
x

n4
y

S;a

(a) pActUS: Activating Short Unclassified Links

n1
x

n4
y

L;u n1
x

n4
y

n1
x

n4
y

L;a

(b) pActUL: Activating Long Unclassified Links

Figure 4.4: DPO Rules for Activating Unclassified Links

variable, we present these rules separately for easier reference in
later examples.)

Currently, our simple topology control mechanism is described
by the process PTC:

PTC := pkTC.PTC + pActUS.PTC + pActUL.PTC

Note that this topology control specification is not yet satisfac-
tory: it might non-deterministically activate an unclassified link
even if this link is part of a triangle.

Finally, having provided processes for each dynamic underlay com-
ponent, there is a straightforward way to specify the overall underlay
behavior by letting the above processes act in parallel, using the parallel
composition operator “ || ”:

Punderlay := Pnode || Plink || PTC

In the following, we refine the simple preliminary specification
above in the course of formalizing RePro and introducing new con-
cepts in a stepwise manner.

4.2 formal definition of control processes

Control processes are terms of a process calculus, whose syntax is
inductively given by a context-free grammar, whereas their semantics
is often provided in the form of a labeled transition system.

syntax . Regarding the syntax of RePro control processes, its basic
ingredient is the set of DPO rule names, denoted by R for plain (i.e.,
non-parallel) rules andR∗ for parallel rules, respectively (for any fixed
GTS G), where R is ranged over by p and R∗ is ranged over by ρ (cf.
also Definitions 2.2, 2.3). For rules appearing in a term, we assume
that they are typed over the same type graph TG, whose identity we

4 .2 formal definition of control processes 61

usually leave implicit. For instance, all the rules specified in Sect. 4.1
are typed over the WSN type graph shown in Section 2.2, Figure 2.1.

A control process term is composed of rule names as atomic actions
within control structures: sequence, choice, recursion and parallel
composition. We denote the set of process terms by P , ranged over by
P and Q.

Regarding the formal definition of recursion, there are several possi-
bilities considered in process algebra literature; here, we use a solution
(similar to that in [82]) based on a name set K of process identifiers
(ranged over by A), which are mapped to process terms by means of
defining equations.

The syntax of control processes P, Q ∈ P is provided by the follow-
ing definition.

Definition 4.1 (Control Process Term Syntax). Let K be the set of control
process identifiers andR∗ the set of parallel rules over rule setR. The syntax
of control process term P, Q ∈ P is inductively defined as

P, Q ::= 0 | ρ.P | A | P + Q | P ||Q

where ρ ∈ R∗ and a defining equation for A ∈ K is of the form A := P with
P ∈ P . We assume that each A ∈ K has a unique defining equation.

The process 0 is the inactive process incapable of actions. Given a
process P, ρ.P represents an action prefix, meaning that this process
can perform an action (i.e., an application of) ρ and then continue
as P. As explained above, process identifiers are used to represent
process terms through defining equations (of the form A := P), and
thus might be used to describe recursive process behavior. P + Q
represents a process which non-deterministically behaves either as P
or as Q. The parallel composition of P and Q, denoted as P ||Q, is a
process which might interleave the actions of P and Q or even execute
them in parallel. We elaborate the meaning of this parallelism when
we define the semantics of control processes in Definition 4.5. In the
following, as usual, parentheses are also employed in process terms to
explicitly denote operator precedence if relevant, even if parentheses
are not part of the abstract syntax given above. Notice that each
process specification provided in Sect. 4.1 is indeed a proper control
process over those rules, according to the syntax just given.

With respect to the “standard” definition of CCS as proposed by
Milner [79], in RePro, we do not consider the notions of renaming
and hiding. As RePro terms are composed of rule names from a
graph-rewriting system where names are mapped to concrete graph-
rewriting rules, renaming as a syntactical ingredient would be counter-
intuitive in our setting. As for hiding, that notion is directly connected
to the concept of observability and silent actions, which we do not
consider in RePro, as each graph-rewriting action has an observable
effect on the graph being rewritten.

62 4 control processes for graph rewriting

The notion of structural congruence (cf. also CCS [79]), denoted ≡ is
used to establish an equivalence of those process terms which differ
syntactically only in semantically irrelevant details.3 In particular, the
structural congruence laws of RePro considers choice to be commuta-
tive and associative4, and ensures global termination by reducing the
parallel composition of inactive processes to a single 0.

Definition 4.2 (Structural Congruence of Control Processes). Given P,
Q, R ∈ P , the relation ≡ ⊆ P ×P is the least equivalence relation s.t.

0 || 0 ≡ 0 P + Q ≡ Q + P (P + Q) + R ≡ P + (Q + R)

operational semantics . The operational semantics of a control
process term is given by a system of SOS inference rules, defining a
labeled transition system (LTS) having processes as states and labeled
actions as transitions (cf. Definition 4.5 below). The LTS for control
processes (abbreviated as CTS) has control process terms as states
and the transitions represent (potential) rule applications, labelled
by the corresponding rule name. In addition, we add to the set
of action labels a special termination symbol X, indicating that a
process reached its terminating 0, and thus, no further (proper) actions
are possible. Thus, X in RePro is used to distinguish (traces of)
successfully terminated processes from those which are not able to
continue because of the non-applicability of rules on the actual graph
instance. We first recall the standard definition of labeled transition
systems and of their traces [1], and define the LTS of RePro control
processes afterwards. We included a placeholder index X in the
symbols for action sets and transition in our generic LTS definition,
which we use later for distinguishing different transition systems and
their equivalence relations.

Definition 4.3 (Labeled Transition System). A labeled transition sys-
tem (LTS) is a tuple (S, AX,−→X), where S is a set of states, AX is a set of
actions containing the distinguished element “X” representing successful
termination, and −→X ⊆ S× AX × S is a transition relation. As usual, we
will write s a−→X s′ if (s, a, s′) ∈−→X.

Definition 4.4 (Trace, Trace Equivalence). A trace t = a1a2 . . . an . . . of
a state s ∈ S is a finite or infinite sequence of actions such that there exist
states and transitions with s

a1−→X s1
a2−→X A finite trace is completed if

its last action an, and only it, is equal to X.
States s, s′ ∈ S are trace equivalent w.r.t. →X, denoted as s 'T

X s′, if
their sets of traces have the same elements.

3 Note that the choice of “laws” of structural congruence is arbitrary in the sense
that each property captured might be equivalently captured on the transition level.
However, our choice of those laws facilitates and simplifies the presentation of
the transition relation while factoring out some technical details which are of less
importance to the semantics.

4 Although the abstract syntax above does not include parentheses, they are used in
the concrete syntax here to denote sub-expressions.

4 .2 formal definition of control processes 63

struct

P ≡ Q P α−→ P′

Q α−→ P′
pre

ρ.P
ρ−→ P

stop

0 X−→ 0

choice
P α−→ P′

P + Q α−→ P′
rec

A := P P α−→ P′

A α−→ P′

par0
P

ρ−→ P′

P ||Q ρ−→ P′ ||Q
par1

Q
ρ−→ Q′

P ||Q ρ−→ P ||Q′

sync

P
ρ1−→ P′ Q

ρ2−→ Q′

P ||Q ρ1|ρ2−−→ P′ ||Q′

Figure 4.5: Inference Rules for Transitions of Control Processes

Definition 4.5 (Control Transition System). Let P be the set of control
process terms and R∗ the set of parallel rule names over rule name set R.
The control transition system (CTS) is an LTS (P ,R∗ ∪ {X},−→) with
−→ being the least relation satisfying the rules in Fig. 4.5, where α ranges
over R∗ ∪ {X} and ρ, ρ1, ρ2 ∈ R∗.

Now, we give an intuitive explanation for each rule in Figure 4.5:

• Rule pre is the central rule for inferring the transition relation
−→: any (potentially parallel) rule name ρ ∈ R∗ appearing as
a prefix induces a transition with that very rule name as label.
Those transitions serve as the basis for the semantics of further
control constructs.

• Rule stop introduces the aforementioned special X-transition
to denote termination, i.e., that the inactive process 0 has been
reached.

• Rule struct reflects semantically the intention of structural
congruence (Definition 4.2): processes that are structurally con-
gruent have exactly the same transitions.

• Rule rec provides the semantics of process identifiers: if a
process identifier A ∈ K appears in a term, then the behavior is
provided by the transitions of the process term P by which A
is defined as in A := P. Importantly, this mechanism captures
recursive behavior through defining equations (an alternative
would be, e.g., to use a congruence notion).

• Rule choice expresses the fact that process P + Q can proceed
as P or Q by firing any of their transitions (commutativity and
associativity of + is provided by struct).

• Rule par0 and par1 deal with the interleaving behavior of par-
allel processes (the other behavioral aspect is synchronization,
expressed by the next rule sync). In particular, in a parallel

64 4 control processes for graph rewriting

Node behavior:

Pcr := pCr.0

Pnode := pCr.Pnode + ∑
len∈{S,L}, st∈{a,i,u}

pDel(len, st).Pnode

Link behavior:

Plink := ∑
len∈{S,L}, st∈{a,i}

pUc(len, st).Plink

Topology control:

PTC := pkTC.PTC + pActUS.PTC + pActUL.PTC

Overall underlay behavior:

Punderlay := Pnode || Plink || PTC

Figure 4.6: Control Process Specifications for WSN Underlay

process P ||Q, any side (i.e., P as well as Q) might fire one of
its available transitions and thus proceed, while the other side
remains in place. (Although control processes are in this case
symmetric and, thus, a commutative definition would be think-
able, the reason behind this specification is made clear by the
notion of asynchronicity in Section 5.2. In the following, we might
omit the number and refer to any or both of those rules as par if
the distinction is immaterial.)

Note that these rules together with stop induce a global termina-
tion, in the sense that parallel processes only have a X-transition
if each of them has been terminated, as interleaving does not
range over X-transitions. For instance, P || 0 has a X-transition
only if P ≡ 0 due to the structural congruence law 0 || 0 ≡ 0 as
in Definition 4.2.

• Rule sync, in contrast to par, induces a synchronized transition
of P and Q in a process P ||Q. If P and Q have some transitions
labeled, e.g., by rules ρ1 and ρ2, respectively, then P ||Q has a
transition labeled by the parallel rule ρ1|ρ2 composed of ρ1 and
ρ2.

As a source for concrete examples on how these rules work, we re-
visit the process specifications in Sect. 4.1 and recall them in Figure 4.6
for convenience.

First of all, each specification contains prefix actions (as any mean-
ingful process would): e.g., Pcr has an outgoing transition Pcr

pCr−→ 0
according to the rule pre. Thereupon, according to rule stop, this 0
has a loop transition X.

Our next example process, Pnode addresses choice and recursion.
Regarding the rule choice, as pCr.Pnode and pDel.Pnode have outgoing
transitions labeled with pCr and pDel, respectively, the choice in the
specification of Pnode results in a behavior where Pnode has both of those

4 .2 formal definition of control processes 65

outgoing transitions with their respective subsequent state. Here, in
both cases, that subsequent state is Pnode again, resulting in a recur-
sive behavior; note that in our examples, we let the sets of process
names (like Pnode) and process identifiers (the elements of the set K,
cf. Definition 4.1) collapse for the sake of easier readability. As an
example for structural congruence and the rule struct, if we would
write pDel.Pnode + pCr.Pnode, this specification would have exactly the
same behavior as the original one, as commutativity of choice is part
of our structural congruence.

As for parallel processes, the overall specification Punderlay has as
outgoing transitions any transitions of its single processes, such as
pCr, pkTC and many others, according to rules par0 and par1. Further-
more, those actions might also synchronize. For example, there are
transitions

Punderlay
pCr |pUcS−−−−→ Punderlay,

Punderlay
pUcL|pkTC−−−−−→ Punderlay,

and so on. Moreover, as the definition of parallel rules and processes
admits associativity, there are also transitions with three rules com-
posed, like

Punderlay
pDel |pUcL|pActUS−−−−−−−−→ Punderlay.

non-applicability conditions . Many control structures used
in algorithm specifications (independently of the concrete language),
such as conditional branchings (often termed if-then-else structures),
rely on some kind of negative conditions for capturing if the condition
on which the branching depends is violated (and, thus, the else branch
is followed).

In our controlled setting, as we focus on algorithm descriptions
over sets of graph-rewriting rules, we aim at defining a means on the
control level for capturing the non-applicability of some rules. As an
illustrative example, revisit the topology control specification

PTC := pkTC.PTC + pActUS.PTC + pActUL.PTC

As already mentioned while introducing PTC, this specification is
not yet satisfactory: the actual intuition is that we should first try to
eliminate triangles by applying pkTC, and only if it is not applicable
should we apply an appropriate activation rule. As a consequence,
to achieve a more faithful representation of this intuition, we want
to have some language ingredient to extend the specification with
preconditions saying that pActUS and pActUL are applied only if pkTC is
not applicable.

Thus, prefix actions involving non-applicability conditions (NC) be-
come pairs of a (positive) rule name to be applied and, as further con-
dition(s), a set of further rule names which have to be non-applicable

66 4 control processes for graph rewriting

on the graph to be rewritten. Note, however, that on the control level
which we consider in this section, this difference is only reflected in
the shape of our actions and thus the definition of the action set, as
pure control processes do not (yet) have a graph instance to work with.

We follow our above presentation pattern, i.e., we first provide the
extended specification and then the formal definitions for introducing
non-applicability conditions. The extended topology control specification
PnTC is given in RePro syntax as follows (extensions in bold):

PnTC := pkTC.PnTC + (pActUS, {pkTC}).PnTC + (pActUL, {pkTC}).PnTC

Similarly, we might also extend the specification of Plink to Pnlink by
adding the requirement that unclassification should take place only if
no kTC-inactivation action is possible:

Pnlink := (pUcS, {pkTC}).Pnlink + (pUcL, {pkTC}).Pnlink

The extended control transition system including non-applicability
conditions, denoted nCTS, is functioning in the same way as CTS,
and our definitions only require some slight adaptations. We proceed
with giving those definitions, with highlighting the changes related to
non-applicability conditions in bold.

An action γ = (ρ, N) in nCTS intuitively corresponds to applying
a rule ρ ∈ R∗ while checking some non-applicability conditions p ∈ N.
Formally, an action consists of a (positive) rule name (here, ρ) and
a set N = {p1, . . . , pk} of (plain)5 rule names, where for any pi ∈ N,
pi should not be applicable in the current graph state in order to
proceed. Note that while a parallel rule ρ might involve a single (plain
or parallel) rule ρs multiple times as a component, it is sufficient for
N to contain each rule name only once, as, in contrast to ρ, those
names in N play the role of preconditions with a semantics invariant
to multiple appearance.

First, we adapt the syntax of control processes to include non-
applicability conditions, where, as an abuse of notation, we retain the
same sets P and K for processes and process identifiers, respectively.
(For the most part of the thesis, we consider processes with non-
applicability conditions.)

Definition 4.6 (Control Process Term Syntax with NC). The syntax of a
control process term P ∈ P with non-applicability conditions is inductively
defined as follows, where A ∈ K and γ ∈ R∗× 2R:

P, Q ::= 0 | γ.P | A | P + Q | P ||Q

As seen in the above definition, the syntactical changes induced by
non-applicability conditions modify only the syntax of prefixes and the

5 It is sufficient to consider plain, i.e., non-parallel rules here, as any process specifica-
tion is based on plain rules and non-applicability conditions do not get composed in
parallel during parallel executions.

4 .2 formal definition of control processes 67

struct

P ≡ Q P α−→ P′

Q α−→ P′
pre

γ.P
γ−→ P

stop

0 X−→ 0

choice
P α−→ P′

P + Q α−→ P′
rec

A := P P α−→ P′

A α−→ P′

par0
P

γ−→ P′

P ||Q γ−→ P′ ||Q
par1

Q
γ−→ Q′

P ||Q γ−→ P ||Q′

sync

P
(ρ1,N1)−−−−→ P′ Q

(ρ2,N2)−−−−→ Q′

P ||Q (ρ1|ρ2,N1∪N2)−−−−−−−→ P′ ||Q′

Figure 4.7: Inference Rules for Transitions of Control Processes with NC

rest of the definition remains untouched. Also, the interpretation of
further names and operators is the same as in Definition 4.1. Note that
we still use prefixes without non-applicability sets in our examples,
e.g., in the sub-process pkTC.PnTC of PnTC. In the following, pkTC is a
shorthand for (pkTC, ∅).

Regarding nCTS semantics, there are only slight changes needed.
The only substantial concept to consider is how to extend synchro-
nization to actions with NC. The following definition gives the LTS
for nCTS (where we overload the transition symbol −→.

Definition 4.7 (Control Transition System with NC). The control tran-
sition system with non-applicability conditions (nCTS) of G is an LTS
(P , (R∗× 2R) ∪ {X},−→) with −→ being the least relation satisfying the
rules in Fig. 4.7, where α ranges over (R∗ × 2R) ∪ {X}, γ ranges over
R∗ × 2R, ρ1, ρ2 ∈ R∗ and N1, N2 ∈ 2R.

The rules stop, struct, rec, choice, and par0-1 have exactly the
same form and interpretation as in the definition of CTS (Defini-
tion 4.7). Their basis, rule pre is functioning also in the same way as
in CTS, with considered actions extended to include non-applicability
conditions.

As for synchronization (rule sync), beyond building the correspond-
ing parallel rule, we also synchronize the non-applicability conditions
by taking as a new NC set the union of the sets on both sides. Con-
sequently, the synchronized parallel rule ρ1|ρ2 can fire if none of the
involved conditions are violated.

Note that synchronization in nCTS as above might result in actions
for which there exists no graph to apply on; e.g., if a rule being in
〈ρ1〉 ∪ 〈ρ2〉 is also in N1 ∪ N2, or even if there is a rule in 〈ρ1〉 ∪ 〈ρ2〉
whose applicability necessarily implies that of another rule which is
N1 ∪ N2. In our original paper [63], to capture at least the former
case, which can be addressed on the level of rule names, we require a
further premise for sync as follows:

(〈ρ1〉 ∩ N2) ∪ (〈ρ2〉 ∩ N1) = ∅ (∗)

68 4 control processes for graph rewriting

The inference rule which is identical to sync, but has in addition the
above premise, is called sync*. This rule expresses that the positive
rules should not be excluded by the non-applicability conditions of
the other side. The variant of nCTS where sync is replaced by sync*
is called nCTS*.

As an example for nCTS* terms, the process PnTC has as outgoing
transition labels not only the rule names; instead, we have transition
labels like (pUcS, {pkTC}). Also, if we update the specification of the
overall underlay behavior by replacing PTC with PnTC and Plink with
Pnlink, then the additional condition for sync* disables some synchro-
nized actions which are allowed in the original specification: there is
no synchronized action over pkTC on the one side and (pUcS, {pkTC})
or (pUcL, {pkTC}) on the other side, respectively, because the premise
of sync* forbids a positive rule to appear in the NC set of the action it
should synchronize with. In the following, however, we present our
results using nCTS, and explicitly refer to the above distinction where
it is necessary.

We remark already here that adding non-applicability conditions
also take a direct influence on the expressiveness of our control language
(as in contrast to enriching the rule application semantics with negative
conditions, cf. also Sect. 8.2). In particular, having the ability to
include non-applicability conditions on the control level gives us the
expressive power to formulate branching and loop termination criteria,
which makes our control language computationally complete according
to the notion of Habel and Plump [49], who interpreted computational
completeness for the specific setting of controlled graph rewriting,
also providing a minimal reference language. We elaborate on this
topic in Sect. 6.3. In this way, we will be able to relate our language
both to the standard semantics of graph-rewriting systems and to the
reference language of Habel and Plump by proposing an encoding.

Also, in the discussion following the complete presentation of RePro

(Sect. 8.2), we review the alternative notions to negative conditions
from the graph-rewriting literature, along some observations on how
they relate to our non-applicability conditions.

5
R E P R O : A C A L C U L U S F O R C O N T R O L L E D G R A P H
R E W R I T I N G

In this chapter, we present the overall concept of RePro. First, recall
our schematic representation in Figure 4.1: RePro utilizes process
algebra techniques for generating control traces (cf. the previous
Chapter 5), which traces in turn describe the allowed sequences for
graph-rewriting derivations. Now, having the necessary underlying
definitions, we concretize our RePro concept representation by provid-
ing pointers to the concrete definitions meant, as shown in Figure 5.1.

In particular, the upcoming definition of the RePro transition sys-
tem (Definition 5.1) in this section is based on the previously de-
fined control process transitions, combined with graph-rewriting rule-
application semantics: whenever a transition is made available by
a control process such that the corresponding rule is applicable on
the actual graph, a RePro transition arises, where both components
proceed: the control process continues and the graph gets rewritten
by a rule application.

Again, we first demonstrate RePro processes using our WSN sce-
nario, building on the example control processes provided in Sect. 4.1.
Afterwards, we provide a formal definition of RePro.

5.1 wsn topology simulation by repro processes

Using control processes, we are able to describe the underlay behavior
of our graph-based WSN model. Using RePro, we simulate the behav-
ior of a topology involving both environmental events and proactive
topology control: as graph instances, we consider typed graphs over
the topology type graph TGTop in Figure 2.1.

As a very first example, consider the simple control process Pcr :=
pCr.0, which creates an unclassified underlay link between two existing
nodes (i.e., the left-hand side of pCr consists of two nodes). Now, as
a graph instance, consider the topology graph G2 in Figure 5.2a,
consisting of only two nodes without any links. The RePro process
for link creation takes the following form:

(Pcr, G2)

and in Figure 5.2c, we depict a part of the RePro LTS starting from
that process.

We interpret the process (Pcr, G2) as follows: one of the rules avail-
able in the control state Pcr is applied on the graph G2, the subse-
quent state being the next control state composed with the rewrit-
ten graph state. Here, only pCr is available: consider the match

69

70 5 repro : a calculus for controlled graph rewriting

Control process
traces

(Def. 4.7)

Graph-rewriting
derivations

(Def. 2.5)

RePro

traces
(Def. 5.1)

Figure 5.1: RePro Concept with Definition References

m : LCr → G2 which maps node x to node 1 and node y to node 2
(cf. Figures 4.2a and 5.2a); the corresponding DPO rule application is
denoted by δ (cf. Definition 2.5). The resulting graph G′2 of the rule

application G2
δ
=⇒ G′2 is depicted in Figure 5.2b.

Note that pCr has four distinct matches and even if we restrict
ourselves to injective matches (which is meaningful for pCr as we do
not want to create loop links), there are two different ones: m := (x 7→
1, y 7→ 2) as above, and m′ := (x 7→ 2, y 7→ 1) with corresponding

rule applications δ and δ′. The rule application G2
δ′
=⇒ G′′2 produces

a graph G′′2 which is isomorphic to G′2, but not identical with it on
the concrete graph level. Indeed, given the standard semantics of
graph rewriting, this observation holds already for one match: as the
DPO output graph construction is unique only up to isomorphism,
there are infinitely many isomorphic result graphs (and thus, RePro

transitions) for a single match on a given graph instance. Note that
this phenomenon does not cause any problem in general, as process
calculi allow for infinite branching.

The transition label (pCr, ∅) identifies the action performed during
the transition from (Pcr, G2) to (0, G′2). Here, we use actions as in
nCTS and denote by ∅ that the action did not have non-applicability
conditions. The process (0, G′2) has 0 as control process, therefore, it
has an outgoing (loop) transition X.

Of course, having a topology graph G with more nodes, there
are more outgoing transitions of (Pcr, G) leading to non-isomorphic
results.

As a more elaborate example, let us consider the last specification
of topology control, PnTC, which already involves non-applicability
conditions:

PnTC := pkTC.PnTC + (pActUS, {pkTC}).PnTC + (pActUL, {pkTC}).PnTC

Furthermore, as a graph instance Gex, consider the example topology
presented in Chapter 1, depicted again in Figure 5.3a. Then, the RePro

process (PnTC, Gex) has a large number of subsequent transitions, some
of them depicted in Figure 5.3c.

5 .1 wsn topology simulation by repro processes 71

1 2

G2

(a) Example Topology
Graph G2

1 2
S;u

G’2

(b) Example Topology
Graph G′2

(Pcr, G2) (0, G′2)
(pCr, ∅)

X
(c) RePro LTS Excerpt from (Pcr, G2)

Figure 5.2: Graph Instances and LTS Excerpt for RePro Process (Pcr, G2)

n1

n3n2

n4n5

n6

n8n7

n9
L;a

S;u
S;a

L;iL;i

L;u L;a

S;a S;aL;u

S;a

Gex

(a) Example Topology Graph Gex

n1

n3n2

n4n5

n6

n8n7

n9
L;a

S;u
S;a

L;iL;i

L;u L;a

S;a S;aL;i

S;a

G’ex

(b) Example Topology Graph G′ex

(PnTC, Gex)

(PnTC, G′ex)

(PnTC, G′′ex) (PnTC, G′′′ex)

(pkTC , ∅)

(pActUS , {pkTC}) (pActUL , {pkTC})

(c) RePro LTS Excerpt from (PnTC, Gex)

Figure 5.3: Graph Instances and LTS Excerpt for RePro Process (PnTC, Gex)

72 5 repro : a calculus for controlled graph rewriting

Here, e.g., G′ex is the graph depicted in Figure 5.3b after applying
pkTC at match (x 7→ n2, y 7→ n3, z 7→ n7), G′′ex is the same as G′ex with
n1n3 changed to active, while G′′′ex is the same as G′ex with n5n6 changed
to active.

5.2 formal definition of repro

We start by defining a transition system for RePro processes based
on the definition of (n)CTS (cf. Definition 4.5 and 4.7). Furthermore,
for the graph component of a RePro process, RePro utilizes the rule
application semantics as introduced in Chapter 2. We recall that

G δ
=⇒ H if there is an application of rule ρ on input graph G at match

m, producing H as output graph, where δ is the rule application
diagram corresponding to ρ applied at match m. For further details,
refer to Chapter 2.

A RePro transition represents the simultaneous transition of both
the control process and the graph instance: a rule available by the
control process specification is applied to the current graph instance
(with a non-deterministically chosen match). Accordingly, our RePro

transition system is derived from both the control process and the rule
application semantics. However, regarding the labeling of RePro tran-
sitions, we have various choices depending on how much information
do we include in labels. First, we define a variant which inherits the
labeling of control processes. However, those labels do not identify
uniquely the rewriting step performed; therefore, we also provide a
semantics where the label is enriched by the complete DPO diagram
uniquely representing the rule application.

Note that although we provide each RePro transition system defini-
tion on top of nCTS, any variant can be easily defined on top of CTS
analogously. As for the notation of different transition relations, notice
that the transition arrow of CTS does not have any distinguishing
lower index, whereas, from now on, each transition arrow introduced
has a distinguishing lower index.

Definition 5.1 (RePro Transition System). The RePro transition system
(RTS) is an LTS (P × |GraphT|, (R∗× 2R),−→R) with −→R being the least
relation satisfying the following rules, where ρ(δ) = ρ:

mark

P
(ρ,N)−−−→ P′ G δ

=⇒ H ∀p ∈ N : G 6 p=⇒

(P, G)
(ρ,N)−−−→R (P′, H)

stop
P X−→ P′

(P, G)
X−→R (P′, G)

Given an available transition of control process P with action (ρ, N)

to subsequent state P′, rule mark verifies if (1) there is an application

5 .2 formal definition of repro 73

δ with ρ(δ) = δ on graph G at some match m(δ) with result graph H,
such that (2) none of the rules in the NC set N are applicable on G.
If those premises are fulfilled, then there is a RePro transition from
(P, G) to (P′, H). Rule stop serves for lifting the nCTS X termination
symbol to the RePro transition system.

Now, we enrich the labeling by adding explicitly the DPO diagram
belonging to the rule application performed. We assume a set D of
DPO diagrams (accordingly typed), ranged over by δ.

Definition 5.2 (RePro DPO Transition System). The RePro DPO tran-
sition system (RDTS) is an LTS (P × |GraphT|, (R×D × 2R) ∪ {X},
−→D) where −→D is the least relation satisfying the following rules, where
ρ(δ) = ρ:

mark

P
(ρ,N)−−−→ P′ G δ

=⇒ H ∀p ∈ N : G 6 p=⇒

(P, G)
(ρ,δ,N)−−−→D (P′, H)

stop
P X−→ P′

(P, G)
X−→D (P′, G)

6
P R O P E RT I E S O F T H E R E P R O C A L C U L U S

In this chapter, after having defined RePro, we turn to its study: we
examine the properties of RePro both as a process calculus and as a
control language, in the light of the central questions of the respective
theories. According to this program, we investigate the following
facets of RePro:

• Equivalence (Sect. 6.1): It is among the aims of a process calculus
to provide a minimalistic, abstract description of process behav-
ior on a rigorous algebraic basis. As a consequence, some of the
possible syntactic entities (i.e., terms) within a calculus might
convey the same semantics under a particular interpretation.
The topic of process equivalence is concerned with defining the
most important such interpretations and the resulting process
equivalence classes. As the structure of RePro largely resembles
that of CCS [79] (cf. also Chapter 5), we focus here on notions
primarily proposed and used in that context.

• Independence (Sect. 6.2): The independence of actions or events
plays a central role in any operational theory, be it process
algebra or rewriting. Roughly, independence means that a si-
multaneous occurrence of actions does not involve any causal
correspondence or consequence. Here, we consider two comple-
mentary approaches to address independence in the context of
RePro: (1) the so-called direct approach (Sect. 6.2.1) focuses on
transferring independence notions of graph rewriting to the Re-
Pro setting, while (2) the asynchronous approach (Sect. 6.2.2) aims
at the adoption of the so-called asynchronicity notion, originally
proposed for CCS [83], for the purpose of RePro.

• Expressiveness (Sect. 6.3): Here, in slight contrast to the above
points, RePro is primarily studied as a language: a syntax and
semantics capable of describing computations, i.e., input-output
functions. In a broader context, the notion of language expres-
siveness might have different interpretations. Complete expres-
siveness is often defined by a notion of computational completeness,
widely reasoned about in terms of universal Turing machines [109].
In the specific setting of controlled graph rewriting, Annegret
Habel and Detlef Plump have carefully adopted the notion of
computational completeness [49]. Here, an additional considera-
tion to make lies in the nature of control being specified over a
given graph-rewriting system, i.e., a set of graph-rewriting rules.
Consequently, completeness captures if a graph-rewriting control

75

76 6 properties of the repro calculus

language is capable of expressing each computation of a fixed
graph-rewriting system. We investigate the expressiveness of
RePro using the reference framework of Habel and Plump [49].

6.1 equivalence

First, we elaborate on how well-known equivalence notions of process
algebra literature apply for RePro. In that context, one of the most
usual ways of considering process equivalence is by observing and
comparing traces (cf. Definition 4.4). We recall that a trace of a process
state is a sequence of transition labels starting from that state, and two
processes are trace equivalent if they have the same sets of traces.

First, we establish a connection between the two different RePro

labelings RTS and RDTS as in Section 5.2 (Definitions 5.1 and 5.2). In
particular, the following statement says that if two RePro processes
have the same set of RDTS traces, then the same holds for their RTS
traces.1

Proposition 6.1. Given P, Q ∈ P and G, H ∈ |GraphT|, the following
holds: (P, G) 'T

D (Q, H) implies (P, G) 'T
R (Q, H).

Proof. There is an obvious forgetful function f from (sets of) RDTS
traces (ρ, δ, N) . . . to (sets of) RTS traces (ρ, N) . . . by dropping δ from
each transition label in the trace (with f (X) = X. Thus, denoting the
trace set of (P, G) by TG

P and that of (Q, G) by TG
Q , TG

P = TG
Q implies

f (TG
P) = f (TG

Q) implies (P, G) 'T
R (Q, H).

Moreover, RDTS traces also prove to be useful in relating RePro to
the standard semantics of graph rewriting, by allowing for a bijective
correspondence between RDTS traces on the one hand, and derivations
as in Definition 2.5 on the other hand.

In particular, RDTS traces correspond to the parallel derivations of
Definition 2.5: Proposition 6.2.1 states that every RDTS trace naturally
determines a(n underlying) parallel derivation; Proposition 6.2.2 pro-
vides a process definition by recursive choice, which has a successful
trace for each linear derivation starting from a given graph, while
Proposition 6.2.3 does the same for parallel (i.e., not necessarily linear)
derivations by providing a recursive process allowing for arbitrary
parallel composition of the rules as well. Note that the process speci-
fication QR in this last point also subsumes sequential composition,
due to the semantics of || which also allows for interleaving.

Proposition 6.2 (Traces and Derivations).

1 The inverse direction does not hold: given (P, G) and (Q, H), even if both having
just a single trace ρX, the rule applications corresponding to that single ρ-steps are
different, as they are on different graphs. However, the original statement implies
G = H if the traces are not empty—assuming that, the inverse implication also holds.

6 .1 equivalence 77

1. Given a RePro process (P, G), each of its traces uniquely identifies
an underlying parallel derivation starting from G. In particular, if
(ρ1, δ1, N1) · · · (ρn, δn, Nn) is a trace of (P, G), then δ1; · · · ; δn is its
underlying derivation.

2. Let PR be the control process defined as follows:
PR = 0 + ∑p∈R p.PR

Then for each graph G and for each linear derivation ϕ starting from
G there is a successful trace of (PR, G) such that ϕ is its underlying
derivation.

3. Let QR be the control process defined as follows:
QR = 0 +

(
(∑p∈R p.0 + ε.0) ||QR

)
Then for each graph G and for each parallel derivation ϕ starting from
G there is a successful trace of (QR, G) such that ϕ is its underlying
derivation.

Proof.

1. Extracting δ1; · · · ; δn from the trace provides a derivation as in
Definition 2.5 indeed.

2. Let ϕ = G
δ1=⇒ G1 · · ·Gn−1

δn=⇒ Gn be a linear derivation via
p1, . . . , pn ∈ R. We proceed by induction on n. If n = 0, then

transition (PR, G)
X−→D (0, G) can be inferred using rules rec,

choice, and stop. Therefore (PR, G) has the successful trace X,
which has an empty underlying derivation, as desired.

If n > 0, it is sufficient to show that (PR, G)
(p1,δ1,∅)−−−−→D (PR, G1),

and conclude by applying the induction hypothesis to G1
δ2=⇒

G2 · · ·Gn−1
δn=⇒ Gn, which has length n− 1. Indeed, PR

(p1,∅)−−−→ PR
using rec and choice (recall that p1 is a shorthand for (p1, ∅)),

because G
δ1=⇒ G1 holds by hypothesis. Thus, we obtain the

desired transition by applying rule mark (as p1 /∈ ∅).

3. Let ϕ = G
δ1=⇒ G1 · · ·Gn−1

δn=⇒ Gn be a parallel derivation via
ρ1, . . . , ρn ∈ R∗. We proceed by induction on n. Case n = 0 is
identical to the previous point. For case n > 1, by the induction
hypothesis, there is a successful trace (ρ2, δ2, N2) . . . (ρn, δn, Nn)X
for (QR, G1), and therefore there are control processes P2, . . .,
Pn−1 such that

(QR, G1)
(ρ2,δ2,N2)−−−−−→D (P2, G2) . . .

. . . (Pn−1, Gn−1)
(ρn,δn,Nn)−−−−−→D (Pn, Gn)

X−→D (0, Gn)

Furthermore, as shown below, the following holds:

(QR, G)
(ρ1,δ1,∅)−−−−→D (0k(QR), G1) (†)

78 6 properties of the repro calculus

for some k > 0, where process 0k(P) is defined as 00(P) = P
and 0k+1(P) = 0 || (0k(P)).

By exploiting rule par1 and the fact that 0k(0) ≡ 0 (by Defini-
tion 4.2), we infer that the marked process (0k(QR), G1) has a
successful trace identical to the one above of (QR, G1), and there-
fore (QR, G) has a trace (ρ1, δ1, ∅)(ρ2, δ2, N2) · · · (ρn, δn, Nn)X
with underlying derivation ϕ, as desired.

It remains to prove transition (†) above. We obtain it by rule
mark: the second precondition holds by hypothesis, because

G
δ1=⇒ G1 via ρ1; the third one holds trivially; and for the first

one, assuming that ρ1 = p1| . . . |pm we proceed by induction on

m to show that transition σm : QR
(ρ1,∅)−−−→ 0k(QR) holds for some

k > 0.

By rule choice we have a transition τq :
(

∑p∈R p.0+ ε.0
) (q,∅)−−→ 0

for each q ∈ R∪ {ε}, and thus also

QR
(q,∅)−−→ (0 ||QR) = 01(QR)

using rules rec, choice and par0. This shows existence of σ0

and σ1. For m > 1, by induction hypothesis we have σm−1 :

QR
(p2|...|pm,∅)−−−−−−→ 0k(QR). By applying rule sync to transitions τp1

and σm−1 we obtain transition

(
∑

p∈R
p.0 + ε.0

)
||QR

(p1|(p2|...|pm)),∅)−−−−−−−−−→ 0 || 0k(QR)

from which transition σm is easily obtained with rules rec and
choice.

Although comparing traces is a useful means to reason about pro-
cess equivalence, traces do not represent faithfully the control struc-
tures of RePro processes: mere traces do not capture the branching
structure of RePro processes, which is important in the context of
concurrent and reactive systems (like our WSN example). Bisimilarity
is a well-known branching-sensitive equivalence notion [79].

Definition 6.1 (Simulation, Bisimulation). Given an LTS (S, AX,→X).
A simulation is a relation R ⊆ S× S s.t. whenever s R t, for each transition
s α−→X s′ (with α ∈ AX), there exists a transition t α−→X t′ with s′ R t′. State
s is simulated by t if there is a simulation relation R such that s R t.

A bisimulation is a symmetric simulation. States s and t are bisimilar,
denoted s 'BS

X t, if there is a bisimulation R such that s R t.

As for the relation of control processes and full RePro processes
w.r.t. equivalences, we show that control process equivalence and

6 .1 equivalence 79

graph identity imply equivalence of the corresponding compound
RePro processes, for both trace equivalence and bisimilarity.

Proposition 6.3. For any P, Q ∈ P and G ∈ |GraphT|,

1. P 'T Q implies (P, G) 'T
D (Q, G) and

2. P 'BS Q implies (P, G) 'BS
D (Q, G).

Proof.

1. We show by co-induction that any trace t of (P, G) is also a
trace of (Q, G): by symmetry, also the converse holds, and thus,
(P, G) 'T

D (Q, G). We have three cases:

a) If t = ε, then t is trivially a trace of (Q, G) as well.

b) If t = (ρ, δ, N) · t′, then

(P, G)
(ρ,δ,N)−−−→D (P′, G′)

and t′ is a trace of (P′, G′). By rule mark of Definition 5.2,

we know that P
(ρ,N)−−−→ P′ and G δ

=⇒ G′ via ρ. Since P 'T Q,

we also know that Q
(ρ,N)−−−→ Q′ for a control process Q′ 'T P′.

By co-induction, we assume that t′ is a trace of (Q′, G′) and,
thus, t is a trace of (Q, G).

c) If t = X · t′, then the argument is identical as before by rule
stop.

2. First, we show that P 'BS Q, (P, G)
(ρ,δ,N)−−−→D (P′, G′) implies

(Q, G)
(ρ,δ,N)−−−→D (Q′, G′).

By rule mark, (P, G)
(ρ,δ,N)−−−→D (P′, G′) implies that P

(ρ,N)−−−→ P′,

G δ
=⇒ G′ over ρ and ∀p ∈ N : G 6 p=⇒. Then, again by rule

mark, (Q, G)
(ρ,δ,N)−−−→D (Q′, G′) if Q

(ρ,N)−−−→ Q′, which holds due
to P 'BS Q.

By the symmetry of the above argument, this leads to a bisim-
ulation if (P′, G′) 'BS

D (Q′, G′). By P 'BS Q ⇒ P′ 'BS Q′, this
holds by co-induction.

It is important to note here that the inverses of those statements do
not hold: P and Q might still have some completely different parts,
which is, in turn, covered by G in the RDTS semantics. As a simple
example, consider P := ρ.0 + ρ1.0 and Q := ρ.0 + ρ2.0. If only ρ is
applicable to G of the three rules involved, then (P, G) and (Q, H)

80 6 properties of the repro calculus

are bisimilar (and also trace equivalent) but P and Q are clearly not
equivalent.

Bisimilarity as an equivalence notion is distinctive enough to reason
about replacing a process in some context with another equivalent one.
Intuitively, a context is a process specification with a “hole” where
arbitrary processes can be plugged in. It is a well-known property (and
a major strength) of standard CCS that all the syntactical operators
can be used as such contexts [79]. This property is captured by the
formal notion of congruence in the literature: formally, an equivalence
relation ' is congruent w.r.t. an operator f iff ai ' a′i, i ∈ {1, . . . , n}
implies f (a1, . . . , an) ' f (a′1, . . . , a′n).2

In the following, we show that our bisimilarity for RePro processes
has this desired congruence property: bisimilarity is retained if the
control processes are expanded by a further context. We start by
formulating a corresponding result for control processes.3

Theorem 6.1. property of a relation between processes following from a
particular semantics Given P, Q, R ∈ P with P 'BS Q, the following
propositions hold:

1. P + R 'BS Q + R,

2. P || R 'BS Q || R and R || P 'BS R ||Q, and

3. γ.P 'BS γ.Q for any γ ∈ R∗ × 2R.

Proof.

1. P + R 'BS Q + R: P + R α−→ P′ + R implies Q + R α−→ Q′ + R
by P 'BS Q and rule choice. P + R α−→ P + R′ implies Q +

R α−→ Q + R′ by rule choice. By coinduction and symmetry,
P + R 'BS Q + R follows from P′ 'BS Q′.

2. P || R 'BS Q || R:

a) P || R α−→ P′ || R implies Q || R α−→ Q′ || R by P 'BS Q and
rule par0.

b) P || R α−→ P || R′ implies Q || R α−→ Q || R′ by rule par1.

c) P || R α−→ P′ || R′ implies Q || R α−→ Q′ || R′ by P 'BS Q and
rule sync.

2 Note that this congruence notion is different from structural congruence (cf. Defi-
nition 4.2), and they are distinguished by always explicitly saying structural if the
latter is meant. However, while structural congruence is an axiomatic description of
syntactic properties, congruence is a property of an equivalence relation.

3 As recursion in RePro is formulated by defining equations, there is no corresponding
congruence statement; in process algebra literature, there often appears an equivalent
formulation using a recursion operator, in which case congruence can be shown
accordingly.

6 .1 equivalence 81

By coinduction and symmetry, P || R 'BS Q || R follows from
P′ 'BS Q′.

The other part of the statement (R composed from the left) can
be proved analogously by simply swapping par0 and par1.

3. γ.P 'BS γ.Q: There are symmetrically matching transitions
γ.P

γ−→ P and γ.Q
γ−→ Q by pre, and those are the only transitions

of γ.P and γ.Q, respectively, as no further rule of Definition 4.7
matches. Thus, γ.P 'BS γ.Q follows from P 'BS Q.

Based on the above theorem, we observe that bisimilarity of full
RePro processes is also a congruence.

Corollary 6.1. Given P, Q, R ∈ P with P 'BS Q, γ = (ρ, N) with
γ ∈ R∗ × 2R and graph G ∈ |GraphT|. Then, the following propositions
hold:

1. (P + R, G) 'BS
D (Q + R, G),

2. (P || R, G) 'BS
D (Q || R, G) and (R || P, G) 'BS

D (R ||Q, G), and

3. (γ.P, G) 'BS
D (γ.Q, G).

Proof. The statement is a direct consequence of Theorem 6.1 and
Proposition 6.3.

As a further observation, the congruence property is preserved for
choice even if we do not require bisimilarity of control processes, but
only that of the corresponding full RePro processes.

Proposition 6.4. Given P, Q, R ∈ P and graph G ∈ |GraphT| such that
(P, G) 'BS

D (Q, G),

(P + R, G) 'BS
D (Q + R, G).

Proof. (P + R, G)
α−→ (P′ + R, G) implies (Q + R, G)

α−→ (Q′ + R, G)

by (P, G) 'BS
D (Q, G) and rules choice and mark. (P + R, G)

α−→
(P + R′, G) implies (Q + R, G)

α−→ (Q + R′, G) by rules choice and
mark. By coinduction and symmetry, (P + R, G) 'BS

D (Q + R, G)

follows from (P′, G) 'BS
D (Q′, G).

Note, however, that a similar statement is not true in general for the
further operators, namely prefix and parallel composition.

As a counterexample in the parallel composition case, first, con-
sider the processes (Plink, G2) and (PTC, G2) (refer to Figure 4.6 for the
process specifications and to Figure 5.2a for the graph G2). These pro-
cesses are indeed bisimilar, both missing any outgoing transitions (i.e.,

82 6 properties of the repro calculus

both being stuck), as each of the available rules requires the presence
of at least one link, which is not the case in G2, consisting of only two
nodes. However, composing both control processes with Pcr results
in processes with different behavior: after pCr has fired on both sides,
the subsequent processes (Plink, G′2) and (PTC, G′2) (cf. Figure 5.2a for
the graph G′2) are not bisimilar anymore, as Plink is still unable to fire,
as the only link of G′2 is unclassified, whereas PTC can apply pActUS to
that one link.

We can construct a similar counterexample for the prefix case: taking
the same pair of bisimilar processes as above, putting the rule pCr as a
prefix results in the same deviating behavior as described above.

Summarizing, we conclude that regarding the well-known equiv-
alence notions, trace equivalence and bisimulation, RePro control
processes faithfully reflect the central properties of CCS. We focus on
RDTS in the following and might refer to it simply as RePro transition
system in the following.

6.2 independence

The twofold advances in this section are motivated by the simulta-
neous presence of established independence notions in both theories
considered: that of graph rewriting as well as that of process algebra.
First, in Sect. 6.2.1, we follow a direct approach, meaning that we di-
rectly re-interpret parallel independence of graph-rewriting actions [38]
for their occurrences as in the RePro semantics.

Second (Sect. 6.2.2), in parallel to a similar proposal for the CCS
calculus due to Mukund and Nielsen [83], we investigate the adoption
of asynchronous transition systems (ATS), originally proposed by Bed-
narczyk [8]. The originally proposed semantics for CCS [79], which,
in turn, serves as a guideline for RePro, is an interleaving semantics,
where the parallel composition of two actions cannot be distinguished
from a corresponding choice over their possible sequences. Although
such a semantic design might well be on purpose (as in the case of
the original use of CCS), sometimes, e.g., when using process calculi
for abstract specifications of concurrent systems (as in the case of
RePro), a non-interleaving semantics is desirable. A common way of
introducing a non-interleaving semantics is to incorporate a means of
asynchronous action behavior into the semantics. Here, asynchronic-
ity means that the semantics reflects the concurrency present in the
specification by identifying independent parallel components as such.

Inspired by the literature and most importantly by the work of
Mukund and Nielsen [83], we particularly consider the following
motivations when defining an ATS for RePro:

• ATS allow for an extended bisimulation concept based on in-
dependent events rather than just matching actions. To retain

6 .2 independence 83

the equivalence results from the previous Sect. 6.1 in an asyn-
chronous semantic setting, we have to find an appropriate equiv-
alence relation, which, in turn, transforms the actions of the
underlying calculus into events, whose equivalence is then ap-
propriately addressed in an asynchronous setting (cf. [83] for
an analogous line of development). As for the asynchronous
semantics of RePro, concluding Sect. 6.2.2, such an equivalence
notion is presented in Definition 6.12 and the corresponding
bisimulation result is obtained in Theorem 6.4.

• Mukund and Nielsen present a translation of ATS defined for
CCS into a specific class of Petri nets, the so-called 1-safe Petri
nets, being particularly well-suited for analysis. This result is ob-
tained by verifying a property of elementarity for their transition
systems. Although we cannot directly reproduce an analogous
result, we discuss this point later in a broader context, consider-
ing the place of RePro within concurrency theory, in Sect. 8.1,
as part of a discussion chapter.

6.2.1 Direct Approach

We proceed by examining the notion of independence (of actions or
steps), which plays a central role in both process algebra and graph
rewriting. In particular, our goal is to elaborate and establish a for-
mal correspondence between two central notions from the different
underlying theories: transition independence on the one hand and par-
allel independence of graph-rewriting rule applications (cf. Chapter 2,
Definition 2.6) on the other hand.

Conceptually, we consider two different approaches to capture the
relationship between parallel independence and transition indepen-
dence:

1. We lift the definition of parallel independence to transitions, i.e.,
we let transitions to be parallel independent exactly if they are
available in parallel and the underlying rule applications are
parallel independent. We call this the direct approach.

2. In our asynchronous approach, on the contrary, we depart from
process algebra theory and build on an existing framework,
called asynchronous transition systems [83] (ATS), where labeled
transition systems are extended with an inherent transition inde-
pendence relation, allowing for a finer characterization of control
behavior. Thus, the asynchronous approach takes the process
specification form more intensively into account.

We start by describing the direct approach. Recall that two rule
applications

84 6 properties of the repro calculus

G

H1 H2

H12 ' H ' H21

δ1 δ2

δ′2 δ′1

δ

Figure 6.1: Local Church-Rosser and Parallelism Properties of Rule Applica-

tions H1
δ1⇐= G

δ2=⇒ H2

H1
δ1⇐= G δ2=⇒ H2

available simultaneously (i.e., starting from the same graph G) are
parallel independent if after performing any of the applications, the
other rule is still applicable on the same match image as in the original
rule application (cf. Proposition 2.1). In the following, we say that
a 4-tuple of DPO diagrams δ1, δ2, δ′1, δ′2 as in Proposition 2.1 (also
cf. Figure 2.5) has the Local Church-Rosser property. For convenience,
we repeat here the visual representation of the Local Church-Rosser
property (Figure 6.1), originally presented in Chapter 2.

The following central definition of the direct approach lifts parallel
independence into RePro by re-interpreting parallel rule-application
independence for transitions. This lifting essentially amounts to re-
quiring that two transitions are indeed available in parallel by the
process, beyond requiring the Local Church-Rosser property for their
underlying rule applications. Interpreting confluence for transitions
allows for a further slight relaxation: it is sufficient to require that the
respective subsequent control processes after the different sequences
are bisimilar, with isomorphic graph instances.

Definition 6.2 (Parallel Transition Independence). Given a RePro pro-
cess (P, G) with outgoing transitions

1. (P, G)
(ρ1,δ1,N1)−−−−−→D (P1, H1) and

2. (P, G)
(ρ2,δ2,N2)−−−−−→D (P2, H2),

these outgoing transitions are parallel independent if there exist the fol-
lowing transitions:

3. (P1, H1)
(ρ2,δ′2,N2)−−−−−→D (P12, H12), and

4. (P2, H2)
(ρ1,δ′1,N1)−−−−−→D (P21, H21)

such that δ1, δ′1, δ2, δ′2 have the Local Church-Rosser property, P12 'BS P21

and H12 ' H21.

6 .2 independence 85

In the following, (P1, H1) ≈X (P2, H2) denotes that P1 'BS
X P2 and

H1 ' H2 (e.g., in the above definition, (P12, H12) ≈ (P21, H21)).
Regarding the properties of this independence definition, we start by

an essential soundness claim: parallel transition independence implies
parallel independence of the involved underlying rule applications.

Proposition 6.5. Given two parallel independent transitions

(P, G)
(ρ1,δ1,N1)−−−−−→D (P1, H1) and (P, G)

(ρ2,δ2,N2)−−−−−→D (P2, H2),

the rule applications δ1 and δ2 are parallel independent.

Proof. According to Definition 6.2, there exist subsequent matches

and, therefore, rule applications H1
δ′2=⇒ H12 and H2

δ′1=⇒ H21 as in
Proposition 2.1.

We have to show that in this case, the original rule applications

G
δ1=⇒ H1 and G δ2=⇒ H2 are parallel independent. Suppose they are not:

then at least one of the morphisms d1 and d2 (let us choose d1 w.l.o.g.)
as in Definition 2.6 does not exist. But if d1 does not exist, we are not
able to choose the subsequent match m′1 as in Proposition 2.1, which
contradicts our assumption.

Note that the inverse claim does not hold; parallel rule-application
independence does not always imply parallel transition independence,
as the confluence of transitions might be blocked not only due to con-
flicting matches, but also due to non-applicability conditions becoming
enabled. For instance, our example topology control process

PnTC := pkTC.PnTC + (pActUS, {pkTC}).PnTC + (pActUL, {pkTC}).PnTC

with non-applicability conditions has parallel independent transi-
tions for any pairs of matches of pActUS and pActUL in any graph, as
those rules match different types of edges and, thus, deleting one of
those edges never obstructs the match of the other rule. However, the
corresponding actions (pActUS, {pkTC}) and (pActUL, {pkTC}) also have
a non-applicability condition each, forbidding that pkTC is applicable.
Consider as input topology for those rule applications the graph G′ex2
depicted in Fig. 6.2, which only differs from G′ex (Figure 5.3b) in having
an additional L;u-edge between nodes n3 and n9.

If we take, for example, as matches for the parallel applications of
pActUS and pActUL the edges n1n3 and n3n9 (being parallel independent),
then the corresponding transitions are not parallel independent: after
performing pActUS on n1n3, a match for pkTC arises (the triangle n1n3n9),
and the non-applicability condition prevents the action (pActUL, {pkTC})
to fire.

Note that the above statement did not take the shape of the process
specification into account, i.e., if the simultaneously available transi-
tions arise from a choice or from a parallel composition. Now, we

86 6 properties of the repro calculus

n1

n3n2

n4n5

n6

n8n7

n9
L;a

S;u
S;a

L;iL;i

L;u L;a

S;a S;a

L;u

L;i

S;a

G’ex2

Figure 6.2: Example Topology Graph G′ex2

conclude the presentation of the direct approach to independence by
summarizing the correspondence between the relevant independent
notions. In a way, the following theorem is the RePro counterpart
of the Local-Church Rosser and Parallelism Theorems (cf. Proposi-
tion 2.1) known from graph-rewriting theory. In particular, we state
that (i) as expected, equivalence of parallel independence and arbitrary
sequentialization holds also for RePro transitions, and (ii) this Local
Church-Rosser property also harmonizes with synchronization as a
parallelism notion.

Theorem 6.2. Given a RePro process (P, G), two rules ρ1, ρ2, and rule
name sets N1, N2, the following statements are equivalent:

1. There are parallel independent transitions (P, G)
(ρ1,δ1,N1)−−−−−→D (P1, H1)

and (P, G)
(ρ2,δ2,N2)−−−−−→D (P2, H2).

2. There are four transitions as in Figure 6.3 such that δ1, δ′1, δ2, δ′2 have
the Local Church-Rosser property.

Moreover, if there is a control transition P
(ρ1|ρ2,Nc)−−−−−→ P′, with Nc =

N1 ∪ N2, then the following is also equivalent with the above two:

3. There is a transition (P, G)
(ρ1|ρ2,δc,Nc)−−−−−−→D (P′, H) such that (i) for the

underlying matches m1, m2, mc of δ1, δ2, δc, respectively, it holds that
mc = m1 + m2 according to the coproduct construction, and (ii) H is
isomorphic to H12 and H21 as in Figure 6.3.

Proof.

(1)⇒ (2) : This is a direct consequence of Definition 6.2.
(2)⇒ (1) : First, let us observe that if there is a diamond of rule
applications having the Local Church-Rosser property, then none of
the upper rule applications δ1 and δ2 introduce graph structures which

6 .2 independence 87

(P, G)

(P1, H1) (P2, H2)

(P12, H12) ≈ (P21, H21)

(ρ1, δ1, N1) (ρ2, δ2, N2)

(ρ2, δ′2, N2) (ρ1, δ′1, N1)

Figure 6.3: Parallel Transition Independence

violate non-applicability conditions in N1 or N2. Thus, parallel inde-
pendence of those transitions follows from the parallel independence
of δ1 and δ2. Suppose they are not parallel independent: then at
least one of the morphisms d1 and d2 (let us choose d1 w.l.o.g.) as
in Definition 2.6 does not exist. But if d1 does not exist, we are not
able to choose the subsequent match m′1 as in Proposition 2.1, which
contradicts our assumption.
(1)⇒ (3) : First note that due to (1)⇒ (2), isomorphic graphs H12

and H21 as in Figure 6.3 are given. Due to Proposition 6.5, there

are parallel independent underlying rule applications G
δ1=⇒ H1 and

G δ2=⇒ H2. Thus, the statement is a consequence of Proposition 2.1.
(3)⇒ (1) : By the coproduct construction, there is a pair of unique

monomorphisms L1
l+1−→ L1 + L2

l+2←− L2 from the left-hand sides L1

and L2 of ρ1 and ρ2, respectively, to the left-hand side of the parallel
rule ρ1|ρ2. Then, for a match mc : L1 + L2 → G, the matches m1, m2 of
the single interleaved rule applications are given as mi = mc ◦ l+i for
i = 1, 2.

Then, those matches m1, m2 are parallel independent: assume by
contradiction that, e.g., the application δ2 would delete some element
from m1(L1) in G. But then, those m1, m2 cannot arise from a single
mc as above, as then, there would be no rule application δc; mc would
not be a valid match, as the DPO approach does not allow for matches
where different elements are mapped onto a single input element,
unless both rule elements are preserved by the rule. The parallel
independence of the corresponding transitions follow from this and
the fact that we know from the synchronized action that each non-
applicability condition in both N1 and N2 are fulfilled in G.

6.2.2 Asynchronous Approach

Next, we present the asynchronous approach to independence in RePro.

88 6 properties of the repro calculus

In the previously described so-called direct approach, we have
directly interpreted parallel rule-application independence (cf. Defi-
nition 2.6) in the context of our RePro transition system. Although
this approach provides a natural correspondence between confluent
transitions, the Local Church-Rosser Property and synchronization
(Theorem 6.2), it is agnostic to the structure of the control process mak-
ing the corresponding transitions available to fire in parallel. In turn,
those structural considerations are a central subject in concurrency
theory and, in particular, in process calculi: asynchronicity means, in
this context, the causal independence of transitions. Causal indepen-
dence, in turn, necessarily involves that those transitions come from
separate parallel components of the process (and do not synchronize
but rather proceed on their own, i.e., in an interleaved manner).

In particular, for adopting asynchronicity for RePro, consider as a
first example the following processes:

P := ρ1.ρ2.0 + ρ2.ρ1.0

Q := ρ1.0 || ρ2.0

where ρ1 and ρ2 have parallel independent applications to a graph G.
Figures 6.4a and 6.4b shows the relevant excerpts from RDTS, i.e., the
transitions corresponding to those rule applications for both P and
Q. (Note that for the sake of simplicity of demonstration, we do not
include ≈ in the confluent state and simply take a single graph H
reachable through both sequences.)

By Definition 6.2, both (P, G) and (Q, G) have parallel independent
transitions in Figures 6.4a and 6.4b; however, control-level parallelism
is present in the term structure only in the case of Q. Nevertheless,
as a consequence of the presence of synchronized actions such as
(ρ1|ρ2, δc, ∅) in Figure 6.4b, (P, G) and (Q, G) are not bisimilar. How-
ever, this side effect of RePro synchronization diminishes if we change
the specification of P to

P′ := ρ1.ρ2.0 + ρ2.ρ1.0 + (ρ1|ρ2).0

Then, P′ and Q are bisimilar, still, we are unable to distinguish sequen-
tial choice from parallel composition based on that relation.

In addition to the above artificial examples, recalling our consid-
erations about distributedness (Sect. 1.4) and inherently concurrent
systems like our WSN example (Sect. 1.3), asynchronicity might be
an important indicator if an abstract model specification adheres to
the distributed structure of the subject system. For example, although
we summarized the node behavior (creation and deletion) in a single
process Pnode (cf. Figure 4.6), there might be external modeling con-
straints (e.g., a realistic model where node creation is human-triggered,
whereas deletion happens spontaneously due to battery depletion)
inducing a parallel structure

Pcr || Pdel with Pcr := pCr.Pcr, Pdel := pDel.Pdel

6 .2 independence 89

(P, G)

(ρ2.0, G1) (ρ1.0, G2)

(0, H)

(ρ1 , δ1 , ∅) (ρ2 , δ2 , ∅)

(ρ2 , δ′2 , ∅) (ρ1 , δ′1 , ∅)

(a) Interleaving

(Q, G)

(0 | | ρ2.0, G1) (ρ1.0 | | 0, G2)

(0, H)

(ρ1 , δ1 , ∅) (ρ2 , δ2 , ∅)

(ρ2 , δ′2 , ∅) (ρ1 , δ′1 , ∅)

(ρ1 |ρ2 , δc , ∅)

(b) Parallel Composition

Figure 6.4: LTS Excerpts for Demonstrating Asynchronicity

The process Pcr || Pdel is bisimilar to Pnode, despite the fundamental
difference in their structure and principles. Asynchronicity addresses
exactly such issues.

To address the issue of reflecting parallel composition structure in
transition labels and, thus, of distinguishing such situations by an
appropriate bisimulation relation, the idea of asynchronous transition
systems (ATS) was first proposed in the PhD thesis of Marek Bed-
narczyk [8]. In the following, we build upon the work of Mukund
and Nielsen [83] and address asynchronicity (i.e., specification-level
parallelism) by extending the labels with location tags, i.e., identifiers
revealing the originating parallel component of each transition.

To summarize, as demonstrated by the two examples above, we
set a double goal while extending RePro by asynchronicity through
locations:

(i) to define an independence notion aware of parallel composition
structure along with a corresponding ATS for RePro processes,
and

(ii) to define a bisimulation notion strong enough to distinguish
synchronization but abstract enough to hide irrelevant rule ap-
plication details.

First, we deal with independence and provide a proper ATS of
graph-rewriting transitions; afterwards, we describe an appropriate
bisimulation.

Intuitively, asynchronicity means that two transitions occur in a
causally independent manner. In our setting, this boils down for two
transitions to originate from different parallel components of a single
process. Therefore, we adapt the procedure presented by Mukund and
Nielsen [83] to our transitions and augment their labels with location
tags uniquely identifying those parallel components. This serves as a
basis for defining a corresponding independence notion.

In particular, for each parallel composition operator, its left-hand
side is identified by a 0 whereas its right-hand side is identified
by a 1 (which is also the reason for parallel composition not being

90 6 properties of the repro calculus

(Q, G)

(0 | | ρ2.0, G1) (ρ1.0 | | 0, G2)

(0, H)

(ρ1 , δ1 , ∅) (ρ2 , δ2 , ∅)

(ρ2 , δ′2 , ∅) (ρ1 , δ′1 , ∅)

(ρ1 |ρ2 , δc , ∅)

0 1

1 0
〈0, 1〉

Figure 6.5: LTS Excerpt: Parallel Composition with Location Tags

commutative in our setting). For example, processes P and P′ above
(in the first example of the present section) are purely sequential and,
thus, their transitions do not get location tags. In contrast, Figure 6.5
shows the LTS excerpt of Figure 6.4b with additional location tags for
each transition.

Due to a potentially more complicated nested parallelism structure
of terms, single numbers do not suffice for identification in general,
but only strings of them. In addition, synchronization involves a syn-
chronous dependence to each partaking component, therefore, tags are
equipped with a hierarchical tree structure to reflect synchronization.

Formally, location tags (or often simply tags) are based on location
strings, i.e., strings over the 2-element set {0, 1}. The set of those
strings is denoted as S = {0, 1}∗ (where ∗ is the usual string operation
and,thus, a non-commutative one in contrast to R∗). S is ranged over
by s and also contains the empty string sε (often omitted as part of a
concrete tag). Due to the possibly nested composition structure, tags
are represented by a tree hierarchy of location strings.

Definition 6.3 (Location Tag). The syntax of location tags u, v is given
inductively by the following grammar:

u, v ::= s | s〈u, v〉

with s ∈ S .
The set of location tags is denoted Tag.

A location represented by a tag is a set of location strings comprising
each parallel component involved in the transition which the tag
belongs to. For concatenating strings, we simply write the strings after
each other.

Definition 6.4 (Location). The location loc(u) of a tag u is a set of location
strings defined by the following function:

loc(u) :=

{s} if ∃s ∈ S : u = s

{s0s1 | s1 ∈ (loc(v1) ∪ loc(v2))} if u = s0〈v1, v2〉

6 .2 independence 91

struct

P ≡ Q P α−→
u A

P′

Q α−→
u A

P′
pre

γ.P
γ−→A P

stop

0 X−→A 0

choice

P α−→
u A

P′

P + Q α−→
u A

P′
rec

A := P P α−→
u A

P′

A α−→
u A

P′

par0

P α−→
u A

P′

P ||Q α−→
0u A

P′ ||Q
par1

Q α−→
u A

Q′

P ||Q α−→
1u A

P ||Q′

sync

P
(ρ1,N1)−−−−→

u A
P′ Q

(ρ2,N2)−−−−→
v A

Q′

P ||Q (ρ1|ρ2,N1∪N2)−−−−−−−−→
〈0u,1v〉 A

P′ ||Q′

Figure 6.6: Transition Rules of Asynchronous Control Processes

Now, we extend our nCTS labels by inductively derived tags. The
resulting transition system, denoted ACTS, is a conservative extension
of nCTS; thus, in the following inference rules, the graph-rewriting
action part is the same as in Definition 4.5 (still including them here
for convenience). The compound labeling set

(R∗ × 2R)× Tag

of ACTS is denoted by ActACTS.

Definition 6.5 (Asynchronous Control Transition System). The asyn-
chronous control transition system (ACTS) of G is an LTS (P , ActACTS ∪
{X},−→A) with −→A being the least relation satisfying the rules in Fig. 6.6,
where

• α ranges over (R∗ × 2R) ∪ {X},

• γ ranges over R∗ × 2R,

• N ranges over 2R, and

• u, v range over Tag.

Sequential actions like pre and stop generate empty tags (omitted)
and the rest of the rules not dealing with parallelism simply keeps
tags. par0 and par1 add a 0 or a 1, respectively, to the front of a tag
coming from a left-hand side or right-hand side parallel component.
sync creates a compound tag by taking together those tags which
would arise by interleaved actions.

As for examples regarding tags and locations induced by ACTS,
first, consider the tags depicted in Figure 6.5: the single-digit tags of
transitions at the edges of the diamond are the result of par0 and par1,

92 6 properties of the repro calculus

respectively, representing interleaved transitions of parallel compo-
nents, where 0 and 1 distinguishes the side of the composition where
the respective transition originated. In contrast, the synchronized
transition in the middle gets a compound tag, as additionally empha-
sized by the surrounding brackets: 〈0, 1〉 represents a list of location
strings, where the tags of the involved transitions (here, both of those
are empty as they are derived by rule pre) get prefixed by 0 and 1,
respectively, due to rule sync. Note that the tag structure might even
be nested, reflecting the similar structure of parallel composition; e.g.,
the process

ρ1.0 || (ρ2.0 || ρ3.0)

has a tripartite synchronized transition

(ρ1|ρ2|ρ3,∅)−−−−−−→
〈0,1〈0,1〉〉 A

Those structures get flattened by the notion of locations: while for
single-digit and non-nested tags, the location function simply turns
tags into sets (e.g., loc(〈0, 1〉) = {0, 1}), it reads in depth the nested
tags:

loc(〈0, 1〈0, 1〉〉) = {0, 10, 11}

The asynchronous RePro transition system ARTS is defined analo-
gously to RDTS (Definition 5.1) on top of ACTS. Its compound action
set

(R∗ ×D × 2R)× Tag

is denoted ActARTS, also ranged over by α if the identity of the
respective transition system is clear from context. Moreover, the
graph-rewriting component of an action (µ, u) is ranged over by µ

and u denotes its location tag. Note that all the definitions for RDTS
naturally apply to ARTS via a forgetful mapping which drops the
tags.

Definition 6.6 (Asynchronous RePro Transition System). The asyn-
chronous RePro transition system (ARTS) is an LTS (P × |GraphT|,
ActARTS ∪ {X}, −→AD) where −→AD is the least relation satisfying the fol-
lowing rules:

mark

P
(ρ,N)−−−→

u A
P′ G δ

=⇒ H ∀p ∈ N : G 6 p=⇒

(P, G)
(ρ,δ,N)−−−−→

u AD
(P′, H)

stop

P X−→A P′

(P, G)
X−→AD (P′, G)

6 .2 independence 93

Based on tags and locations, we can define what it means for transi-
tions to be asynchronous. Intuitively, two transitions are asynchronous
and, thus, causally independent if they originate in different parallel
components. This is reflected by the following definition.

Definition 6.7 (Asynchronous Actions and Transitions). Two tags u1

and u2 are asynchronous if ∀l1 ∈ loc(u1), l2 ∈ loc(u2) : l1 6� l2 ∧ l2 6� l1,
where � denotes a string prefix relation.

Two transitions (of any LTS whose labels contain tags) are asynchronous if
their labels contain asynchronous tags.

As a basic sanity check for the above definition of asynchronicity in
the context of ARTS, we verify the claim that parallel independence
and asynchronicity indeed means that those transitions come from
separate parallel components and, thus, are able to synchronize.

Proposition 6.6. If transitions

(P, G)
(ρ1,δ1,N1)−−−−−→

u1 AD
(P1, H1) and (P, G)

(ρ2,δ2,N2)−−−−−→
u2 AD

(P2, H2)

are parallel independent and asynchronous, then there is a synchronized
transition

(P, G)
(ρ1|ρ2,δc,N1∪N2)−−−−−−−−−→
〈0u1,1u2〉 AD

(P′, H)

Proof. The simultaneous availability of nCTS actions (ρ1, N1) and (ρ2,
N2) means that P either contains a “top-level” choice or a parallel
composition, i.e., either P := P′ + P′′ or P := P′ || P′′ (where P′ and
P′′ might be defined by process identifiers, but this is of no rele-

vance here). Assume w.l.o.g. that (P′, G)
(ρ1,δ1,N1)−−−−−→

u1 AD
(P1, H1) and

(P′′, G)
(ρ2,δ2,N2)−−−−−→

u2 AD
(P2, H2) (i.e., that P′ is capable of the first transi-

tion and P′′ of the second one).
If P := P′+ P′′, those transitions cannot be asynchronous: according

to Definition 6.5, rule choice, both would get the same tag. Thus,
P := P′ || P′′ and those transitions are always asynchronous due to
the tag construction in Definition 6.5, rules par0 and par1: u1 has a
leading 0 while u2 has a leading 1, preventing any of their location
strings to be prefixes of each other, as each location of u1 starts with a
0, while each location of u2 starts with a 1.

Thus, the statement is a direct consequence of Theorem 6.2, as the
transitions above can always synchronize in P.

Our final goal is to provide a proper asynchronous (labeled) transi-
tion system (ATS) for our controlled graph-rewriting processes. An
ATS is an LTS equipped with an independence relation on their actions
(i.e., transition labels) such that the well-known parallel and sequential
shift properties hold, as recalled in the following definition [83].

94 6 properties of the repro calculus

Definition 6.8 (Asynchronous Labeled Transition System). An asyn-
chronous labeled transition system (ATS) is a tuple (S, A,→X, I), where
(S, A,→X) is an LTS and I ⊆ A × A is an independence relation
on actions, satisfying the following conditions for any (α1, α2) ∈ I and
s, s1, s2, sc ∈ S:

(i) Whenever s
α1−→X s1 and s α2−→X s2, then ∃sc s.t. s1

α2−→ sc and s2
α1−→ sc.

(ii) Whenever s
α1−→X s1 and s1

α2−→X sc, then ∃s2 s.t. s1
α2−→ s2 and

s2
α1−→ sc.

For RePro actions, we observe that it is not straightforward to di-
rectly fit the above definition. In a way, DPO diagrams in our labels are
too fine-grained for directly satisfying the above shift properties: when-
ever the graph becomes rewritten by a transition, even if some match
of another rule was preserved by the rule application, the correspond-
ing action in a new state results in a different DPO diagram—even if
we are able to capture the connection of those “shifted” DPO diagrams
along the lines of the Local Church-Rosser Theorem (Proposition 2.1).
In the following, we make this notion precise by defining a Church-
Rosser equivalence on DPO diagrams. Note that, as elsewhere in the
paper, whenever the existence of a rule is required, we assume that
rule coming from a given fixed GTS.

Definition 6.9 (Church-Rosser Equivalence, Classes). Let δ1 and δ′1 be
DPO diagrams with δ1 being an application of rule ρ1 on graph G with match
m1, and δ′1 being an application of ρ1 as well, on graph H2 with match m′1.

δ1 is Church-Rosser-equivalent (CRE) to δ′1, denoted δ1 ≡CR δ′1, if there
is a DPO diagram δ2 representing an application of rule ρ2 on G with match
m2, s.t. matches m1 and m′1 are as in Proposition 2.1. The transitive closure
of ≡CR is denoted as ≡∗CR.

A CRE class E = {δ1, δ2, . . .} is the largest set of DPO diagrams such
that ∀δi, δj ∈ E : δi ≡∗CR δj. The set of CRE classes is denoted E . The unique
CRE class containing a DPO diagram δ is denoted E(δ).

Note that uniqueness of E(δ) is due to each class containing all the
equivalents along each possible shifts (i.e., CRE classes being largest
sets).

We derive from ARTS a transition system which abstracts DPO tran-
sitions up to Church Rosser equivalence, thus, harmonizing with the
general concept of ATS (Definition 6.8). The corresponding compound
action set is denoted

ActACR-RTS := (R∗ × E × 2R)× Tag,

also ranged over by α if LTS identity is clear from context.

Definition 6.10 (Asynchronous Church-Rosser RePro Transition Sys-
tem). The asynchronous Church-Rosser RePro transition system, abbre-
viated as ACR-RTS, is an LTS (P × |GraphT|, ActACR-RTS ∪ {X}, −→CR),

6 .2 independence 95

derived from ARTS s.t. −→CR is the least transition relation satisfying the
following rule:

lcr

(P, G)
(ρ,δ,N)−−−−→

u AD
(P′, H)

(P, G)
(ρ,E(δ),N)−−−−−−→

u CR
(P′, H)

Having ACR-RTS with an appropriate abstraction of actions, we
are now ready to define an independence relation which will make
ACR-RTS a proper ATS according to Definition 6.8.

Definition 6.11 (Asynchronous Independence). Two ACR-RTS transi-
tions

1. (P, G)
(ρ1,E1,N1)−−−−−→

u1 CR
(P1, H1) and

2. (P, G)
(ρ2,E2,N2)−−−−−→

u2 CR
(P2, H2)

are asynchronously independent if u1, u2 are asynchronous and there
are subsequent transitions

3. (P1, H1)
(ρ2,E2,N2)−−−−−→

u2 CR
(P′, H) and

4. (P2, H2)
(ρ1,E1,N1)−−−−−→

u1 CR
(P′, H).

The asynchronous independence relation ICR ⊆ ActACR-RTS ×ActACR-RTS

is defined as follows: (α1, α2) ∈ ICR iff α1 and α2 are asynchronously
independent.

Theorem 6.3. (ACR-RTS, ICR) is an ATS.

Proof. We have to verify Properties (i) and (ii) from Definition 6.8.

(i) This is a direct consequence of Definition 6.11.

(ii) For transitions (P, G)
(ρ1,E1,N1)−−−−−→

u1 CR
(P1, H1)

(ρ2,E2,N2)−−−−−→
u2 CR

(P′, H)

with u1, u2 being asynchronous, there should be transitions in

reverse order: (P, G)
(ρ2,E2,N2)−−−−−→

u2 CR
(P2, H2)

(ρ1,E1,N1)−−−−−→
u1 CR

(P′, H).

The existence of those subsequent transitions (3. and 4.) as in
Definition 6.11 shows that there are parallel independent rule
applications δ1 and δ2 of ρ1 and ρ2, respectively, on graph G: if
this would not be the case, at least one of the corresponding
Ei = E(δi), i ∈ {1, 2} could not arise as subsequent transition, as
there would be no Church-Rosser-equivalent DPO diagram to δi
in Ei.

96 6 properties of the repro calculus

But then, any Church-Rosser-equivalent of δ2, shifted along δ1,
is in E2, and thus, E2 is also available as an outgoing transition
form (P, G). Using the same argument, E1 then also includes a
Chruch-Rosser-equivalent of δ1 shifted along δ2, thus providing
the two transitions required for our statement.

As we have seen on our second pair of example processes

P′ := ρ1.ρ2.0 + ρ2.ρ1.0 + (ρ1|ρ2).0

Q := ρ1.0 || ρ2.0

in the beginning, given a graph G they cannot be distinguished by
bisimulation over “plain” RePro transitions; nevertheless, location
tags allow for a distinction, independently if a pair of simultaneously
available transitions have parallel independent rule applications are
not. Moreover, tags help to yield a proper ATS for RePro.

However, introducing Church-Rosser equivalence classes to prop-
erly capture asynchronicity opens up a further problem: although
transitions represent sets of DPO diagrams (up to Church-Rosser
equivalence), the concrete graphs in the states prevent ≈A (cf. the
notation after Definition 6.2) from being a bisimulation for ACR-RTS
processes. Next, we deal with this problem and propose a further
abstraction, namely, factoring out DPO diagrams up to isomorphism.
Finally, we will show, that the combined abstraction of Church-Rosser
equivalence and DPO diagram isomorphism leads to ≈A being an
appropriate bisimulation relation for a corresponding variant of ACR-
RTS.

Definition 6.12 (Abstract Church-Rosser Equivalence, Classes). Given
two DPO diagrams δ1 and δ2 as in Definition 2.5, with each graph in them
indexed by 1 and 2, respectively, they are isomorphic, denoted as δ1

∼= δ2,
if there exist isomorphisms L1 → L2, K1 → K2, R1 → R2, G1 → G2, D1 →
D2, H1 → H2, such that each arising square commutes.

An abstract CRE (ACRE) class Ẽ is the largest set of DPO diagrams
such that ∀δi, δj ∈ Ẽ, there is a δk (possibly being equal to δi or δj) such that
δi ≡∗CR δk

∼= δj. The set of ACRE classes is denoted Ẽ . The unique ACRE
class containing a DPO diagram δ is denoted Ẽ(δ).

As expected, there is a corresponding transition system where E is
replaced by Ẽ . The corresponding compound action set

(R∗ × Ẽ × 2R)× Tag

is denoted ActÃCR-RTS.

Definition 6.13 (Abstract Church-Rosser RePro Transition System).
The abstract Church-Rosser RePro transition system (ÃCR-RTS) is
an LTS (P × |GraphT|, ActÃCR-RTS ∪ {X}), derived from ARTS by the
following rule:

6 .3 repro as a control language : expressiveness 97

alcr

(P, G)
(ρ,δ,N)−−−−→

u AD
(P′, H)

(P, G)
(ρ,Ẽ(δ),N)−−−−−−→

u ACR
(P′, H)

Now, we are ready to verify our bisimulation notion.

Theorem 6.4. ≈A is a bisimulation on the set of ÃCR-RTS states.

Proof. We verify if transitions of states (P, G) ≈A (Q, H) fulfill the
requirements for a bisimulation (namely, that each transition is mim-
icked by the other side and the corresponding subsequent states are
also bisimilar).

• (P, G)
(ρ,Ẽ(δ),N)−−−−−−→

u ACR
(P′, G′) implies (Q, H)

(ρ,Ẽ(δ),N)−−−−−−→
u ACR

(Q′, H′)

due to P 'BS
A P′ and rules mark and alcr, if we show that

for each δ s.t. (P, G)
(ρ,δ,N)−−−−→

u AD
(P′, G′), there is a δ′ with

(Q, H)
(ρ,δ′,N)−−−−→

u AD
(Q′, H′) s.t. Ẽ(δ) = Ẽ(δ′).

Given isomorphism i : G → H, taking m′ = i ◦m as the match
for δ′, δ and δ′ are isomorphic: their span is the same (that of ρ),
G ' H by assumption, D ' D′ (the pushout complements of δ

and δ′, respectively) as the pushout complement is unique up to
isomorphism, and G′ ' H′ as the pushout object is also unique
up to isomorphism. Then, Ẽ(δ) = Ẽ(δ′) due to Definition 6.12.

The inverse implication can be shown analogously due to the
symmetry of the relation.

• (P′, G′) ≈A (Q′, H′) due to P 'BS
A Q ⇒ P′ 'BS

A Q′ and G′ ' H′

as above; thus, bisimilarity holds by coinduction.

Summarizing, the above result reproduces that part of the work
by Mukund and Nielsen [83] which is concerned with providing
an independence-preserving bisimulation based on abstract events
and a corresponding ATS. However, to verify the other result of
their paper, i.e., if the resulting ATS is elementary and, thus, eligible
for a 1-safe Petri net translation, would require the development of
additional notions for RePro, e.g., that of regions and their separations
(cf. Definition 4.9 and Lemma 4.12 in [83]). Thus, this remains as a
major item of future work, but we discuss the relation of Petri nets
and CCS-like processes in Sect. 8.1.

6.3 repro as a control language : expressiveness

As RePro is motivated by the wish to increase the expressiveness of
graph-rewriting systems by extending them with additional control, it

98 6 properties of the repro calculus

is also important (besides the process-algebraic aspects) to evaluate
if the control constructs provided by RePro are expressive enough,
in the context of controlled graph rewriting scenarios. To this end, in
the present section, we consider as a basis for comparison a reference
control language called Graph Programs (GP) [49]. In particular, the
following properties of GP make it appropriate to utilize it as reference:

• Computational completeness: A notion of completeness is central
when reasoning about expressiveness. However, there are differ-
ent interpretations of completeness for graph rewriting; in fact,
it is straightforward to state that (DPO) graph rewriting itself
is Turing-complete, as it is easy to simulate a Turing-machine
using graph-rewriting rules [49]. Instead, our focus here is on
the completeness of a control language on top of graph-rewriting
rules. To that end, Habel and Plump interpret computational
completeness in terms of partial functions on labelled graphs: their
main result states that for every such function, there is a graph
program computing it. (We refer to their paper [49] for motiva-
tions and details.) Nevertheless, we can construct a type graph
corresponding to their family of labelled graphs, thus, GP can
be meaningfully compared to RePro in terms of expressiveness.

• Minimality: Although there is a number of different control lan-
guages for graph rewriting, exhibiting a large scale in terms of
richness in constructs; therefore, it is particularly appealing for
expressiveness reasoning purposes that GP explicitly aims at
employing as few constructs as possible to achieve complete-
ness. Indeed, Habel and Plump show that their definition of
GP, consisting of only three constructs, is minimal in the sense
that each of those three constructs is necessary to retain com-
pleteness. Although establishing a correspondence between GP
and RePro does not suffice to state that RePro can simulate
every state-of-the-art controlled graph-rewriting approach (cf.
also Chapter 3; a complete treatment of the topic is out of scope),
still, it provides a neat baseline, also providing valuable insights
for encoding more elaborate control structures (like, e.g., those
of [102]).

• Algorithms: Besides the aforementioned formal aspects, GP also
shares with RePro the aim of specifying algorithms whose basic
operations are graph-rewriting steps. Moreover, both GP and
RePro have a “slim” design, focusing on formal aspects and
properties of such an approach, in contrast to richer, usability-
centered languages (cf. Chapter 3). Note, however, that while
RePro explicitly addresses concurrency, this is not the case for
GP; as an expected consequence, parallel composition of RePro

might be in fact omitted for establishing a correspondence to GP.

6 .3 repro as a control language : expressiveness 99

We start by recapitulating the three control constructs of graph
programs, also stating under which circumstances the execution on a
given graph G is considered to be successful, and what is the result
graph of a successful execution:

1. Non-deterministic choice of a rule from a set of rules (also called
an elementary graph program). A choice is successfully executed
if at least one of the rules is applicable to G, and the (non-
deterministic) result is the output graph of that rule application.

2. Sequential composition of arbitrary graph programs, where the
result graph of a sequential component (i.e., sub-program) is
passed as input graph to the subsequent one; consequently,
the execution is successful if each component can be executed
successfully.

3. Maximal iteration of the above sequences (potentially consisting
of a single choice set), in the sense that the program is executed
repeatedly as long as possible: after each successful iteration,
the result graph of that single iteration is passed as input to the
next iteration; the result graph of the overall execution is the
graph on which the last iteration does not succeed. Accordingly,
the overall execution of a maximal iteration construct is always
successful.

In the following, we first recapitulate the formal definitions for GP;
the syntax is iterative, based on the above constructs, and the semantics
is a binary relation mapping input graphs to (sets of) output graphs,
where an output graph is yielded if the program terminates. This
semantic concept harmonizes with the aforementioned completeness
notion of GP. Afterwards, we establish the correspondence between
GP and RePro by providing an encoding of graph programs as RePro

control processes.
Note that GP is based on graphs labeled over a label alphabet
C = 〈CE, CN〉 (for edge and node lables, respectively). Nevertheless,
it is easy to construct a type graph TC which is in a one-to-one cor-
respondence to the labeling provided by C; thus, AC , the class of
abstract graphs labeled over C (as introduced in [49]), is isomorphic to[
|GraphTC |

]
. Nevertheless, we still use AC in definitions and results

in the rest of this section, as the main result of completeness exploits
constructions based on this assumption. However, due to the above
observations, the representation of graphs does not influence our main
goal in this section, namely reasoning about the expressive power of
the control constructs in GP and RePro, respectively.

In the following, to avoid notational abundance, we simply use
plain rule names (ranged over by p) in the syntax of GP; however, we
always assume an underlying GTS with a mapping of those names to
actual rule spans.

100 6 properties of the repro calculus

Definition 6.14 (Syntax of Graph Programs [49]). Graph programs are
inductively defined as follows (ranged over by GP):

(1) A finite set of rule names GP = {p1, . . . , pn} is an elementary graph
program.

(2) If GP1 and GP2 are graph programs, then GP1; GP2 is a graph program.

(3) If GP is a graph program by (1) or (2), then GP↓ is a graph program.

The set of graph programs is denoted as GP .

Accordingly, the semantics of GP is also defined inductively. A
graph program defines a binary relation on (labeled) graphs which
maps input graphs to output graphs whenever the program terminates
successfully. The underlying rule application relation⇒GP provides
the input-output relation on (abstract labeled) graphs and, thus, the
basis for the inductive semantics definition. Although⇒GP necessarily
has to be distinguished (due to formal details) from the application
relation =⇒ used elsewhere in the thesis, this difference is immaterial
to the following argumentation.

Due to the inherent non-determinism of rule applications as well as
the GP choice construct, in general, a graph program maps a set of
output graphs to a single input graph.

Definition 6.15 (Semantics of Graph Programs [49]). Given a program
GP over a label alphabet C, the semantics of GP is a binary relation→GP on
AC , which is inductively defined as follows:

(1) →GP = ⇒GP if GP = {p1, . . . , pn} is an elementary program (i.e., a
rule name set).

(2) →GP1;GP2 =→GP2 ◦ →GP1 .

(3) →GP↓ = {〈G, H〉 | G →∗GP H and 6 ∃H′ : H →GP H′}.

As for their respective semantic domains, RePro and GP do not
directly correspond as RePro has an SOS semantics, whereas the
semantics of GP is given by a relation on input-output graphs.

We proceed by defining such an input-output (IO) semantic relation
for RePro.

Definition 6.16 (IO Semantics of RePro). The IO semantics of a control
process P is given by the binary relation ⇒IO

P over graphs in |GraphT|
defined as follows: G ⇒IO

P H iff there exists a successful trace (ρ1, δ1, N1)

(ρ2, δ2, N2) . . . (ρn, δn, Nn)X from (P, G) s.t. G
δ1=⇒ . . . δn=⇒ H.

Note that for technical convenience, the IO semantics of a graph
process is defined over concrete graphs in |GraphT|, while in Defini-
ton 6.15, we considered abstract graphs (as in [49]). However, the IO
semantics can be easily shown to be invariant w.r.t. isomorphisms: if
G ⇒IO

P H, then G ⇒IO
P H for any G ' G′, H ' H′.

6 .3 repro as a control language : expressiveness 101

Now, we are ready to present the encoding of graph programs as
RePro control processes. An encoding [[_]] : GP → P from graph
programs to RePro control processes is a function; we provide a
function definition which constructively synthesizes a RePro control
process term from a given graph program. Afterwards, to verify the
soundness of the encoding, we show that it preserves IO semantics (in
the GP sense).

The encoding follows the inductive schema of GP and is based on
the following ideas:

(1) For an elementary program, the corresponding control process
is simply a choice over those rules. As an elementary program
terminates after one rule application, each choice branch consists
of a rule name followed by a 0.

(2) For encoding sequences like GP1; GP2, we have to ensure that
in exactly those states where GP1 terminates successfully, the
execution continues with GP2. To that end, in the corresponding
encoded RePro control processes, the closing 0’s of the first process
are replaced by a unique process identifier mapped to the second
one by a defining equation.

(3) As for maximal iteration GP↓ over a graph program GP, we again
take a unique process identifier to capture iteration by recursion.
In addition, we have to define a special control process (put as
an alternative choice beside the recursive process) which acts as a
stopping criterion for the iteration: this additional process should
reach a 0 (i.e., terminate successfully) for exactly those graphs on
which the program in the loop body does not succeed.

For providing those stopping processes as needed in the last case
above, we follow the same inductive definition schema:

(1) If the loop body is an elementary program, then the stopping
process consists of a single action with the empty rule ε as positive
component and the set of all rules in the elementary program
as non-applicability condition, followed by 0. This 0 is reached
exactly if the input graph is such that none of the rules is applicable
on it.

(2) If the loop body contains a sequence like GP1; GP2, its failure
means that either GP1 fails or GP1 is successful but GP2 fails
on the input GP1 provides. This latter case is problematic as
demonstrated by the following simple example:

Consider the simple program GP = ({p1} ; {p2})↓. An encoding
[[GP↓]] applied to a graph G should have a successful derivation
leading to G itself not only in the case p1 cannot be applied to

102 6 properties of the repro calculus

G (encodable as (ε, {p1}).0), but also when there is a “middle
graph”, e.g., H, such that G

p1
=⇒ H and p2 is not applicable to H.

As indicated by the example, there is a class of (iterated sequential)
graph programs for which there is no general schema to define
stopping processes, given the above IO semantics of RePro, well-
aligned with GP semantics. To overcome this discrepancy between
the encoding domain and the IO semantics, we identify a sub-
language of so-called backtracking-free programs (Definition 6.18),
which are still sufficient to obtain computational completeness of
RePro, while avoiding the above issue.

(3) Although iterations cannot be iterated again directly, due to the
above case, it is necessary to also provide a definition of a stopping
process for maximal iterations. However, this should be an artificial
process which cannot be executed successfully on any graph (as a
maximal iteration is successful for any graph per definition); for
this purpose, it is sufficient to specify a single-action process using
any rule p, where p is used both as a positive component (rule to
apply) and a non-applicability condition.

As a consequence of the requirements identified above, the formal
definition of the encoding makes use of the following definitions:
sequentialization of control processes (Definition 6.17) and the notion
of backtracking-free programs (Definition 6.18) for delineating the domain
of the encoding.

The sequentialization of two control processes P and Q is another
process, written as P # Q, essentially consists in correctly “plugging
in” the definition of Q at those points of the execution of P where it
would terminate, i.e., reach a 0 and fire a X.

Definition 6.17 (Sequentialization of Control Processes). Let P, Q ∈ P
be two sequential processes (i.e., not containing ||). Their sequentializa-
tion is the process P # Q := P[AQ/0] where AQ ∈ K is a fresh identifier
with defining equation AQ := Q and P[X/0] denotes the substitution of X
for 0 in P, defined by induction on the structure of P as follows:

• 0[X/0] = X,

• (γ.P)[X/0] = γ.(P[X/0]),

• (P + Q)[X/0] = P[X/0] + Q[X/0], and

• A[X/0] = AX,

where AX is a fresh process identifier with defining equation AX :=
P[X/0] if A := P.

The notion of backtracking-free programs identifies that subset of
graph programs which is handled (i.e., is within the domain) of our

6 .3 repro as a control language : expressiveness 103

encoding. Intuitively, a program is backtracking-free if the applica-
bility of the whole program to a given input graph can be “statically”
decided by looking at the rules in the program term and the graph
itself, without the need to consider any other concrete graph. Here, applica-
bility of a program GP to a graph G means that there exists a graph
H s.t. G →GP H. Formally, the backtracking-free property is captured
by an inference system as presented in the following definition, where
the single rules reflect the following intuitions:

• Every elementary graph program is backtracking-free, as we are
able to check the applicability of each rule to G (cf. the axiom
rule BFEL).

• A graph program is backtracking-free if it is a maximal iteration,
as such a program cannot fail (cf. the axiom rule BFALAP).

• A sequential graph program GP1; GP2 is backtracking-free if (1)
GP1 is backtracking-free and (2) GP1 and GP2 have a special
relation such that GP2 always succeeds after (ASA in short) GP1

has been executed (cf. rule BFSEQ).

Although the ASA relation is defined over intermediate graphs
arising after the execution of GP1, there are cases where the ASA rela-
tion of two programs might be shown through reasoning solely over
program syntax and the constituting rules. As an example from our
WSN scenario, consider the following simple programs (cf. Sect. 4.1):

GP1 := {pCr}; {pCr}

GP2 := {pActUS}; {pActUS}

Here, GP2 will always succeed after GP1: whenever we are success-
ful in creating two (short unclassified) links (GP1), we can be sure that
afterwards, a program of activating two short unclassified links (GP2)
will also be successful, regardless of the concrete topology.

The following definition formalizes the foregoing considerations on
backtracking-free programs.

Definition 6.18 (Backtracking-Free Programs). A graph program GP is
backtracking-free (BF), denoted as BF(GP), if this can be inferred by the
following inference system:

BFEL BF({p1, . . . , pn})
BFALAP BF(GP↓)

BFSEQ
BF(GP1) ASA(GP1, GP2)

BF(GP1; GP2)

104 6 properties of the repro calculus

where the ASA predicate (for Always Succeeds After) is defined as:

ASA(GP1, GP2) iff for all G →GP1 X there is an H such that X →GP2 H.

The set of backtracking-free graph programs is denoted by BF(GP).

A failure process ĜP for a graph program GP is a control process
which terminates successfully exactly on those input graphs where GP
fails; moreover, the output of ĜP is the unmodified input graph. Thus,
failure processes can be used to test the applicability of GP on a given
graph. Although failure processes cannot be specified constructively
in general, this is possible for backtracking-free graph programs as
shown in the following definition.

Definition 6.19 (Failure Processes). The failure process ĜP of a backtracking-
free graph program GP ∈ BF(GP) is a RePro control process, defined
inductively as follows:

1. ̂{p1, . . . , pn} = (ε, {p1, . . . , pn}).0, where ε : (∅ ← ∅ → ∅) (see
Definition 2.3);

2. ĜP↓ = (p, {p}).0, where p is any rule;

3. if BF(GP1) and ASA(GP1, GP2), then ̂GP1 ; GP2 = ĜP1.

The following proposition ensures that failure processes indeed
fulfill their purpose: (1) they do not modify the input graph (i.e.,
their IO semantics is an identity relation) and (2) they terminate
successfully on every graph, and only on those, to which the original
graph program is not applicable.

Proposition 6.7. Let GP ∈ BF(GP) be a backtracking-free program and let
ĜP be its failure process. Then for each graph G,

(ĜP, G)
α−→D (P, H) iff P = 0, H ∼= G, and @G′ . G →GP G′

Proof. We proceed by induction on the structure of the backtracking-
free program GP.

1. If GP = {p1, . . . , pn}, there is a transition

(ĜP, G) = ((ε, {p1, . . . , pn}).0, G)
(ε,δ,{p1,...,pn})−−−−−−−−→D (0, H)

iff (by rule mark, Definition 5.2) none of the rules in GP is
applicable to G (thus @G′ . G →GP G′) and H ' G, because
pushouts preserve isomorphisms [38].

2. For a program GP↓, given any graph G there is no transition
from the graph process (ĜP↓, G) = ((p, {p}).0, G), because the
preconditions of rule mark are inconsistent. In fact, GP↓ can be
applied successfully to any graph.

6 .3 repro as a control language : expressiveness 105

3. Given a program GP = GP1 ; GP2, there is a transition (ĜP, G) =

(ĜP1, G)
α−→D (P, H) iff (by inductive hypothesis, since BF(GP1))

P = 0, H ∼= G and @G′ . G →GP1 G′, iff P = 0, H ∼= G and
@G′ . G →GP1;GP2 G′, because by hypothesis ASA(GP1, GP2).

Definition 6.20 (Encoding Graph Programs as Processes). The encoding
function [[_]] : BF(GP)→ P is defined as follows:

• [[{p1, . . . , pn}]] := ∑n
i=1 pi.0.

• [[GP1 ; GP2]] := [[GP1]] # [[GP2]].

• [[GP↓]] := AGP↓ ∈ K where AGP↓ := [[GP]] # AGP↓ + ĜP.

First, note that the encoding generates only sequential processes. In
order to prove the correctness of the encoding, we first present the
following characterization of the IO semantics of a process obtained
by sequentialization.

Proposition 6.8. Let P, Q ∈ P be two sequential processes (i.e., not
containing ||), and P # Q be their sequentialization as in Definition 6.17.
Then G ⇒IO

P#Q H if and only if there is a graph X such that G ⇒IO
P X and

X ⇒IO
Q H.

Proof.

• If: By Definition 6.16, G ⇒IO
P X iff there is a successful trace

(ρ1, δ1, N1) . . . (ρn, δn, Nn)X such that (P, G)
(ρ1,δ1,N1)−−−−−→D (P1, G1)

. . .
(ρn,δn,Nn)−−−−−→D (Pn, X)

X−→D (0, X). This is the case iff (by rule
mark) there is a derivation

G
δ1=⇒ G1 . . . δn=⇒ X (†)

and transitions P
(ρ1,N1)−−−−→ P1 . . .

(ρn,Nn)−−−−→ Pn
X−→ 0. Similarly, X ⇒IO

Q
H iff there is a derivation

X
δ′1=⇒ G′1 . . .

δ′m=⇒ H (‡)

and transitions Q
(ρ′1,N′1)−−−−→ Q1 . . .

(ρ′m,N′m)−−−−→ Qm
X−→ 0.

Composing derivations (†) and (‡) we obtain a derivation G ⇒∗
H. By induction on the structure of Pn we can show that for
each successful trace α1 . . . αnX for P and for each transition
Q α−→ Q′ there is a trace α1 . . . αnα for P # Q = P[Q/0] to Q′. This
allows to compose the above traces for P and Q into a single
successful trace for P # Q, which together with the derivation
G ⇒∗ H witnesses the fact that G ⇒IO

P#Q H.

106 6 properties of the repro calculus

• Only if: It can be shown by induction on the structure of the
sequential process P # Q, using Definition 6.17, that each success-
ful trace for P # Q can be decomposed (possibly in more than
one way) as στX, where σX is a successful trace for P and τX
is a successful trace for Q. This allows to split any successful
trace from (P # Q, G) to (0, H) into a successful trace for (P, G)

to (0, X) and one for (Q, X) to (0, H), as desired.

The following central proposition ensures that there is, as expected,
a one-to-one correspondence between the semantics of backtracking-
free graph programs and their encodings as RePro control processes.

Proposition 6.9. For each backtracking-free graph program GP ∈ BF(GP)
and graph G ∈ |GraphTC |, it holds that

G →GP H iff G ⇒IO
[[GP]] H

Proof. We proceed by induction on the structure of GP.

(1) If GP = {p1, . . . , pn} is an elementary graph program, then [G]

→GP [H] iff G =⇒ H with rule p ∈ {p1, . . . , pn} for some match m,

iff [[GP]] = ∑n
i=1 pi.0

(p,∅)−−−→ 0 and G δ
=⇒ H via p, iff by rule mark

we have ([[GP]], G)
(p,δ,∅)−−−→D (0, H)

X−→D (0, H), that is G ⇒IO
[[GP]] H.

(2) If GP = GP1; GP2, [G] →GP [H] iff there is a graph X such that
[G] →GP1 [X] and [X] →GP2 [H], iff (by induction hypothesis)
G ⇒IO

[[GP1]]
X and X ⇒IO

[[GP2]]
H iff, by Proposition 6.8, G ⇒IO

[[GP1#GP2]]

H, iff G ⇒IO
[[GP]] H.

(3) If GP′ = GP↓ then, by Definition 6.15, [G] →GP′ [H] iff there is
a sequence of graphs G = G0, G1, . . . , Gn = H, with n ≥ 0, such
that [Gi−1]→GP [Gi] for all i ∈ [1, n], and there is no graph X such
that [H] →GP [X]. On the other hand by the definition of [[GP↓]]
one easily checks that G ⇒IO

[[GP↓]] H iff there is a sequence of graphs

G = G′1, G′2, . . . G′n = H such that G′i−1 ⇒IO
[[GP]] G′i for i ∈ [1, n]

and (AGP↓, H)
α−→D (0, H)

X−→D (0, H). Exploiting the induction
hypothesis it only remains to show that

(AGP↓, H)
α−→D (0, H) (†)

if and only if 6 ∃H′ : H →GP H′. First note that by the definition
of #, there cannot be any transition [[GP]] # AGP↓

α−→ 0, Therefore (†)
must be obtained by a transition ĜP α−→ 0. Thus we can conclude by
showing, by induction on GP, that (ĜP, H)

α−→D (0, H) if and only
if 6 ∃H′ : H →GP H′, an immediate consequence of Proposition 6.7.

6 .3 repro as a control language : expressiveness 107

Finally, to conclude our considerations on expressiveness, we claim
that the control constructs of RePro are indeed computationally com-
plete in a precise sense based on the work of Habel and Plump [49]:
as a consequence of Proposition 6.9 and Theorem 2 of the cited paper,
control processes are also expressive enough to compute any par-
tial function on graphs. This result can be obtained despite the fact
that the above encoding is partial and is confined to backtracking-free
programs: The proof of Theorem 2 of [49] is based on the concrete spec-
ification of a Turing machine [109], i.e., a universal graph program able
to simulate any graph computations corresponding to input-output
relations (cf. Definition 6.15). Thus, we can obtain an analogous result
by showing that this Turing machine specification consists of graph
programs which are backtracking-free (or might be directly encoded
into RePro otherwise).

Corollary 6.2. Given a label alphabet C and subalphabets C1 and C2, for
every computable partial function f : AC1 → AC2 , there exists a RePro

control process that computes f .

Proof. According to Theorem 2 in [49], there is a graph program GP
which computes any such function, i.e., its semantics is a relation
corresponding to f . Then the statement follows immediately from
Proposition 6.9, if we are able to verify that the entire graph program
presented in [49] for proving Theorem 2 can be encoded into a control
process. In the following, we revisit the specification to see if it is
eligible for such an encoding. In the rest of the proof, by ‘paper’, we
specifically mean the work of Habel and Plump [49].

For most of the programs in the paper, we show that they are
backtracking-free and, thus, encodable by the function in Defini-
tion 6.20.

In particular, most maximal iteration↓ operators in the paper are
applied to elementary programs, which are BF by axiom BFEL of
Definition 6.18. An exception to this is the following definition, where
Choose, Inc, Relabel and Stop are elementary:

Prepare = 〈Choose; Inc↓; Relabel↓; Stop〉↓

For such a program, we infer the BF property in the following way
using the inference rules in Definition 6.18 (where each subprogram
name is replaced by its first letter), showing that the outermost↓ oper-
ator is applied to a BF program:

(2)

(1)
BF(C) ASA(C, I↓)

BF(〈C; I↓〉)
ASA(〈C; I↓〉, R↓)

BF(〈C; I↓; R↓〉)

(3)
BF(〈C; I↓; R↓〉) ASA(〈C; I↓; R↓〉, S)

BF(〈C; I↓; R↓; S〉)

108 6 properties of the repro calculus

ASA(GP1, GP2 ↓) holds for any programs GP1 and GP2, as GP2 ↓
never fails. This justifies the right premises of inferences (1) and (2).
Instead establishing ASA(〈C; I↓; R↓〉, S) requires an inspection of the
rules of [49]. Specifically, each rule in Choose creates a loop; rules in
Inc move the loop; rules in Relabel preserve the loop; and finally
rules in Stop delete a loop. Therefore Stop can be applied successfully
after applying Choose and any number of occurrences of Inc and
Relabel.

All other programs of [49] to which the alap operator is applied
can be shown to be backtracking-free with similar techniques, with the
exception of the proposed implementation of the conditional program
scheme, which is described as follows:

Ite(K, P1, P2) checks whether the input graph equals K
and executes P1 or P2 depending on whether the check is
successful or not.

This scheme is used in the paper only for K = ∅ (the empty graph)
and K = • (the discrete graph with one node). Assuming by induction
hypothesis that we have encodings of P1 and P2, we can easily encode
the scheme with K = ∅ as follows:

[[Ite(∅, P1, P2)]] = (ε, {p•}).[[P1]] + p•.[[P2]]

where rule p• = (• ← • → •) can be applied to a graph iff it is not
empty. Similarly, we can encode the scheme with K = • using a set
of rules that are applicable only if the graph contains at least one
edge. This is correct because an inspection of the rules reveals that
this program is never applied to a discrete graph with more than one
node.

Summarizing, in this section, we have argued that RePro as a
control language is also computationally complete, just as the Graph
Programs of Habel and Plump [49] used as reference. This can be
shown by encoding the universal program provided in that paper as a
RePro process.

Nevertheless, it is important to note that this result does not imply
that every graph program operator can be directly reflected in RePro

processes. In particular, as also seen above through the necessary
partiality of the provided encoding, the maximal iteration operation
cannot be simulated in RePro in general; thus, graph programs still
have to be considered more expressive than RePro control processes.

7
A N A LY S I S O F C O N T R O L L E D G R A P H - R E W R I T I N G
P R O C E S S E S

In the previous chapters, we have discussed our graph-rewriting pro-
cess calculus RePro from a process-algebraic and language-centric per-
spective, thus addressing most of the challenges C1-3 as in Section 3.3.
However, an important aspect of C3, viz. C3a, the requirement for
abstract reasoning, has not been addressed so far.

In this context, we can observe a conceptual gap not covered by the
literature so far:

• On the one hand, related to both the concurrent semantics of
graph rewriting and the topic of graph language specification,
various abstractions over sets of graphs (i.e., graph languages)
and over complete graph-rewriting systems have been proposed
to cope with the infinity arising in graph-based state spaces as,
e.g., in transition systems or model checking scenarios [19, 20,
24, 95, 106]. However, none of those approaches considers the
possibility that the graph-rewriting systems underlying those
state spaces or transition systems might be externally controlled.
Although RePro as proposed in the present thesis has both ex-
plicit control and a rich LTS as core components, it is also not
exempt from the same problem, namely, infinite state space ex-
plosion, rendering the semantics intractable or at least inefficient
for reasoning over its states.

• On the other hand, if explicit control is part of a language or
formalism, it is

– either proposed in a usability-focused pragmatic setting,
with emphasis on the (visual) system specification capaci-
ties, thus, leaving reasoning out of consideration [42, 84];

– or, if state-based reasoning such as model checking is of-
fered [45, 91, 108], tractability issues such as state space
explosion are not dealt with.

Again, even though RePro has a well-founded LTS semantics,
we have not considered any reasoning approaches available in
this framework so far.

Thus, in the present chapter, we aim at proposing the outlines of a
RePro-based abstract reasoning approach, along the following objectives:

• Abstraction and control: The proposed approach should in-
deed aim at the aforementioned gap: providing a state space
abstraction technique in a controlled setting.

109

110 7 analysis of controlled graph-rewriting processes

RePro

Compasses

. . .

C1 C2 . . .

α γ α γ

Figure 7.1: Abstraction Schema

• Abstraction over operations: Thereby, we should take into ac-
count the process-algebraic nature of the rich LTS semantics we
have proposed for RePro in Chapters 4-5; i.e., we are looking
for an abstraction harmonizing with this kind of operational
semantics.

• Abstraction over graphs: To that end, we also develop an ab-
stract representation of infinite graph families. This is neces-
sitated by the presence of concrete graph instances in states:
rendering the state space tractable, thus, requires an abstraction
over graphs as well.

• Abstract state predicates: Finally, the proposed formalism should
allow for verification on abstract states, based on model checking
techniques already employed for graph rewriting, thus, we have
to propose a formal model checking framework as part of our
solution.

To meet all those needs, we aim at proposing a unifying concept of
abstraction. Our approach is summarized as follows: given executions
for some structures operating on concrete data (in our case, these
are RePro processes rewriting graphs), an abstract semantic domain
preserves those executions but represents data in an abstract way,
potentially covering even an infinite number of concrete data instances
in a single execution.

We demonstrate this setting schematically in Figure 7.1, calling
the abstract domain Compasses and its sample elements C1 and C2,
anticipating them to be defined in the next section. The functions α

and γ intuitively represent the correspondences between elements of
the abstract and the concrete domain in each direction.

In the following, first, we recapitulate and extend our motivating
WSN scenario to illustrate our analysis approach (Sect. 7.1). Then,

7 .1 example : wsn overlay verification 111

n1
p

v

f

TExt

Figure 7.2: Type Graph TExt (with edges of TTop omitted)

we propose compasses as an abstract domain (i.e., an abstraction over
graph languages) and a corresponding compass transition system, i.e.,
an abstraction over the RePro LTS with compasses being components
of states instead of graph instances (Sect. 7.2).

Afterwards, we connect the RePro transition system with the com-
pass transition system by means of a Galois connection using the general
ideas of abstract interpretation [27]. The aim of those developments is
to conclude with a property preservation result, i.e., that if we are
able to verify a model checking formula for a compass state, then the
same formula holds for each RePro LTS state corresponding to that
compass state (Sect. 7.3).

In this chapter, we focus on outlining the major formal ingredients
towards a comprehensive RePro-based abstract verification. Thus, the
proposal in its present state comes with some formal and conceptual
limitations, while understanding the relation to some important ap-
proaches resembling ours remains a major work package in future
investigations. We discuss some details of those limitations, potential
future advancements and related work in the corresponding sections
of Chapter 8.

7.1 example : wsn overlay verification

In the previous chapter, we have focused on the underlay component
of our example WSN model, and have not further specified the dy-
namics of its overlay so far. Recall that while the underlay consists of
the physical links between sensor nodes, the overlay is a virtual net-
work, accessible by an operator and defining constraints for improved
routing functionality in the WSN (cf. also 1.3).

As a first step for providing our overlay model example, we have
to extend the type graph TTop (given in Figure 2.1) by further edge
types for virtual links as well as some auxiliary constructs for our
(simplified) routing constraint mechanism. As the overlay links reside
within the same WSN as the underlay ones (and, thus, share the same
node set), the extended type graph TExt has the same single node as
TTop; in Figure 7.2, we only show the new edge types and omit those
of TTop (Figure 2.1) for better readability. The label v, additionally

112 7 analysis of controlled graph-rewriting processes

n1
x

n4
y

n1
x

n4
y

n1
x

n4
y

(a) pCrV : Creating WSN Overlay Virtual Links

n1
x

n4
y

n1
x

n4
y

n1
x

n4
y

(b) pDelV : Deleting WSN Overlay Virtual Links

Figure 7.3: DPO Rules for Administrator Interaction

indicated by a dashed line, refers to virtual links. Labels f (used only
for loop edges) and p (additionally indicated by a dotted line) refer to
auxiliary routing constructs expressed by edges in our model; their
use is explained when we provide the behavior by DPO rules. (We
omit labels v, f and p from rule specifications in the following, as
dashing, dotting and looping unambiguously represent the respective
type.)

The first behavioral component of the overlay is that of administrator
interaction, consisting of the simple creation and deletion of virtual
links, thus, easily expressible by simple DPO rules pCrV and pDelV
as shown in Figures 7.3a and 7.3b, respectively. The corresponding
control process is specified as

Padmin := pCrV.Padmin + pDelV.Padmin,

thus, we simulate administrator activity by simply allowing virtual
links to appear or disappear at any time.

The most important part of our WSN overlay model (which we focus
on in the rest of the chapter) is a simplified representation of routing
constraints due to virtual links [65, 107], called routing maintenance
in Section 1.3. We provide DPO rules to express this maintenance
behavior, consisting in verifying and, occasionally, also repairing,
underlay paths between end nodes of virtual links in order to optimize
their activeness. (Note that we do not aim to reason about activeness
guarantees and just provide a best-effort mechanism sufficient for our
needs.) We split our behavioral model into a search and a repair part,
specified by control processes Psearch and Prep, respectively. For the sake
of simplicity, we omit underlay link lengths in the following (having
no relevance here) and simply denote edge types by a, i and u to
represent link statuses.

As for search (corresponding to operation Search Active Path in
Sect. 1.3), we describe a mechanism which, upon noticing the ap-
pearance of an unhandled virtual link, initializes the corresponding
auxiliary structures (rule pAux, Figure 7.4a), namely flag loop edges
of type f for the end nodes of a virtual link as well as a pairing edge

7 .1 example : wsn overlay verification 113

n1
x

n4
y

n1
x

n4
y

n1
x

n4
y

(a) pAux: Initializing Auxiliary Routing Constructs

n1 x

n4
y

n5
z

a

n1 x

n4
y

n5
z

a

n1 x

n4
y

n5
z

a

(b) pSearch: Moving Flags along Active Underlay Edges

n1
x

n4
y

a n1
x

n4
y

a n1
x

n4
y

a

(c) pSuccess: Removing Auxiliary Constructs on Success

Figure 7.4: DPO Rules for Path Search

of type p to keep track of which flags belong together.1 Thereupon,
flags are able to navigate along active underlay links (rule pSearch, Fig-
ure 7.4b) and disappear on success, i.e., if a pair of flags get neighbors
via an active edge (rule pSuccess, Figure 7.4c). The process specification
which matches the above algorithm is a simple interleaving choice:2

Psearch := pAux.Psearch + pSearch.Psearch + pSuccess.Psearch

The other part of routing maintenance is a repair mechanism (oper-
ations Activate Unclassified on Path and Unclassify on Path in Sect. 1.3)
which proactively activates or at least unclassifies (in hope for a further
activation if it does not contradict underlay concerns) underlay links
if the path search (by repeated applications of pSearch) gets blocked.
Thus, although the repair process aims at optimizing towards overlay
constraints, it also affects the underlay links thereby. The DPO rules
corresponding to the above operations, pActP and pUcP are shown in
Figures 7.5a and 7.5b, respectively.

The specification of the repair process, thus, interleaves those opera-
tions if the search rule is not applicable in the current topology:

Prep := (pActP, {pSearch}).Prep + (pUcP, {pSearch}).Prep

In turn, the overall overlay behavior is expressed by composing the
search and the repair routines:

Poverlay := Psearch || Prep

1 Note that ensuring on a type graph level that f edges are loops, while v and p edges
are non-loops is not treated.

2 For the sake of neatness, we do not elaborate on preventing repeated initialization
for the same virtual link; note that this can be easily implemented by a further
“semaphore” edge.

114 7 analysis of controlled graph-rewriting processes

n1
x

n4
y

u n1
x

n4
y

n1
x

n4
y

a

(a) pActP: Activating Unclassified Links for Path Search

n1
x

n4
y

i n1
x

n4
y

n1
x

n4
y

u

(b) pUcP: Unclassifying Inactive Links for Path Search

Figure 7.5: DPO Rules for Path Repair

As mentioned before, we are aiming at verifying properties on an
abstract level for executions of controlled graph-rewriting algorithms
such as our WSN overlay specification. As a concrete example, given
a property of single graph instances

“every virtual link is checked for an active path”

we are interested in a temporal property

“eventually, the above property holds on each execution path”

More formally, given a predicate vpath expressing the natural-lan-
guage property above,3 the µ-calculus property (for syntactic and
semantic details, refer to [27, 60]) we want to verify is written as

µx.(vpath∨ (�true∧�x))

Motivated by the above example, we propose a general formal
framework based on RePro allowing for abstract reasoning on such
properties, thus, verifying properties for graph algorithms themselves,
instead of just executions of given single input graphs.

7.2 compasses : an abstract domain for repro processes

We propose compasses as an abstract, finite representation of infinite
graph languages. The underlying idea is the following: As a RePro

control process proceeds, even if we do not have a concrete graph
instance evolving through the execution, we still gather some infor-
mation: by observing RePro control actions, i.e., which rules have
been applied and which rules where not applicable, we are able to

3 Note that we are not discussing the exact formulation of such predicates, as an
abstract interpretation framework can be defined independently of those details.
We remark that formulas for graph properties have been elaborated on different
expressiveness levels in the literature, corresponding to different logical orders, e.g.,
in the context of nested graph constraints corresponding to first-order logics [96], as
well as using monadic second-order logic [25]. A property as above, dealing with graph
patterns of unbounded size, falls into the latter category.

7 .2 compasses : an abstract domain for repro processes 115

approximate the graphs which might have arisen in each state, along ob-
servations such as: after applying a rule, its right-hand side definitely
occurs in any resulting graph; the subsequent rule application is either
disjoint to that occurrence, or overlaps with it; for some (specifically
shaped) rules, non-applicability means that there is no occurrence of
their left-hand side at all, etc. In this section, we deal with formally
capturing this intuition in the setting of DPO graph rewriting. (Note
that, as often in the thesis, typing is left implicit and we omit the
identity of the type graph T from the definitions to avoid notational
abundance.)

We start by giving the definition of a compass. According to the above
intuition, a compass characterizes infinitely many graphs by positive
patterns which might occur in those graphs, and negative patterns
which definitely do not occur. Hence the name compass; it navigates
us through the vast universe of graphs, with magnetic positive and
negative poles showing the way, just as a needle of a compass does.

Recall the concept of canonical graphs (Definition 2.4); it is meaning-
ful to utilize them in compasses, as we do not rely on graph identities,
but only on their shapes in this setting, and, thus, we avoid unnec-
essary ambiguities within a compass that would arise due to graph
isomorphism. In addition, to achieve a compact presentation of some
formal advances below, we apply a mild restriction that elements
in a negative pole are connected graphs. Note that this assumption
is practically intuitive and, in particular, our examples adhere to it.
Furthermore, we exclude by definition the absence of positive patterns,
thus, ensuring that the language of a compass is not empty whenever
the poles are not contradictory to each other.

Definition 7.1 (Compass). A positive pole Π ⊆ |CanGraph| is a finite,
non-empty set of canonical graphs. A negative pole Π̄ ⊆ |CanGraph| is
a finite set of connected canonical graphs.

A compass C = (Π, Π̄) is a pair consisting of a positive pole Π and a
negative pole Π̄. The set of all compasses is denoted C, ranged over by C. The
positive and negative poles of C are also denoted C+ and C−, respectively.

The language L(C) ⊆ |Graph| of compass C is a set of graphs s.t.
G ∈ L(C) iff

(i) ∃ X+ ∈ C+ : X+ → G and

(ii) ∀ X− ∈ C− : X− 6↪→ G.

A compass is consistent if L(C) 6= ∅.

Note here that taking ∅ as a positive pole results in an empty
compass language (i.e., inconsistence) due to the existential positive
pole semantics.

For concrete examples of compasses, we revisit ideas from our
motivating WSN model (and omit explicitly denoting canonicity of
compass elements for notational clarity). First, consider a (canonical)

116 7 analysis of controlled graph-rewriting processes

x

yz

S;aS;a

L;a

G3

Figure 7.6: Graph G3: A Pattern Avoided by kTC

topology graph G3 (Figure 7.6) consisting of a single triangle of active
links s.t. the link lengths correspond to the situation which the kTC
algorithm aims at avoiding.

This graph can be used to compactly describe the language of all
graphs having such a triangle using compasses (if we exclude looping
of active edges on the type graph level or by forbidding those “folded”
graphs through a negative pole):

C3 := ({G3}, ∅)

Similarly, the language of graphs not containing such triangles is
also easily characterized:

Cn3 := ({G∅}, {G3})

where G∅ denotes the empty graph.
As a more elaborate example, with relevance to the foregoing WSN

overlay model in Sect. 7.1, we describe each graph having an unfin-
ished path search going on, such that the search will not terminate
within two steps. Thereby, we might even reuse some rule components
from Poverlay, writing

Csearch2 := ({G f }, {LSuccess, LSuccess2})

where G f is isomorphic to RAux without the virtual link, and LSuccess2
looks like LSuccess with a 2-long active path between the flagged nodes.

A central observation is that there are specific compasses which
actually play a role if used for language characterization, and whose
languages subsume the language of a larger class of compasses. In
general, a compass as above might contain redundant elements in their
poles, whose removal would not modify the language we describe.
Thus, it is useful to reason about equivalence classes of compasses
instead, where the members of such a class describe the same language
and, thus, are identical up to that redundancy.

For making precise this minimality of compasses, eliminating re-
dundancy, we require two auxiliary graph notions: the well-known
graph-theoretical notion of cores [51], as well as the flattening of a
graph, which enumerates each graph epimorphic to the original one.
Intuitively, a core of a graph is a subgraph of it such that the whole
graph can be “folded” into that subgraph via a morphism. Note that
each (finite) graph has a unique core up to isomorphisms.

7 .2 compasses : an abstract domain for repro processes 117

Definition 7.2 (Core [51]). A graph H is called a retract of a graph G if
H ↪→ G and there exists a morphism r : G → H s.t. r|H = idH.

A retract H of G is called a core of G, denoted H = core(G), if it has no
proper retracts (i.e., retracts not isomorphic to H). For a set of graphs G,
core(G) denotes {core(X) | X ∈ G}.

Definition 7.3 (Flattening). Given a graph G, the flattening flat(G) of G
is a set of graphs, defined as

flat(G) := {G′ |G e−→ G′, e is an epimorphism}

The flattening flat(G) of a set of graphs G is defined as⋃
G∈G

flat(G)

Now, we are ready to define minimality of compasses. First, we
make precise which elements are considered redundant in a compass
and define a function which eliminates them. This allows us to con-
struct the aforementioned compass equivalence classes, each having a
unique minimal member.

The minimalization of a compass is a constructive procedure, which,
although formally captured as a function, can be thought of as hap-
pening in consecutive steps, as follows:

1. Flattening: We start with reducing the positive pole. First,
the positive pole is flattened (Definition 7.3) as a preparation
for the next stage: flattening effectively amounts to explicitly
enumerating the potential graph patterns as they will appear
in the graph language characterized by the positive pole, in an
injective fashion, i.e., as the images of the respective pole element
taken as a subgraph. For example, the graph G3 in Figure 7.6
includes, in its flattened form, epimorphic images of it where
two or even three nodes are conflated into a single one.

2. Eliminating external redundancy: Flattening allows for a fine-
grained detection of the following situation: some epimorphic
images might never appear in any graph of the language, if they
are ruled out by an element of the negative pole. This happens
if a negative pole element has an injective image in an element of
the flattened positive pole: then, any graph potentially admitted
by the latter would be at the same time ruled out by the former.
Thus, we can safely remove such elements from the positive pole,
not changing the language.

3. Corification: As a direct consequence of Definition 7.2, replacing
a positive pole element with its canonical core does not change
the set of graphs admitted by that element; moreover, doing so
helps the next filtering step.

118 7 analysis of controlled graph-rewriting processes

4. Eliminating internal redundancy: In the final step, we consider
both poles. It holds that any pole element is redundant (i.e., can
be omitted without changing the language) which has an incom-
ing morphism (injective in the case of the negative pole) from
another pole element. That this elimination step is deterministic
also for the positive pole is due to the fact that at this point, we
are working with cores; see the proof of Proposition 7.1.

The following definitions capture formally the above outline of
our minimality function: the definition of a core form summarizes
the first three preparatory steps, while the final definition of the
minimalization function finishes the procedure. After the definitions,
we verify claims in order to justify the definition; in particular, that the
minimalization function provides a unique result as expected. Most
importantly, we conclude the section with verifying our minimality
notion: (1) Any compass has the same language as its minimal form.
(2) Two compasses having the same language has a single unique
minimal form.

Definition 7.4 (Pole Core Form). For a compass C = (C+, C−), its core
form is a compass Ce = (Ce

+, C−), defined as

Ce
+ := core(flat(C+) \ Re)

with Re := {X+ |X+ ∈ flat(C+), ∃X− ∈ C− : X− ↪→ X+}, leaving C−
unchanged.

Definition 7.5 (Minimal Compass). The function min : C → C takes each
compass C = (C+, C−) to its minimal form

min(C) := (Ce
+ \ Ri

+, C− \ Ri
−)

where

1. Ri
+ := {X2

+ |X2
+ ∈ Ce

+, ∃X1
+ 6= X2

+ ∈ Ce
+ : X1

+ → X2
+},

2. Ri
− := {X2

− |X2
− ∈ C−, ∃X1

− 6= X2
− ∈ C− : X1

− ↪→ X2
−}.

Compasses C and C′ are minimal-equivalent if min(C) = min(C′). A
set of minimal-equivalent compasses is a compass equivalence class (CEC),
whose set is denoted as [C]. The unique CEC for a given compass C is denoted
[C] s.t. C ∈ [C]. For any [C] ∈ [C], its unique minimal member is denoted
min([C]).

The language L([C]) of a CEC is a graph language (i.e., a set of graphs)
defined as L([C]) := L(min([C])).

The relation �L⊆ [C]× [C] is defined as follows: [C] �L [C′] if L([C]) ⊆
L([C′]).

For illustrating the minimality construction, revisit Csearch2 as in-
troduced above. Flattening G f produces some different graphs, in

7 .2 compasses : an abstract domain for repro processes 119

n1

Gf1

n1

Gf1’

Figure 7.7: Graphs Gf1 and Gf1′

particular, G f itself, a graph Gf1 with one node but two flag loops, and
another one-node graph Gf1′ where the flag loops are also identified,
both shown in Figure 7.7. None of those gets eliminated by Re as in
Definition 7.4, as particularly they do not contain underlay edges.

In the next step, we take the cores of each of those graphs. In
particular, Gf1′ is the core of Gf1, thus, Gf1 gets eliminated (its core is
already in the pole). Next, due to G f → Gf1′ , the latter gets eliminated
by Ri

+ as in Definition 7.5.
The negative pole is minimal, as none of LSuccess and LSuccess2 can be

injectively embedded in the other graph.
Therefore,

min(Csearch2) = Csearch2

Note that minimalization would result in an empty positive pole
for non-consistent compasses by the step which eliminates R3. There-
fore, as expected, we consider consistent compasses in the following
(without changing the notation, for the sake of convenience).

Proposition 7.1. For any C ∈ C, min(C) is unique.

Proof. The statement follows from the uniqueness of the transforma-
tions involved in the definition of min(C).

Cores and flattening are unique per definition.
R3 is given uniquely for a fixed C−.
For R2, observe that monomorphisms within C− yield a directed

acyclic graph, in the sense that there exists no X1
−, X2

− ∈ C− : X1
− ↪→

X2
− ↪→ X1

−: isomorphism of distinct graphs would contradict the
canonical setting.

For R1 ⊆ Ce
+, observe that each element of Ce

+ is a core; again,
there exists no X1

+, X2
+ ∈ Ce

+ : X1
+ → X2

+ → X1
+: The image of

X1
+ → X2

+ → X1
+ is either identical with X1

+, impossible because there
exist no distinct isomorphic canonical graphs, or is a subgraph of X1

+,
but, then, X1

+ would have a proper retract, contradicting that X1
+ is a

core.

As the main property of minimalization, we show that it is indeed
language-preserving.

Proposition 7.2. Given a compass C ∈ C, L(C) = L(min(C)).

120 7 analysis of controlled graph-rewriting processes

Proof.

• First, we show that if G ∈ L(C), then G ∈ L(min(C)).

In the following, graph set names correspond to Definition 7.5.

We reach min(C) from C in the following stages.

1. Flattening C+ and removing R3: ∃X+ ∈ C+ : X+ → G implies
∃Xe

+ ∈ flat(C+) : Xe
+ ↪→ G, as each (general) morphism can

be decomposed into a sequence of an epi and a mono.
Also, ∀X− ∈ C− : X− 6↪→ Xe

+ because otherwise, ∃X− ∈
C− : X− ↪→ Xe

+ ↪→ G, a contradiction. Therefore, ∃Xe
+ ∈

(flat(C+) \ R3) : Xe
+ → G.

2. Taking cores: For any X with X → G, core(X) → G via
core(X) ↪→ X. Therefore, ∃core(Xe

+) ∈ Ce
+ : core(Xe

+)→ G.

3. Removing R1: Let us denote core(Xe
+) as Xc

+. If Xc
+ ∈ R1,

then ∃X′+ ∈ Ce
+ : X′+ → Xc

+ s.t. 6 ∃X′′+ 6= Xc
+ : X′′+ → X′+

(i.e., we take as X′+ the “minimal” such graph). Thus,
X′+ ∈ R1 iff Xc

+ → X′+, which leads to a contradiction:
The image of Xc

+ → X′+ → Xc
+ is either identical with

Xc
+, impossible because there exist no distinct isomorphic

canonical graphs, or is a subgraph of Xc
+, but, then, Xc

+

would have a proper retract, contradicting the previous
stage.

Therefore, ∃X′+ ∈ (Ce
+ \ R1) : X′+ → G via X′+ → Xc

+.

We have verified the positive criterion for G ∈ L([C]), it remains
to check the negative pole.

4. Removing R2: If ∀X− ∈ C− : X− 6↪→ G, then it clearly holds
also for C− \ R2.

• Second, we show that if G ∈ L(min(C)), then G ∈ L(C).

If there is Xm
+ ∈ min(C)+ : Xm

+
x−→ G, then there is X+ ∈ C+ :

X+
e−→ Xm

+ s.t. e is epi. Therefore, also X+
x◦e−→ G.

If for an X− ∈ (C− \min(C)−) : X− ↪→ G, then there would be a
Xm
− ∈ min(C)− : Xm

− ↪→ X− (Definition 7.5) and, thus, Xm
− ↪→ G,

a contradiction. Therefore, ∀X− ∈ C− : X− 6↪→ G.

As a direct important consequence, any compass has the same
language as its CEC.

Proposition 7.3. Given a compass C ∈ C, L(C) = L([C]).

Proof. The statement follows directly from Propositions 7.1 and 7.2.

7 .2 compasses : an abstract domain for repro processes 121

Another desired central property, shown in the following propo-
sition, is that for minimal compasses, language equivalence implies
actual identity.

Proposition 7.4. Given minimal compasses C, C′ ∈ C, L(C) = L(C′)
implies C = C′.

Proof. We prove the statement by contradiction: let us show that for
minimal compasses C and C′, C 6= C′ implies L(C) 6= L(C′). Suppose
first that C+ 6= C′+, and let us show that L(C) 6= L(C′). Without loss
of generality, let X ∈ C+ such that X 6∈ C′+, and X is minimal in the
partial order induced by →,4 i.e., there is no X′ ∈ C+ s.t. X′ 6= X,
X′ → X and X′ 6∈ C′+. We show that (1) X ∈ L(C) and (2) X 6= L(C′).

(1) There is an X ∈ C+ such that X → X. On the other hand, if there
is a Y ∈ C− such that Y ↪→ X, then X ∈ R3 by Definition 7.5, and,
thus, X 6∈ C+ by minimality of C, which is a contradiction. Thus
X ∈ L(C).

(2) Now suppose that there is X′ ∈ C′+ such that X′ → X. By the
way we have chosen X, this implies that X′ ∈ C+ as well, but then
X ∈ R1 by Definition 7.5, and thus X 6∈ C+ by minimality of C,
which is a contradiction. Thus X 6∈ L(C′).

Therefore, we have shown that L(C) = L(C′) implies C+ = C′+.
Now suppose that C− 6= C′−, and, thus, without loss of generality, that
Y ∈ C−, Y 6∈ C′−, and Y is of minimal size among such graphs. Since
C+(= C′+) is not empty, let X ∈ C+ be a graph of minimal size. We
argue that XY := X +Y (the disjoint union of graphs X and Y) is such
that (1) XY 6∈ L(C) and (2) XY ∈ L(C′), which concludes the proof.

(1) Y ↪→ XY and Y ∈ C−, therefore, XY 6∈ L(C).

(2) Clearly, X → XY and X ∈ C′+. It remains to show that there is no
Y′ in C′− such that Y′ ↪→ XY. Since Y′ is connected, either Y′ ↪→ X,
but then X ∈ R3 by Definition 7.5 and thus X 6∈ C+, or Y′ ↪→ Y. In
the last case, since Y′ cannot be isomorphic to Y it has to be strictly
smaller, but by the choice of Y this means that Y′ ∈ C− as well,
and therefore by Y′ ↪→ Y we have that Y ∈ R2 by Definition 7.5
and, thus, Y 6∈ C−, a contradiction.

As an immediate corollary, the same identity holds for the respective
CECs.

Corollary 7.1. Given compasses C, C′ ∈ C, L(C) = L(C′) implies [C] =
[C′].

4 Since C is minimal, C+ contains only graphs that are cores and canonical. Therefore
if X → Y and Y → X, then X = Y; thus, → is a partial order—cf. also the proof of
Proposition 7.1.

122 7 analysis of controlled graph-rewriting processes

compass transition system . Just as RePro transitions repre-
sent a combination of control process steps on the one hand and rule
applications, i.e., rewriting relations on graphs on the other hand,
compass transitions are composed of the same control process steps
and a corresponding relation on compasses. This relation, which
we define in the following, naturally reflects DPO rule application
semantics, and is constructed adequately such that a compass step
captures all the potential changes to each potential input graph in a
semantics-preserving manner. In particular, a compass step is, thus,
deterministic for a single action.

Compasses allow for a separate, constructive step definition for
positive and negative poles, respectively. Intuitively, the evolution of
a positive pole for an action (ρ, N) should consider all the potential
gluings of any existing positive pole element X with L, including, in
particular, their disjoint union X + L (expressing that in a potential
graph already containing X, L might have a match disjoint to X), but
also any other overlapping combinations on which ρ is applicable.
Then, in turn, we apply ρ to those glued patterns and take the set of
results as the next positive pole. Obviously, we do not have to consider
those glued patterns on which some p ∈ N is applicable or which
contain some element from the negative pole.

In contrast, much more restrictive conditions hold for an element to
become or remain a member of a negative pole during a step. Under
certain (arguably rather strict) conditions for the rule ρ and a negative
pole element X̄, we are able to conclude that if X̄ is not in an input
graph for an application of ρ, then it will definitely not be present in
the output graph. More precisely, we have to require that any gluing
of R and X̄ (which is injective on the freshly created parts of R) only
overlaps for preserved and not for freshly created elements.

As we will show later (cf. Theorem 7.2), this requirement suffices
to conclude that if a pattern is present in an output of an application
of ρ, then it was so in the input as well—thus, this notion can be
used to preserve negative pole elements along steps. In addition, the
same conditions hold for adding left-hand sides of non-applicability
conditions to the negative pole during a step, if we know that their left-
hand side indeed never matches and not only further DPO conditions
fail; this is guaranteed if a rule does not delete nodes (i.e., the dangling
condition cannot be violated [38]). We call this requirement (generally,
between a rule and a graph) agnosticism, and start by providing a
separate definition for it for reading convenience.

Definition 7.6 (Agnosticism). A rule ρ is agnostic to a graph X if

1. r : K → R is monic and

2. for each Y such that

a) R→ Y ←↩ X are jointly epimorphic and

7 .2 compasses : an abstract domain for repro processes 123

b) the following square is a pullback:

K Kid

R Y

(PB)

we have the following diagram:

W X

R Y

(PB)

K

r
(=)

Now, we are ready to formalize compass steps. In particular, start-
ing from a given compass and a given control action, we provide
separate constructions for the positive and the negative pole, respec-
tively, which together yield the result of the compass step. In addition
to agnosticism described above, we consider a further possibility for
retaining a negative pole element during a step: if the application of a
rule ρ could create that pole element by applying it at a structure for-
bidden by current non-applicability conditions, then we can conclude
that it remains impossible for this structure to appear in the output
graph. However, for similar reasons as for agnosticism, we have to
restrict ρ to not creating nodes. (This time, creation is the relevant
direction as we have to argue over inverse applications of ρ, cf. the
proof of Theorem 7.2.)

Definition 7.7 (Compass Step). The relation ≡V⊆ C × (R∗ × 2R)× C is
a labeled relation on compasses s.t.

(Π, Π̄)
(ρ,N)

≡≡≡V (Π′, Π̄′) if

1. X′ ∈ Π′ iff there exists a diagram in CanGraph

Can(L) Can(K)X l

G

· · ·X̄1 X̄|Π̃|

6 6

m

D

(PO)

f

k

Can(R)

X′

r

n

g

(PO)x

where

a) X ∈ Π,

b) X̄i ∈ Π̄ (i = 1 . . . |Π̄|),

124 7 analysis of controlled graph-rewriting processes

c) ∀p ∈ N : G 6 p=⇒ and

d) the pair (x, m) is jointly epimorphic.

2. X̄′ ∈ Π̄′ iff X̄′ is connected and

a) ρ is agnostic to X̄′, where

i. X̄′ ∈ Π̄

or

ii. X̄′ = Can(Lp) for some p ∈ N where p does not delete
nodes

or

b) X̄′ ∈ Π̄, ρ does not create nodes, Can(Lp)
δ
=⇒ X̄′ for a rule p ∈

N not deleting nodes, with δ in CanGraph s.t. ρ(δ) = Can(ρ),
m(δ) = Can(L)

m
↪→ Can(Lp).

As an example, consider a step over pSearch (thus, with an empty
N) on min(Csearch2) as specified at the end of the previous section.
As for the evolution of the positive pole, LSearch can be joined with
G f in various jointly epimorphic ways, in particular, by injectively
embedding G f into LSearch, yielding LSearch itself (as we are canonical
in compasses). Thus, RSearch is in the result of the positive pole of the
compass step. Note, however, that due to pSearch not being agnostic
to LSuccess nor to LSuccess2, as expected, we lose our negative compass
elements as the assumption of Csearch2 does not hold anymore. If,
instead, we consider a step (from an adequate compass immaterial
here) over the action (pUcP, {pSearch}) as in Prep, LSearch appears in the
resulting negative pole, correctly expressing that the search rule does
not match in any topology after that action, as there are no morphisms
between the left- and right-hand sides of pUcP and LSearch due to an
edge type mismatch.

The compass transition system is defined analogously to the RePro

transition system (Definition 5.2): whenever the control process com-
ponent of a state is able to perform an action, the compass component
also performs a step over the same action. (Note that, in contrast to the
RePro transition system, this behavior is non-blocking: Definition 7.7
never results in an empty positive pole, as there is always at least
one option, namely disjoint composition, for combining a previously
existing element with the left-hand side of the rule.)

Definition 7.8 (Compass Transition System). The compass transition
system is an LTS (P × [C], (R∗× 2R),−→C), where−→C is the least relation
satisfying the following rule:

compass

P
(ρ,N)−−−→ P′ min([C])

(ρ,N)

≡≡≡V C′

(P, [C])
(ρ,N)−−−→C (P′, [C′])

7 .2 compasses : an abstract domain for repro processes 125

compass languages . For providing an abstract verification ap-
proach through compasses and abstract interpretation, we do not
intend to capture and involve any graph languages, but only those
which actually arise during rule applications.

As a first simplification, compasses intentionally describe only infi-
nite graph languages: Although the output set of a graph-rewriting
system might be finite, such graph languages cannot be characterized
by smaller (either in number or in size) positive or negative patterns
in general. Having noted this, we identify the study of classes of finite
graph languages admitting a “quantitative reduction” as future work.

As for infinite graph languages, languages which defy any “regular”
(recurring) pattern characteristics arguably go beyond the expressive
power of graph-rewriting systems and, thus, require completely differ-
ent formalization and analysis approaches than those in the present
thesis.

Therefore, in the thesis, we confine ourselves to graph languages
having such regularities, i.e., exactly ones described by compasses.
We argue that many relevant application examples fall into this cate-
gory: in graph-based system modeling, one often formulates language
characteristics by requiring the presence or absence of positive or
negative patterns, respectively. For example, in the context of our
WSN scenario, we might reason about classes of topologies such as:
topologies not containing an active triangle or containing an unexplored
virtual link. More precisely, compass-definable languages capture those
graph languages which arise from applying a GTS to any arbitrary
graph, as we will demonstrate below.

Definition 7.9 (Compass-Definable Graph Language). A graph lan-
guage G ⊆ |Graph| is compass-definable (abbreviated as CGL) if ∃[C] ∈
[C] : L([C]) = G.

The set of all compass-definable graph languages is denoted LC and also
referred to as CGL.

To conclude this section, we investigate some general properties
of CGL, inspired by literature on abstract graph language specifi-
cations [20, 24, 106]. In particular, inspited by the general formal
characterization criteria of Corradini et al. [20], we reason about some
basic closure and decidability properties.

As for the latter, luckily, the definition of compasses (Definition 7.1)
allows for an easy decision process for basic membership, as summa-
rized below.

Proposition 7.5. Given a compass C and a graph G (typed over the same
type graph), the following statements are decidable:

1. G ∈ L(C)

2. L(C) = ∅

126 7 analysis of controlled graph-rewriting processes

Proof.

1. Given G, we can decide by a finite procedure if it fulfills the
requirements of Definition 7.1, in which case it is in L(Ci), oth-
erwise not.

First, we enumerate the elements X+ in C+ and check, for each,
if there is a morphism X+ → G (known to be decidable [20]). If
there was no such X+, we can conclude that G /∈ L(C).
Then, if there is such an X+, we enumerate the (finitely many)
proper subgraphs of G and check if any of them is isomorphic
to any of the elements of C−, allowing for a final decision.

2. By Propositions 7.1 and 7.3, L(C) is empty iff the positive pole of
min(C) is empty, which can be easily verified by the construction
in Definition 7.5.

Although, in the frame of the present thesis, we leave open the
general question of language inclusion decidability, i.e., if we can
always tell if L(C1) ⊆ L(C2), we observe that in some specific cases,
we directly have an answer (with Xi

+ ∈ Ci
+ and Xi

− ∈ Ci
−, i ∈ {1, 2}):

• If ∃X2
− ∈ C2

− such that ∃X1
+ : X2

− ↪→ X1
+ but 6 ∃X1

− : X2
− ↪→ X1

−,
then L(C1) 6⊆ L(C2), as we can find a G ∈ L(C1) which will be
excluded in L(C2) through X2

−.

• If the negative poles are empty, then L(C1) ⊆ L(C2) if and only
if ∀X1

+∃X2
+ : X2

+ → X1
+: In this case, if a graph G is admitted in

L(C1) by X1
+, it will be also admitted in L(C2), but if we have

an X1
+ not having a corresponding X2

+, then X1
+ ∈ L(C1) but

X1
+ /∈ L(C2) as there is no element in C2

− admitting it.

Unfortunately, due to the peculiar interplay between positive and
negative poles, closure properties under standard set operations (e.g.,
union) are even harder to reason about and proving corresponding
statements is left for future work. We might, however, obtain an in-
tuitive impression of the problem at hand by the following intuition
on extending compasses: The positive pole of a compass splits the
set of all graphs into two parts, those admitted by it and those not.
Independently, the negative pole introduces another splitting into
graphs excluded and graphs not excluded by it. Now, the language of
the compass turns out to be the intersection of that set admitted by the
positive pole and that set not excluded by the negative pole. However,
adding even a single graph to, e.g., the positive pole interferes with
this scheme: while the set of admitted graphs grows monotonously,
the overall growth of the compass language is derived from the inter-
section of the non-excluded graph set and the freshly admitted graphs,

7 .3 abstract interpretation of repro by compasses 127

where the characterization of this interplay might largely depend on
the morphism relations between the involved graphs.

Executing a formal analysis of decidability of CGL closure of com-
pass union as well as similar properties of other set operators (inter-
section, complement) is left for future work.

7.3 abstract interpretation of repro by compasses

In this section, we formally define our abstract interpretation framework
for RePro based on compasses. Thereby, we follow the outlines of
the work by Dams et al. [27] on abstract interpretation for reactive
systems, based, in turn, on the original unifying program analysis
framework proposed by Patrick and Radhia Cousot [26].

The main idea behind abstract interpretation is that each element
of the abstract domain describes a (potentially infinite) number of
concrete domain elements, ideally in a finitely representable way. In
turn, there are abstraction and concretization functions (usually called
α and γ, respectively), the former mapping concrete elements to
the abstract one describing them, while the latter lists the concrete
elements for a given abstract element.

In addition, both the concrete and the abstract domain might be
embedded in states of a respective transition system [27]. This setting
calls forth an abstract reasoning approach as required by challenge
C3a, based on traditional model checking [5], i.e., the verification of
temporal properties of transition systems with state predicates. If the
abstract interpretation framework is used adequately, then properties
holding for an abstract path are preserved for each concrete path
conforming to it.

Note, however, that from a pragmatical perspective, we have a dif-
ferent take on the utilization of abstract interpretation. Usually, given
a concrete domain, one derives an adequately suited, artificial abstract
domain which then fits for verification purposes by construction. In
contrast, we set off by providing an abstract transition system, i.e., a
transition system whose states are composed of control processes and
compasses. Afterwards, along the lines of [27], we connect the con-
crete and the abstract compass states by a Galois connection, enabling to
prove our main theorem: that our abstract states indeed subsume each
potential concrete RePro executions. In turn, we obtain the desired
abstract verification framework through µ-calculus formulas as in [27].

A Galois connection makes precise and formal the intuition behind
that “connection” we mentioned above, between concrete and abstract
(sets of) elements, in turn embedded in states of their respective tran-
sition systems. Consequently, as abstract elements describe a set of
concrete objects, we are working with such sets on the concrete side.
Intuitively, a Galois connection consists of a pair of (total and mono-
tonic) functions, mapping sets of concrete elements to abstract ones

128 7 analysis of controlled graph-rewriting processes

and vice versa, such that any concrete set is preserved after abstraction
and re-concretization, and also, any abstract element remains at least
as accurate after concretization and re-abstraction (according to an
accuracy ordering on the abstract domain). Formally, given are two
sets of objects: the set of concrete objects is denoted B, while the set of
abstract objects is denoted A. Let K ⊆ 2B and A be the concrete domain
and the abstract domain, respectively. Both domains are equipped with
a partial order.

Definition 7.10 (Galois Connection). Functions α : K → A and γ :
A → K are a Galois connection from poset (K,⊆) to poset (A,�) if

1. both α and γ are total and monotonic,

2. for all K ∈ K, K ⊆ γ ◦ α(K) and

3. for all A ∈ A, α ◦ γ(A) � A.

A Galois connection is a Galois insertion if in addition,

4. A � A′ ⇔ γ(A) ⊆ γ(A′).

As our main motivation is to avoid that each execution starts with a
fixed input graph, we are aiming at defining an abstract domain which
characterizes states of a controlled graph-rewriting process abstractly,
but based on their respective control action history. Consequently,
there is an abstract transition system whose states and transitions cor-
respond to multiple states and transitions in RePro, respectively. In
this context, correctness means that each abstract transition captures
each concrete transition whose source state corresponds to the source
of the abstract transition. For RePro, this means that for each abstract
transition, each rule application from graphs described by its source
leads to an output graph which is described by its target. Correctness
is necessary for any domain pairs for a purposeful use of abstract
interpretation.

Following the outline of the work of Dams et al. [27], on both sides
of our connection, a model represents all ingredients together: the
set of objects (which are sets again for the concrete side) with their
respective partial orders as well as their underlying transition systems
(implicit in the formal Galois connection definition). In particular,
as a concrete model, we consider LC with subset inclusion as partial
ordering and RePro as transition system. As an abstract model, we
consider C with �L and the compass transition system. To justify this
choice, we first have to check that �L is indeed a partial order.

Proposition 7.6. �L ⊆ [C]× [C] (Definition 7.5) is a partial order.

Proof. Reflexivity and transitivity is obvious by the underlying subset
inclusion. For antisymmetry, observe that L([C]) ⊆ L([C′]) and
L([C′]) ⊆ L([C]) imply L([C]) = L([C′]); by Proposition 7.3, this
means L(C) = L(C′); then, by Corollary 7.1, [C] = [C′].

7 .3 abstract interpretation of repro by compasses 129

We have now prepared the ground for defining the abstraction
and concretization functions from CGL to compasses and vice versa,
and verifying that our definitions indeed yield a Galois connection.
In particular, although this is not strictly necessary for the further
developments, due to the close relation of our domains, we get a
Galois insertion.

Definition 7.11 (Compass Abstraction Function). The compass abstrac-
tion function α : LC → [C] is a function mapping compass-definable graph
languages to compass equivalence classes s.t. (i) α is total and (ii) for any
G ∈ LC , L(α(G)) = G.

Note that such an α is provided over LC due to Definition 7.9.

Definition 7.12 (Compass Concretization Function). The compass con-
cretization function γ : [C]→ LC is a function from compass equivalence
classes to compass-definable graph languages, defined as

γ([C]) := L([C])

From now on, α and γ denote the specific functions above.

Proposition 7.7 (Compass Galois Insertion). (α, γ) is a Galois insertion
for (LC ,⊆) and ([C],�L). Moreover, α ◦ γ = id[C].

Proof. First, we check the properties in Definition 7.10 for (α, γ).

1. α and γ are total and monotonic: Totality is obvious by definition.
For α, we have to show that G ⊆ G′ ⇒ α(G) �L α(G′) for
G, G′ ∈ LC , which is a direct consequence of Definition 7.11. For
γ, we have to show that [C] �L [C′] ⇒ γ[C] ⊆ γ[C′], a direct
consequence of Definitions 7.12 and 7.5.

2. G ⊆ γ(α(G)): Follows directly from Definitions 7.11 and 7.12.

3. α(γ([C])) � [C]: Follows directly from Definitions 7.11 and 7.12.

4. [C] � [C′] if and only if γ[C] ⊆ γ[C′]: Follows directly from
Definitions 7.5 and 7.12.

The claim that α ◦γ = id[C] also follows directly from Definitions 7.11

and 7.12.

In accordance with the foregoing observations, the following main
theorem of this section is based on our definition of compass con-
cretization corresponding to the graph languages of compasses in
abstract states: it verifies the desired correctness property by claiming
that a compass step indeed reflects all the RePro steps being compati-
ble with it. As a preparation, we recall two fundamental properties of
DPO graph rewriting used in the proof of our main Theorem 7.2.

130 7 analysis of controlled graph-rewriting processes

Proposition 7.8 (Pushouts Preserve Monomorphisms [38]). If B n−→
D

g←− C is a pushout of B
f←− A m−→ C in Graph and m is a monomorphism,

then n is a monomorphism too.

Theorem 7.1 (Embedding Theorem [38]). A morphism G k−→ G′ is con-

sistent with a rule application G δ
=⇒ H, if all the nodes and edges of G

identified by k (identification points) and all the nodes in G whose images
in G′ have adjacent edges not in k(G) (dangling points) are in f (D) (cf.
the diagram in Definition 2.5).

Given a rule application G δ
=⇒ H and a morphism G k−→ G′, there exist

G′ δ′
=⇒ H′ and k′ : H → H′ if k is consistent with δ (with ρ(δ) = ρ(δ′)).

Theorem 7.2 (Abstraction Correctness). If (P, [C])
(ρ,N)−−−→C (P′, [C′]),

then for each δ with G ∈ γ[C] as input graph and ρ as rule, s.t. ∀p ∈
N : G 6 p=⇒, there exists a RePro transition (P, G)

(ρ,δ,N)−−−→D (P′, G′) with
G′ ∈ γ[C′].

Proof. We show that (P, [C])
(ρ,N)−−−→C (P′, [C′]) indeed implies that

γ([C′]) contains all graphs arising from rule applications from γ([C]).

More precisely, we show that if G ∈ γ([C]), then (P, G)
(ρ,δ,N)−−−→D

(P′, G′)⇒ G′ ∈ γ([C′]).
First, we show that for each such G′, ∃X′ ∈ C′+ : X′ ↪→ G′ and
∀X′− ∈ C′− : X′− 6↪→ G′.

We start with demonstrating X′.

• If ∃X+ ∈ C+ : X+
x
↪→ G, and δ has as match m : L → G, then

there is the following diagram, whose DPO part is denoted δ′:

Can(L) Can(K)X l

Xm

· · ·X̄1 X̄|Π̃|

6 6

m′

D

(PO)

f

k

Can(R)

X′

r

n

g

(PO)x′

where Xm is the restriction of G to x(X) ∪m(L), m′ is the canon-
ical match and x′ is the monomorphism corresponding to m and
x, respectively. Thus, (m′, x′) are jointly epimorphic.

• Xm ↪→ G, thus, Xm fulfills the non-existence conditions of Π̄
and the non-applicability conditions of N are fulfilled. Hence,

X′ ∈ C′+. We still have to show that G δ
=⇒ G′ implies X′ ↪→ G′.

• According to the Embedding Theorem (Theorem 7.1 [38]), Xm
δ′
=⇒

X′, G δ
=⇒ G′ and mx : Xm ↪→ G imply the existence of a morphism

7 .3 abstract interpretation of repro by compasses 131

X′ → G′ if δ′ does not delete any identification or dangling
points of mx. As mx is mono, there are no identification points.
The existence of δ ensures that m′ does not delete any dangling
points. Hence, X′ → G′. Moreover, this morphism is mono due
to Proposition 7.8 [38].

We still have to show that ∀X′− ∈ C′− : X′− 6↪→ G′.

• Suppose there is X′′− ∈ C′− : X′′−
x
↪→ G′.

• If X′′− ∈ Π̄ or X′′− = Can(Lp) for some non-node-deleting p,
X′′− 6↪→ G.

• The union Y of n(R) (where n : R → G′ is the co-match in δ)
and x(X′′−) in G′ takes the form of a gluing Y as required by
Definition 7.6, because x is monic and any co-match is necessarily
injective on the freshly created elements.

• Then, the pullback object W of R→ Y ←↩ X′′− (cf. Definition 7.6
for notation) with W → K ↪→ R = W → R guarantees that the
overlapping of n(R) and x(X′′−) (represented by W) in Y does
not contain freshly created elements but only preserved ones (as
expressed by the commutative arrows via K).

• The above fact, together with the monicness of x, implies that
x(X′′−) ↪→ k(K) (with k : K → D being the middle vertical

morphism of δ) and, therefore, that the inverse application G′ δ−1

=⇒
G leaves X′′− in place and, thus, X′′− ↪→ G, a contradiction.

• We only have to show yet that Lp
δp
=⇒ X′′− with ρ(δp) = ρ and

m(δp) = L
m
↪→ Lp (as in Definition 7.7) also leads to a contradic-

tion.

• Lp
δp
=⇒ X′′− and L

m
↪→ Lp implies R ↪→ X′′− due to Proposition 7.8.

• Then, due to X′′− 6↪→ G and X′′− ↪→ G, n(R) (n is the co-match of

G δ
=⇒ G′) is injectively embedded in x(X′′−).

• Then, the inverse of δp, X′′−
δ′p
=⇒ Lp can be extended to G′ δ′

=⇒ G by
the Embedding Theorem (Theorem 7.1) along x: x is mono and
ρ cannot violate the dangling condition by definition.

• However, this means Lp ↪→ G, contradicting the non-applicabili-
ty of p.

Now, G′ ∈ γ[C] is a consequence of Proposition 7.3.

132 7 analysis of controlled graph-rewriting processes

As a consequence, we observe that the above theorem justifies
our intuition about abstract verification for RePro: For any RePro

transition sequence, the corresponding compass transition sequence
using the same actions and starting from the set of all graphs subsumes
the concrete states in each state. We denote the compass describing
all graphs as C> = ({G∅}, ∅) with G∅ being the empty graph. First,
observe that this compass in fact describes all graphs.

Proposition 7.9. γ([C>]) = |Graph|.

Proof. First, observe that min([C>]) = C> as C> is minimal: the pos-
itive pole is a singleton, G∅ is a core and flat(G∅) = {G∅} For any
graph G ∈ |Graph|, G∅ → G. As the negative pole is empty, its
conditions are trivially fulfilled.

Corollary 7.2. Let (P0, [C>])
(ρ1,N1)−−−−→C . . .

(ρn,Nn)−−−−→C (Pn, [Cn]) be a com-
pass trace. Then, the following holds:

If (P0, G0)
(ρ1,δ1,N1)−−−−−→D . . .

(ρn,δn,Nn)−−−−−→D (Pn, Gn), then Gn ∈ γ([Cn]).

Proof. For any G0, G0 ∈ γ(C>) by Proposition 7.9.
We prove the statement by induction on the length k of the −→C

sequence.

k = 1: For (P0, [C>])
(ρ1,N1)−−−−→C (P1, [C1]) and graph G0, each G1 with

(P0, G0)
(ρ1,δ1,N1)−−−−−→D (P1, G1) is in γ([C1]) due to Theorem 7.2.

k > 1: By hypothesis, for

(P0, [C>])
(ρ1,N1)−−−−→C . . .

(ρn−1,Nn−1)−−−−−−→C (Pn−1, [Cn−1]),

(P0, G0)
(ρ1,δ1,N1)−−−−−→D . . .

(ρn−1,δn−1,Nn−1)−−−−−−−−−→D (Pn−1, Gn−1) implies Gn−1 ∈
γ([Cn−1]). Then, for any (Pn−1, Gn−1)

(ρn,δn,Nn)−−−−−→D (Pn, Gn), Gn ∈
γ([Cn]) due to Theorem 7.2.

examples for abstract verification. All the above develop-
ments had a leading principle to prepare grounds an abstract property
verification for RePro. At this point, to conclude this section by justify-
ing our approach, we shortly revisit the µ-calculus, employed in [27] as
a general means for formulating model checking formulas; afterwards,
using appropriately crafted examples, we are able to demonstrate
the intentions and the potential behind our verification framework.
However, a full formal treatment of predicates and model checking
formulas for compasses opens up a different line of research and is,
thus, left for future work.

The (modal) µ-calculus [60] consists of formulas for verifying prop-
erties on transition systems. Theoretically, widely used temporal logics
such as LTL [93] and CTL∗ [39] can be encoded in the modal µ-calculus;
here the term “temporal” means that formulas do not only express
state properties, but also those of transition paths, in turn allowing for
statements such as “eventually, there is a path where a given property

7 .3 abstract interpretation of repro by compasses 133

holds” or “the property holds in all upcoming states”. Thus, the
modal µ-calculus represents a powerful foundation for verification
approaches based on model checking [5]. For formal details, we refer
to the sources cited above.

Without going into the formal details, µ-calculus formulas resemble
predicate logic with variables, where the semantics maps a formula
to those states where it holds; for example, a formula consisting of a
simple predicate holds in those sates where that predicate holds, as
expected. There are two distinguishing features: (1) the use of the so-
called smallest and greatest fix-point operators µ and ν, used to declare
if a variable in a formula has to be resolved in a minimal or maximal
way, and the temporal operators � and �, intuitively denoting that
the formula should hold in every or in at least one subsequent state,
respectively.

As a simple example for applying µ-calculus in the context of RePro

and our WSN example in particular, consider that we want to verify
if, given a graph property no3a expressing that “there is no active
triangle in a graph”, it holds for a state (P, G) that “for all subsequent
state, no3a holds” (a universal safety property). By writing

νx.(no3a∧�x),

we are able to formally conclude if this holds for (P, G) using the
µ-calculus. Notice that νx ensures that x will be interpreted as any
state set S′ and verifies if φ := (no3a ∧�φ) holds in those states. By
the semantics of ∧ interpreted as conjunction, this means that no3a
have to hold in all those states and, by the semantics of �, recursively
also in each of their successors. Thus, (P, G) fulfills νx.(no3a ∧�x)
indeed if and only if each state reachable from (P, G) fulfills no3a.

First, recall the compass

Cn3 := ({G∅}, {G3})

from Section 7.2. Arguably, we are able to conclude that L([Cn3])

fulfills no3a, i.e., that no graph in the language of Cn3 contains an
active triangle. Furthermore, observe that Cn3 describes exactly that set
corresponding to no3a. In general, we observe that for any compass
containing G3 in its negative pole, its language does not contain any
graphs with active triangles.

Concluding this example, we can verify in general the correctness for a
topology control algorithm given as a control process. In particular, consider

PnTC := pkTC.PnTC + (pActUS, {pkTC}).PnTC + (pActUL, {pkTC}).PnTC

from Sect. 4.2 as a topology control algorithm; the specifications of the
rules involved are found in Figures 4.3 and 4.4.

(PnTC, [Cn3])

134 7 analysis of controlled graph-rewriting processes

fulfills
νx.(no3a∧�x)

holds exactly if no reachable compass language contains active tri-
angles. Let us verify this by examining the possible transitions of
(PnTC, [Cn3]) based on Definition 7.8.

• (PnTC, [Cn3])
(pkTC,∅)−−−−→C (PnTC, [C′n3]) by PnTC

(pkTC,∅)−−−−→ PnTC and

min([Cn3])
(pkTC,∅)

≡≡≡≡V C′n3, where, in particular, the negative pole of
C′n3 contains G3 due to pkTC being agnostic to G3 (in particular,
G3 will never overlap with RkTC on its freshly created L;i-link).

• Similarly, (PnTC, [Cn3])
(pActUS,{pkTC})−−−−−−−−→C (PnTC, [C′′n3]) and, in partic-

ular, the negative pole of C′′n3 contains G3 due to pActUS being
agnostic to G3.

• Most interestingly, for (PnTC, [Cn3])
(pActUL,{pkTC})−−−−−−−−→C (PnTC, [C′′′n3]),

in particular, G3 would get eliminated as pActUL is not agnostic
to it: RActUL has an injective morphism to G3 as the former is
a single L;a-edge. However, G3 gets reintroduced by the last
construction in Definition 7.7: LActUL ↪→ LkTC, pkTC ∈ N (the set
of non-applicability conditions), and LkTC

pActUL
===⇒ G3 (at the monic

match above).

Thus, we can conclude by induction that as any step of PnTC pre-
serves G3 in the negative pole, no3a holds in any subsequent state.
This way, we can formally verify that PnTC indeed prevents the creation
of active triangles starting from any graph which does not contain
any of them, as expected. Note that now, we can also reveal that the
earlier, unripe version

PTC := pkTC.PTC + pActUS.PTC + pActUL.PTC

of the same algorithm is incorrect w.r.t. this formula: although the
first two cases above still hold, in the case of pActUL, we do not retain
G3 without pkTC as a non-applicability condition and, thus, cannot
guarantee that no active triangle is created.

As a more elaborate example, recall the formula µx.(vpath∨ (�true∧
�x)) from Section 7.1. Here, vpath ∈ Pred ⊆ Lit for our particular
setting; vpath, expresses a property of a RePro state; more precisely,
vpath is fulfilled in (P, G) if it holds for G that any virtual link has
been checked by the search mechanism described in Section 7.1. This
formula represents a liveness property. Strictly, this property is neither
universal nor existential, but rather combines both in the expression
(�true ∧ �x): while �true simply ensures that there exists at least
one subsequent state, while �x takes care of considering all of the
subsequent paths. Now, considering the whole formula, (vpath ∨

7 .3 abstract interpretation of repro by compasses 135

(�true∧�x)) can be read as follows: either vpath holds in the current
state, making the property hold for the current path, or we have to
(and are able to) continue, expressed by the other part of the formula
as explained before. In turn, binding by µx ensures that the whole
formula only holds in those states for which any path eventually
reaches a state fulfilling vpath.

Now, recall the process

Poverlay := Psearch || Prep

as well as the compass Csearch2 := ({G f }, {LSuccess, LSuccess2}) (cf. 7.1
for further reference on the process specification). We know that
L([Csearch2]) consists only of graphs containing search flags, thus, each
of them violating vpath. Using our verification approach, we are able
to verify generally the correctness of the repair capacities of Prep, a
component of Poverlay. In fact, we expect that

(Poverlay, [Csearch2])

fulfills
µx.(vpath∨ (�true∧�x)),

i.e., that for any execution of our overlay mechanism, even if the start-
ing graph violates vpath (as the graphs in L([Csearch2])), the property
will hold eventually. Due to the large number of potential actions in
Poverlay, we do not elaborate on each possible step as above, but still
delineate the reasoning process.

For actions in Psearch, we just observe that they either keep (by search)
or reduce the number of flags (by success), as now Padmin is inactive
and no fresh virtual links are created. In particular, if there were a
transition

(Poverlay, [Csearch2])
(pSuccess)−−−−→C (Poverlay, [C′search2]),

G f would get transformed to a graph of a single active edge by Defini-
tion 7.7, by taking LSuccess as a jointly epimorphic gluing. Obviously,
the same argumentation holds for any starting compass with G f in the
positive pole. However, the presence of LSuccess in the negative pole
results in the same graph appearing in the negative pole, leading to
the disappearence of G f by further minimalization (cf. R3 in Defini-
tion 7.5) and, thus, to inconsistence. We conclude that the compass
construction prevents an immediate success action (as expected) and
some repair action has to take place first.

In fact, by the transition

(Poverlay, [Csearch2])
(pActP)−−−→C (Poverlay, [C′′search2]),

each item in the positive pole of C′′search2 contains two flags as the
construction extends G f in different ways, and, in particular, some

136 7 analysis of controlled graph-rewriting processes

items would represent graphs where pSuccess is applicable now. Even
more importantly, the above inconsistency is eliminated as pActP is not
agnostic to LSuccess and, thus, the latter is not inherited in the negative
pole of C′′search2.

Although promising, this conclusion is only partly satisfactory: it
draws attention to an important line of future work by revealing
two expressiveness leaks of compasses when compared to human
intuition and reasoning: First, the positive part of Definition 7.7 does
not prevent, e.g., pActP from repeatedly introducing fresh u-edges into
the language of subsequent compass languages, also with flags not
even being paired. Our intuitive reasoning on the correctness of the
above verification formula is based on further implicit assumptions not
captured by compasses: that each flag is paired and that the number
of u-edges is decreasing. Second, pActP also immediately eliminates
LSuccess2 from a negative pole, although this intuitively represents
a stronger condition. The present construction is not fine-granular
enough to capture our intuition that LSuccess and LSuccess2 together
express the necessity of at least two subsequent repair steps.

8
D I S C U S S I O N A N D R E L AT E D W O R K

In this chapter, after having presented RePro and investigated its
major characteristics as a process algebra and control language, we
present a review of related literature. Thereby, we first explore the
connections between RePro and further lines of work in the relevant
theories (Sect. 8.1), and discuss some central design choices and the
resulting limitations thereafter (Sect. 8.2).

8.1 related work

repro and concurrency theory. The notion of concurrency
in computer science appeared as early as the first computing sys-
tems being capable of communication, and has been a major field of
study ever since. As shortly delineated in Sect. 1.4, within the diverse
takes and approaches on concurrency, process algebra is particularly
concerned with the formal specification and analysis of communi-
cating systems. Therein, a special attention is paid to issues related
to dynamic, adaptive and reactive systems, constantly gaining on
importance nowadays due to the rise of intelligent communication-
based technologies as seen, e.g., in the IoT (Internet of Things) concept.
As examples, the work of Mauw and Reniers [76], published in the
comprehensive Handbook of Process Algebra, already considered a
practical use of process-algebraic operational semantics to dynamic
system interworking; more recently, according to the general trend of
proposing specialized process calculi for application domains, an IoT
calculus has been proposed both by Lanese et al. [67] and Lanotte and
Merro [68].

As for the theoretical background, the design of RePro closely fol-
lows the principles of the CCS calculus, proposed by Robin Milner [79].
The choice of this calculus as a baseline has been motivated by the
following factors: (1) its explicitly general purpose and high flexibility,
(2) its minimal design and syntactic simplicity combined with expres-
siveness, and (3) the resemblance of its operators to the constructs
usually employed in CGR practice. While these factors are thoroughly
elaborated on in the thesis, here, we revisit some major process calculi
other than CCS, in order to recall their distinguishing features and,
most importantly, to comment on the effects those differences would
exert on RePro if considered as an alternative baseline.

The CSP (Communicating Sequential Processes) calculus, first de-
scribed in a 1978 paper by Tony Hoare [53], and substantially devel-
oped later on. In turn, formulating CSP as a process algebra, described

137

138 8 discussion and related work

by Brookes, Hoare and Roscoe [11], was influenced by the work of
Milner on CCS, and these two calculi are still often handled as major
competing alternatives for a minimalistic general-purpose communi-
cation calculus [12]. From a practical perspective, the main difference
lies in the handling of synchronization: Standard CCS splits the do-
main of action names into complementary names and co-names, where
synchronization only takes place upon corresponding name pairs fir-
ing in parallel—a mechanism we did not adapt for RePro, as in our
special CGR setting, action names are rather derived from a fixed
graph-rewriting system and, thus, introducing a complementary name
set would feel unnatural. In contrast, CSP has a richer synchronization
mechanism, where, instead of a universal parallel operator like our
|| , a parallel composition can be further parameterized by the names
of actions required to be fired on both sides for the composed process
to proceed. Thus, in contrast to RePro, this definition introduces
a blocking synchronization behavior based on agreements between
the two processes; however, the permissive RePro synchronization
might be seen as a special case of CSP synchronization with an empty
parameter list. Furthermore, RePro might be enriched with an adap-
tation of the CSP blocking synchronization mechanism if this would
be, e.g., desired for a specific modeling domain: the synchronization
parameter would range over the elements of the parallel rule monoid
(cf. Definition 2.3) over the rule set from which the process is built.

Another highly influential process calculus is the π-calculus [81, 82],
also proposed by Robin Milner, in collaboration with Joachim Parrow
and David Walker. The main additional consideration, as the title of
the original publication already suggests, is to capture the mobility of
communicating agents, i.e., the changing system structure. Technically,
this is most notably reflected by communication channels appearing
as first-class syntactic and semantic ingredients, and the attached con-
cept of scopes, representing those components (i.e., processes) where
knowledge of a given name is shared among different processes, but
concealed from other ones, i.e., the environment from the perspective
of those processes. In turn, the scope structure might be thought of as
a derivate of the channel structure and might change during execution
by sending channel information along existing channels.

Directly adopting the π-calculus as a baseline for RePro would
have probably shifted the emphasis from graph rewriting itself to
the arising communication structures surrounding the graph and its
evolution; moreover, such a communication model is rather rarely and
superficially considered in graph-rewriting literature. However, the
issues explicitly addressed by π-calculus are related to the most rele-
vant challenges of the increasingly adaptive, autonomous and mobile
computer systems of present-day practice. Therefore, investigating
the adoption of π-calculus as a whole or some particular features
of it in the context of RePro might have fruitful consequences for,

8 .1 related work 139

e.g., the graph-based design of IoT or cyber-physical systems [69]. In
this context, it is also important to mention that the communication
structure derivable from a π-calculus specification is often termed
topology and resembles, in fact, the real-life topologies of mobile
ad-hoc networks just as in our WSN running example. Therefore, for
the modeling of such dynamic communication systems, it would be
interesting to investigate the π-calculus not only as a baseline, but
also as a kind of meta-calculus, whose actions would, in turn, take
effect on the topology term itself, integrating the control and the graph
(data) aspect. In this context, we have to mention two further major
calculi: (1) the ambient calculus [14], whose main goal is exactly to
unify the communication and the transformation aspect of mobility:
not only the communicating agents, but also the executables (e.g.,
rewriting rules or their sequences, even their processes) are mobile
and might dynamically evolve or get transferred; and (2) the fusion
calculus [87], designed with an intent to serve as a unifying process
calculus and proven to be more general than the π-calculus, where the
distinguishing fusion operation formally captures data sharing, which
could also be adapted for graphs—although the interpretation of such
operations is not straightforward within graph rewriting.

There is an abundance of further established process calculi, most
of them designed to express the characteristics and fulfill the for-
mal needs of specific system domains. Some of them, such as the
join calculus [43] or the reflective higher-order calculus [77], aim at the
support of formal reasoning over recent programming and system
design paradigms and, thus, go into a different direction than the
design principles behind RePro. Other, specialized calculi deliberately
choose a narrower scope and rather serve as a formal modeling or
specification vehicle for real-life systems, such as the IoT calculus to
describe systems according to the Internet-of-Things principles [68].
Although such calculi do not harmonize with the intentions of RePro,
i.e., providing a general process-algebraic control formalism for graph
rewriting, specialized calculi would definitely be a valuable subject of
study within the narrower scope of graph-based modeling within the
specific domain.

Besides process calculi, Petri nets constitute another major formalism
for the formal modeling of distributed and concurrent system behavior.
Although the present thesis focuses on process algebra as a control
mechanism for graph-rewriting processes, Petri nets could also serve
the same purpose—in fact, we have described a preliminary study on
employing Petri nets for controlling graph rewriting elsewhere [64].

Formally, the close connection between CCS and Petri nets has been
noted and established early on; in particular, there is a semantics-
preserving translation from the standard CCS of Robin Milner into
Petri nets [47]. It is an often repeated claim that one of the major
distinction between Petri nets and CCS (or even process algebra in

140 8 discussion and related work

general) is the truly concurrent or asynchronous nature of parallel transi-
tions in Petri nets, i.e., that the Petri net model adequately captures the
causal independence of transitions happening in parallel, in contrast
to, e.g., the original CCS semantics which is fully interleaved: concur-
rency boils down to a number of equivalent sequentialization [46].

There are situations, however, where this property of CCS semantics
is undesired, as discussed in detail by Mukund and Nielsen [83]. There
is a number of different possibilities for providing CCS(-like terms)
with a non-interleaving semantics, including

• the decoration of transitions, partly resembling our approach,
as, e.g., in [10];

• or translating the term directly into a Petri net as, e.g., in [29].

Mukund and Nielsen [83] propose a comprehensible solution based
on decorations, which, as a bonus, allows for a particularly favorable
translation into the class of 1-safe Petri nets, ideal for reasoning pur-
poses. This result is achieved through a categorical framework for
models of concurrency, with this particular example being elaborated
by Nielsen and Winskel [86]. The underlying intuitive observation
is that during such a translation, semantically, one transposes from
the domain of concrete process transitions to that of their underlying
events, representing a more context-independent and abstract variant
of system behavior. We might say that with the advancements in
Sect. 6.2.2, we are halfway in adapting this framework: we provided
an abstract event notion for graph-rewriting transitions by factoring
out the non-conflicting differences in transition labels, but the notions
and results for inferring the kind of Petri net translation applicable to
RePro is part of future work.

Petri nets also play an important role in the concurrent semantics
of graph rewriting proposed in the literature so far, which we will
recapitulate in the following.

concurrent semantics of graph rewriting . The standard
interpretation of (algebraic DPO) graph-rewriting systems usually
understands the semantics (although it is even rarely termed so) for
a given starting graph and a rule set (i.e., a GTS) as a transition
system, where states are graphs and in each state, any rule of the
GTS is available; transitions correspond to rule applications with their
output graph as target, potentially labeled by their rule names, match
morphisms or full DPO diagrams [38].

The notion of traces and processes have also been introduced already
in the 90s in the context of graph rewriting, although with a different
interpretation than that of RePro, influenced by Petri net theory and
considering event-structure semantics instead of an operational one.
Here, the graph structure is considered to represent the configuration
of concurrent or distributed systems on an appropriate abstraction

8 .1 related work 141

level, resembling our remarks above on a π-calculus term serving the
same purpose.

In this context, Corradini et al. propose a trace notion and a corre-
sponding trace-based equivalence relation for GTS. Here, a trace is an
abstract rule application sequence lifting details of rule applications
up to isomorphism, and the ordering of the single rule applications
provided that they are equivalent [19]. This resembles the event ab-
straction technique of Sect. 6.2.2, however, the semantic domain of
traces consists of equivalence classes of rule applications which get
unified, focusing on their joint rewriting effects, instead of using the
classes itself as events capturing the effects of single rule applications.

A related semantic construction, proposed by Corradini et al., is
that of the so-called graph processes [18]. However, in contrast with
RePro processes introduced above, these are static structures (in fact,
a special kind of graph grammars) summarizing the potential conflicts
and equivalences in the original GTS and, thus, they do not possess
an operational interpretation.

A survey and comparison on the concurrent semantics of graph
rewriting and the two aforementioned approaches in particular can be
found in Baldan et al. [6].

From the operational perspective on the semantics of graph rewrit-
ing, both bisimulation and operational semantics has been studied
before in the literature. As demonstrated in the context of RePro in
Sect. 6.1 and especially in Theorem 6.1, one of the major power of
bisimulation is that it allows for the mutual replacement of bisimilar
processes in a larger context. However, to that end, it is required that
bisimulation is a congruence. After establishing this for CCS, Robin
Milner, together with James Leifer, established a general categorical
framework for congurences in LTS-based bisimilarity [71]. Ehrig and
König adopt this technique to derive (i.e., in contrast to RePro, not a
priori provide) an LTS semantics of graph rewriting where, similarly
to RePro, bisimilarity is a congruence [35]. However, their approach
requires a special rule format and respective rule-application seman-
tics, called borrowed contexts, which reflect the generic congruence
notions of Leifer and Milner on the application level. Partly based on
this technique, Dorman and Heindel propose a structured operational
semantics (SOS) for graph rewriting [33]. Similar to RePro, the authors
aim at combining notions from GTS and process calculi and especially
focus on synchronization of parallel composition. Again, as in our
above comments on π-calculus topologies and the motivation behind
earlier trace and process notions, it is the process term itself which
reflects the graph being rewritten, contrasting the RePro approach of
employing a process term for external control.

negative conditions in graph rewriting . In connection to
our proposed notion of non-applicability conditions (cf. Sect. 4.2), we

142 8 discussion and related work

discuss here further conceptual and technical alternatives, as non-
applicability conditions are definitely not the only thinkable concept
to handle forbidden graph structures or rule applications. Indeed,
throughout the decades-long development of graph rewriting theory,
a number of approaches have been proposed to deal with, vaguely
speaking, expressing that some structural property of the graph (or of
a graph and a match) should not hold—to all which we shortly refer
here as negative conditions.

Although it is out of scope for the present thesis to elaborate on all
the diverse notions proposed so far, still, we identify and discuss some
major conceptual approaches to formalize negative conditions in the
following.1

1. Negative application conditions: Introduced as early as 1986 by
Ehrig and Habel [34], application conditions are arguably the
most studied condition notion for graph rewriting.

The basic principle of the application condition approach is to
enrich rule specifications by constraints attached to their left- or
right-hand sides. A constraint is an injective morphism from
one of the rule sides, which thus extends the left- or right-hand
side with some further structure. An application condition is a
collection of such constraints equipped with polarities (i.e., if a
constraint is positive or negative). In particular, a negative left-
hand (right-hand) constraint in an application condition requires
for a match (co-match) to yield a successful rule application
that the occurrence of the left-hand side (right-hand side) is not
extensible in a way that the forbidden structure also matches.

The above principle is in stark contrast with the non-applicabili-
ty conditions of RePro, even from two perspectives: First, while
application conditions impose local graph structure constraints
relative to a given match, non-applicability conditions result
in global structural restrictions, which can in turn be derived
from the non-applicability of a rule. (Note, however, that (i)
non-applicability might still be captured by deriving synthetic
application conditions, but this is contrary to the RePro principle
of building control terms from existing rules; (ii) if using DPO
rules, this is not equivalent with the non-occurrence of the left-
hand side; even a valid occurrence might violate the so-called
gluing condition of DPO graph rewriting [38].) Second, whereas
application conditions are parts of rule specifications and are
thus attached to specific rules, non-applicability conditions are
part of the control terms and are in turn formulated over rules.
This design choice has two main motivations: First, RePro

has as explicit goal a strict separation of the control level and

1 Note that several concrete approaches also encompass positive conditions within the
same conceptual framework, but we do not address those here directly.

8 .1 related work 143

the underlying graph-rewriting system, preferring to use the
elements of the latter without modification in control terms.
Second, we want our control language to be computationally
complete as demonstrated in Sect. 6.3; to this aim, it is necessary
that the control language contains some notion of finite failure
(basically for expressing termination of maximal iteration in the
presented minimalistic setting).

Note that although the design choice above (namely, that nega-
tive conditions are on the control level) is justified in the concep-
tual framework of RePro, we do not intend to say that applica-
tion conditions do not have a control effect and, thus, cannot be
used for controlling a graph grammar; indeed, Habel et al. re-
marked already in 1995 that a wish for more precise control
might be one of the motivations to enrich rules by application
conditions [48].

2. Consistency conditions: Besides building on the aforementioned
application conditions, Heckel and Wagner [50] introduce an-
other kind of conditions called consistency conditions. In contrast
to application conditions and more in the vein of RePro non-
applicability conditions, consistency conditions are relative to
graphs instead of rules and matches, and express global struc-
tural properties of those. Just as an application condition is
a collection of application constraints, a consistency condition
consists of consistency constraints.

In turn, the concept of consistency constraints can be seen as
an all-quantified variant of application constraints. In particular,
they also come equipped with a notion of polarity: A positive
consistency constraint is a morphism, holding for a graph if each
occurrence of the morphism source therein can be extended to
its target according to the constraint morphism itself. A negative
consistency constraint is instead a single graph imposing global
restrictions on other graphs in terms of forbidden subgraphs.

Also, the restrictions imposed on graph-rewriting systems by
consistency conditions might have a negative conditional (i.e.,
a forbidding) effect even if the constraint itself is not negative.
Indeed, a large part of the original paper by Heckel and Wag-
ner [50] is dedicated to translating global consistency conditions
to (left-hand) application conditions of single rules from a given
graph-rewriting system, based on the set of rules and the reach-
able graph states; even if the consistency conditions are not
inherently negative, the generated application conditions might
be of negative polarity (see above).

A major difference between consistency conditions and RePro

non-applicability conditions lies in the fact that while consistency
conditions are formulated separately and over (graph) states,

144 8 discussion and related work

non-applicability conditions build on rule specifications already
at hand, and utilize the rule-application semantics to formulate
negative constraints for single actions of the transition system,
instead of requiring their fulfillment for each graph instance
arising during the execution.

3. The comprehensive approach of nested conditions as proposed
by Arend Rensink [96] subsumes the above two notions both
conceptually and technically. A nested condition is indeed a fam-
ily of condition morphisms equipped with logical connectives,
thus, representing a (first-order) logical formula over graphic
conditions. Moreover, satisfaction of nested conditions is inher-
ently interpreted both for graphs and morphisms, diminishing
the above distinction between application conditions and con-
straints. Syntactically, a nested condition is a tree of morphisms
connected by logical negation and conjunction; being sufficient
to capture each operator in classical first-order logic. Indeed,
Rensink shows that nested conditions achieve the expressiveness
of first-order logic w.r.t. graph properties (seen as predicates).

A general remark about the relation of RePro non-applicability
conditions and the condition notions above: there is no technical
reason for RePro to exclude any “static” concept of negative conditions
within the underlying rule-application semantics. Those and our non-
applicability conditions simply belong to different conceptual levels:
those negative condition notions are either attached to single rules or
pose general restrictions on graph states in a graph-rewriting system,
whereas our non-applicability conditions are part of control process
terms and, thus, represent a fine-grained, action-level negative control
mechanism.

Regarding that latter concept in the literature, the only prevalent
state-of-the-art concept of control-level negative conditions lies im-
plicitly in the if-then-else control construct appearing in most practical
CGR approaches (cf. Chapter 3). Similarly to RePro non-applicability
conditions, an if-then-else has a conditional rule evaluation which
says that some control path (i.e., the else program branch) should be
taken if a rule is not applicable. Nevertheless, if-then-else represents
a special (even if fundamental) case for non-applicability conditions,
restricting their use to conditional control decisions.

abstractions of graph languages . In Chapter 7, we elab-
orated on the novel notion of compasses, representing a RePro-
compatible solution for abstractly characterizing infinite graph lan-
guages. This topic of “taming” the infinity of graphs arising through
graph-rewriting system execution has long been subject to research in
the literature.

8 .2 discussion 145

Before shortly surveying the related approaches, we remark that
although compasses has been directly developed to fit the RePro

setting, any of the following constructions could be investigated w.r.t.
its capacities to serve as an abstract domain; however, they lack a
labeled step notion for defining an abstract LTS in their current form.

Arend Rensink was among the first to explicitly raise the issue of
handling abstract graphs for state space exploration [95], as part of
his endeavors in developing the foundations for the Groove tool (cf.
Sect. 3.2.6 and [45]), and inspired by similar advances in model check-
ing [32]. He is inspired by shape graphs, where graph nodes might stand
as placeholders for an unbounded number of other nodes potentially
appearing, e.g., during graph rewriting. Shape graphs come equipped
with constraints limiting their potential growth, a construction slightly
resembling the role of negative poles in compasses.

Later on, directly based on the work of Rensink, Boneva et al. coined
the term abstract graph transformation, describing a comprehensive
shape-based framework for abstract graph verification [9]. Here, the
central notion of materialization expresses the gradual concretizations
of abstract graphs through rule applications. Materialization has
remained an important notion for developments up to recent times,
such as the work of Corradini et al. [24] proposing a unifying approach
to abstract rewriting. Beyond the aforementioned line of research,
another direct precursor of this paper is a general framework for
recounting the properties of abstract graph language specifications,
here, languages described by type graphs in particular [20].

Another paper aiming at defining abstract graph transformation
based on shape graphs is the work of Steenken et al. [106]. Here,
similarly to our compass transition system, the goal is to find abstract
transitions being sound and complete approximations of their concrete
counterparts.

We remark that, alternatively, also the different graph constraint
notions, recapitulated above in the context of graph conditions, might
be viewed as abstract graph language specificators and, thus, their
use as such will be discussed in the following section in more detail,
under the heading Compasses as Constraints.

8.2 discussion

In this section, we further discuss some of the central notions of Re-
Pro, where we think that the reasons behind our design choices or
the borders of RePro compared to other viable alternatives should
be made more explicit. In particular, we revisit the topics of synchro-
nization and independence, as well as equivalence of graph-rewriting
processes. In addition, we reason about the common features of a
process-theoretic core theory of controlled graph rewriting, by means

146 8 discussion and related work

of comparing the SOS semantics of RePro as well as of state-of-the-art
CGR tools Porgy and “full” GP as in Sect. 3.2.1.

process equivalence . A major conceptual advantage of the
design of RePro is the process-algebraic setting: it enables us to
address equivalence of processes in an established and systematic way.
In particular, none of the existing CGR approaches deals with the
question if two executions (or even more generally, whole programs or
processes) are considered to be equivalent under some relaxed notion
of equivalence not requiring strict syntactic uniformity.

However, despite this unique feature, the direct adaptation of pro-
cess-algebraic notions in a graph-rewriting context has some draw-
backs.

1. Too concrete states and transitions: It is among the goals of pro-
cess calculi to have some abstractional power over the system
domain they primarily aim at specifying, just as CCS or the
π-calculus capture the essential message-passing behavior of
communication systems by introducing an appropriate abstrac-
tion over distributed communicating agents and their messages.
Unfortunately, the same cannot be said of RePro: although the
underlying theoretical constructs allow for defining equivalences
(as we have seen with traces and bisimulation), the information
carried by states and transition labels is way too concrete: graph
instances signify concrete graphs while labels contain a full con-
crete DPO diagram, where even isomorphic objects are treated
as separate entities. However, in Sect. 6.1, we propose (among
others) an abstraction of the RePro transition system which
takes isomorphism into consideration.

2. Lack of hiding: Despite the aforementioned issues, we were still
able to define meaningful equivalence notions for RePro pro-
cesses. But while trace equivalence suffers from the usual draw-
back of “forgetting” important control-relevant details (we re-
ferred to this as branching behavior before), RePro bisimulation
notion appears to be a bit strict: as graph instances are inherent
parts of their states, bisimulation is not able to abstract away
from concrete graph identities. Even if we solve this issue by
the aforementioned up-to-isomorphism factorization in Sect. 6.1,
we still miss the real power of bisimulation, i.e., that it can be
equipped with a notion of observability. In CCS, non-observable
steps arise when paired actions (co-actions) synchronize, while
the π-calculus has an even more sophisticated action hiding
mechanism based on scopes. In contrast, in RePro, every syn-
chronization leads to fresh graph-rewriting actions, which are
observable under any circumstances. This is a deeper conceptual
issue which cannot be solved by simply fine-tuning the definition

8 .2 discussion 147

of bisimulation; therefore, the larger part of Chapter 7 deals with
introducing an abstract domain of graph classes harmonizing
with the RePro control semantics.

synchronization and parallel independence . Here, we
first revisit and discuss the synchronization mechanism in RePro,
being directly connected to parallel independence of rule applications
and also that of transitions (cf. Definitions 2.6 and 6.2 as well as
Proposition 2.1). Then, we examine the conceptual differences between
our two definitions of transition independence, which we called direct
approach and asynchronous approach, respectively (Sect. 5.2).

1. Synchronization: The RePro concept of synchronization formally
arises by Definition 4.5: There, the rule sync allows for each two
rule applications arising in parallel (i.e., on two sides of a parallel
composition) to synchronize and thus perform those actions as
a single parallel-rule application. Looking at only the control
processes, this is always possible as there is nothing blocking
the parallel action; whereas if we consider a graph instance as
well, there might be single actions available in parallel for which
the corresponding synchronized action does not have a valid
match and is, thus, unavailable. Consequently, one might think
of ways to semantically restrict synchronization already at the
control level, at least for cases where the synchronized action
will never become available. We have proposed such a variant
in the original publication on RePro [63], presented above after
Definition 4.7 as nCTS* (as in contrast to nCTS). In nCTS*, an
additional premise of sync prevents the inference system to
synthesize actions where one of the plain rules in the parallel
rule is simultaneously a non-applicability condition.

Unfortunately, this premise will not prevent the control seman-
tics to produce infeasible actions: even if not formally the same
rules, some plain component rule might require as match a
smaller part of some forbidden structure. Implementing such a
sophisticated mechanism, although technically feasible, would
contradict the action-based spirit of CTS, as this would require a
categorical analysis of the underlying rule spans. We argue that
a completely liberal solution (i.e., one without any restrictions)
as in the present nCTS (Definition 4.7) harmonizes the most with
the design of RePro: at least on the control level, no blocking
behavior is introduced, making control processes conceptually
more aligned to CCS processes.

2. Direct vs. asynchronous approach: The direct approach to inde-
pendence lifts the Local Church-Rosser property of DPO rule
applications to the process-algebraic setting of RePro. Although
this notion already considers RePro particularities not reflected

148 8 discussion and related work

in the original notion (like the presence of non-applicability con-
ditions), still, this approach might be considered naïve in terms
of causal independence: if transitions arise in parallel, their
originating state still has to be analyzed for its exact content to
meet a conclusion about causality, which contradicts the usual
assumptions about SOS semantics.

In contrast, the asynchronous approach is based on an estab-
lished asynchronicity notion for CCS-like process calculi [83].
Here, asynchronicity means causal independence faithfully re-
flecting concurrency and distribution. This notion considers the
structure of the process term and the asynchronous indepen-
dence notion reflects the distribution of its parallel components.
However, even this approach cannot be completely orthogonal
to the Local Church-Rosser property: parallel independence
have to be incorporated for reflecting not only control, but also
graph-rewriting behavior (cf. Definition 6.11).

sos core semantics : repro , graph programs , porgy . As
also addressed by one of the central CGR challenges, C1 (cf. Sect. 3.3),
we aim at identifying a common semantic baseline for controlled graph
rewriting. Although it cannot be our goal to establish a single ultimate
semantic foundation in isolation, as argued before, an SOS formulation
of core control constructs leads us towards properly addressing C1.

As seen in Chapter 3 and in the present chapter, there exist three
major SOS semantics for controlled graph rewriting (including RePro).
Instead of simply recalling the semantics of GP and Porgy, we proceed
by elaborating on how each of the SOS semantics handles those control
constructs common to them and, in turn, to each CGR approach.
Thereby, we also present the corresponding inference rules of the
other languages, while appropriately simplifying and adapting them
up to the language-specific details irrelevant to present discussion. In
particular, although GP and Porgy operate on abstract graphs (up to
isomorphism), we do not explicitly represent that distinction as we
focus on the shape of SOS semantic definitions for graph rewriting.

• Single rule application: Inferring basic graph-rewriting steps is
the basis for any further constructs in each language. Recall that
RePro addresses this by the SOS rules

pre

γ.P
γ−→ P

mark

P
(ρ,N)−−−→ P′ G δ

=⇒ H ∀p ∈ N : G 6 p=⇒

(P, G)
(ρ,δ,N)−−−→D (P′, H)

where control transitions produced by pre are in turn extended
to proper rule applications by mark. Whenever no rule applica-
tion is possible, a RePro execution gets stuck. Other languages
do not separate control semantics and formulate the correspond-

8 .2 discussion 149

ing behavior directly. For example, GP has the following rules,
where GPe is an elementary graph program:

Call1

G =⇒{GPe} H

(GPe, G) −→ H
Call2

G 6=⇒{GPe}

(GPe, G) −→ fail

The rules Call1-2 are not only for rule applications, but they
directly subsume also choice. Note that in contrast to RePro,
GP transitions are unlabeled. In addition, GP does not get stuck
but explicitly fails in the case of non-applicability (call2). A
terminated program has no syntactic representation, i.e., GP
terminal states are either a graph or the special fail state.

Porgy follows an almost identical schema, with r being a rule:

G =⇒{r} H1, . . . , Hn ∀H s.t. G =⇒{r} H : H ∈ {Hi}
(r, G) −→ {(Id, H1), . . . , (Id, Hn)}

G 6=⇒{r}
(r, G) −→ (Fail, G)

This semantics is even more reduced, considering only the be-
havior of a single rule. Interestingly, instead of branching over
different matches of r, Porgy creates as a single subsequent state
a multi-set of control-graph pairs. Here, states are slightly richer
than in GP, as the terminating process is signalized (Id, corre-
sponding to 0 in RePro) and a Fail state also contains a graph,
being the “cause” for the failure.

• Choice: Recall that RePro just as CCS, has a commutative +

operator for choice:

choice
P α−→ P′

P + Q α−→ P′

Choice in GP is combined with rule-application semantics in the
rules Call1-2 above.

Porgy has a unique take also on choice behavior: if the choice
is a probabilistic ppick function, then there is an additional
transition reducing the choice set to a single strategy (without
applying any rule). Thus, the design of Porgy is different from
RePro and GP in that not every transition corresponds to a rule
application.

• Sequences: For RePro, sequences are subsumed by pre above
and, aligned to CCS, no general process-level sequentialization
operator is considered.

GP has the following rules (with GP and GQ being graph pro-
grams):

150 8 discussion and related work

Seq1

(GP, G) −→ (GP′, H)

(GP; GQ, G) −→ (GP′; GQ, H)

Seq2

(GP, G) −→ H
(GP; GQ, G) −→ (GQ, H)

Seq3

(GP, G) −→ fail
(GP; GQ, G) −→ fail

If GP is not yet successfully terminated, than the rest of the
program GP′ is also preserved in a sequence (Seq1). If GP
terminates with graph H, then H is passed to the subsequent
program GQ (Seq2), and failure is global (Seq3).

Porgy relies on the same mechanism—we omit the correspond-
ing rule here due to their complicated and exotic syntax.

• Maximal iteration: RePro utilizes recursion and non-applicability
conditions to encode maximal iteration—e.g., for a single rule p,
the process P applying p as long as possible takes the following
form:

P := p.P + (ε, {p}).0

Refer to Section 6.3 and the encoding of maximal iteration of
GP for details in the general case, including a discussion on the
theoretical limitations.

As for GP itself, the following rules express maximal iteration,
with −→+ denoting transitive closure of −→ and “(GP, G) finitely
fails” meaning that there are no infinite transition sequences and
each finite one terminates in fail.

Alap1

(GP, G) −→+ H
(GP!, G) −→ (GP!, H)

Alap2

(GP, G) finitely fails
(GP!, G) −→ G

Thus, GP maximal iteration never fails, it rather continues when-
ever it is possible (Alap1) or terminates with the last graph
state for which no iteration is possible (Alap2). (In general, this
definition assumes termination of the iteration body.)

In Porgy, maximal iteration is a special case of while:

while(S) do(S)

whose semantics is, in turn, given by a translational transition
into an if-then-else:

if S then (S; while(S) do(S)) else Id

• If-then-else: In RePro, if-then-else is a special case of choice.
As for GP, the definition is similar to maximal iteration: if the

8 .2 discussion 151

condition program successfully terminates, then the program
in the then branch is chosen, if the condition program finitely
fails, then the program in the else branch is chosen—we omit
the rule specification as they are obvious. Again, Porgy follows
the exact same pattern. (Our considerations on finite failure and
termination also hold here.)

Summarizing, some design choices of Porgy in particular, non-
rewriting transitions for transforming only the control strategy make
it more exotic than the other two semantics. Regarding RePro and
GP, we argue that both languages represent a slim design, making
them appropriate as baseline for an approach-independent core CGR
semantics, RePro more from a process-theoretic, GP more from a
language-theoretic perspective. Depending on actual needs in a sce-
nario, even combinations and cross-fertilizations are thinkable, e.g.,
process-level sequences in RePro or general choice in GP. However,
although parallelism is out of scope for the present discussion, we
argue that the process-algebraic foundations of RePro make it more
adequate as a CGR baseline if concurrency is also considered.

compasses as constraints . We have surveyed the established
notions for expressing graph constraints and conditions, at the be-
ginning of this section; there, in the setting of negative conditions,
relating them to the non-applicability conditions of RePro.

We have seen that all the considered notions and, in particular,
the most general nested conditions [96] consider negative as well as
positive constraints in the form of graph patterns—just as compasses.
Moreover, nested conditions allow essentially the repertoire of first-
order logic to be used for composing those single graph patterns. Thus,
from this perspective, we can justly claim that formally, compasses
represent a special case of nested conditions.

However, we argue that the special form represented by compasses
fits the novel context in which compasses are employed. In fact, earlier
condition notions have been primarily utilized for either restricting
the set of graphs permitted in a given situation, or, similarly, to
reason about if a rule application adheres to a set of pre- and post-
conditions. As for compass steps, we have the opposite conceptual
outset: we allow any action to happen, and adapt the compasses (i.e.,
the constraints) themselves to reflect or at least to approximate the
changes caused by that action. On a practical note, this allows for an
appropriate formal handling of a frequently occurring scenario, where
the verification goal is not the permanent preservation of a global
invariant, but rather capturing a dynamically changing structural or
behavioral pattern.

Nevertheless, on a technical note, we have to stress that compasses
not only represent a special case of graph constraints, but, in turn,
adhere to the (already mentioned) techniques proposed by Heckel

152 8 discussion and related work

and Wagner for shifting graph conditions [50]. In particular, the pos-
itive pole corresponds to a constraint with an empty premise and
the possible positive patterns as conclusion, while the negative pole
corresponds to the forbidden patterns as premises, with an empty con-
clusion. Thus, we have an easy construction for translating compasses
into graph constraints expressing the same language.

In turn, for replicating the compass transition system through graph
constraints, one might think of the constraints standing as precon-
ditions before abstract rule applications, i.e., transitions. The shift-
ing technique of Heckel and Wagner, then, allows for computing a
strongest postcondition of the abstract rule application, thus, repre-
senting an alternative technique to express our intended abstraction.
(The technique even allows for translations in the other direction, but
this is not needed to replicate compasses.)

Concluding the connection of compass steps and translations of
graph constraints, an accurate delineation is as follows: given a set of
graph-rewriting rules, potentially equipped with application condi-
tions, Heckel-Wagner-translations directly provide a precise character-
ization of subsequent abstract states through strongest postconditions.
However, those application conditions cannot directly express the
semantics of a RePro action: a rule is applicable, while some others
are not applicable, i.e., a RePro action involves a negative check over
the complete DPO applicability. This compound nature is the major
source of imprecision during the calculation of subsequent abstract
states.

In the previous chapter, we have also pointed out some expressive-
ness shortcomings of compasses, exemplified by our example compass
Csearch2; we remark that nested constraints are expressive enough to,
at least, capture more complex graph properties such as “any flag is
paired”. It is a further investigation of high importance to consider
a generalization of compasses inspired by nested constraint expres-
siveness. Note, however that it is not clear to what extent nested
constraints would help in reasoning tasks involving, e.g., bounded
element cardinalities and derived negative conditions.

In the context of the graph programming language GP, we have men-
tioned (Sect. 3.2.1) another verification approach for graph algorithms
which considers properties of graph languages. The Hoare-style proof
system proposed in [94], even if having a different philosophy than
our model-checking approach, turns out to be rather powerful for
sequential graph-rewriting processes: based on preservation proper-
ties of single rules in the system, it inductively derives properties for
whole graph programs.

decidable language properties . We argue above that given
our transition-based concurrent setting, the reactive version of abstract

8 .2 discussion 153

interpretation as proposed by Dams et al. [27] provides an appropriate
context for ensuring property preservation for concrete graphs.

Different ways have been proposed to reason about properties of
single concrete graphs and to capture it in a logic-based setting. Most
notably, the aforementioned nested conditions [96] correspond to first-
order predicates on graphs, while the monadic second-order logic
(MSOL) approach [25] goes even further and embeds graph structures
themselves as well as rewriting rules into MSOL formulas. While
MSOL gives the required expressive power to reason about complex
graph properties comprising structures of unbounded size, it is not
straightforward how to juxtapose the aforementioned approaches
with process-algebraic transition systems for embracing concurrency.
However, as a future direction for studying RePro, it would be worth
considering the effects of RePro actions on other graph language
characterizations than compasses (e.g., the above ones); there might
be step concepts and rewriting approaches for other structures as well,
representing potential alternatives to the compass transition system.

However, in the present chapter, we have left the evaluation of µ-
calculus formulas for compass transition systems out of our scope.
This topic is definitely a worthy field for further studies: the form
of a compass might give specific clues under what circumstances we
can decide if a property holds for each graph in the compass language.
We do not intend to elaborate on this in the present thesis, but let
us consider a simple example: if we can verify that each graph in a
language contains some pattern, e.g., a triangle. If we have a compass
having a single triangle in its positive pole, then the question is
positively decidable. However, if we have further permitted structures,
then we have to answer with no—but then again, also negative patterns
can take influence on the outcome, and so forth. Thus, we conclude
that decidability of compass properties is a proper field of study on its
own, because it does not only involve the analysis of single elements
in poles, but also how they are composed together to a compass.

Another related issue is the most general class(es) of languages
which can be captured in our setting. We have demonstrated above
that the languages arising from repeated rule applications from a
fixed GTS are subsumed by our compass semantics. However, our
characterization of them depends on that very semantics, which choice
is justified for abstract interpretation—still, an interesting direction of
further studies could be to analyze other means to characterize graph
languages with recurring patterns and finitely expressible structural
features independently of the notion of compasses. Alternatively,
future work could also consider potential adaptations of the shape
or the semantics of compasses, with an explicit goal of not having to
restrict the powerset of graphs as a concrete domain.

9
C O N C L U S I O N A N D F U T U R E W O R K

With the growing complexity and autonomy of systems, abstract
modeling to study and formally analyze those systems is gaining on
importance. Graph rewriting is an established, theoretically founded
formalism for modeling the structure and the behavior of complex
systems by an appropriate graph-based abstraction, proposed as a
generalization of classical string grammars [38, 98]. However, it is
exactly those modern systems, often involving distributedness and,
thus, concurrency and reactive behavior, which pose a challenge to
the hidden assumption of global knowledge behind graph-based mod-
eling approaches. Thus, abstractly speaking, the motivating challenge
of the present thesis boils down to a conflict between the inherent
closedness of graph-based abstract representations and the intention of
using them for faithfully capturing the pluralistic nature of concurrent
systems.

Formally, a graph-rewriting system consists of declarative rules,
providing templates for potential changes in the modeled graph struc-
tures over time. In particular, a graph-rewriting rule specifies a pattern
to be matched and then modified in potential input graphs, by delet-
ing and creating sub-structures as specified by the rule. However,
describing the dynamic behavior of complex systems by those rules
often involves an additional control logic to represent not only the
structural but also the algorithmic system aspects. To that end, follow-
ing similar developments in the theory of string grammars and as an
extension to the existing theory, controlled graph rewriting has been
proposed. Here, some external control language guides the sequence
in which rules are applied. However, approaches elaborating on this
idea so far either have a practical, implementational focus, or are
formalized in a denotational manner, thus focusing on the relations
of input and output graphs instead of the operational behavior of
controlled graph-rewriting systems.

In the thesis, we proposed an operational theory for controlled graph
rewriting, based on well-established notions from concurrency theory
and, in particular, process algebra [79, 83]. We argued that although
state-of-the-art abstract relational semantics are useful for studying
languages of graphs generated by such systems, completely omitting
operational details obstructs a fine-grained analysis of graph-rewriting
rule applications, which is essential to reason about graph-rewriting
systems. Furthermore, the behavior of a system class of increasing
importance, namely that of non-terminating reactive systems, cannot
be captured justly by those semantic domains. In contrast, practical

155

156 9 conclusion and future work

operational semantics proposed so far did not address concurrency
and parallelism, which is of utmost importance for nowadays multi-
agent systems of increasing autonomy and self-adaptivity. In addition,
there exists even a strong correlation between concurrent system
structure and reactive behavior.

In the first part of the thesis, we started with demonstrating the
aforementioned fundamental phenomena by describing a simplified
model of wireless sensor networks (WSN). After recapitulating the
necessary background on DPO graph rewriting, the particular formal
framework used throughout the thesis, we presented an extensive
survey on state-of-the-art approaches to controlled graph rewriting,
particularly for deriving and emphasizing the most important chal-
lenges we addressed:

1. We proposed a unified formal foundations to control graph
rewriting, based on process calculi, especially CCS [79].

2. Thereby, we have been focusing on using graph-rewriting sys-
tems for modeling inherently concurrent and reactive systems,
naturally invoking the fundamental phenomena above.

3. As a fundamental aspect of such approaches, we achieved a
novel handling of equivalence as well as independence notions
for controlled graph-rewriting processes. In particular, we pro-
posed an independence notion combining structural and causal
aspects of the notion, as well as a different approach based on
asynchronous transition systems [83].

4. Building on process algebra also enables a founded handling of
abstract reasoning, i.e., the verification of graph properties. In
particular, abstract interpretation of reactive systems is defined
over transition systems.

In the second part of the thesis, we elaborated our theoretical con-
tributions. As a novel approach, we proposed a process calculus for
controlled graph rewriting, called RePro, where DPO rule applica-
tions are controlled by control process terms closely resembling the
process calculus CCS. This way, we achieved an appropriate approach
to the aforementioned challenges by building on established results
and techniques in process algebra:

1. Process calculi have rich and strong formal foundations.

2. Concurrency and reactiveness is inherently and naturally ad-
dressed by the syntax and semantics of processes.

3. Equivalence and independence notions are among the central
study and design goals of process calculi, comprising different
abstraction levels.

157

4. There are established extensions to their theory for support-
ing symbolic property verification; in particular, the modal µ-
calculus represents an established, comprehensive formal tech-
nique for model checking on transition systems.

In particular, we showed that a central property of CCS, namely
that bisimulation is a congruence, is preserved by RePro control pro-
cesses and developed a notion for addressing both structural and
process-algebraic aspects of action independence. We reason about the
expressiveness of RePro control terms by comparing them to the state-
of-the-art language of Graph Programs [49]. As for abstract reasoning,
we used a version of the abstract interpretation framework, adapted
for reactive systems [27], to propose an abstract domain of so-called
compasses for reasoning about graph properties without relying on
concrete graph instances, and even finitely capturing infinite graph
languages potentially arising by RePro process executions.

Regarding future directions for further work, as already noticed at
several points throughout the thesis, RePro has an immense potential
for further extension due to the multifacetedness of the underlying
theories. Here, to conclude the thesis, we mention some major direc-
tions.

• Practical applicability: The design of RePro as a control language
and compasses as a verification approach explicitly focuses on
laying formal foundations for some less explored phenomena
in graph rewriting, rather than being directly transferable into
practice, or even into concrete software implementations of con-
trolled graph rewriting (cf. Chapter 3). (Just as CCS was not
designed for actually implementing communication systems, but
for abstractly studying their essence.) However, there are several
aspects of RePro making it worth to consider even in a practical
setting.

First, the syntax of semantics of RePro might be used as a ref-
erence for practical dialects of controlled graph rewriting: even
if a given concrete syntax involves constructs which increase
usability, the constructs of RePro arguably represent a funda-
mental baseline and, thus, an encoding of any concrete syntax
into RePro terms “under the hood” is a valuable sanity check as
well as a starting point for further language extensions. In turn,
such an encoding could give rise for designing the first tool sup-
porting concurrent specifications of graph-rewriting systems: by
the RePro principle, the specifier does not have to anticipate the
possible interactions of concurrent components; on the contrary,
it is encouraged to enforce a strict separation on specification
level, facilitating the design of graph-based abstractions for such
systems.

158 9 conclusion and future work

Second, such an endeavor might also be extended into the direc-
tion of practicable, tool-supported verification. We have already
seen in Chapter 3 that some state-of-the-art tools offer model
checking—for properties of single graphs in a state space. A
first step towards abstract verification based on the present the-
sis could be the implementation of compasses as a description
mechanism for graph classes. As for predicates, we are able to
rely on existing model checking approaches; however, it would
be crucial to understand the practical relation between graph
predicates and compasses. In theory, we expect predicates to
be semi-decidable, but this should not hamper the develop-
ment of tool support: by identifying compasses with decidable
properties, we would achieve a practically valuable verification
approach, whose outcome would not be restricted to statements
on single input graphs: we could claim correctness for con-
trolled graph-rewriting algorithms analogously to well-known
techniques for traditional programming languages.

On a related note, we have remarked that compasses still have
to be thoroughly investigated for their graph language spec-
ification capacities, building on the preliminary observations
in Section 7.2 and well-founded, yet practice-oriented related
work [20, 24].

• Connection to Petri net theory: As commented on already in Sec-
tion 1.4 on a rather philosophical note, there are insightful con-
nections between Petri nets and process calculi in terms of their
approach to concurrent phenomena. Consequently, RePro also
touches on Petri net theory at several points.

First, the relation of control processes to full RePro processes
resembles that of unmarked to marked Petri nets: unmarked Petri
nets just provide a static structure of potential transitions, while
the appearance of markings induces transitions evolving the
state (here, the marking itself). Along those lines, it would be in-
teresting to reason about what influence on RePro would further
restriction or extension notions take. As a restrictive example,
1-safe Petri nets are conservative, but have many advantageous
properties for analysis—is there an analogy for RePro? In con-
trast, as a potential proper extension, there is an obvious con-
ceptual connection between inhibitor arcs and non-applicability
or other negative graph-rewriting conditions. It would be inter-
esting to see if that connection can be exploited theoretically in
either direction.

A repeated claim for Petri nets is that, in contrast to process cal-
culi, they represent the right model for true concurrency: without
an explicit parallelization, in any step, non-conflicting tokens
might move in complete causal independence. In turn, the

159

framework of asynchronous transition systems (ATS) we use to
address independence in RePro also permits, under some mild
restrictions for the underlying process algebra, for a translation
into (a well-defined class of) Petri nets. Exploiting those theo-
retical connections, we could achieve having a bridge between
RePro processes and truly concurrent actions.

Another issue related to true concurrence achievable by Petri nets
is how RePro can be generalized to work on multiple graphs or,
probably equivalently, on different parts of a partly unknown
graph context in parallel. Having a data flow as that of Petri nets
immediately allows to reason about such parallelizations. We
have indeed promoted the use of parallel Petri net structures in
the context of our graph-rewriting Petri nets [64], there to provide
formal foundations for an omnipresent practical concept for
controlled graph rewriting implementations: subgraph binding for
constraining where rules are matching based on the co-matches
of earlier rule applications. Letting such considerations influence
RePro theory could lead to breaking with a strictly linear way
of specifying processes, thus, improving on expressiveness in a
yet unexplored dimension.

Finally, we mention an interesting constellation of abstract verifi-
cation of graph rewriting using Petri nets: in a paper of König
and Kozioura [59], an approach is presented which over-appro-
ximates a GTS by a Petri net, whose reachable markings, in
turn, represent (more precisely, over-approximate) the graphs
reachable from a given start graph. However, it requires further
investigations to find out (i) if the translation technique can be
extended to incorporate control over graph-rewriting systems
and (ii) which property classes might be verified over a Petri net
state space representation.

• Independence from rewriting formalisms: In the thesis, we have
presented RePro theory built upon DPO graph rewriting as an
underlying formalism. This choice was mainly motivated by the
fact that DPO is arguably the single most studied (algebraic) ap-
proach to graph rewriting, at least in theoretical terms. However,
the overall RePro concept (cf., e.g., Figure 5.1) is not directly de-
pending on that formalism. In particular, control process terms
are composed of rule names that might be attached to any declar-
ative rewriting rules, with even potentially generalizing graphs
to other mathematical structures. We have already presented
shortly some examples of alternative formalisms in Chapter 2;
also, in the seminal book of Ehrig et al. [38] and elsewhere in the
literature, more general categorical properties have been studied
which make the objects of a category a proper subject of DPO

160 9 conclusion and future work

rewriting. (Their example are graphs with typed attributes, but
also hypergraphs and other generalizations fit.)

Going even further, one could conceive of rules themselves as
operationalizable, yet general categoric structures, thus RePro

could evolve into a comprehensive platform to accommodate
and combine any rewriting needs with a single fixed underlying
semantics. We think that the categorical notion of sketches [7]
might be the right vehicle for formalizing such a generic “opera-
tional category theory”.

• Embedding rewriting objects into terms: Another direction of gen-
eralization would be to open up for more advanced concepts
in process algebra. The generic framework of nominal transition
systems [88] with an elaborate name binding notion is able to
accommodate a wide range of calculi. In turn, using a categoric
version of the generic calculus, one could incorporate the rewrit-
ing objects as above into the structure of the process term itself,
thus, dissolving the compound nature of RePro states into a
representation unifying the strengths of two of the most general
mathematical frameworks known to date: category theory and
nominal systems.

B I B L I O G R A P H Y

[1] Luca Aceto, Willem Jan Fokkink, and Chris Verhoef. “Structural
Operational Semantics.” In: BRICS Report Series 6.30 (1999).

[2] J. Adamek, H. Herrlich, and G. Strecker. Abstract and Con-
crete Categories. On-line version (2004), last accessed 15 Jan
2019. Wiley Interscience, 1990. url: http://katmat.math.uni-
bremen.de/acc/.

[3] Vasco Amaral, Jordi Cabot, and Miguel Goulão. “Special is-
sue on quality in Model-Driven Engineering.” In: Computer
Languages, Systems & Structures 54 (2018).

[4] Steve Awodey. Category Theory. New York: Oxford University
Press, Inc., 2010.

[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. The MIT Press, 2008.

[6] Paolo Baldan, Andrea Corradini, Ugo Montanari, Francesca
Ros-si, Hartmut Ehrig, and Michael Löwe. “Concurrent Seman-
tics of Algebraic Graph Transformation.” In: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 3. World
Scientific, 1999, pp. 107–187.

[7] Michael Barr and Charles Wells. Category Theory for Computing
Science. Prentice-Hall International Series in Computer Science,
1990.

[8] Marek Bednarczyk. “Categories of Asynchronous Systems.”
PhD thesis. University of Sussex, 1988.

[9] I.B. Boneva, Arend Rensink, M.E. Kurban, and J. Bauer. Graph
Abstraction and Abstract Graph Transformation. CTIT Technical
Report Series LNCS4549/TR-CTIT-07-50. Formal Methods and
Tools (FMT), 2007.

[10] Gérard Boudol and Ilaria Castellani. “Three equivalent seman-
tics for CCS.” In: Semantics of Systems of Concurrent Processes.
Ed. by Irène Guessarian. Springer, 1990, pp. 96–141.

[11] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. “A Theory of
Communicating Sequential Processes.” In: Journal of ACM 31.3
(1984), pp. 560–599.

[12] Stephen D. Brookes. “On the relationship of CCS and CSP.” In:
Automata, Languages and Programming: 10th Colloquium. Springer,
1983, pp. 83–96.

[13] Horst Bunke. “Programmed graph grammars.” In: Workshop
on Graph Grammars and Their Application to Computer Science.
Vol. 73. LNCS. Springer. 1978, pp. 155–166.

161

http://katmat.math.uni-bremen.de/acc/
http://katmat.math.uni-bremen.de/acc/

162 bibliography

[14] Luca Cardelli and Andrew D. Gordon. “Mobile ambients.” In:
Theoretical Computer Science 240.1 (2000), pp. 177 –213.

[15] Rudolf Carnap. An Introduction to the Philosophy of Science. Dover
Publications, 1974.

[16] Noam Chomsky. “Three models for the description of lan-
guage.” In: IRE Transactions on information theory 2.3 (1956),
pp. 113–124.

[17] Marco Conti and Silvia Giordano. “Mobile ad hoc networking:
milestones, challenges, and new research directions.” In: IEEE
Communications Magazine 52.1 (2014), pp. 85–96.

[18] A. Corradini, U. Montanari, and F. Rossi. “Graph Processes.”
In: Fundamenta Informaticae 26.3/4 (1996), pp. 241–265.

[19] A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi.
“Abstract graph derivations in the Double Pushout approach.”
In: Dagstuhl Workshop on Graph Transformations in Computer
Science, 1993. Springer, 1994, pp. 86–103.

[20] Andrea Corradini, Barbara König, and Dennis Nolte. “Specify-
ing graph languages with type graphs.” In: Journal of Logic and
Algebraic Methods in Programming 104 (2019), pp. 176–200.

[21] Andrea Corradini, Hartmut Ehrig, Michael Löwe, Ugo Monta-
nari, and Francesca Rossi. “Note on standard representation
of graphs and graph derivations.” In: Graph Transformations in
Computer Science. Springer, 1994, pp. 104–118.

[22] Andrea Corradini, Tobias Heindel, Frank Hermann, and Bar-
bara König. “Sesqui-Pushout Rewriting.” In: Proc. of the Inter-
national Conference on Graph Transformation. Vol. 4178. LNCS.
Sprin-ger, 2006, pp. 30–45.

[23] Andrea Corradini, Dominique Duval, Rachid Echahed, Frederic
Prost, and Leila Ribeiro. “AGREE–algebraic graph rewriting
with controlled embedding.” In: Proc. of the International Confer-
ence on Graph Transformation. Vol. 9151. LNCS. Springer. 2015,
pp. 35–51.

[24] Andrea Corradini, Tobias Heindel, Barbara König, Dennis
Nolte, and Arend Rensink. “Rewriting Abstract Structures:
Materialization Explained Categorically.” In: Proc. of the In-
ternationcal Conference on Foundations of Software Science and
Computation Structures. Vol. 11425. Lecture Notes in Computer
Science. Springer, 2019, pp. 169–188.

[25] Bruno Courcelle. “The Expression of Graph Properties and
Graph Transformations in Monadic Second-Order Logic.” In:
Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Vol. 1. 1997, pp. 313–400.

bibliography 163

[26] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints.” In: Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. ACM. 1977, pp. 238–252.

[27] Dennis Dams, Rob Gerth, and Orna Grumberg. “Abstract inter-
pretation of reactive systems.” In: Transactions on Programming
Languages and Systems 19.2 (1997), pp. 253–291.

[28] Jürgen Dassow, Gheorghe Păun, and Arto Salomaa. “Grammars
with Controlled Derivations.” In: Handbook of Formal Languages:
Volume 2. Springer, 1997, pp. 101–154.

[29] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. “A
distributed operational semantics for CCS based on condi-
tion/event systems.” In: Acta Informatica 26.1 (1988), pp. 59–
91.

[30] Isabel Dietrich and Falko Dressler. “On the lifetime of wireless
sensor networks.” In: Trans. Sen. Netw. 5.1 (2009), pp. 1–39.

[31] E. W. Dijkstra. “Solution of a problem in concurrent program-
ming control.” In: Commun. ACM 8.9 (Sept. 1965), p. 569.

[32] Dino Distefano, Arend Rensink, and Joost-Pieter Katoen. “Model
Checking Birth and Death.” In: Proc. of the 2nd IFIP International
Conference on Theoretical Computer Science. Springer, 2002.

[33] Andrei Dorman and Tobias Heindel. “Structured Operational
Semantics for Graph Rewriting.” In: ICE 2011. Vol. 59. EPTCS.
2011, pp. 37–51.

[34] H. Ehrig and A. Habel. “Graph grammars with application
conditions.” In: The Book of L. Springer, 1986, pp. 87–100.

[35] Hartmut Ehrig and Barbara König. “Deriving Bisimulation
Congruences in the DPO Approach to Graph Rewriting.” In:
FOSSACS. Springer, 2004, pp. 151–166.

[36] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider.
“Graph-grammars: An algebraic approach.” In: 14th Annual
Symposium on Switching and Automata Theory (swat 1973). IEEE.
1973, pp. 167–180.

[37] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grze-
gorz Rozenberg, eds. Handbook of Graph Grammars and Comput-
ing by Graph Transformation, Vol. 2. World Scientific, 1999.

[38] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taen-tzer. Fundamentals of Algebraic Graph Transformation. Springer,
2006.

[39] E. Allen Emerson and Joseph Y. Halpern. “Sometimes and Not
Never Revisited: On Branching Versus Linear Time Temporal
Logic.” In: J. ACM 33.1 (1986), pp. 151–178.

164 bibliography

[40] Editors of Encyclopaedia Britannica. “Ashtadhyayi.” In: Ency-
clopaedia Britannica. On-line version, last accessed 15 Jan 2019.
2015. url: https://www.britannica.com/topic/Ashtadhyayi.

[41] Maribel Fernández, Hélène Kirchner, and Bruno Pinaud. “Strate-
gic port graph rewriting: an interactive modelling framework.”
In: Mathematical Structures in Computer Science (2018), pp. 1–48.

[42] Maribel Fernández and Olivier Namet. “Strategic program-
ming on graph rewriting systems.” In: EPTCS 44 (2010), pp. 1–
20.

[43] Cédric Fournet and Georges Gonthier. “The Reflexive CHAM
and the Join-calculus.” In: Proc. of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. 1996,
pp. 372–385.

[44] K Ruben Gabriel and Robert R Sokal. “A new statistical ap-
proach to geographic variation analysis.” In: Systematic zoology
18.3 (1969), pp. 259–278.

[45] A. H. Ghamarian, M. J. de Mol, A. Rensink, E. Zambon, and
M. V. Zimakova. “Modelling and Analysis using GROOVE.”
In: International Journal on Software Tools for Technology Transfer
14 (2012), pp. 15–40.

[46] Ursula Goltz. “CCS and petri nets.” In: Semantics of Systems of
Concurrent Processes. Springer, 1990, pp. 334–357.

[47] Ursula Goltz and Alan Mycroft. “On the Relationship of CCS
and Petri Nets.” In: Proc. of ICALP. Springer, 1984, pp. 196–208.

[48] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. “Graph
grammars with negative application conditions.” In: Fundam.
Inf. 26.3,4 (1996), pp. 287–313.

[49] Annegret Habel and Detlef Plump. “Computational complete-
ness of programming languages based on graph transforma-
tion.” In: Proc. of the International Conference on Foundations of
Software Science and Computation Structures. Vol. 2030. LNCS.
Springer, 2001, pp. 230–245.

[50] Reiko Heckel and Annika Wagner. “Ensuring consistency of
conditional graph rewriting - a constructive approach.” In:
Electr. Notes Theor. Comput. Sci. 2 (1995), pp. 118–126.

[51] Pavol Hell and Jaroslav Nesetril. “The core of a graph.” In:
Discrete Mathematics 109.1-3 (1992), pp. 117–126.

[52] C. A. R. Hoare. “An axiomatic basis for computer program-
ming.” In: Commun. ACM 12.10 (1969), pp. 576–580.

[53] C. A. R. Hoare. “Communicating Sequential Processes.” In:
Communications of the ACM 21.8 (1978), pp. 666–677.

https://www.britannica.com/topic/Ashtadhyayi

bibliography 165

[54] Ghada Jaber, Rahim Kacimi, and Thierry Gayraud. “Data fresh-
ness aware content-centric networking in WSNs.” In: Wireless
Days (2017), pp. 238–240.

[55] William James. A Pluralistic Universe. Longmans, Green, and
Co., 1909.

[56] Yichao Jin, Parag Kulkarni, Sedat Gormus, and Mahesh Sooriya-
bandara. “Content-centric and load-balancing aware dynamic
data aggregation in multihop wireless networks.” In: Proc. of
the International Conference on Wireless and Mobile Computing,
Networking and Communications. IEEE. 2012, pp. 179–186.

[57] Xaroula Charalampia Kerasidou. “Figuring ubicomp (out).” In:
Personal and Ubiquitous Computing 21.3 (2017), pp. 593–605.

[58] Roland Kluge, Michael Stein, Gergely Varró, Andy Schürr,
Matthias Hollick, and Max Mühlhäuser. “A Systematic Ap-
proach to Constructing Families of Incremental Topology Con-
trol Algorithms Using Graph Transformation.” In: Journal of
Software and Systems Modeling 18.1 (2019), pp. 279–319.

[59] Barbara König and Vitali Kozioura. “Counterexample-guided
abstraction refinement for the analysis of graph transformation
systems.” In: Proc. of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Vol. 3920.
LNCS. Springer, 2006, pp. 197–211.

[60] Dexter Kozen. “Results on the propositional mu-calculus.” In:
Theoretical Computer Science 27.3 (1983), pp. 333 –354.

[61] Hans-Jörg Kreowski and Sabine Kuske. “On the interleaving
semantics of transformation units - a step into GRACE.” In:
Proc. of the 5th International Workshop on Graph Gramars and Their
Application to Computer Science. Vol. 1073. LNCS. 1994, pp. 89–
106.

[62] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg.
“Graph transformation units – an overview.” In: Concurrency,
Graphs and Models: Essays Dedicated to Ugo Montanari on the
Occasion of His 65th Birthday. Vol. 5065. LNCS. Springer, 2008,
pp. 57–75.

[63] Géza Kulcsár, Andrea Corradini, and Malte Lochau. “Equiv-
alence and independence in controlled graph-rewriting sys-
tems.” In: Proc. of the International Conference on Graph Transfor-
mation. Vol. 10887. LNCS. Springer, 2018, pp. 134–151.

[64] Géza Kulcsár, Malte Lochau, and Andy Schürr. “Graph-rewrit-
ing Petri nets.” In: Proc. of the International Conference on Graph
Transformation. Vol. 10887. LNCS. Springer, 2018, pp. 79–96.

166 bibliography

[65] Géza Kulcsár, Michael Stein, Immanuel Schweizer, Gergely Var-
ró, Max Mühlhäuser, and Andy Schürr. “Rapid prototyping
of topology control algorithms by graph transformation.” In:
Electronic Communications of the EASST 68 (2014).

[66] Leslie Lamport. “Turing lecture: The computer science of con-
currency: the early years.” In: Commun. ACM 58.6 (2015), pp. 71–
76.

[67] Ivan Lanese, Luca Bedogni, and Marco Di Felice. “Internet
of things: a process calculus approach.” In: 28th Annual ACM
Symposium on Applied Computing. 2013, pp. 1339–1346.

[68] Ruggero Lanotte and Massimo Merro. “A semantic theory of
the Internet of Things.” In: Information and Computation 259

(2018), pp. 72 –101.

[69] Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, Peter Fritz-
son, Jörg Brauer, Christian Kleijn, Thierry Lecomte, Markus
Pfeil, Ole Green, Stylianos Basagiannis, et al. “Integrated tool
chain for model-based design of Cyber-Physical Systems: The
INTO-CPS project.” In: 2nd International Workshop on Modelling,
Analysis, and Control of Complex CPS (CPS Data). 2016, pp. 1–6.

[70] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. “Devel-
oping eMoflon with eMoflon.” In: Proc. of the International Con-
ference on Theory and Practice of Model Transformations. Vol. 8568.
LNCS. Springer, 2014, pp. 138–145.

[71] James J Leifer and Robin Milner. “Deriving Bisimulation Con-
gruences for Reactive Systems.” In: CONCUR. Springer. 2000,
pp. 243–258.

[72] Mo Li, Zhenjiang Li, and Athanasios V Vasilakos. “A survey
on topology control in wireless sensor networks: Taxonomy,
comparative study, and open issues.” In: Proceedings of the IEEE
101.12 (2013), pp. 2538–2557.

[73] Michael Löwe. “Algebraic approach to single-pushout graph
transformation.” In: Theoretical Computer Science 109.1 (1993),
pp. 181 –224.

[74] Melanie Luderer. “Control Conditions for Transformation Units:
Parallelism, As-long-as-possible, and Stepwise Control.” PhD
thesis. University of Bremen, 2016.

[75] Andrea Maggiolo-Schettini and Józef Winkowski. “Dynamic
graphs.” In: Proc. of the International Symposium on Mathematical
Foundations of Computer Science. Vol. 1113. LNCS. 1996, pp. 431–
442.

[76] S. Mauw and M. A. Reniers. “A Process Algebra for Interwork-
ings.” In: Handbook of Process Algebra. Elsevier Science, 2001,
pp. 1269 –1327.

bibliography 167

[77] L.G. Meredith and Matthias Radestock. “A Reflective Higher-
order Calculus.” In: Electronic Notes in Theoretical Computer
Science 141.5 (2005). Proc. of the Workshop on the Foundations
of Interactive Computation (FInCo 2005), pp. 49 –67.

[78] Giorgio De Michelis. “The contribution of Carl Adam Petri to
our understanding of ’computing’.” In: History and Philosophy
of Computing - Third International Conference. 2015, pp. 156–167.

[79] R. Milner. Communication and Concurrency. Prentice-Hall, Inc.,
1989.

[80] Robin Milner. The Space and Motion of Communicating Agents.
Cambridge University Press, 2009.

[81] Robin Milner, Joachim Parrow, and David Walker. “A calculus
of mobile processes, I.” In: Information and Computation 100.1
(1992), pp. 1 –40.

[82] Robin Milner, Joachim Parrow, and David Walker. “A calculus
of mobile processes, II.” In: Information and Computation 100.1
(1992), pp. 41 –77.

[83] Madhavan Mukund and Mogens Nielsen. “CCS, locations and
asynchronous transition systems.” In: International Conference
on Foundations of Software Technology and Theoretical Computer
Science. Vol. 652. LNCS. Springer. 1992, pp. 328–341.

[84] Manfred Nagl, ed. Building Tightly Integrated Software Devel-
opment Environments: The IPSEN Approach. Vol. 1170. LNCS.
Sprin-ger, 1996.

[85] Ulrich Nickel, Jörg Niere, and Albert Zündorf. “The FUJABA
environment.” In: Proc. of the International Conference on Software
Engineering. ACM, 2000, pp. 742–745.

[86] Mogens Nielsen and Glynn Winskel. “Petri nets and bisimu-
lation.” In: Theoretical Computer Science 153.1 (1996), pp. 211

–244.

[87] Joachim Parrow and Björn Victor. “The Fusion Calculus: Ex-
pressiveness and Symmetry in Mobile Processes.” In: LICS.
1998, pp. 176–185.

[88] Joachim Parrow, Johannes Borgström, Lars-Henrik Eriksson,
Ramunas Gutkovas, and Tjark Weber. “Modal Logics for Nom-
inal Transition Systems.” In: Proc. of the International Conference
on Concurrency Theory. 2015, pp. 198–211.

[89] Carl Adam Petri. Net modelling – fit for science? Lecture Pre-
sented at the 24th European Conference on Application and
Theory of Petri Nets, Eindhoven, 2003.

[90] Gordon D. Plotkin. “A Structural Approach to Operational
Semantics.” In: J. Log. Algebr. Program. 60-61 (2004), pp. 17–139.

168 bibliography

[91] Detlef Plump. “The graph programming language GP.” In: Proc.
of the International Conference on Algebraic Informatics. Vol. 5725.
LNCS. Springer, 2009, pp. 99–122.

[92] Detlef Plump. “The design of GP 2.” In: Proc. of the International
Workshop on Reduction Strategies in Rewriting and Programming.
2011.

[93] Amir Pnueli. “The Temporal Logic of Programs.” In: Proc. of
the Annual Symposium on Foundations of Computer Science. IEEE,
1977, pp. 46–57.

[94] Christopher M. Poskitt and Detlef Plump. “Hoare-style ver-
ification of graph programs.” In: Fundam. Inf. 118.1-2 (2012),
pp. 135–175.

[95] Arend Rensink. “Canonical Graph Shapes.” In: Proc. of the
European Symposium on Programming. Vol. 2986. Lecture Notes
in Computer Science. Springer, 2004, pp. 401–415.

[96] Arend Rensink. “Representing first-order logic using graphs.”
In: Proc. of the International Conference on Graph Transformation.
Vol. 4178. LNCS. Springer. 2004, pp. 319–335.

[97] Richard Rorty. Philosophy and the Mirror of Nature. Princeton
University Press, 1980.

[98] Grzegorz Rozenberg, ed. Handbook of Graph Grammars and Com-
puting by Graph Transformation, Vol. 1. World Scientific, 1997.

[99] Andreas Schürr. Operationales Spezifizieren mit programmierten
Graphersetzungssystemen - formale Definitionen, Anwendungsbeispie-
le und Werkzeugunterstützung. DUV Informatik. Deutscher Uni-
versitätsverlag, 1991.

[100] Andy Schürr. “Logic based programmed structure rewriting
systems.” In: Fundam. Inform. 26.3/4 (1996), pp. 363–385.

[101] Andy Schürr. “Programmed Graph Replacement Systems.” In:
Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Vol. 1. 1997, pp. 479–546.

[102] Andy Schürr, A. J. Winter, and Albert Zündorf. “The PROGRES-
approach: language and environment.” In: Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2. World
Scientific, 1999, pp. 487–550.

[103] Immanuel Schweizer, Michael Wagner, Dirk Bradler, Max Mühl-
häuser, and Thorsten Strufe. “kTC - Robust and adaptive wire-
less ad-hoc topology control.” In: Proc. of the International Con-
ference on Computer Communications and Networks. IEEE. 2012,
pp. 1–9.

[104] Shankara and Ganganatha Jha. The Chandogyopanishad. Poona
Oriental Book Agency, 1942.

bibliography 169

[105] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, 1973.

[106] Dominik Steenken, Heike Wehrheim, and Daniel Wonisch.
“Sound and Complete Abstract Graph Transformation.” In:
Proc. of the Brazilian Conference on Formal Methods: Foundations
and Applications. Springer, 2011, pp. 92–107.

[107] Michael Stein, Tobias Petry, Immanuel Schweizer, Martina
Brachmann, and Max Mühlhäuser. “Topology control in wire-
less sensor networks: What blocks the breakthrough?” In: Con-
ference on Local Computer Networks. IEEE. 2016, pp. 389–397.

[108] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela
Groner, Timo Kehrer, Manuel Ohrndorf, and Matthias Tichy.
“Henshin: A usability-focused framework for EMF model trans-
formation development.” In: Proc. of the International Conference
on Graph Transformation. Vol. 10373. LNCS. Springer, 2017,
196–208.

[109] Alan M Turing. “On computable numbers, with an application
to the Entscheidungsproblem.” In: Proceedings of the London
mathematical society 2.1 (1937), pp. 230–265.

[110] Jason Vallet, Hélène Kirchner, Bruno Pinaud, and Guy Melançon.
“A visual analytics approach to compare propagation models
in social networks.” In: Proc. of the International Workshop on
Graphs as Models. 2015.

[111] Roger Wattenhofer and Aaron Zollinger. “XTC: A practical
topology control algorithm for ad-hoc networks.” In: Parallel
and Distributed Processing Symposium. IEEE. 2004, p. 216.

[112] Roger Wattenhofer, Li Li, Paramvir Bahl, and Y-M Wang. “Dis-
tributed topology control for power efficient operation in mul-
tihop wireless ad hoc networks.” In: Proc. of the International
Conference on Computer Communications. IEEE. 2001, pp. 1388–
1397.

[113] Mark Weiser. “The computer for the 21st century.” In: Scientific
American 265.3 (1991), pp. 94–105.

C U R R I C U L U M V I T Æ

Personal Details

Date of Birth 9th of Sep, 1988

Place of Birth Cegléd, Hungary

Nationality Hungarian

Work Experience

2013 – 2019 Researcher and Ph.D. candidate, Real-Time
Systems Lab, TU Darmstadt, Germany

2010 – 2013 Software developer, Ericsson
Telecommunications, Budapest, Hungary

Education

2013 Master of Science, Computational Engineering,
TU Budapest, Hungary. Thesis title:
Connections between Graphs and Matroids (in
Hungarian)

2011 Bachelor of Science, Computational
Engineering, TU Budapest, Hungary. Thesis
title: Intelligent Automatic Parameterization of
Texture Analysis Algorithms (in Hungarian)

2007 A-Levels, Kossuth Lajos Gimnázium, Cegléd,
Hungary

171

	Contents
	Introduction
	Concurrent Abstractions: Graph Models and Networks
	Motivation: A Pluralistic Universe
	Mobile Ad Hoc Networks and Topology Control
	Modeling as Abstractions over Real-Life Domains
	Topology Representation
	Dynamic Behavior

	Concurrency: Embracing Pluralism
	Thesis Outline

	Background
	Origins of Algebraic Graph Rewriting
	The Double-Pushout (DPO) Approach: Rules, Derivations, Independence

	Controlled Graph Rewriting: State of the Art
	History of (Controlled) Grammars
	Existing Approaches to Controlled Graph Rewriting
	Graph Programs
	Porgy
	Progres
	Graph Transformation Units
	Henshin
	Groove

	Summary and Challenges

	A Calculus of Controlled Graph Rewriting
	Control Processes for Graph Rewriting
	WSN Behavior by Control Processes
	Formal Definition of Control Processes

	RePro: A Calculus for Controlled Graph Rewriting
	WSN Topology Simulation by RePro Processes
	Formal Definition of RePro

	Properties of the RePro Calculus
	Equivalence
	Independence
	Direct Approach
	Asynchronous Approach

	RePro as a Control Language: Expressiveness

	Analysis of Controlled Graph-Rewriting Processes
	Example: WSN Overlay Verification
	Compasses: An Abstract Domain for RePro Processes
	Abstract Interpretation of RePro by Compasses

	Discussion and Related Work
	Related Work
	Discussion

	Conclusion and Future Work
	Bibliography

