135 research outputs found

    An axiom system for sequence-based specification

    Get PDF
    AbstractThis paper establishes an axiomatic foundation and a representation theorem for the rigorous, constructive process, called sequence-based specification, of deriving precise specifications from ordinary (informal) statements of functional requirements. The representation theorem targets a special class of Mealy state machines, and algorithms are presented for converting from the set of sequences that define the specification to the equivalent Mealy machine, and vice versa. Since its inception, sequence-based specification has been effectively used in a variety of real applications, with gains reported in quality and productivity. This paper establishes the mathematical foundation independently of the process itself

    Coverage of Compositional Property Sets for Hardware and Hardware-dependent Software in Formal System-on-Chip Verification

    Get PDF
    Divide-and-Conquer is a common strategy to manage the complexity of system design and verification. In the context of System-on-Chip (SoC) design verification, an SoC system is decomposed into several modules and every module is separately verified. Usually an SoC module is reactive: it interacts with its environmental modules. This interaction is normally modeled by environment constraints, which are applied to verify the SoC module. Environment constraints are assumed to be always true when verifying the individual modules of a system. Therefore the correctness of environment constraints is very important for module verification. Environment constraints are also very important for coverage analysis. Coverage analysis in formal verification measures whether or not the property set fully describes the functional behavior of the design under verification (DuV). if a set of properties describes every functional behavior of a DuV, the set of properties is called complete. To verify the correctness of environment constraints, Assume-Guarantee Reasoning rules can be employed. However, the state of the art assume-guarantee reasoning rules cannot be applied to the environment constraints specified by using an industrial standard property language such as SystemVerilog Assertions (SVA). This thesis proposes a new assume-guarantee reasoning rule that can be applied to environment constraints specified by using a property language such as SVA. In addition, this thesis proposes two efficient plausibility checks for constraints that can be conducted without a concrete implementation of the considered environment. Furthermore, this thesis provides a compositional reasoning framework determining that a system is completely verified if all modules are verified with Complete Interval Property Checking (C-IPC) under environment constraints. At present, there is a trend that more of the functionality in SoCs is shifted from the hardware to the hardware-dependent software (HWDS), which is a crucial component in an SoC, since other software layers, such as the operating systems are built on it. Therefore there is an increasing need to apply formal verification to HWDS, especially for safety-critical systems. The interactions between HW and HWDS are often reactive, and happen in a temporal order. This requires new property languages to specify the reactive behavior at the HW and SW interfaces. This thesis introduces a new property language, called Reactive Software Property Language (RSPL), to specify the reactive interactions between the HW and the HWDS. Furthermore, a method for checking the completeness of software properties, which are specified by using RSPL, is presented in this thesis. This method is motivated by the approach of checking the completeness of hardware properties

    Automatic Service Composition. Models, Techniques and Tools.

    Get PDF
    Maurizio Lenzerini, Giuseppe De Giacomo, Massimo Mecell

    Third Dutch model checking day, Eindhoven, November 7, 2001 : proceedings

    Get PDF
    This report contains the preliminary proceedings of the third Dutch Model Checking Day, held on 7th November 2001 at the Technische Universiteit Eindhoven. Model checking is an automatic technique for verifying hardware and software systems. The advance of the research in this area in the past few years has lead to a significant improvement of the model checking tools. Successful applications of model checking have been reported in the verification of a wide variety of systems, like complex sequential circuit designs and communication protocols. An important evidence of the great practical potential of model checking is the development of in-house model checking tools within the major companies from the information and telecommunication industry. The objective of the Model Checking Day was to bring together researchers and practitioners from academia and industry who are interested in model checking. The presentations featured both practical and theoretical advances in the area. This includes new techniques and methodologies, as well as experience with their application in various areas, such as embedded systems, communication protocols, hardware components, production processes, etc. Besides this, the Model Checking Day provided an opportunity to exchange experiences, and to have discussions about new ideas and the latest developments in the area. This proceedings contains contributions related to the presentations on this day, details are given in the table of contents. The Model Checking Day received generous support from the Formal Methods Group of the Technische Universiteit Eindhoven and the research school IPA (Institute for Programming research and Algorithmics). At this point I would like to thank the members of the program committee Dragan Bosnacki (TU/e Computer Science), Leszek Holenderski (Philips Research) and Jeroen Voeten (TU/e Electrical Engineering), and the secretary Elize Russell (TU/e Computer Science) for all their work

    A Model-based Approach for Designing Cyber-Physical Production Systems

    Get PDF
    The most recent development trend related to manufacturing is called "Industry 4.0". It proposes to transition from "blind" mechatronics systems to Cyber-Physical Production Systems (CPPSs). Such systems are capable of communicating with each other, acquiring and transmitting real-time production data. Their management and control require a structured software architecture, which is tipically referred to as the "Automation Pyramid". The design of both the software architecture and the components (i.e., the CPPSs) is a complex task, where the complexity is induced by the heterogeneity of the required functionalities. In such a context, the target of this thesis is to propose a model-based framework for the analysis and the design of production lines, compliant with the Industry 4.0 paradigm. In particular, this framework exploits the Systems Modeling Language (SysML) as a unified representation for the different viewpoints of a manufacturing system. At the components level, the structural and behavioral diagrams provided by SysML are used to produce a set of logical propositions about the system and components under design. Such an approach is specifically tailored towards constructing Assume-Guarantee contracts. By exploiting reactive synthesis techniques, contracts are used to prototype portions of components' behaviors and to verify whether implementations are consistent with the requirements. At the software level, the framework proposes a particular architecture based on the concept of "service". Such an architecture facilitates the reconfiguration of components and integrates an advanced scheduling technique, taking advantage of the production recipe SysML model. The proposed framework has been built coupled with the construction of the ICE Laboratory, a research facility consisting of a full-fledged production line. Such an approach has been adopted to construct models of the laboratory, to virtual prototype parts of the system and to manage the physical system through the proposed software architecture

    Evaluating software verification systems: benchmarks and competitions

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 14171 “Evaluating Software Verification Systems: Benchmarks and Competitions”. The seminar brought together a large group of current and future competition organizers and participants, benchmark maintainers, as well as practitioners and researchers interested in the topic. The seminar was conducted as a highly interactive event, with a wide spectrum of contributions from participants, including talks, tutorials, posters, tool demonstrations, hands-on sessions, and a live competition
    • …
    corecore