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Abstract
The most recent development trend related to manufacturing is

called “Industry 4.0”. It proposes to transition from “blind” mecha-
tronics systems to Cyber-Physical Production Systems (CPPSs). Such
systems are capable of communicating with each other, acquiring and
transmitting real-time production data. Their management and con-
trol require a structured software architecture, which is typically re-
ferred to as the “Automation Pyramid”. The design of both the soft-
ware architecture and the components (i.e., the CPPSs) is a complex
task, where the complexity is induced by the heterogeneity of the re-
quired functionalities.

In such a context, the target of this thesis is to propose a model-
based framework for the analysis and the design of production lines,
compliant with the Industry 4.0 paradigm. In particular, this frame-
work exploits the Systems Modeling Language (SysML) as a unified
representation for the different viewpoints of a manufacturing sys-
tem. At the components level, the structural and behavioral diagrams
provided by SysML are used to produce a set of logical propositions
about the system and components under design. Such an approach
is specifically tailored towards constructing Assume-Guarantee con-
tracts. By exploiting reactive synthesis techniques, contracts are used
to prototype portions of components’ behaviors and to verify whether
implementations are consistent with the requirements. At the soft-
ware level, the framework proposes a particular architecture based
on the concept of “service”. Such an architecture facilitates the re-
configuration of components and integrates an advanced scheduling
technique, taking advantage of the production recipe SysML model.

The proposed framework has been built coupled with the con-
struction of the ICE Laboratory, a research facility consisting of a full-
fledged production line. Such an approach has been adopted to con-
struct models of the laboratory, to virtual prototype parts of the system
and to manage the physical system through the proposed software ar-
chitecture.
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Abstract (Italian)
“Industria 4.0” propone di trasformare i tipici sistemi meccatronici

“ciechi” in sistemi di produzione ciber-fisici. Tali sistemi sono in grado
di comunicare tra loro, acquisendo e trasmettendo in tempo reale i
dati di produzione, volti ad analizzare e ottimizzare i processi produt-
tivi. Il controllo di tali sistemi richiede un’architettura software tipica-
mente concettualizzata nella “piramide dell’automazione”. Il design
dell’architettura software e dei componenti fisici è un compito comp-
lesso, ove la complessità è indotta dall’eterogeneità delle funzionalità
richieste dal mercato.

In tale contesto, l’obiettivo di questa tesi è quello di proporre un
framework basato su modelli per l’analisi e la progettazione di li-
nee di produzione, conformi al paradigma Industria 4.0. In partico-
lare, questo framework sfrutta il Systems Modeling Language (SysML)
come rappresentazione unificata dei diversi punti di vista di un sis-
tema produttivo. Riguardo i componenti fisici, i diagrammi strutturali
e comportamentali di SysML vengono utilizzati per produrre una serie
di proposizioni logiche sul sistema e sui componenti in fase di proget-
tazione. Tale approccio è appositamente studiato per la costruzione di
contratti Assunzioni-Garanzie. Inoltre, sfruttando tecniche di sintesi
reattiva, i contratti vengono utilizzati per la prototipazione di compo-
nenti di sistema e per verificare se le implementazioni sono coerenti
con i requisiti. A livello di software, il framework propone una parti-
colare architettura basata sul concetto di “servizio”. Tale architettura
mira a facilitare la riconfigurazione dei componenti e integrare un
tecnica di schedulazione avanzata, sfruttando il modello SysML della
ricetta di produzione.

Il framework proposto è stato sviluppato assieme alla costruzione
del laboratorio ICE, una struttura di ricerca costituita da una linea di
produzione reale. Tale approccio è stato adottato per costruire il mod-
ello del laboratorio, prototiparne delle parti e per gestire il sistema
fisico attraverso l’architettura software proposta.



“Distinguish at all times between the model and the
real world. You will never strike oil by drilling through
the map!”

Mathematical Models: Uses and Limitations
IEEE Transactions on Reliability (1971)

by Solomon W. Golomb
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Introduction

1.1 Introduction

Market trends of the 21st Century are characterized by high product demands
along with high degrees of customization. Traditional production paradigms
are not consistent with modern market requirements. Furthermore, manufac-
turing technologies must evolve to cope with the increasing unpredictability
of modern society conditions while guaranteeing cost-efficiency. In this re-
gard, the COVID-19 global pandemics of 2020 is the perfect example: today’s
manufacturing systems are not ready to efficiently respond to the disruption
of supply chains due to sudden shifts of market critical requirements (e.g.,
Personal Protective Equipment (PPE)) [1]. “Industry 4.0” [2] is meant to as-
sist this transformation, proposing a set of production systems development
guidelines to a wide range of engineering disciplines, from systems design to
product development. Among the promises of the Industry 4.0 trend [3], the
concept of reconfigurability in manufacturing systems stands out as a key fac-
tor to quickly react and adapt the production to frequent and sudden market
changes [4].

Such trends are constantly enriching traditional production systems with
computational and communication infrastructures, transforming manufactur-
ing lines into every day more complex systems. Industry 4.0 is particularly
pushing the adoption of Cyber-Physical Systems (CPSs), Cloud Computing
and Internet of Things (IoT) into systems [3]. Therefore, “blind” manufac-
turing systems are evolving into connected and intelligent Cyber-Physical Pro-
duction Systems (CPPSs), also named Industrial CPSs. Indeed, such a trans-
formation introduces unprecedented challenges in their design and optimiza-
tion [5]: it requires the ability to design systems while considering the pro-
duction processes, as well as the complex computational infrastructure moni-
toring and controlling the production processes.
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The ongoing transformation is particularly problematic for Small and
Medium Enterprises (SMEs). While a large manufacturing corporation may
consider redesigning their production plants from scratch to incorporate novel
technologies, SMEs are often forced to gradually introduce intelligence in
their already existing lines. Furthermore, companies must be able to evalu-
ate in advance the impact of re-designing their production lines. As such, a
methodology capable of representing different systems’ viewpoints and, thus,
enabling a holistic approach to the design, is still missing.

In particular, different standards and languages have been developed in
the past to organize the knowledge within the manufacturing context. As an
example, the Automation Markup Language (AML) [6] has been proposed
for the architectural and plant topology view, while the International Soci-
ety of Automation (ISA)-95 [7] standard has been used for the business level
and the Manufacturing Operations Management (MOM). Therefore, multiple
languages are extremely specialized to represent a single aspect, but an all-
encompassing approach does not exist. When (re-)designing, configuring, or
optimizing a production system, the complexity induced by the presence of
such heterogeneous information is hardly bearable if tackled manually. Thus,
design automation and model-based techniques become crucial to construct-
ing complex manufacturing systems.

For such reasons, this thesis proposes a design framework for CPPSs based
on models. This framework exploits the expressivity of the System Model-
ing Language (SysML) to guarantee a complete and familiar modeling en-
vironment. To enable reuse, an approach is also proposed to import models
expressed using other languages (i.e., AML). Furthermore, the formalization
of the system’s specifications into Assume-Guarantee (A/G) contracts allows
designers to verify different properties as well as produce system’s implemen-
tations.

1.2 Methodology Flow

The overall conceptual framework proposed by this thesis, named Modeling,
Formalization & Design for Industry (MOOD4I), is depicted in Figure 1.1. The
methodology flow starts from a set of standards and languages to describe
various aspects of the production line. In particular, the framework takes as
input the production recipe expressed through a graph representation named
Resource Task Network (RTN). Furthermore, the structural view of the plant
is defined by handling AML specifications and mapping such knowledge to
SysML diagrams. The framework also allows importing production require-
ments structured using the ISA-95 standard. Therefore, one of the objectives
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Fig. 1.1: Overview of the conceptual flow proposed by this thesis.

of the proposed framework is to allow designers reusing descriptions of parts
of the system that may be already available.

The core of MOOD4I is composed of the SysML language and A/G rea-
soning through contracts. On the one hand, SysML provides an intuitive and
complete modeling language for a broad range of systems. It enables the
specification of multiple system’s viewpoints, from the architecture to behav-
iors. Therefore, the proposed design flow can map the system’s features de-
scribed by the input representations to SysML diagrams. On the other hand,
MOOD4I exploits A/G contracts to decompose the system design problem,
to verify properties (e.g., feasibility) and to synthesize implementations us-
ing reactive synthesis algorithms. Such a set of techniques provide a connec-
tion between formal reasoning and model-based design, especially applied to
production systems. Furthermore, models can also be used to enhance the
knowledge provided to simulation and scheduling techniques. Particularly in
service-oriented production architectures, the concept of service abstracts the
bare-metal functionality provided by the piece of equipment, hiding imple-
mentation details. While this factor may be useful for process designers, the
hidden details could be used by scheduling or optimization techniques to im-
prove the quality of the output. As such, MOOD4I also proposes a modeling
strategy for the production process that can scale on the requested level of
detail. Based on Figure 1.1, the thesis is structured as follows:

• Chapter 2 presents the necessary background to understand the details of
the proposed design framework.

• Chapter 3 describes the entire modeling strategy. It defines how to reuse
AML descriptions and the mapping to SysML diagrams. It also introduces
the hierarchical model of production recipes, designed to expand the
knowledge regarding the production process compared to RTN.
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In addition, this thesis proposes to handle the encapsulated knowledge within
the models to formalize the design problem through a set of contract-based
specifications. Such a set of A/G contracts are employed in two different de-
sign flows. In particular:

• Chapter 4, offering compositional contract-based design applied to a
robotic system. It also presents how the constructed implementations are
integrated into a robotic operating system.

• Chapter 5, explaining a methodology to build a virtual prototype of the
production line, starting from a set of A/G contracts. This Chapter also
presents how to simulate such a prototype in a plant simulator, to validate
its behaviors.

Another approach to exploit the set of developed models is presented in Chap-
ter 6. Here, we describe a service-oriented platform and a software architec-
ture to control manufacturing operations. Such a complex architecture is par-
ticularly effective to ease the implementation of reconfigurable manufacturing
systems. In fact, Chapter 6 also presents an advanced scheduling algorithm:
it exploits both the software architecture and the knowledge of the process
enclosed in the hierarchical recipe model presented in Chapter 3. Chapter 7
analyzes what’s missing in current languages and modeling methodologies, to
be able to capture the requirements of an industry trend that repositions the
human at the center of the production: Industry 5.0. Chapter 8 collects all the
results of the methodologies proposed by this thesis. Finally, Chapter 9 draws
some conclusions and describes possible future works.
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Background

This chapter provides a set of preliminary concepts that are necessary to un-
derstand the methodologies proposed by this thesis. In particular, Section 2.1
focuses on languages and standards aiding the proposed modeling strategy
for CPPSs. Section 2.2 defines the concept of A/G contracts and reactive syn-
thesis from contract-based specializations. Finally, Section 2.3 defines the pro-
duction line used as case-study, guiding the development and providing a real
application platform to assess the qualities of our methodologies.

2.1 Modeling

Among the plethora of modeling languages for representing CPPSs, this the-
sis relies on AML and SysML. Developed specifically for the automation as-
pect, we exploit the AML standard to specify production systems under the
structural viewpoint (i.e., topology). To guide the definition of elementary
actions of machines, the Deutsches Institut für Normung (DIN) standard pro-
vides different standards related to multiple classes of machinery. In partic-
ular, we concentrate on the DIN 8580, providing a taxonomy of manufac-
turing processes. From a more business-oriented viewpoint, the ISA-95 stan-
dard is used to fix a production process common terminology. On top of all
those stands SysML, a quite general-purpose system engineering modeling
language. SysML is capable of representing both the structural and produc-
tion processes’ viewpoints.

2.1.1 AutomationML

AML is an XML-based data format to exchange information describing man-
ufacturing systems [8]. Different standards are intertwined within AML to
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describe multiple aspects of production plants: from topology to the logic
controlling machines’ microcontrollers.

The Computer Aided Engineering Exchange (CAEX) (IEC 62424) standard
provides to AML the features required to represent a topological view of the
system, i.e., relations between objects, such as types of machinery and ma-
terials. It is object-oriented [9] as it provides system objects’ semantics us-
ing roles which are defined by a role class library. Role classes express the
abstract functionality representation of objects, without specifying their im-
plementations. As an example, a “resource” is a role for an object, and can
be further detailed to represent a piece of equipment or material. Concrete
resource instances are typically specified by system unit classes usually con-
taining vendor-specific AML objects. Relations between objects are specified
within the interface classes library. Furthermore, AML descriptions can be hier-
archically organized. In particular, AML’s core is the instance hierarchy, storing
the hierarchy of components and sub-components composing the system.

2.1.2 DIN 8580 Standard

The DIN 8580 standard [10] defines a wide set of processes, products, ac-
tivities, and facilities connected to the industrial domain. A manufacturing
process is the production or the transformation of a workpiece. A process can
be divided into multiple sub-processes, each of them changing or forming a
different property or shape of the processed product. The DIN states that ev-
ery manufacturing process can be classified into five main groups, according
to the type of material transformation they provide, in particular: Primary
shaping, Forming, Cutting , Joining, Coating. These main groups are divided
into sub-groups, further characterizing processes by delineating elementary
actions associated to the concept of manufacture, i.e., the Joining group is
divided into operations such as assembling, fastening, soldering, etc.

2.1.3 ISA-95 Standard

The ISA-95 standard has been developed to define the interface between the
enterprise structure and the control systems [11]. The standard defines three
main categories of interest, each defining a set of information models inter-
facing the different parts of a manufacturing company: information models
between business and manufacturing operation systems, information models for
activities defined in manufacturing operation systems, and information models
within manufacturing operation systems.

As depicted in Figure 2.1, the automation pyramid is assumed to be com-
posed of 5 different levels, each managed by different systems and different
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Fig. 2.1: Schematization of the automation pyramid referenced in Industry 4.0.

timeframes. We are interested specifically on levels 3 and 4, operating respec-
tively on Manufacturing Operations and Control Information and Business
planning and logistics. Parts 1, 2 and 5 of the standard are dedicated to the
proposition of a consistent terminology between automation Levels 4 and 3,
to bridge the information gap between two different manufacturing views.
More precisely, a set of data models formally details the types of informa-
tion that pass through both systems, such as the Product definition model,
which describes processes and requirements to make a product, or the Re-
source definition model, that characterizes available resources such as pieces
of equipment, materials and also personnel.

2.1.4 SysML

For software and systems model engineering, one of the most used languages
is SysML. As depicted in Figure 2.2, it provides a set of diagrams over those
provided by UML, to represent systems and systems-of-systems in addition to
plain software. As such, it is natively capable of representing manufacturing
systems and expressive enough to enable performing analysis over models.
Other than native SysML, specializations have been proposed [12] to aid the
development of automation software (i.e., Programmable Logic Controllers
(PLCs)) for smart manufacturing systems. Furthermore, models can be used
to automatically generate control software to directly integrate into machines.
SysML has also been used to ease the development and the integration of a
Manufacturing Execution System (MES) in a production line [13].



8 2 Background

Fig. 2.2: SysML diagrams hierarchy, clarifying the diagram types that are adopted or
adapted from UML.

SysML models may be used for many purposes within the design flow of
industrial production systems. We hereby exemplify some of them:

• Verification and Validation, to evaluate the correctness of requirements
and behaviors by models for mission-critical applications, such as indus-
trial systems [14]. So far, methods for the verification and validation of
SysML models rely either on formal methods or simulation [15];

• System Analysis and Optimization, in which accurate system models may
be used to perform in-depth analysis and optimizations. Design-space ex-
ploration is intrinsic concept of any Platform-Based Design (PBD) [16]
flow, that may be performed on top of sufficiently expressive SysML mod-
els [17]. Optimization problems and formal models can be built on top of
SysML models [18, 19] and then resolved exploiting existing solvers;

• Code Generation and Implementation not limited to software. In fact,
SysML is also efficient at capturing features of hardware components and
their interactions with the software components. Thus, it may become a
fundamental tool to support hardware-software integration. For instance,
SysML models may come in handy while integrating a Manufacturing Ex-
ecution System into a production line [20].

SysML also allows the generation of control software starting from dia-
grams composing a system model. In particular, SysML diagrams can be used
to generate the templates for PLC software consistent with the IEC 61131-3
standard [21] to be later deployed on the system.
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2.2 Contract-based Desgin and Synthesis

In this section, we provide a preliminary definition of the theory behind A/G
reasoning through contracts. Contract-based specifications can be expressed
using different formal languages, such as Linear Temporal Logic (LTL). Fur-
thermore, we describe a contracts synthesis methodology, based on the Gen-
eral Reactivity of rank 1 (GR(1)).

2.2.1 Assume-Guarantee (A/G) Contracts

A contract C for a component M is a triple (V,A,G), where V is the set of
the component variables, and A and G are assertions, each representing a
set of behaviors over V [22]. A represents the assumptions that M makes on
its environment, and G represents the guarantees provided by M under the
environment assumptions.

A component M satisfies a contract C whenever M and C are defined over
the same set of variables, and all the behaviors of M satisfy the guarantees of
C in the context of the assumptions, meaning that M is an implementation
of C. Moreover, a component E can also be associated with a contract C as
an environment for the contract. We say that E is a legal environment of C,
whenever E and C have the same variables and the behaviors implemented by
E are a subset of A. The A/G contract theory [22] defines a set of operations,
those used in this work are:

• Composition: Contracts associated to different components can be com-
bined according to different rules. Parallel composition builds complex
contracts from simpler ones.

• Compatibility and Consistency: C is compatible if there exists a legal envi-
ronment E for it. A contract is consistent when the set of implementations
satisfying it is not empty.

• Refinement: A contract C refines a contract C ′, written C ⪯ C ′, if and only
if A ⊇ A′ and G ⊆ G′. Conceptually, a contract C refines a contract C ′ if
it relaxes its assumptions while strengthening its guarantees.

2.2.2 Linear Temporal Logic (LTL)

LTL formulas are perfectly suited to model the evolution of a system over time.
A component behaviour is expressed considering present and future paths,
i.e. a condition that will eventually hold in the future. Specifically related to
A/G contracts, both assumptions A and guarantees G of a contract C can be
specified as LTL formulas [23]: a component M satisfies a contract C if it
fulfills the logical implication A → G, while it is a legal environment for C if
it satisfies the formula A [24].
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LTL Syntax

Let AP be a set of atomic propostions where π ∈ AP is a Boolean variable.
LTL formulas are constructed from atomic propostions π ∈ AP according to
the following grammar:

φ ::= π | ¬φ | φ ∨ φ | ⃝φ | φUφ (2.1)

where ¬ (“not”) and ∨ (“or”) are Boolean operators, and ⃝ (“next”) and
U (“until”) are temporal operators. Given “next” (⃝) and “until” (U) op-
erators, additional temporal operators can be derived such as “eventually”:
♢φ = TrueUφ and “always”: □φ = ¬♢¬φ.

LTL Semantics

Semantics of an LTL formula φ are defined on an infinite sequence σ = σ1σ2...

of truth assignments to the atomic propostions π ∈ AP , where σi denotes the
set of atomic propostions that are True at position i. Whether σ satisfies LTL
formula φ at position i (denoted σ, i |= φ) is recursively defined as:

• σ, i |= φ iff π ∈ σi,
• σ, i |= ¬φ iff σ, i ̸|= φ,
• σ, i |= φ1 ∨ φ2 iff σ, i |= φ1 or σ, i |= φ2,
• σ, i |= ⃝φ iff σ, i+ 1 |= φ

• σ, i |= φ1Uφ2 iff there exists k ≥ i such that σ, k |= φ2, and for all i ≤ j <

k, σ, j |= φ1.

The formula ⃝φ expresses that φ is True in the next “step” (the next position
in the sequence) and the formula φ1Uφ2 expresses the property that φ1 is
True until φ2 becomes True.
The sequence σ satisfies formula φ if σ, 0 |= φ. The sequence σ satisfies for-
mula □φ if φ is True in every position of the sequence, and satisfies the for-
mula ♢φ if φ is True at some position on the sequence.

2.2.3 General Reactivity (GR(1))

LTL formulas can be used as specifications of reactive systems where atomic
propositions are divided between the environment (i.e., the system input) and
the system (i.e., the system output). The realizability of LTL is 2-EXPTIME-
complete, which makes it practically infeasible [25]. However, for the GR(1)
fragment of the LTL, there is an algorithm able to decide the realizability in
N3 [26]. GR(1) synthesis specifications contain assertions over initial states,
safety constraints relating to the current and next state, and goals requiring
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that an assertion holds infinitely often during a computation. More specifi-
cally, a GR(1) synthesis problem is defined as a game between a system player
and an environment player, with the following game structure:

• X input variables controlled by the environment
• Y output variables controlled by the system
• θe assertion over X characterizing initial states of the environment
• θs assertion over X ∪ Y characterizing initial states of the system
• ρe(X ∪ Y,X ) transition relation of the environment
• ρs(X ∪ Y,X ∪ Y) transition relation of the system
• φ = GFJe → GFJs winning condition as implication between justice

goals Je of the environment and Js of the system.

The acceptance condition is finally defined as:

(θe ∧Gρe ∧GFJe) → (θs ∧Gρs ∧GFJs) (2.2)

where Gρe and Gρs are safety conditions over the environment and the sys-
tem while GFJe and GFJs are liveness properties over the environment and
the system.

In the literature, many different tools implement reactive synthesis from
the GR(1) fragment [27, 28]. These tools accept a GR(1) LTL specifications
and return a Mealy Machine implementing a control strategy that allows the
system player to win over the environment player. In this work, we are going
to use the GR1C tool of the Temporal Logic Planning (TuLiP) toolbox [27] to
perform reactive synthesis from GR(1) specifications.

2.3 Guiding Case-study Infrastructure

The methodologies proposed in this thesis have been applied to a manufactur-
ing system available at our research facility1: the Industrial Computer Engi-
neering (ICE) laboratory. The laboratory consists of a full-fledged production
line, structured as depicted in Figure 2.3. The production plant is composed
(from right to left) of a milling machine, a 3D printer, a collaborative robotic
assembly cell composed of two robotic arms composing an assembly station,
and a Quality Checking (QC) station. Raw materials, the components, as well
as the final products, are stored in an automated warehouse.

The transportation system is made by a closed-loop main conveyor belt.
Multiple conveyor bays are linked to the main belt to move the materials from
the transportation system to the machines and back. The passage of material
1 https://www.icelab.di.univr.it/
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Fig. 2.3: Structure of the advanced manufacturing production line used as a case study
in this work. The machines are connected through an articulated software-controlled
transportation mechanism.

between the main belt and each bay is managed by a switching mechanism
that is guided by sensors detecting and identifying the minipallets moving
around the production system.
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Fig. 3.1: Depiction of the proposed modeling methodology. The top-down phase (1)
implements a modeling approach for production processes and requirements, to map
onto the bottom-up platform of plant models (2). Such a platform is constructed en-
abling models reuse from AML.

The first point of the framework proposed by this thesis is a modeling strat-
egy for CPPS. To acquire and structure knowledge about the system, this chap-
ter describes modeling and design flows based on the PBD paradigm [16]. The
methodology, outlined in Figure 3.1, supports both the top-down modeling
of requirements and functionalities, as well as the bottom-up reuse of compo-
nents already existing in the system and available to designers. Core to the
methodology is a language able to capture concepts belonging to both “cy-
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ber” and “physical” concepts of today’s production systems. We chose to rely
on SysML [29] for such a task, as it provides a variety of heterogeneous dia-
grams able to capture the structure, behavior and requirements of systems.

However, SysML falls short when used to carry information about already
existing components. For this reason, in the past, methodologies have been
developed to convert and import already existing domain-specific models into
SysML models. This task has been already carried out extensively for soft-
ware [30] and hardware [31] components, and network infrastructure [32]
enabling modeling of CPS. To enable the design of CPPSs, it is necessary al-
lowing to import models of already existing machines. For this reason, this
work proposes a methodology to extract information from AML [6] models
of production lines to produce SysML structural diagrams to be used for the
design of CPPSs.

Furthermore, CPPSs must be capable of carrying out convoluted produc-
tion processes, that are implemented by multiple machine operations. There-
fore, the complexity of modern production recipes is constantly increasing,
especially when dealing with on-demand production and agile manufacturing.
Such principles require restructuring how the concept of “process” (e.g., pro-
duction recipe) is being expressed and represented. This is especially true
when CPPSs are implemented according to the principles of Service Oriented
Manufacturing (SOM) [33]: it proposes organizing the work of the machines
as a set of services. Each service carries out a specific machine’s functional-
ity and can be executed on-demand by the system’s software architecture.
Therefore, tasks composing a recipe may be further characterized as a set of
services. In addition, services may have one or more pre- and post-conditions
for their correct execution, as well as dependencies with other services. Thus,
tasks may be implemented as a logical flow of services, with branches and
cycles. Indeed, such a transformation introduces unprecedented challenges
in the design of manufacturing systems [5], as it requires dealing with het-
erogeneous systems implementing complex behaviors to carry out multiple
production processes. To represent complex recipes and, therefore, to include
the largest set of information on the production process, this chapter presents
a multi-level, hierarchical modeling strategy for production processes. Such
a modeling strategy is specifically oriented towards enabling the mapping of
the machine’s functionalities to recipe tasks and, therefore, bridging the au-
tomation level with planning/scheduling viewpoints.

The contributions presented in this chapter are:

• a modeling strategy for CPPSs, based on the PBD theoretical framework,
where functionalities and requirements are mapped to a bottom-up ab-
straction of components;
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• an implementation of such a modeling strategy in a state-of-the-practice
systems modeling language, able to capture the structure of the system,
as well as its set of implemented behaviors and requirements;

• to enable components reuse, a mapping between the AML language and
SysML;

• a complete and hierarchical representation of production processes, ex-
ploiting the concept of tasks, services and machine functions. The rela-
tions between such constructs and, thus, the integrated knowledge, allow
defining a complex production recipe that can be mapped to a subset of
platform components. As such, the overall methodology can be exploited
to analyze and explore the design space;

• the application of the aforementioned modeling strategy to a concrete
case-study, consisting in a full-fledged production line implementing a
SOM architecture, different production cells and a flexible transportation
system.

This chapter is oganized as follows: Section 3.1 provides a literature anal-
ysis on modeling languages and methodologies for CPPSs. Section 3.2 de-
scribes the general approach, while Section 3.3 and 3.4 offer more details
on the modeling strategy for the architecture and the processes. Then, Sec-
tion 3.6 draws our conclusions.

3.1 Related Works

In the context of manufacturing and CPPSs, Model-based System Engineering
(MBSE) is a quite popular approach to support the design and the develop-
ment lifecycle. Authors in [12] propose a specialization of SysML to support
the development of automation software (e.g., PLC software) for manufactur-
ing systems. Then, they suggest a methodology to automatically generate con-
trol software from SysML models of the production plant. [34] proposes to use
an AML-based model to create “Plug-and-Produce” facility components, which
integrate information about their production capabilities. In this regard, the
production resources composing the manufacturing system are modeled in
terms of their ability to produce a particular product or to implement a re-
quired production “Skill”. As such, AML includes the necessary constructs to
model such a system viewpoint. The work proposed in [35] presents an ex-
tension of UML to support the modeling of mechatronic components and IoT
production environments. Therefore, manufacturing system components are
adjoined with IoT interfaces at a modeling stage, facilitating their latter inte-
gration.
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Representing and formalizing the knowledge of entities and services in-
volved in manufacturing is also an open challenge. In this regard, the most
widely used tool is ontology, which is defined as a formal and explicit speci-
fication of a shared conceptualization [36]. Semantic models and ontologies
have been used to specify concepts, resources and entities involved in man-
ufacturing, especially production information systems (e.g., MES) [37]. The
models serve as logical definitions that can be exploited to infer concept re-
lations between entities, such as between enterprise, automation and logis-
tics domains [38]. For those reasons, different standards and languages have
been proposed to carry out information modeling through ontologies. The
most representative ones are the Web Ontology Language (OWL) and the
Semantic Web Rule Language (SWRL). Those languages have been used to
define semantic annotations of service-oriented architecture, created to con-
trol manufacturing systems based on the type of service it is required to pro-
vide [39] [40]. The integration of ontologies and, thus, semantic reasoning
within SysML has been proposed in the past [41]. Nonetheless, an ontology
can be considered as a meta-metamodel, which is often specified by creating
custom UML profiles. Consequently, the knowledge defined in the ontology is
transferred to the model, and their interoperation is guaranteed.

A systematic review [42] of modeling languages for manufacturing high-
lighted a gap between the involved research communities. In particular, sys-
tem engineering and knowledge-representation languages are widely used in
this field, but rarely combined. The survey also found out that AML and UML
(which is the root of SysML) are quite popular in the field. However, they are
rarely used together and the reuse of existing models is hardly tackled.

To the best of our knowledge, the only approach combining AML mod-
els and SysML has been proposed in [43]. The authors investigate the com-
monalities and differences between the structural modeling provided by the
two languages. They also propose a SysML profile and an AML metamodel,
to boost languages’ interoperability. While their objective of reusing models
is common to this work, our approach exploits AML models reuse in a PBD
framework. As such, it considers also other modeling and system aspects, such
as behavioral and parametric facets, implemented in corresponding SysML di-
agrams. Furthermore, the reuse of AML models is implemented using a direct
one-to-one mapping between AML and SysML standard elements. As such, it
avoids using a SysML custom profile and additional stereotypes.

Regarding production processes modeling, two popular mathematical op-
timization models are RTNs [44] and State Task Networks (STNs) [45]. Both
focus on formalizing the production recipes as a directed graph. The main dif-
ference between STN and RTN is that the former concentrates on expressing
the sequence of material states associated with tasks, while the latter also ex-
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plicitly includes the allocation of tasks and resources to physical machines.
Therefore, the information on such models is limited to the recipe view-
point, without any knowledge of how tasks are implemented by machines
and, thus, without any information about control aspects. To structure recipes
within manufacturing information systems (i.e., MESs), different standards
have been developed in the past. For example, ISA-95 and 88 provide a con-
sistent terminology to define basic components of a production recipe, such as
tasks, materials and pieces of equipment. Furthermore, multiple XML-based
languages have been developed to concretely express the concepts present in
the standard. As an example, Business To Manufacturing Markup Language
(B2MML) [46] and AML [9] can be used to define not only the production
process viewpoint, but also the topology and the architecture.

To the best of our knowledge, a model capable of representing manufac-
turing production in a hierarchical structure has not been proposed. In fact,
the analyzed models and standards are focused on a single conceptual produc-
tion level, such as the recipe level or the control automation level. Meanwhile,
a unified model, able to capture at different abstraction levels, the different
aspects of a production process, is still missing.

3.2 Methodology Overview

When dealing with today’s production systems, the bare manufacturing plant
is not the only aspect to consider. For this reason, concerning modeling, the
most obvious limitation of AML is the lack of expressiveness to model ad-
vanced functionalities making plants smart. Neither the computational infras-
tructure nor the information flowing through the system’s machinery can be
represented by AML models. Indeed, PLCopen allows modeling control logic.
However, its constructs are not suitable to model anything more complex than
control software running on PLCs.

AML expressiveness is limited also when specifying manufacturing func-
tionalities. While it supports structural modeling through CAEX and kinematic
modeling through COLLAborative Design Activity (COLLADA) [47], it does
not provide constructs useful to specify actions and primitives provided by the
single machines composing the systems. The lack of primitives to express ma-
chinery’s behavior in terms of actions makes it difficult to specify production
processes recipes. While it is possible specifying which products, resources
and processes are related, AML does not allow specifying how a process is
structured to transform resources into products.

For all these reasons, design flows for CPPS require more expressive lan-
guages than AML. However, manufacturing systems engineers are already
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confident with AML. Furthermore, many AML descriptions are already avail-
able for existing manufacturing systems, and the standard is popular also
among researchers [42]. Thus, while searching for novel design and mod-
eling approaches, we advocate the importance of letting system designers
and engineers continue using their languages of choice. Such a feature has
already been investigated when dealing with CPSs [48]. However, the recon-
ciliation to a single language of the production viewpoint of CPPSs has never
been proposed. For this reason, this work aims at enabling the integration
of existing AML models within SysML-based design flows. AML descriptions
of existing manufacturing systems are analyzed and used to generate SysML
models. Then, generated models can be used by designers to carry on the
top-down phase of designing a CPPS.

Regarding functionalities and processes, the recipe model is structured
over three levels, each of them representing a different abstraction of the
production:

• the task level consists of a task-resources graph. It allows describing the
bones of the production process, which are the tasks, their dependencies
and the machines on which such tasks can be allocated.

• The service level refines the concept of “task”, describing the sequence
of steps required to be carried out to complete the task. It consists of a
directed graph where the edges express the execution flow and each node
identify a step of the task.

• The machine function level describes the interactions that need to take
place between the control software and the machine implementing a ser-
vice as a directed graph. Therefore, it allows exploiting the basic function-
alities provided by the machine to create more complex services.

The presented models integrate the necessary set of information to map the
process on the platform of components (e.g., hardware and software). In fact,
the proposed PBD flow enables the top-down refinement of services and ma-
chine functions to bottom-up abstractions of components’ architectures, each
implementing specific control behaviors. Therefore, the design flow combines
efficiently the production viewpoint with control aspects, by outlining the nec-
essary set of behaviors (e.g., PLCs functions) to carry out a service and, thus,
a recipe.

In this way, the designers can model novel functionalities and refine them
onto the model of the already existing architecture. The proposed method-
ology enables better modeling features for designer to tackle advanced man-
ufacturing systems design, while preserving already existing models of sys-
tems.
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3.3 Architectural Models Reuse

AML models, built upon the CAEX standard, depict the manufacturing sys-
tem’s structure: the components composing the production line and their re-
lations. As such, they can be exploited for the bottom-up phase of the pro-
posed PBD approach, to construct the structural part of SysML models. The
methodology hereby described creates the production plant model alongside
the computational infrastructure model, within the same SysML description.
This is a fundamental feature, enabling models’ reuse and boosting the design
process for complex systems. To accomplish such a task, we propose a map-
ping between the two languages. Table 3.1 reports the mapping: the AML
elements are categorized in libraries, instances, classes, objects and relations.
The table reports, for each AML element, the corresponding SysML elements.

Table 3.1: Mapping of AML elements to SysML objects.

AML Element SysML Element

Libraries
SystemUnitClassLib Block

Definition
Diargam

RoleClassLib
InterfaceClassLib

Instances InstanceHierarchy Internal Block Diagram

Classes

SystemUnitClass
BlockRoleClass

InternalElement
InterfaceClass InterfaceBlock

Objects
Attribute Property

Internal Link Connector
ExternalInterface Port

Relations
BaseClass → Class Generalization

RoleRequirements → Class Realization
SupportedRoleClass → Class Realization

The main component in an AML model is the class: it is typically organized
in libraries, depending on the concept or component it represents. In this re-
gard, AML defines three different libraries: the SystemUnitClassLib, the Role-
ClassLib and the InterfaceClassLib. The SystemUnitClassLib represents system
components and their relationships. The RoleClassLib encapsulates semantic
classes that are associated to objects, while the InterfaceClassLib allows defin-
ing the type of communication between elements.

Since AML specifically represents the structure of the system, it is nat-
ural to map such viewpoint to structural SysML diagrams. In particular, an
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AML library is directly mapped to a SysML BDD, characterizing the hierar-
chy of system components (i.e., classes to blocks) and their relations. AML
classes frequently enclose attributes to further specify components’ properties
or parameters. As such, an AML attribute is mapped to a SysML block prop-
erty, typed accordingly to the attribute type. Assigning the correct type to an
attribute is not trivial: AML provides a small set of native types (e.g., inte-
ger, real), but in case a physical dimension (e.g., velocity or temperature), a
workaround is needed to specify their units of measure.

AML implements different relationships between classes: an AML system
unit class might be either a base or a specialized class inheriting attributes
from a superclass. SysML provides a similar set of constructs between blocks
composing a BDD. As an example, the inheritance relation is mapped and
represented in SysML through the Generalization connector. In addition, at
least one role class must be associated with a class or to an InternalElement,
which is a class instance. As such, the RoleRequirement construct represents
the requirement that a specific role must be associated with the element. Fur-
thermore, an element associated with multiple roles includes multiple Sup-
portedRoleClass AML relationships. In a more general object-oriented fashion,
roles can be treated as abstract classes. Therefore, the association of a role to
a class or an internal element is mapped to the realization relation between
SysML blocks, representing abstract and concrete classes.

The AML ExternalInterface defines an interface to an external object or
class. An interface is typed by an InterfaceClass, which encapsulates user-
defined attributes to characterize the communication. SysML provides similar
constructs within a BDD: the Port and the InterfaceBlock. In particular, the In-
terfaceBlock is used to type a Port object. They are both directly acquired from
AML ExternalInterfaces composing the class or from the specific InternalEle-
ment.

The InstanceHierarchy is a central section of AML: it structurally defines
class instances and object connections between ExternalInterfaces. It is natu-
ral to correlate this concept to the IBD of SysML, where instances of classes
are related to each other through Ports. As such, AML ExternalInterfaces typed
by InterfaceClasses and connected using InternalLinks, are mapped to SysML
Ports, typed by InterfaceBlocks and connected via Connectors. An important
limitation of AML InternalLinks is the lack of expressivity: they do not allow
specifying the kind of information passing through the ports being connected.
As such, they only represent the connection between elements, without pro-
viding any further information.
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Fig. 3.2: AML libraries of SystemUnit classes, roles and interfaces of the BayGate sys-
tem.

3.3.1 Use Case Basic Components

The set of physical components of the examined portion of our conveyor sys-
tem are: a conveyor gate, which stops the minipallet, reads its id and deviates
it in the conveyor bay whenever necessary. Otherwise, the pallet is unlocked
and can continue its journey through the main conveyor. The gate is composed
of a minipallet stopper, locking the minipallet in a specific position of the main
conveyor. Then, an RFID reader reads a tag fixed on the minipallet frame and,
once the supervisor produces a response, the stopper deactivates. Then, a spe-
cial conveyor, moving along two axes, configures itself to let the unit in the
conveyor bay or to let the minipallet flow throughout the gate. Such a system
AML model is depicted in Figure 3.2: the SystemUnitClassLib BayGate Break-
down consists of a SystemUnit class for each component. It includes a set of
base classes of simple components: the Stopper and the RFID_Reader. The li-
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Fig. 3.3: Visual representation of the BDD derived from AML object classes.

brary also defines a subclass: the Switch class, which is a specialization of the
Conveyor base class, inheriting the length and the velocity attributes. Exploit-
ing such a relationship between classes allows the extension of the subclass
with additional class members, such as external interfaces. In particular, the
Switch class extends the Conveyor class by defining three ExternalInterface
objects. The ExternalInterface type is defined by the Port InterfaceClass spec-
ified in an InterfaceClassLib. Finally, the BayGate, which is the primary class
in the hierarchy, includes port-typed external interfaces and instances of com-
ponents as class members. Each class has one or multiple associated roles,
defined in a RoleClassLib. In this scenario, three role classes are sufficient to
represent the semantic category of each object composing the system: Com-
putation, Manipulation and Transportation.

Adopting the mapping rules reported in Table 3.1, each library defined
in AML is translated to a SysML BDD. For the sake of clarity, in Figure 3.3
only the “BayGate Breakdown” and “Interface Lib.” diagrams are depicted,
omitting the “SysML-RCL” BDD. The entire set of classes defined in AML is
mapped to blocks related to each other according to inheritance and compo-
sition rules. The block “Conveyor” is, in fact, in a Generalization relationship
with the “Switch” class, which is, in turn, associated with the “BayGate” block
in a membership relationship. Therefore, the “Switch” class becomes a prop-
erty “part” of the “BayGate”. Class attributes are transformed to block prop-
erties (which become “Values” properties once typed) and ExternalInterfaces
become “Ports”, typed by an interfaceBlock. Role classes are related to other
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classes using the “Realization” connector. As an example, the “BayGate” class
is associated with both the “Computation” and the “Transportation” roles.

3.3.2 Use Case System Structure

Fig. 3.4: AML InstanceHierarchy representing the BayGate sub-system.

The AML InstanceHierarchy is a hierarchical structure of objects called in-
ternalElements, which are instances of classes specified in the AML libraries.
Each object’s semantics is defined by associated roles. Furthermore, the ob-
ject’s interfaces to other objects are concretely used to represent object-to-
object connections, other than simply declared. Regarding the conveyor gate
example, the structure of the “BayGate”, depicted in Figure 3.4, is consis-
tent with the class defined in the SystemUnitClassLib. However, it is also
further characterized by defining the connections between interfaces of its
sub-components. In this regard, InternalLinks are used to connect ports of the
gate components set. The instantiation of a class in the hierarchy also includes
assigning a value to its set of attributes.

Parts, ports and values are specialization of the type Property in SysML.
For this matter, the purpose of the IBD is to define the internal structure of
a Block by means of properties and relationships between properties. The
IBD depicted in Figure 3.5 is built upon the BayGate internalElement. Since
the internalElement is an instance of a class, it carries the same structure of
the related block defined in the BDD. Consequently, class members such as
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properties, parts and ports are instantiated and are associated with the corre-
sponding block. In the IBD, InternalLinks between externalInterfaces become
connectors between ports.

Fig. 3.5: The SysML IBD resulting from the AML InstanceHierarchy.

3.4 Architecture Refinement and CPPSs Design Flow

The SysML models generated from AML descriptions are barebones: they de-
lineate the basic structure of objects with no functionality attached. Further-
more, the communication between objects is not exhaustively defined. As dis-
cussed, the reason for such a shortcoming is related to the lack of expressiv-
ity of the AML language. On the other hand, SysML does provide multiple
constructs to enrich the diagrams obtained from the bottom-up phase. As
such, the barebones models act as a platform to be refined by the designer,
by expressing a larger set of information regarding the system to specify in-
tended functionalities and requirements. Furthermore, SysML provides other
diagrams useful to model many more details of different systems’ aspects and
viewpoints. For example, behavior diagrams such as the activity diagram fo-
cus deeply on the system functionality, specifying sequences of events. In this
Section, we show the applicability of the models generated in the previous
section to support a complete CPPSs design flow.

3.4.1 Components Communication Modeling

The diagrams in Figure 3.5 model exclusively the architecture of the gate
component, without specifying object flows between one sub-component and
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Fig. 3.6: The refined IBD with additional information about object flows and direc-
tions.

another. The Figure 3.6 depicts a refined version of the original IBD, defin-
ing the type of communication other than outlining the direction of the flow
of objects. In particular, item flows have been added above simple connectors.
This step enables specifying the type of information or object flowing between
ports. Thus, it allows defining a piece of functionality performed by the sys-
tem architecture. In fact, by determining the kind of objects passing through a
connection, the connection itself is refined from an abstract concept to a con-
crete object. As an example, a communication network is very different from a
physical object that connects two points in the physical space. However, AML
does not have the required expressivity to detail such a set of information that
is crucial in today’s production systems. Applying this modeling approach, it is
possible to discriminate between physical objects and information. In the ex-
ample, the MiniPallet block represents the object moving through the physical
components of the conveyor system. Meanwhile, the RFID_Tag is the unique
identifier of a MiniPallet object. The main difference between these two ob-
jects is that they belong to different domains: the minipallet is a physical
object, while the RFID tag carries a piece of information that is purely digital.
As such, the channel on which these entities move is substantially different.
The ability to define components has been enabled by moving the modeling
of the system from AML to SysML.

The Stopper, modeled in Figure 3.6, acts as the contact point between
the plant and the computational platform, carrying out two types of com-
munication. The inward object flow in its input port is typed by a MiniPallet
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Fig. 3.7: activity diagram in SysML characterizing components’ behaviors.

block, which represents a physical object. Then, it has two output ports: the
p_stRf and the p_sOut ports. While both output ports share the same type,
they accept different flows of objects: the first accepts a digital RFID_Tag ob-
ject (highlighted in red in Figure), while the second accepts the flow of a
physical MiniPallet object.

3.4.2 Components Behavior Modeling

Behaviors can be determined in SysML by associating an operation to a block
of a BDD. Each operation is conceptually similar to a function and is repre-
sented as a class method. Therefore, an operation is defined by a set of input
parameters and a return value and the model of its behavior. A parameter
can be typed by a native type or by another block. Furthermore, an operation
has to be defined in a behavioral SysML diagram, which defines its imple-
mentation in terms of actions. As an example, the activity diagram depicted in
Figure 3.7 represents the sequence of actions following the arrival of a mini-
pallet at the gate and the decision process that establishes whether it has to
be pulled inside the attached bay or it has to be released. The activity diagram
separates the types of flows, outlined by arrows between entities, depending
on the kind of information they carry: if the flow represents the transfer of
control between actions, it is called “control flow”, while if the flow serves as
the movement of objects, it is called “object flow”. Each action in the diagram
is a call to an operation defined in the corresponding block of the BDD. As an
example, the readId action, which is the first action of the activity, takes as an
input parameter an RFID_Tag object. As such, the flow between the inMP ob-
ject (i.e., an instance of the MiniPallet block definition) and the readId action
is an object type.
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The minipallet destination is decided on the ID of the RFID tag and is im-
plemented through a couple of decision nodes, connected with control flows:
if the ID is the wrong one, the pallet is released on the main belt, otherwise,
the control passes to another decision node. This entity is in charge of deter-
mining whether the bay is free. In such a case, the stopper is released and the
pallet is pulled into the bay by the getInPallet function of the Switch compo-
nent. In the other scenario, the ingoing minipallet waits for the completion
of the previous production operation and the clearance of the bay from the
OutMP minipallet. Then the ingoing minipallet is pulled in.

While this diagram portrays a simple scenario for demonstration purposes,
the complexity of such a kind of modeling constructs enables the specifica-
tion of intricate behaviors. The expressiveness guaranteed by SysML allows
to overcome the limitations of the AML structure and, thus, empowers the
modeling of modern intelligent production systems.

3.5 Production Recipes Models

In the following, we present the proposed modeling strategy for production
processes. The model is organized through three layers of knowledge, each
depicting a particular abstraction perspective: the layers span from a high-
level representation of production recipes as a set of tasks to the sequence
of functions that realize the actual machines. This section will provide an in-
depth presentation of the three levels, paired with their exemplification of the
instance depicted in Figure 3.8. The figure reports the model of a production
process modeled using the proposed three-layer representation. The example
shows a production recipe composed of four tasks, which are “T1”, “T2”, “T3”
and “T4”. In the uppermost layer, the production recipe is split into four tasks,
which are associated with a subset of capable machines. Then, each task is fur-
ther refined in the middle layer, where a task is composed of a sequence of
services. The concept of service is realized through different implementations.
For instance, a service may be related to the behavior of a machine or an inter-
action with a sensor or an information system (i.e., the MES). These services
are further refined in a lower layer, defining precise machine functionality
and implementing the behavior represented by the service. For example, the
bottom layer of Figure 3.8 depicts the specification of the Turn service mod-
eled as a sequence of four machine functions. The “Turn” service is related to
a robotic manipulator arm. As such, it outlines the ability of the arm to phys-
ically assemble two objects positioned within its operating space. While the
Figure reports only the specification of the “Turn” operation, the same type
of lower-level representation is available for all the services. The ensemble
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of the three levels provides a complete description of the production process,
spanning from a business-oriented viewpoint to a control-focused perspective.

Fig. 3.8: An example of the proposed three-layer representation. The first layer defines
the set of tasks and machines on which they can be allocated. The second layer depicts
the concept of “service”, which are specified in a control flow graph. Finally, the third
layer outlines machines’ functions and, therefore behaviors close to PLCs.

3.5.1 Task Level

At the highest abstraction level of the representation, a production recipe is
modeled as a set of tasks. Concretely, it is expressed by a task-resource graph,
which is similar to an RTN. An example of a recipe defined at such a level is
depicted in Figure 3.9. Concretely, it represents a simple recipe composed of
an “Assemble” task, which is set to compose three lego pieces, and a “Store”
task, which transports and stores the assembled lego piece in the warehouse.
Such a recipe is constructed through an activity diagram composed of custom
“objects”, encapsulating a set of information about each conceptual entity, and
object flow relations. The types of entities involved are: the task, the equip-
ment and the material. Each task (in gray in the Figure) identifies a different
macro-step of the recipe, and is characterized by the required amount of raw
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materials, and an upper bound for the task duration. The materials (in violet
in the Figure) are associated with each task by defining its type, the amount
available, and the current position. Furthermore, additional properties such
as color and weight can be easily defined. One or more machines (in cyan
in the Figure) are associated with each task. A machine is associated with a
task if it provides the functionalities required to carry out such a task, and is
characterized by a set of attributes: the execution time, the availability, and
an upper and lower bound of its power consumption.

Fig. 3.9: An example of the task level of our modeling strategy. The recipe is defined
by a set of tasks (in gray), connected to required pieces of equipment (in violet) and
materials (in cyan).

3.5.2 Service Level

The second level refines the tasks-resources representation defined in the up-
per level. Current manufacturing systems are more and more based on the
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Fig. 3.10: The implementation of the “Assemble” task, made of a constrained flow of
multiple services.

concept of Service-oriented Manufacturing, which models the interaction with
the machines and sensors through services. Therefore, to describe all the steps
in which a task is composed, it is necessary to portray the relationship be-
tween tasks and services. For this reason, the second layer describes the se-
quence of services called to complete the task. Its representation consists of
a control flow graph. Each node in the graph represents either a service or a
control flow statement. Control flow statements model either the definition of
variables, arithmetical operations, conditional and iterative clauses, enabling
the representation of complex logical flows of services. Edges in the graph
specify the order in which the behaviors determined by the nodes are exe-
cuted.

A service can be either a machine service or an infrastructure service:

• a machine service models a structured behavior of a machine as a sequence
of simpler operations called machine functions.
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• An infrastructure service models the interaction with sensors, actuators
and computational resources available in the production system.

Furthermore, each service is characterized by a set of input parameters, con-
stants and output parameters used by the control flow statements.

Figure 3.10 represents the implementation of the “Assemble” task into an
activity diagram: it is constructed as a sequence of machine services. The se-
quence is constrained and guided through decision nodes and control guards,
to represent different execution flows. Services may have input streams based
on sensors data and, thus, on machines’ status. Furthermore, they may pro-
duce outputs in terms of commands.

3.5.3 Machine Function Level

Fig. 3.11: An implementation example of the “Turn” service. It is composed by two
machine functions, executed depending on the actual and target angles of the material.

A sequence of sub-services refines the services defined in the second layer.
The purpose of the machine function level is to model the actual control be-
haviors through machine functions. In this regard, machine functions are im-
plemented as behaviors at the PLC level. Each function is characterized by a
set of input and output parameters that can be either variables or constants.
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Regarding the example reported in Figure 3.11, the service “Turn” is re-
fined in a sequence of two possible machine functions: turn the arm clockwise
or counter-clockwise, depending on the actual angle of the piece and the tar-
get angle. This level allows planning the execution of the machine services,
taking into consideration when a precise atomic function will take place. It
also allows getting a more precise estimation of the time required to carry out
a sub-task. Consequently, it enables a better forecast on when certain materi-
als are necessary and on the used tools.

It is also necessary to assume that flattening the hierarchy is not a viable
option. The model does not allow to conceptually consider a machine function
or a service as a task, to include every possible information within a single
level. The reason for such a limitation is that, by doing so, the data on the
machine’s status during the execution of a function or a service would be lost,
resulting in an incomplete model.

3.6 Concluding Remarks

The presented modeling strategy proposes the use of PBD as the method-
ological framework, and SysML as specification language. We presented a
methodology to automatically produce SysML models from AML descriptions:
we presented the mapping, and we applied it to a real-world industrial trans-
portation system to generate its SysML model from its AML description. Then,
we extended the model to specify its functionalities.

To model complex production processes, this chapter presented a multi-
level modeling approach to manufacturing processes. According to the service-
oriented paradigm, the model organizes hierarchically tasks, services and ma-
chine functions, to carry out the production recipe. Such an approach enables
precise definition of processes with a more comprehensive knowledge on how
tasks are implemented on machines.
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Fig. 4.1: Overview of problem tackled by the presented approach, and proposed prob-
lem decomposition.

The MOOD4I framework enables compositional reasoning about system’s
design. It allows decomposing the design problem and, thus, splitting respon-
sibilities of achieving particular functionalities over the set of components
composing the system. Such an approach is guaranteed by employing A/G
contracts and contracts theory [22]. In fact, A/G contracts allow to decom-
pose system design among the different components involved (i.e., horizontal
decomposition), and among different levels of abstraction (i.e., vertical de-
composition). An A/G contract formally represents a component as a pair of
sets of behaviors defined over its variables: the assumptions and the guar-
antees [22]. A system can be represented as a composition of components
(i.e., horizontal contracts), while each component may be modeled at differ-
ent levels of abstraction and according to diverse points of view (i.e., vertical
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contracts) [24]. Such an approach is particularly important in autonomous
systems, and in particular in robotics systems, since they recently started to
appear in many human activities: autonomous robotics is now widely used to
clean domestic environments, as well as to support industrial processes within
production plants. The increasing adoption of these technologies, especially
in safety-critical applications, implies the rising importance of reliable, and
structured flows along all the steps of the design process, from the require-
ment specification to the system validation.

Traditionally, the software in charge of controlling robots, as well as other
families of cyber-physical systems, is designed on top of dynamical model sim-
ulators, and its validation strongly relies on extensive simulation [49]: a prac-
tice not providing the rigorousness required by safety-critical applications.
Recently, formal methods have been introduced in this field [50, 27], trying
to develop correct-by-construction design flows able to synthesize the control
software from high-level requirements. However, dealing with such a prob-
lem holistically leads to serious complexity issues, especially when consider-
ing the constantly increasing size of the applications being designed. Problem
decomposition, together with abstraction, will play a central role for future
system-level design methodologies [51]. Considering the problem depicted
in Figure 4.1, where a set of system requirements must be implemented by
a set of collaborating robots, while respecting some constraints, abstraction
and problem decomposition may be exploited in different ways. When de-
signing the control software for the agents composing such a system one may
consider going straight creating the coordination for the entire ensemble of
robots. Otherwise, a designer may structure its design flow by defining the
tasks composing a mission. Then, allocating the tasks to the single robots,
and creating a control strategy for each of them independently. Of course,
this requires to assure that the composition of the robots’ behaviors, guided
by their task allocations, is an implementation of the intended mission. Thus,
the design flow needs to be supported by a formalism to describe system com-
ponents and their abstractions.

We present a compositional approach to generate the control software for
multi-robot systems. The main innovation of our methodology is the struc-
tured decomposition, supported by the A/G contract formalism, of the de-
sign process. As Figure 4.1 shows, it starts from a set of requirements and
constraints characterizing a mission of the system. The requirements and the
constraints are formalized as A/G contracts, to partition the design problem
into multiple sub-problems. Then, we propose to use a subset of the contracts
to synthesize a control strategy for every single robot in the system. Mean-
while, a subset of the requirements is used to perform tasks allocation among
the different robots. The information contained in the contracts are also used
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to automatically generate an executable model of the system for simulation
purposes. We exploit system-level simulation to validate the results of the de-
sign flow. Once the synthesized control strategies are shown to be correct,
they can be translated into the software concretely controlling the robots. In
particular, this work presents an approach able to generate code for the pop-
ular ROS middleware [52]. More specifically, each agent’s control software is
wrapped into a ROS node. A set of well-defined messages and topics is cre-
ated to handle the communication between the generated nodes. We validate
the results of the presented methodology by simulating the final system using
Gazebo, a robotic oriented 3D CAD tool and simulation environment, able to
emulate the behavior of robots controlled by ROS software.

The approach is presented through a running example based on a multi-
robot goods transportation system. We evaluate the effectiveness of the ap-
proach by applying it to scenarios of increasing complexity. The experimental
results show the scalability that may be achieved by systematically decompos-
ing the design problem.

The contributions of this chapter can be summarized as follows:

• Definition of a problem decomposition strategy that allows to address
compositionally the design of control software for multi-robot systems. In
particular, we exploit the A/G contracts to automatically partition the re-
quirements and the specifications of the system into smaller sub-problems
to be addressed individually, and obtain a set of control strategies for the
components of the system. Then, we define a simulation-based method to
validate the composition of the sub-problems solutions with respect to the
main problem requirements.

• A technique to automatically generate software code implementing the
control strategies generated, and validated, for the components of the
system. In particular, the generated code is based on the popular ROS
framework.

This chapter is organised as follows. Section 4.1 analyzes the related work.
A case study is defined, to illustrate the application of the proposed approach.
Section 4.2 provides an overview of the suggested methodology. The contract-
based specification of the robotic system is detailed in Section 4.3. The de-
composed system is synthesized and validated as described in Section 4.4.
Section 4.5 presents the automatic generation of code for ROS. Section 4.6
shows the applicability of obtained implementations and the scalability of the
entire methodology. We finally draw some conclusions in Section 4.7.
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4.1 Preliminaries and Related Work

The increasing complexity of robotic systems led to the introduction of mul-
tiple robot software frameworks [53] aiming at easing the development of
robotic software. Notable examples are ROS [52] and OROCOS [54]. These
frameworks typically act as middleware, abstracting away the low level de-
tails about the physical system and providing high-level primitives to develop
functionalities. Usually, designers develop the software on top of such frame-
works. Then, they evaluate the correctness of the implemented behavior by
using simulators able to reproduce the physical behavior of the system. Mean-
while, the main focus of the robotic software research community is shifting
toward the integration of cognitive functionalities to make robots everyday
more autonomous [55]. However, all these works rely on extensive simula-
tion to reason about the correctness of the system being controlled by the
developed software. Thus, none of them is able to provide strong guarantees
about the correctness of the software being produced.

Formally specifying high-level behaviors of robotic systems to obtain a
provably correct implementation is not a new task in the autonomous robotics
research area. Our preliminar work presented in [56] proposes the idea of us-
ing A/G contracts, in order to reduce the complexity required to synthesize
a control strategy for autonomous multi-robot systems. Even though it in-
troduces the guiding ideas supporting this aspect of the presented work, it
presents only preliminary results without providing a structured methodol-
ogy. It decomposes the design problem only horizontally: it decomposes the
problem over the different components only; it does not decompose over the
different aspects and abstractions of the same problem (i.e., vertical decom-
position [57]). Furthermore, it does not target the generation of actual code
able to run on real systems. On the contrary, the presented contribution ex-
ploits the ability of A/G contracts to decompose the problem also vertically.
Moreover, the different parts resulting from the decomposition are used to
solve different sub-problems in a structured methodology, able to generate
ROS code that can be run on actual robots.

Another end-to-end methodology to generate executable code that imple-
ments high-level robot behaviors has been proposed in [58]. The methodol-
ogy is applied to the DARPA Robotic Challenge (DRC), consisting in a semi-
autonomous mission executed by a ground robot operating in a dangerous
environment for humans. This approach assumes that each sub-component
of the system is already defined in a centralized way, while concentrating on
the reactive mission plan applied to a high-level view of available actions and
behaviors. The approach has been exploited by the same team [59] to specify
system capabilities that are mapped onto the task definition and execution.
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The integration of robotic control-software obtained by formal specifications
and GR(1) synthesis in ROS is addressed in [60]. The authors developed
a framework to automatically synthesize a ROS node implementing GR(1)
specifications. The approach relies on the reactive synthesis algorithms by
Slugs [28]. Finucane et al. [61] developed a toolbox (i.e., LTLMoP) to develop
and test high-level robot controllers from problem specification in natural En-
glish. This tools collection is also able to set up a visual simulation of the robot
mission execution. All these contributions rely on the automatic synthesis of
control strategies from LTL specifications [62]. However, none of the previous
works addressed and exploited a structured problem decomposition to reduce
the complexity of the design process.

Our methodology has similar objectives to the previously described works.
Furthermore, we also rely on the same theoretical pillars, such as the auto-
matic generation of control strategies from GR(1) specifications [63]. How-
ever, the presented work is able to keep manageable larger and more detailed
definitions of the system being designed thanks to the compositional reason-
ing enabled by A/G contracts formalism. In addition, the robotics systems we
consider are composed of multiple agents interacting with each other, pro-
ducing an extremely complex problem to specify and synthesize in practice.
As we will discuss, traditional synthesis from temporal logic specifications is
not feasible, taking into account the necessity for an optimized specification
method and synthesis algorithms. In addition to the background concepts on
A/G contracts, LTL and reactive synthesis presented in Chapter 2, we hereby
detail the target simulation platform. Furthermore we present the robotic case
study used as a guiding example.

4.1.1 The Robot Operating System (ROS)

ROS [52] is a collection of packages for developing robotic software, from
low-level device control to communication protocols between robot compo-
nents. Tipically, a robotic system is organized in ROS as a set of distributed
processes connected to each other. As such, a ROS-based system is usually
represented by a graph depicting its architecture where nodes represent the
processes implementing the computation in the system. For the same reason,
in the ROS terminology, the term node is synonym of process. Each node of the
graph corresponds to a component of the system, e.g., a sensor, an actuator,
or an algorithm implementing a functionality. Each node is usually connected
to other nodes using different styles of communication, such as synchronous
Remote Procedure Call (RPC)-style services or asynchronous data streaming
over topics. More specifically, a topic is an abstraction used to identify a spe-
cific message subject or content, while ROS messages through nodes can be
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considered as particular data structures, composed by multiple fields with
specific field types (i.e., int8 or string). A message_generation package is avail-
able to define custom system-level messages: by specifying a set of data fields
and types, a C++ header file is generated, which can be used by nodes im-
plementations to pack and unpack topic’s messages structures. A ROS node
is generally implemented by using a well-defined client library. Such a library
provides an application programming interface in different languages, such
as C++ or Pyhton. In particular, the roscpp library provides interfaces and
standard functions to create a ROS node in C++, capable of interacting with
topics and services. A less runtime-performant but more intuitive method of
designing nodes is provided by the rospy client library, which is similar to
roscpp in terms of functionalities.

The ROS ecosystem is completed by some tools for analysis and simu-
lation. Gazebo [64] is a 3D CAD tool, that allows designing the mechanical
parts of robots. Furthermore, it provides a robust 3D simulation environment.
It includes a solid physical engine and multiple extension packages, such as
gazebo_ros_pkgs, that allow the integration of newly defined ROS nodes into
Gazebo logic and visual models. More specifically, Gazebo interacts with ROS
by using a set of defined messages and services, which acts as an interface
between a standalone simulation client and various ROS nodes representing
a robotic system.

4.1.2 Case study: goods transportation system

For the sake of clarity, we exemplify the concepts described on a running
example. The case study is inspired by autonomous multi-robot goods trans-
portation systems. Figure 4.2 gives a schematic representation of the system
being considered. A set of robots moves in a two-dimensional space, such as
a building floor. The robots are required to move a set of objects to specific
positions in space. Such positions are called targets. They are indicated in Fig-
ure 4.2 by the star icons. The order in which the targets must be reached is
imposed by the system requirements, i.e., the requirements define a partial
order over the set of targets. Each robot may move in four directions (i.e., up,
down, left and right). Robots must avoid crashing into eventual obstacles and
into each other. Each robot is equipped with proximity sensors, providing to
the robot information about the physical objects present in the robot’s imme-
diate surrounding environment. In practice, at each instant the robot is aware
of the space available in the four directions it can move. Figure 4.2 depicts
the case in which two robots (i.e., R1, and R2) must collaborate to complete
all six tasks. The right side of Figure 4.2 reports the main variables used in
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Main variables values

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟1 = 0

𝑡𝑎𝑟𝑔𝑒𝑡𝑟1 = 16 (i.e., T2)

𝑠𝑒𝑛𝑠𝑜𝑟_𝑙𝑒𝑓𝑡𝑟1 = 𝑓𝑎𝑙𝑠𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑟𝑖𝑔ℎ𝑡𝑟1 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑢𝑝𝑟1 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑜𝑤𝑛𝑟1 = 𝑓𝑎𝑙𝑠𝑒

𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑟1 = 4 (i.e., right)

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑟2 = 18

𝑡𝑎𝑟𝑔𝑒𝑡𝑟2 = 7 (i.e., T3)

𝑠𝑒𝑛𝑠𝑜𝑟_𝑙𝑒𝑓𝑡𝑟2 = 𝑓𝑎𝑙𝑠𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑟𝑖𝑔ℎ𝑡𝑟2 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑢𝑝𝑟2 = 𝑡𝑟𝑢𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑜𝑤𝑛𝑟2 = 𝑡𝑟𝑢𝑒

𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑟2 = 1 (i.e., up)

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑂1 = 17
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Fig. 4.2: Running example: an autonomous goods transportation system, composed
of two robots, coordinating to reach six different targets.

the formalization described in Section 4.3, and their values according to the
state depicted in the left side of the figure.

It is important noticing that the methodology can be extended to many
classes of robotic systems. In fact, it is trivial to extend the formalization de-
scribed in Section 4.3 to consider three-dimensional spaces. Such an extension
requires to simply add a further variable modeling the third dimension for ev-
ery variable referring to the position of a system component. The extension
allows to extend the field of applicability to autonomous unmanned vehi-
cles [65]. However, using a three-dimensional case study would not add any
information about the methodology, while complicating the formulas used in
the formalization step.

Furthermore, the approach can be extended to deal with robots composed
of multiple independent mobile parts moving in the three-dimensional space.
In such a case, the formalization would have multiple components (i.e., the
mobile parts of the robot) rather than multiple robots. Indeed, a set of log-
ical assertions must be added, during the formalization step, modeling the
constraints about the relative positions of the components. As long as the dif-
ferent mobile parts act independently to one another, the approach can be
used to generate a ROS node for each mobile part to be controlled.
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Fig. 4.3: General schema of the proposed methodology. Requirements and specifica-
tions are formalized and decomposed as a set of A/G contracts (Step 1). After solving
the sub-problems (Steps 2 to 6), their composition is validated through simulation
(Step 7). In case the validation results in a positive outcome, ROS code implementing
the control strategy of each robot is automatically produced (Step 8).

4.2 Overview

Given a multi-robot system and a set of targets to be reached by the system,
the final objective of our work is to automatically generate the control soft-
ware for each robot composing the system. The generated software is targeted
to the ROS framework, and it allows the ensemble of robots to accomplish all
the required targets. Figure 4.3 summarizes all the phases composing the pro-
posed flow, enumerated within gray boxes.

Initially, the design problem is characterized by a set of requirements and
specifications. The system components specifications define all the resources
available in the system, as well as the constraints on their use. On the other
hand, the system requirements specify which are the objectives of the sys-
tem, such as the operations that must be accomplished by the robots and
the timing constraints on such operations. Requirements may differ between
different systems, and they can be captured in different ways. Many different
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approaches have been proposed to specify and formalize requirements and
components for robotics and cyber-physical systems in general [66, 67]. Re-
quirements management methodologies allow to automatically cast the for-
malization of requirements and components within a specific theory or design
flow [68]. For instance, a structured management of requirements is helpful
when aiming at automatically partitioning a complex design problem by us-
ing A/G contracts [69, 70]. While requirements management is not in the
scope of this work, we assume that the design process starts from require-
ments managed by such a kind of techniques. In the case study introduced in
Section 4.1.2, the requirements are the targets to be reached and the timing
within these must be reached. Its components are indeed the robots, but also
the two-dimensional physical space in which the robots move. As the physi-
cal space is a component of the system, then the constraints imposed by the
physics are part of the system component specifications. Thus, for instance,
the presence of physical obstacles, as well as the reaction time, or the features
of the robots’ sensors are part of the system components specifications.

The Problem decomposition and formalization step (i.e., Step 1) formal-
izes the specifications and requirements composing the design problem by
using A/G contracts. Alternatively, the design problem may be represented
by a single contract having all the identified requirements as guarantees, and
assuming all the identified constraints, as many state-of-the-art approaches
do [62]. Theoretically, such a holistic contract may also be processed to per-
form reactive synthesis, and to generate a control software for the entire sys-
tem [27]. However, the problem would be computationally intractable [69].
Conversely, the presented approach partitions the design problem into multi-
ple sub-problems, each of them represented by a contract. As such, the design
problem formalization is partitioned into the following contracts:

• multiple Robot Contracts, one for each robot in the system, describing each
robot constraints and behavior. Each contract assumes the characteristics
of the environment, while guaranteeing to react to external stimuli prop-
erly.

• one Environment Contract describing the constraints imposed by the sys-
tem, and assuming the behavior of the robots, i.e., it assumes the robots
properly reacting to environmental stimuli. It must guarantee the assump-
tions made by the robot contracts.

• one Mission Contract describes the tasks the robots must accomplish. It
assumes the ability of the robots of reaching each target within a given
time limit. It guarantees the existence of a sequence of tasks for each
robot, such that the entire ensemble of robots completes all the required
tasks.



42 4 Compositional Design using Assume-Guarantee Contracts

The defined contracts are used in different manners. Each robot contract
is used to synthesize a control strategy for each robot by applying reactive syn-
thesis (Step 2). Thus, for each robot contract it is produced a Mealy Machine
implementing the contract. The generated Mealy Machine is translated into
an equivalent C++ executable model of the control strategies for the robot. The
same flow is applied to the environment contract (Step 3), thus producing a
C++ model of the world containing the robots (i.e., the environment).

The implementations obtained by synthesizing the robot and environment
contracts are merged and compiled together to create a custom simulator for
the system. Such a custom simulator provides higher simulation speed by inte-
grating the simulation engine and all the models into a single executable [71],
and it is used to perform multiple simulations necessary to evaluate the time
required by each robot to reach each target (Step 4). The information re-
trieved by the simulation is used to refine the mission contract: for each robot
and each task, the mission contract assumes the timing value retrieved from
the simulations as the time the robot needs to reach the target.

The mission contract is given to a task allocation algorithm that takes care
of allocating the tasks to the single robot (Step 6). The procedure generates
a C++ task scheduler assigning to each robot the tasks to perform. After this
step, we have both a strategy for each robot and a task allocation for the en-
tire system. However, each sub-problem has been solved by using different
assumptions. As such, it is necessary to verify that the composition of the so-
lution is still a solution for the initial specification. Proving the correctness of
the composition using formal methods leads to intractable complexity. For this
reason, the presented approach performs simulation for composition valida-
tion. The C++ models of the control strategies, environment (i.e., the world
model), and the C++ task scheduler can be compiled together to create an
executable specification of the entire system, thus composing the solutions of
the sub-problems into a fast custom simulator. The composed system is simu-
lated for all the initial conditions that are admissible according to the initial
specification assumptions (Step 7). In the case none of the simulations vio-
lates the initial requirements, then the C++ control strategy of each robot is
automatically translated into a ROS-based implementation (Step 8).

On the contrary, in the case the simulation for composition validation step
fails, then the designer may either try to generate an alternative task alloca-
tion, or to relax the system requirements and iterate the design flow. In either
cases, the trace generated by the failing simulation may be helpful to identify
the conflicting requirements [72, 73]. However, a more in-depth investigation
of this strategy is beyond the scope of this work.
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4.3 Design problem specification

For each instance of the design problem, three contract-based specifications
have been created: a contract representing the entire problem holistically,
i.e., the System Contract (CS); a contract specifying a single robot instance,
i.e., the Robot Contract (CR); a contract that describes the environment in
which various robots move, i.e. the Environment Contract (CE); and a contract
specifying the tasks to be performed to complete the mission, i.e., the Mission
Constract (CM). Contracts CR, CE and CM are obtained by decomposing CS .
An implementation of the composition of the multiple instances of CR (one
for each robot in the system), CE and CM must implement the initial contract
CS .

Such a partition decomposes the problem horizontally (i.e., among the dif-
ferent components of the system) by dividing the problem among the different
robots composing the system. It also decomposes the problem vertically (i.e.,
among different levels of abstraction), as the Mission Contract may be seen
as an abstraction of the composition of robots and environment. In fact, while
satisfying the mission contract requires the existence of a task assignment,
satisfying the composition of the Robot Contracts and the Environment Con-
tract requires to identify a control strategy for each problem that is able to
implement the solution of the Mission Contract. The following of this section
provides the details of these specifications.

4.3.1 System Contract (CS)

The representation of the two-dimensional space is discretized and repre-
sented as an occupancy grid [74]. Each robot r is characterized by four
boolean variables, expressing the four directional sensors (i.e. sensor_up,
sensor_down, sensor_left, sensor_right), an integer variable for the position
(i.e. position = n), and an integer variable representing the robot command
(i.e. command = c). A boolean value for each cell of the occupancy grid is
used to store whether a position is free or not (i.e. freep where p is the index
of the cell). Target positions are given as input to each robot. Finally, each
robot stores an integer value to represent the number of steps it performed
(i.e., how many times its position changed). The system specification is within
the GR(1) fragment.

The initialization assumptions predicates about the robots’ initial positions
and sensor values:

• two robots cannot have the same position, for each grid cell n:

¬(positionri = n ∧ positionrj = n ∧ i ̸= j)
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• For every position n, a conjunction over all the robots defines the occupa-
tion status of the cells:

freen = (
⋀︂
ri

¬(positionri ̸= n))

• Sensors values are set according to cells adjacent in the occupancy grid
and the grid boundaries. For instance, the assertion:

positionri = 18 → (sensor_leftri = free17)

specifies that the value of the left sensor of a robot in position 18, depends
on the occupancy state of position 17. CS specifies one assertion such as
this for each position and each sensor.

The initialization guarantees set the initial command of every robot to
stay, and its steps counter to zero. Initialization assumptions have to hold
also at each time step, so they are also duplicated as safety guarantees.

The safety assumption properties define the robots motion:

□((positionr = n ∧ commandr = c) → ⃝(positionr = m))

where m is the position adjacent to the position n, in the direction specified
by the command c. Then, safety assumptions model the global time of the
system advancing at every evaluation step:

□(timer = t → ⃝timer = t+ 1)

The safety guarantees specify that the robot decide the next command based
on the sensor values. Thus, considering the running example in Section 4.1.2,
and the command up the system guarantees are as follows:

□(⃝(commandri = up) → sensor_upr1)

The same guarantee must be inserted for each robot, and each command
modifying the status of the system, in the case study: up, down, left and right.
CS guarantees also the correct evolution of the step counters:

□(((positionri ̸= ⃝positionri) ∧ stepsri = n) → (⃝stepsri = n+ 1))

The only goal of the system is that each robot ri target should be reached
within a certain amount of time T , i.e.,

□♢(positionri = targetri ∧ timer ≤ T )
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4.3.2 Robot Contract (CR)

The A/G contract of every robot instance is an abstraction of CS (i.e., CS ⪯
CR) obtained by increasing the set of assumptions by assuming an environ-
ment that allows the robot to move freely (i.e. AS ⊂ AR). The resulting A/G
contract responds with the appropriate command value to input sensors val-
ues provided by the environment. For every position n, assumptions are as
follows:

□(positionri = n →
(sensor_upri ∧ sensor_downri ∧ sensor_leftri ∧ sensor_rightri))

However, it is possible to define different configurations inserting assump-
tions about obstacles. Considering the example in Figure 4.2, it is possible to
assume the existence of the obstacle O1 by inserting assumptions that forces
different values for the sensors, such as:

□(positionri = 12 →
(¬sensor_upri ∧ sensor_downri ∧ sensor_leftri ∧ sensor_rightri))

However, CR does not consider the other robots in the system, thus as-
suming that other robots do not act as obstacles.

The guarantees expressed in the CR are the subset of guarantees of CS that
generates the value for the next command to send according to the sensors
values.

In particular, if the target position is reached, the only possible command
is stay:

□((positionr = targetr) → ⃝(possible_command = stay))

Finally, if the output command is different than stay, the robot has moved.
Thus, the time required by the agent to reach the desired target is incremented
by 1.

4.3.3 Environment Contract (CE)

The environment contract is an abstraction of the general system contract
modeling the physical environment in which the robots act. The occupancy
grid is represented by a set of boolean variables, one for each cell. Each vari-
able values true if and only if the corresponding block is free. The environ-
ment contract assumes the behavior of the robots. Thus, its behavior is based
on the command values assumed the robots would generate. Its output is the
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set of positions for the robots, as well as the sensor values for each robot. More
specifically, for each robot r, for each position n and each command c, an as-
sertion is in charge of computing the next position of the robot. Assertions
describing robot movements are:

□(positionr = n ∧ commandr = c → ⃝ (positionr = m))

The environment contract also guarantees some trivial constraints of the phys-
ical system, e.g., two robots can never share the same position. Thus, for each
pair of robots ri and rj:

¬(positionri = n ∧ positionrj = n ∧ i ̸= j)

4.3.4 Mission Contract (CM )

The mission contract formalizes system requirements specifying the timing
constraints of the target to be reached by the robots, as well as their ordering.
It assumes the main features of the system, i.e. the number of cooperating
robots, as well as the time needed by each robot to complete each target.
Furthermore, it assumes that no obstacle can create a situation such that a
robot gets stuck in some positions in the two-dimensional space. Meanwhile,
the contract guarantees a certain time-bound within every task of the system
will be completed. That is, the mission will be completed within N steps.

The maximum time required by each robot to move to every target is hard
to be computed. Retrieving such time requires computing, for each robot, all
the possible paths between every pair of targets in the system. For this rea-
son, system simulation is used to enrich the contract with the travel time in-
formation for each robot and each target. The execution of synthesized robot
controllers into the generated environment model ensures that a robot rn can
reach a target tm in k steps. The contract is defined as follows:

• Assumptions: each robot possible path to each available target is struc-
tured as a triple (I,D, T ) where I is the initial robot position, D is the
destination cell and T is the time required to reach that cell.

• Guarantees: mission requirements can be fulfilled since a set of targets can
be reached in a predictable time limit.

The consistency of the mission contract provides a possible allocation of tasks
to the robots that may potentially realize initial requirements and constraints.
This contract is an abstraction of CS , as it defines a larger set of assumptions:
it assumes for each robot, and each pair of targets, the maximum travel time
required by the robot to travel between the two targets. As such, while the
solution obtained satisfy CM , it may not satisfy all of its refinements such as
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CS . Thus, the solution must be validated. The following section details how
the allocation is generated and validated.

4.4 Synthesis and validation

After decomposing the design problem, the sub-problems represented by the
contracts defined above must be solved. Then, their solutions must be com-
bined to obtain a solution to the design problem. Thus, each contract must
undergo different steps, as introduced above in Section 4.2. This section de-
tails the different steps.

4.4.1 Code generation and simulation

Contracts describing the robots and the environment of the system undergo
reactive synthesis. They are formalized within the GR(1) fragment of the LTL.
Thus, each of them can be used to synthesize a control strategy by using a
reactive synthesis tool. In our case, we rely on GR1C [27]. After being synthe-
sized, each strategy is expressed as a Mealy Machine in JSON format.

An automatic tool has been developed to generate executable C++ code
starting from each of the Mealy Machine descriptions. It includes a JSON
parser creating an intermediate representation of a Mealy Machine object.
Then, the tool generates a C++ class implementing the Mealy Machine by
exploiting automatic homogeneous code generation [75]. This allows creating
an executable specification for each A/G contract emulating the behavior of
the component specified by the contract.

Composing the executable models of robots and environment enables
early simulation for the system. Each C++ class representing a robot is in-
stanced by a top-level component, together with the class generated by the
environment contract. The inputs of the robots are the outputs of the envi-
ronment model and vice versa. A scheduling procedure [75] is in charge of
reproducing the concurrency, and managing the communication and synchro-
nization among the different components of the system.

4.4.2 Task allocation

The simulation environment defined above can be used to retrieve the set of
steps required by robots to reach all the available targets. This is done by
simulating the system multiple times. At each simulation, one robot moves
between a pair of targets. The process is repeated for each robot, and each
pair of targets to be reached consecutively. The information gathered by such
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Fig. 4.4: Weighted graph extracted from the case study. It represents the costs of all
the paths from robots to targets.

simulation phase is then used to generate a tasks allocation over the available
robots.

The task allocation problem can be resolved in multiple ways, and much
research has been already carried on in this field [76]. Furthermore, the solu-
tion generated by performing reactive synthesis from the system contract CS ,
without decomposing the design problem, already embeds in itself the solu-
tion of the task allocation sub-problem. The framework we implemented to
evaluate the positive impact of problem decomposition relies on a procedure
made in-house. However, it is important noticing that any other technique for
task allocation can be used to address this step. For the sake of completeness,
we report the details about our solution to better clarify how to connect other
solutions to our methodology.

The procedure encodes the problem as a directed weighted graph G =

(V,E). Vertices V represent either robots initial positions and target posi-
tions. Edges E and their associated weight represent cost of paths connecting
nodes. A partial or total ordering relation may be defined over the targets by
the mission specification, i.e., a set of constraints about the order in which
the tasks must be performed. Furthermore, the mission may impose that two
consecutive tasks are carried on by the same robot. This may be useful to rep-
resent a robot moving an object from one target to another. Figure 4.4 shows
the graph extracted by the case study described in Section 4.1.2.
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Algorithm 1 Task allocation
Require: graph of costs, task_list
Ensure: minimize total mission cost and robot cost differences
1: robots← [r1, r2, ..., rn]

2: costs← [0, 0, ..., 0]

3: tmp_costs← [0, 0, ..., 0]

4: allocation← ∅
5: procedure ASSIGN_TASKS

6: for task in task_list do
7: for r in robots do
8: tmp_costs[r]← min_path(graph, r, task) + costs[r]

9: best_robot← min_cost_move(tmp_costs)
10: costs[best_robot] += tmp_costs[best_robot]
11: allocation.insert(best_robot, task)
12: remove_edges(graph, task)
13: tmp_costs← [0, 0, ..., 0]

14: return allocation

Algorithm 1 takes the graph representation as input, to produce a task allo-
cation while minimizing the overall mission cost, i.e., the sum of all the robots
actions. It also aims at keeping balanced the number of actions performed by
each robot. Thus, trying to increase concurrency, and decreasing the overall
mission duration. Line 1 to 3 initialize some lists: the list of n robots, the
costs of each robot, and a list that will be used to store temporary values,
one for each robot. Then, the list of the allocations is initialized empty:
it will contain a list of robot/task pairs, each indicating that a task must be
performed by the assigned robot. The procedure iterates over the targets in
the task_list (Line 6). Then for each robot, the min_path function, based
on the Dijkstra shortest path algorithm, returns the cost for the robot of the
shortest path to the given target. Then, it allocates the target to the robot
having the minimum value in costs, after summing the cost to reach the
considered target (Lines 10-11). A pair is added to the allocation list, to indi-
cate which robot will perform the task (Line 12). Then, the remove_edges
sub-routine updates the graph by removing all the edges entering the node
representing the allocated task. Then, the algorithm iterates to the following
target in task_list. Finally, the procedure will return the list of allocated
tasks (Line 16).
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4.4.3 Simulation for system validation

Generating a control strategy for each robot of the system by synthesizing the
complete system contract CS provides a control strategy that already contains
the solution of all the design sub-problems. Meanwhile, in our approach, ev-
ery sub-problem is solved by using a set of assumptions that is larger than
the set of assumptions of CS . The task allocation is generated under the as-
sumptions of the Mission Contract (CM), that is an abstraction of the System
Contract (CS). Thus, CM makes more assumptions with respect to CS . For
this reason, the solution of CM may or may not be a solution also for CS .
Consequently, it is necessary to validate the generated task allocation. The
final step of the design flow is a System-level validation through simulation.
The objective is to verify that task allocation to each robot is feasible and
the control software will be able to complete the given mission while respect-
ing the constraints imposed by CS . The simulation relies on the executable
models generated by the approach in Section 4.4.1, while being driven by the
generated task allocation. The allocation is encoded as a C++ static scheduler
assigning the tasks to the different robots instantiated by the C++ executable
model of the environment.

The different C++ models are integrated and compiled together into an
executable system-level model of the system. Such a model is simulated for
all the possible combination of initial conditions admissible according to the
system contract. Finally, if the system-level validation returns a positive out-
come, then the control strategies generated are correct under the assumptions
defined by the initial requirements, and formalized by the system contract CS .
It is important to keep in mind that if the actual system does not respect as-
sumptions specified in the requirements, then the generated implementation
may be unable to control the system properly.

Once validated, the C++ implementations of the control strategies for the
robots may be used as control software for the multi-robot system. Next Sec-
tion describes how the validated C++ control strategies are used to produce
ROS nodes.

4.5 ROS Code Generation

The integration into ROS of the generated implementations requires to create
a ROS node for each component of the defined system (i.e., a robot). List-
ing A.2 depicts the structure of a generic ROS node. The set control strategies
generated and validated for each robot in the system is the starting point to
create multiple ROS nodes, each enclosing the control strategy of one com-
ponent. The structure of such control strategy is depicted in the listing A.1.
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In particular, it outlines the code implementation of the Finite State Machine
(FSM) that realizes the control strategy for such an agent.

Listing 4.1: Code structure used to implement and instantiate the control software
into a ROS node. At each update, input message parameters are gathered and passed
to the control strategy instance. This produces new output values, that are published
to the destination topic.

1 /// @brief Code structure used to implement and instantiate the control
2 /// software into a ROS node.
3 msgs::env_output inputs;
4
5 void callback(const msgs::env_outputConstPtr &msg) {
6 inputs = *msg;
7 }
8
9 int main(int argc, char** argv) {

10 ros::init(argc, argv, "robot_controller");
11 ros::NodeHandle nh("~");
12 ros::Rate r(1);
13
14 Robot robot_ctrl;
15
16 ros::Publisher p = nh.advertise<msgs::robot_output>
17 ("/r01/robot/output", 1);
18 ros::Subscriber s = nh.subscribe<msgs::env_output>
19 ("/r01/environment/output", 1, &callback);
20
21 msgs::robot_output output;
22
23 while (ros::ok()) {
24 robot_ctrl.executeMachine(inputs.up0, inputs.down0,
25 inputs.left0,inputs.right0, inputs.target0,
26 inputs.position0);
27
28 output.steps = robot_ctrl.steps_out;
29 output.command = robot_ctrl.command_out;
30 output.target = inputs.target0;
31
32 p.publish(output);
33
34 ros::spinOnce();
35 r.sleep();
36 }
37
38 ros::shutdown();
39
40 return 0;
41 }

The listing 4.1 describes the standard structure of a robot node imple-
mentation in C++, using the roscpp library. Input and output messages have
a precise structure of type msgs::robot_output and msgs:env_output
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(Lines 3, 21). The first is composed of a set of boolean values, one for each
directional sensor, and two integer variables, one representing the current po-
sition and one for the assigned target. The output message is characterized by
two integer values, one for the produced command and one for the executed
movements count.

Initially the ROS node is initialized (Line 10) and its handle is de-
fined (Line 11), with its update rate (Line 12). At Line 14, the Robot con-
troller is declared and instantiated. Then, a subscriber and a publisher are
created to manage the message passing protocol: the publisher (Line 16)
sends messages of type msgs::robot_output to the /r01/robot/output
topic, while the subscriber component listens to /r01/environment/output for
msgs:env_output messages, calling a callback function (Line 5) to han-
dle the received message and to fill the internal inputs structure. The while
loop at Line 23 simulates the robot controller with input parameters gathered
from the received message (Lines 24-26) and publishes an output message
representing the computed values from the controller (Lines 28-32).

A node subscription, as well as publication, is not constrained to a single
topic: the environment node, in our case, is composed of N subscribers and
publishers, attached to N topics, where N is the number of robots acting
in the system. The mission execution is handled by another similarly defined
node: it subscribes to each robot position, checking whether the current target
is reached. In that case, it publishes to the environment node the next target.

The execution of each node is started by publishing an initial message to
each robot, containing the initial conditions of the entire robotic system. It
is terminated when each robot reaches all the targets the mission nodes has
assigned to it.

4.6 Experimental results

Every phase of the proposed design flow has been automated. We set up a
proof-of-concept tool-chain created specifically to bind A/G contract reason-
ing and techniques based on simulation. Each sub-component or aspect of the
problem is specified through an A/G contract in the SPIN syntax of LTL [77].
Consistency checking of each contract is performed by using GR1C [27]. The
tool is also able of performing reactive synthesis to produce a Mealy Machine
implementing the given specification. GR1C produces a JSON description of
the state machine whenever the specification is realizable. The JSON speci-
fication is parsed by a tool we built on top of the HIFSuite APIs. Relying on
the HIFSuite we can exploit its automatic C++ generation tool [78] to gen-
erate the executable model of the original specification. The task planning
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Table 4.1: Comparison between the time needed to obtain the final control strategy
using the holistic system contracts, and decomposing the design problem. The experi-
ments have been carried on by varying the three main dimensions of the problem.

Problem Dimension Non-decomposed system formalization Decomposed system formalization

# Blocks # Robots # Targets
Synthesis
time (s)

Code
Generation (s)

Total
Time (s)

Synthesis
time (s)

Code
Generation (s)

Simulation for
Validation (s)

Total
Time (s)

9 2 2 20.36 20.47 40.83 6.85 37.31 0.01 44.17
16 1 2 31.48 25.83 57.31 20.54 40.46 0.03 61.21
16 2 2 3924.18 1906.16 5831.37 33.13 244.48 0.02 277.63
16 2 4 3924.22 1910.79 5835.01 33.17 247.97 0.04 281.18
16 2 6 3924.60 1913.95 5838.55 33.17 247.96 0.07 281.20

16 3 6
Time Out
(6 hours)

Time Out
(6 hours)

Time Out
(6 hours)

71.59 380.86 0.04 452.49

16 4 6 Time Out Time Out Time Out 184.35 810.34 0.05 994.74
16 4 8 Time Out Time Out Time Out 184.35 814.56 0.06 998.97
25 2 4 Time Out Time Out Time Out 55.54 292.94 0.08 348.56
25 2 6 Time Out Time Out Time Out 55.54 295.08 0.09 350.71
25 3 9 Time Out Time Out Time Out 142.79 504.25 0.12 647.16
25 4 12 Time Out Time Out Time Out 238.83 943.75 0.17 1182.75
25 5 15 Time Out Time Out Time Out 312.64 1351.49 0.21 1664.34

algorithm has been implemented in Python. Finally, we developed a backend
producing the final ROS implementation of the control software as described
in Section 4.5.

A series of Python scripts has been produced to generate various scenarios
of the problem. The scenarios we vary the number of deployed robots and the
size of the environment. For all the scenarios, we produced the holistic (i.e.,
non-decomposed) specification of the system to be solved by state-of-the-art
techniques based on reactive synthesis [62]. Then, we generated the decom-
posed specification as discussed in Section 4.3, and we apply the proposed
approach.

In Section 4.6.1, we compare the time necessary to obtain a valid con-
trol strategy using our approach, against the state-of-the-art reactive synthesis
of the non-decomposed system specification. For each specification, we set a
timeout of six hours. Then, we compare qualitatively the code generated by
the two approaches.

We also evaluate the applicability of the proposed methodology by build-
ing virtual models of the scenarios we considered using the Gazebo simula-
tor [79]. Then, we deployed the ROS code generated by our methodology to
control the dynamical models of the robots instantiated in Gazebo. Then, we
monitor the behavior of the system to evaluate if it meets the initial require-
ments, and it is thus properly controlled by the generated code. Contrary to
the system-level simulation relying on the code synthesized by the contracts
(i.e., steps 4 and 7 of Figure 4.3), the simulation performed using Gazebo is
not a step of the methodology. However, it allows evaluating the properties of
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the generated code once deployed in a real system. Section 4.6.2 provides the
details about the Gazebo simulations.

4.6.1 Methodology evaluation

Table 4.1 reports the time required by the various design phases, i.e., the re-
alizability, synthesis, the control software generation and its execution based
on the finite state machines produced by reactive synthesis tools. The dif-
ferent entries have been obtained by varying the three main design problem
dimensions, i.e., the number of blocks in the two-dimensional space represen-
tation, the number of robots, and the number of targets. The Non-decomposed
formalization columns report the time required to synthesize the control strat-
egy from the contract representing the system “holistically”. The last four
columns report the time required by applying the presented approach. In
both cases, we reported the time necessary to perform reactive synthesis,
code generation, and the total time required. In the case of the decomposed
system formalization, we report also the simulation time required for vali-
dating the generated code. It is worth noticing that the code generated from
the non-decomposed system formalization does not require further valida-
tion, as its synthesis relies on a state-of-the-art, and proved to be correct-by-
construction [63], synthesis methodology.

The state-of-the-art approach [62] using the non-decomposed system for-
malization suffers the computational complexity of the reactive synthesis al-
gorithm. Thus, the synthesis process requires more than six hours for the ma-
jority of our benchmarks. The complexity rises significantly by increasing the
number of robots in the system. This can be explained by the substantial num-
ber of safety invariants needed to model the set of guarantees of the holistic
representation. By increasing the granularity of the grid representation, the
problem’s complexity rises more gradually, since most of safety invariants re-
garding the environment shape and size compose the set of assumptions, that
are more easily managed. On the other hand, the approach proposed in this
work allows synthesizing also the instances that are otherwise intractable. In
particular, it shows good scalability also when increasing the number of robots
in the system, as highlighted by the experiments using the 16 and 25 blocks
occupancy grids.

Notice that whenever the set of targets of the mission is changed, then
it will be possible to perform only the task allocation while maintaining the
previously synthesized strategies for the single robots. In this case, the time
required by the task allocation procedure is negligible in comparison to the
entire design flow, as the algorithm required at most 1.3 seconds in our ex-
periments.
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Table 4.2: Qualitative comparison of the generated code.

Blocks Robots Target
Synthesized

States
Number of

ROS Messages
Non-

decomp.
Decomp.

Non-
decomp.

Decomp.

9 2 2 10704291 2664 * 2 15 19
16 1 2 3435704 8432 35 39
16 2 2 72938223 8432 * 2 20 24
16 2 4 72938223 8432 * 2 40 48
16 2 6 72938223 8432 * 2 55 67

Table 4.2 provides a qualitative comparison between the code produced by
our approach, and the code generated by using the non-decomposed system
specification. We compare the number of states composing the synthesized
Mealy Machines. Then, for each scenario we simulate the generated code
using Gazebo, we monitor their behavior and we quantify it by counting the
ROS messages used to control the system. It is important noticing that in ROS
messages are the main software primitive.

Using the non-decomposed specification leads the generated Mealy Ma-
chines to grow exponentially. Meanwhile, using the presented approach, i.e.,
synthesizing multiple Mealy Machines from the multiple contracts compos-
ing the decomposed system specification, allows generating smaller Mealy
Machines. Thus, the proposed methodology provides a more compact imple-
mentation for the same given set of requirements. Meanwhile, the generated
software requires slighter more messages to control the system. This is due
to the fact that using our methodology, each robot needs to broadcast the
information about the target aimed by the robot. Thus, for each target, two
additional messages must be broadcast to all the robots in the system. Addi-
tional details about the Gazebo simulation are provided below.

Overall, this set of experiments shows that the proposed decomposition
strategy allows managing systems otherwise intractable.

4.6.2 Software deployment: Gazebo simulation

The concrete applicability of the methodology has been evaluated by deploy-
ing the code being generated to control the mechanical models of real robots
running in Gazebo [79]. In this work we use different instances of the open
source robot Turtlebot3 [80]. Gazebo provides great adherence to systems
physical reality, as well as integration with ROS. These features, make Gazebo
simulation a widely used practice to evaluate the behavior of a robot system
in absence of the final hardware systems.
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Fig. 4.5: The case study analyzed in this chapter represented in a Gazebo simulation.
Through publisher/subscriber architecture, each robot subscribes for messages from
the environment controller, which publishes the set of sensor values and each agent
position. A robot command is then produced by the implemented controller, wrapped
in another ROS node.

Additional topics must be defined to set-up a 3-dimensional simulation of
robots physical behavior. The turtlebot3_simulation package exposes
a specific node that is controllable publishing on the already defined topic
cmd_vel. It also provides information about the robot position in the simu-
lated Gazebo environment through its odometry functionality. The messages
of the cmd_vel topic are of Twist type, that expresses both linear and angular
velocity through vectors. Moreover, the odometry messages are constructed
by a pose point with x, y and z components, together with a quaternion that
models the actual orientation of the robot.

For each robot, we create a new node to instantiate the control strategy
generated by the presented approach for the robot, and to interface the gener-
ated control strategy with the robot hardware. First, cell positions are mapped
into a range of x and y coordinates. Then, since the contract-based specifica-
tion does not take into account the rotation of the robot, the turtlebot3 has to
be rotated to face the direction of the target cell before moving: from odom-
etry messages the destination position and rotation can be calculated using
traditional algebraic formulas. More specifically, the angle facing the target
is determined in radians by calling the atan2(x,y) function. Moreover, the
actual Euler rotation angle of the robot is collected by its odometry module,
applying the euler_from_quaternion function to the rotation quaternion
sent on the odometry topic.
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Table 4.3: Results obtained by the Gazebo simulation.

Blocks Robots Targets Steps
ROS

Messages
Simulation
Time (s)

9 2 2 3 19 20.53
16 1 2 7 39 98.21
16 2 2 4 24 34.78
16 2 4 8 48 85.67
16 2 6 11 67 110.24
16 3 6 8 52 75.27
16 4 6 7 47 60.02
16 4 8 10 66 82.86
25 2 4 12 68 104.13
25 2 6 15 87 119.44
25 3 9 17 103 133.26
25 4 12 20 124 94.86
25 5 15 19 125 70.32

Figure 4.5 shows the simulation environment emulating the case study
used throughout the chapter. We monitored the Gazebo simulation of differ-
ent scenarios used to evaluate the methodology. For each scenario we used
one of the possible initial conditions. Table 4.3 reports for each scenario, the
number of steps performed by the robots (i.e., the sum of commands gener-
ated by the control strategies of all the robots), the number of ROS messages
passing in the system, the time needed to simulate the scenario in Gazebo. In
all the monitored cases, the system is implementing the requirements without
violating any constraint. The simulation time using Gazebo is many order of
magnitude higher than the system-level simulation used for validation (Ta-
ble 4.1). This is due to the fact that Gazebo simulates every detail of the
systems’ physical behavior. Meanwhile, the system-level simulation emulates
the details interesting the control strategies of the different robots, while re-
lying on a coarse abstraction of the system’s kinematics. It is also worth notic-
ing that the time required by Gazebo to simulate does not depend on the
scenario’s parameters. The time is affected by the parallelism due to the pres-
ence of multiple robots, as well as the equations to be solved for emulating
the dynamical models.

In conclusion, the proposed decomposition allows producing more com-
pact ROS code, able to fulfill the initial design requirements, while slightly
increasing the number of messages.
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4.7 Concluding Remarks

In this chapter, we proposed an approach to exploit assume-guarantee rea-
soning to decompose, and make more efficient, the design of robotic control
software. The approach decomposes the main design problem into multiple
sub-problems, formalized as A/G contracts. Then, the composition of the sub-
problems solutions is validated through simulation to verify that the solution
implements the initial requirements. The experimental results show the ad-
vantage of decomposing the design problem, highlighting a substantial re-
duction of the required design time.
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Fig. 5.1: Summary of the contribution: the production line is formalized by a set of
contracts under the guidance of the DIN 8580 Standard. The contracts are used for
the automatic synthesis of a virtual prototype of the production line.

To evaluate the feasibility of a production process over a newly constructed
system, or to estimate its performance, MOOD4I proposes to exploit a simi-
lar approach as described in Chapter 4. In particular, this chapter presents
an approach, summarized in Figure 5.1, exploiting a contract-based represen-
tation to build virtual prototypes of production lines. The behavior of each
production machine available in the line is represented by a set of A/G con-
tracts, whose assumptions and guarantees are expressed by using the LTL.
The definition of machine’s behaviors is guided by the DIN standard 8580 on
industrial machinery [10], in order to conceptually identify the granularity of
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the base actions considered in our approach. Therefore, such a set of actions
represent the machine functions available for a specific machine, as described
in Section 3.5. This work targets the construction of a set of implementa-
tions starting from contracts, formalized systematically exploiting the models
presented in Chapter 3. In fact, each contract defined to model the system
is synthesized into an FSM implementing the behavior specified by the con-
tract. This step relies on state-of-the-art synthesis techniques [63, 81], and it
produces a C++ implementation of the contract. The machine’s executable
model is transformed into a block to be imported into a commercial industrial
plant simulator [82]. Then, the plant simulator can be used to simulate the
entire system. The virtual prototypes generated by the proposed methodol-
ogy may be used to perform system-level validation through simulation. The
advantage of creating system simulations from the formal specification of its
sub-components is the possibility to formally validate the behavior of the sin-
gle components. Thus, leaving to simulation only the burden to validate the
composition.

The methodology presentation is paired with its application for the formal-
ization of a robotic arm manipulator of the ICE laboratory, and in particular to
the “Turn” operation provided by the robot. Then, we apply the methodology
to the entire production line comprising the robotic arm and we report the
obtained results.

The contributions of this chapter can be summarized into three main pil-
lars:

• A classification of elementary actions of machines based on industrial
standards (e.g., DIN 8580) that is used to guide the formalization in A/G
contracts.

• The exploitation of reactive synthesis techniques to produce implemen-
tations from A/G contracts. Such a set of implementations represent the
machine’s constrained behaviors in terms of FSMs.

• The integration of synthesized machines’ behaviors into a plant simulation
software. Such a simulation is targeted toward verifying the correctness of
the composition of the behaviors, to provide a correct production strategy
(i.e., recipe).

This Chapter is organized as follows: Section 5.1 collects the state-of-the-
art related to system-level simulation techniques and simulation models con-
struction. Section 5.2 gives and overview of the overall proposed methodol-
ogy while also defining the production case-study. Section 5.3 describes the
formalization of A/G contracts starting from the DIN 8580 standard. Then,
Section 5.4 details the synthesis of implementations from contracts and how
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to integrate the obtained code into the plant simulator. Finally, Section 5.5
gives some concluding remarks.

5.1 Related Works

Several tools have been developed in order to model and simulate indus-
trial production systems that simplify the validation and the optimization of a
manufacturing plant [83]. System-level simulation may rely on models at dif-
ferent abstraction levels and using diverse models of computations [84]. Such
abstractions may go from the physical level, where every mechanical detail of
each production machine is modeled by a set of differential equations, to the
functional level, where the system is modeled as a set of machine actions
and interactions between multiple machines. Indeed, the more detailed is a
model, the more complex will be its simulation. As such, the choice of model’s
abstraction level must be based on the model’s purpose. Discrete-event mod-
els [85] represent systems as the set of events occurring throughout its life. As
such, they provide a high-level of abstraction while representing the essential
details of the system behavior. For this reason, they are widely used to sim-
ulate manufacturing systems, and many commercial simulation tools relying
on the event-based paradigm are available [86]. Different system stakeholders
aim at evaluating various features of the manufacturing system using simula-
tion. For instance, a designer may be interested in the validation of the pro-
duction process, while a system engineer may aim at evaluating whether an
already deployed production line could be optimized to increase the manufac-
turing line throughput. For this reason, each simulator can simulate different
aspects of a manufacturing system.

In most cases, simulators are equipped with placeholder components de-
picting generic manufacturing processes. However, they usually provide ex-
tension mechanisms to precisely define the machine’s behaviors by construct-
ing and importing new custom models. Most of the available simulators pro-
vide interfaces to a well-known programming language (e.g., C/C++), thus
allowing the definition and the import of custom models into the simulator.
Tecnomatix Plant Simulation [82] is an industrial-grade tool [87], widely pop-
ular among industrial actors being also recognized as one of the most versa-
tile tools available for the simulation of industrial processes [88]. It provides
many interfaces to external tools and languages.

In order to simulate a manufacturing plant, it is necessary to produce
its model first. While this is reasonably doable when designing a line from
scratch, creating models of already existing machines may be an error-prone
process that may lead to inaccurate models [75]. Discrete-event models may
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be also derived automatically by analyzing the system behavior [89]. How-
ever, the quality of the produced models will be constrained by the quality of
the executed scenarios. As such, it may be ideal to start from formal specifi-
cations of systems and components when aiming at producing the executable
models used for simulation. A formalization for manufacturing control sys-
tems has been developed for verification purposes in [90]. The authors de-
veloped a framework to automatically translate specifications to LTL formulas
and using model checking techniques to verify the plant consistency. In [91],
a method to formally specify industrial component behaviors has been pro-
posed: it focuses on control logic components, the sensor/actuator behaviors
and it presents how to build a formal specification to verify their correctness.
However, none of these approaches relies on simulation but only on formal
methods that usually lead to complexity issues. System execution is used to
perform runtime verification of industrial systems [92]. However, this is usu-
ally applied to the control systems, rather than on the actions physically per-
formed by the production line. Furthermore, it usually does not consider the
state of the product and its evolution.

A combination of formal methods with simulation is described in [93]. The
authors developed a formalism to specify properties over the system while
being expressive enough to be translated into an FSM useful to simulate the
system.

In this work, we extend the state-of-the-art by proposing a systematic (i.e.,
guided by the DIN 8580 standard) formalization of the production machines
features. Then, we present a methodology producing the digital-twin of a
manufacturing system from its formalization.

5.2 Methodology Overview

The proposed methodology builds a formal representation of a production
line through executable models of manufacturing machines, and it composes
them into its virtual prototype. The models are meant to be simulated for eval-
uating the feasibility and correctness of the production line before building,
deploying, and assembling the real plant. Figure 5.2 summarizes the steps of
the proposed approach to validate a production line.

Initially, the components are classified according to the DIN 8580 stan-
dard, cataloguing actions and industrial processes associated with production
machines. For each machine, the DIN standard identifies and details a set of
actions that the machine is built to execute. Each action identified in the stan-
dard is formalized as an A/G contact. An action describes a specific behavior
of the component defining a set of guarantees (e.g., the ability to perform



5.2 Methodology Overview 63

…

Assumptions Guarantees

Plant
Environment

Machine
Behaviours (Actions)

Action1 Action2 ActionN

DIN-based
Taxonomy

Machine
Capabilities

1

2

3

4

Elementary
actions:

Actions from
DIN Taxonomy:

Machine:

A/G 
Contracts
Library:

5
Plant
Simulation
Model:

Plant Simulation
Station

Fig. 5.2: Overview of the presented approach: starting from a taxonomy of industrial
machines, elementary actions associated with this machine are defined. Then, an A/G
contracts library defining each action is assembled and synthesized, generating a Plant
Simulation-compatible model that can be imported and simulated.

a certain modification to the worked material shape), and assumptions that
specify the conditions necessary to perform the action (e.g., the presence of
the worked material within the action’s range of the component). Each man-
ufacturing machine is represented by a contract that is the composition of the
contracts modeling the machine’s actions. This allows representing a man-
ufacturing machine as the composition of its actions. As such, it would be
possible to verify the consistency of the machine formally. However, verifying
the consistency of the composition is affected by computational complexity
issues [69]. For this reason, a coordination contract is specified to model the
machine coordinating the actions identified. The coordination contract as-
sumes the actions’ behaviours, while it guarantees the possibility to perform
all the actions. Such formalization of a manufacturing machine leads to a
two-layer hierarchy of contracts: the first layer being composed by the actions
contract, while the second layer is the coordination contract. Such hierarchi-
cal decomposition allows verifying each action separately and then to verify
the coordination between actions. Thus, it allows decomposing the verifica-
tion problem both horizontally (i.e., over the different actions), and vertically
(i.e., over the two different layers of the contracts hierarchy).

All the contracts are specified using the GR(1) fragment of LTL. This allows
keeping the check of consistency computationally tractable. The methodology
goes on by checking the consistency of each contract. Then, for each contract,
it synthesizes a control strategy, i.e., an implementation of the guarantees
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given the assumptions. This allows producing an FSM implementing the spec-
ification expressed by the contract.

The final step of the methodology creates the digital-twin of each machine
and then the one for the entire manufacturing line to be executed within
Tecnomatix Plant Simulation. It generates a Plant Simulation “Stations”, a
simulator-specific object simulating the behavior of a machine’s controller.
Plant Simulation adopts the concept of Mobile Unit (MU) to represent an ab-
straction of every physical object that moves throughout the production plant.
Thus, each Station describes the processing of an MU, outlining the variation
of the object’s properties. In other words, each Station simulates the behavior
of a machine manipulating the working material. The Stations are instanti-
ated within a plant model in the simulator according to the manufacturing
line’s initial specifications, thus assembling the plant’s complete digital-twin
from the component manufacturing machines models. Finally, simulating the
plant model allows validating the production line.

The following of the chapter describes each step of the methodology ap-
plied to the case study presented hereby.

5.2.1 Case study: additive manufacturing and assembly

Fig. 5.3: 3D representation of the parts that compose the final product of the case
study. The (1) and (2) pieces are gathered from the warehouse, while (3) has to be 3D
printed.

The manufacturing system in the ICE laboratory is used to produce the
object depicted in Figure 5.3. The first operation is the 3D printing of a small
plastic LEGO®-like brick (i.e., piece number (3) in Figure 5.3). Once printed,
the piece is checked for defects by using the QC station. Meanwhile, two plas-
tic bricks (i.e., pieces (1) and (2) of Figure 5.3) are gathered from the ware-
house to be assembled by the robotic assembly station. Finally, the printed
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piece is assembled to the ensemble of the other two pieces. The final product
is verified in the QC cell for assembly defects. Finally, the product is trans-
ported to the warehouse.

The analysis of the actions in the DIN 8580 taxonomy highlights that some
of these can be implemented by the composition of more elementary actions.
In the example above, the identified actions can be decomposed as follows:

• Dismantle: Decompose;
• Emptying: Pick, Turn, Place;
• Shift one into another: Pick, Move, Place;
• Screw: Turn;
• Clamp: Pick, Move, Turn, Place;
• Embedding: Pick, Move, Place;

Therefore, we identify the elementary actions of the collaborative manip-
ulators:

• Compose: constitute or make up a piece;
• Decompose: separate into two elements the piece;
• Pick: collect the piece from a specific location;
• Place: drop the piece to a specific location;
• Move: move a piece;
• Turn: rotate the piece to a specific angle.

In the following, the description of the formalization will be paired with its
exemplification of the “Turn” operation, performed by the manipulator robot.

5.3 Components formalization

In the following, we assume that the same concepts can be applied to different
machines, while we will concentrate on the formalization of the functionality
associated to the robotic assembly cell (i.e., the collaborative manipulators).
The two collaborative robots can manipulate objects and precisely assemble
multiple pieces of material into a single product. The actions identified in the
previous section can be further divided into two subgroups: those requiring
a single manipulator arm, and those actions performing an assembly or dis-
assembly procedure, thus requiring both manipulator arms to be active. The
proposed formalization specifies a sequential behavior of the system and its
components, enforcing its constrained evolution in discrete-time steps. At the
chosen abstraction, action’s specification differ due to the MU characteristics
and whether to model the behavior of the manipulators. A cooperative action
(e.g., Compose) is specified to happen at a synchronization point in space.
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Table 5.1: Sketch of the coordinator contract.

Coordinator Ccoord

Contract Ccoord = (Vcoord, Acoord, Gcoord)

Variables
Vcoord = {grip, command, turn_executed, place_executed,

pick_executed, available, angle, desired_angle}

Assumptions Acoord = {□♢(available),□♢(turn_executed)}

Guarantees

Gcoord = {(□(turn_executed→⃝(available))),

(□(command = pick ∧ pick_executed→ grip = true)),

(□(command = place ∧ place_executed→ grip = false)),

(□(angle ̸= desired ∧ grip = true→ command = Turn))}

An elementary action is the specification of a process onto a work-material
(i.e., a transformation defined in the DIN taxonomy). Its contract-based spec-
ification aims to model the modifications applied to the MU. The level of
abstraction used to represent the work-material depends on the action. For
instance, an appropriate abstraction of the MU to model a subtractive (or ad-
ditive) manufacturing process should rely on a 3D grid. The grid abstracts
through discretization the shape of the working-material. Meanwhile, in the
contract representing the “Turn” action, the MU can be represented by its
rotation only. Thus, the MU is specified as a 2D projection of its 3D shape.

For each machine, the proposed methodology creates a contract for each
elementary action and a coordinator contract. Each action contract assumes
the action’s environment and, as such, describes the type of processing and
desired shape, place, or orientation of the MU. The contract guarantees the
component’s behavior, by discretizing the movement of the machine and,
therefore, the transformation of the MU. On the other hand, the coordinator
contract assumes the whole set of elementary actions the machine is capable
of. It also assumes additional properties to represent the shape and position
of the product after the machine processing. The position specification is used
to guarantee that the processed work-piece is placed in a specific cell of the
2D grid spatial representation, as well as its orientation and its shape (in case
of a composition or separation operation).

The scenario considered in the case study outlines the rotation action of
the MU performed by the manipulator arm. Two contract-based specifica-
tions are created to represent such an action: the coordinator contract and
the “Turn” action contract. The manipulator coordinator contract, depicted in



5.3 Components formalization 67

Table 5.2: Sketch of the turn operation contract.

Operation Cturn

Contract Cturn = (Vturn, Aturn, Gturn)

Variables
Vturn = {command, turn_executed, grip, angle, desired,

step, turning}

Assumptions
Aturn = {□(command = Turn→ grip = true),

□♢(command = Turn)}

Guarantees

Gturn = {(□(command = Turn↔⃝(turning))),

(□(turning ∧ (angle < desired)→⃝(angle = angle+ step))),

(□(angle = desired→⃝(angle = desired)))

Table 5.1, assumes that the machine is always eventually available to perform
the required action. Furthermore, a variable shared between components may
be controlled by the environment in at least one of the contracts, creating a
circular dependency. Thus, the environment may trivially control the variable
to satisfy the assumptions even when the guarantees are falsified. This trou-
blesome condition may be overcome by adding a liveness assumption that
forcing the environment to avoid trivial assignments of variables. For exam-
ple, the action completion (e.g., the assumption on turn_executed in the
coordinator) is the liveness property solving such an issue for the coordinator
contract. On the other hand, the contract guarantees that whenever an action
has completed its execution (in this case, the “Turn” action), the machine be-
comes available in the next discrete-time step. Another safety guarantee is in
place to model that whenever the “Pick” action is completed, the grip vari-
able becomes true. Contrariwise, another safety guarantee states that when-
ever “Place” action is completed, the grip variable becomes false. The last
safety guarantee property states that the “Turn” command is produced when-
ever the actual angle of rotation of the MU is not equal to the desired one
and, at the same time, the gripper has the material in its claws.

Table 5.2 represents the contract modeling the “Turn” action. The con-
tract assumes that the manipulator has already completed a “Pick” action:
a safety assumption requires that whenever the coordinator issues a “Turn”
action, the gripper has the work material in its clamps. The action contract
also assumes that the command is set to the constant “Turn” (i.e., the turn
action is requested by the coordinator) infinitely often: this liveness property
is necessary to manage the same circular dependency issue as the coordina-
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tor contract. The first safety guarantee of the action contract ensures that the
turning variable is true if and only if the command received is “Turn”.
This variable represents the turning mode of the component and it is useful
for defining the status of the system. In fact, the second guarantee assures that
the MU is actually rotated of a certain angle (at discrete time-steps) while the
turning status is active and while the actual angle is less than the desired an-
gle. The last two safety guarantees model the finished action status, signaling
that when the actual angle is equal to the desired one, the turn_executed
variable become true.

Among the set of variables defined in each contract, a subset is related to
the system while another subset is related to the environment. As such, system
variables are controlled by the system and, therefore, can be viewed as the sys-
tem’s output or internal variables. On the other hand, environment variables
act as input variables for the system. Figure 5.4 represents the interactions be-
tween the coordinator contract and the turn contract, by outlining the input
and output variables between each contract. In particular, the coordinator
produces the command enabling the execution of an action. In addition, it
provides the grip variable required for the initialization of the specific turn
action. The “Turn” contract provides to the coordinator the turn_executed
variable, that signals that the execution of such action is terminated.

Coordinator contract (𝑪𝒄𝒐𝒐𝒓𝒅)

Variables:
grip, command, turn_executed, 
place_executed, 
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Fig. 5.4: Interactions between the coordinator contract and the turn action contract,
implemented by a set of input/output variables.

For reference, other action contracts related to the manipulator arm (e.g.,
move, pick and place) are collected in the Appendix B. Once completed the
formalization of each action and machine, the contracts can be synthesized
individually into its functional implementation.
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5.4 Code Generation and Application

In this section, we show the application of the above formalization for the
virtual prototyping of the production system. In particular, we show the steps
necessary to generate the code implementing the contracts modeling the sys-
tem, their interfacing with a commercial simulator of industrial production
systems. Finally, we report the main results about the synthesis and code gen-
eration of the virtual prototype of the case study.

5.4.1 Executable models generation

The Mealy Machine synthesized by GR1C is represented by using a JSON for-
mat. We developed an automatic tool to generate the equivalent executable
C++ code starting from each of the Mealy Machines synthesized from con-
tracts. It translates the JSON model of each machine into an intermediate rep-
resentation. Then, the tool generates a C++ class implementing the machine
by exploiting automatic homogeneous code generation techniques [75]. This
allows creating, for each A/G contract, an executable specification emulating
the behavior of the component specified by the contract.

Listing 5.1: Sketch of the simulate C-Interface function that performs a property
abstraction operation over MU physical properties, then it calls the simulate of the
synthesized controller and finally back-propagates time, power and MU properties to
the simulator.

1 /// @brief Code structure of the C-Interface function, that performs
2 /// a property abstraction operation over MU physical properties.
3 extern "C" __declspec(dllexport)
4 void simulate(UF_Value* ret, UF_Value* arg) {
5 UF_Value &mu=arg[0]; UF_Value &station=arg[1];
6 int operation=arg[2].value; //Pick, Place, ...
7 double angle = MU_READ_ANGLE(mu);
8 // ... other properties
9 bool end;

10 do {
11 manipulator->simulate(angle,...);
12 end = manipulator->end;
13 } while(end);
14 ST_WRITE_TIME(station, calcTime(operation));
15 ST_WRITE_POWER(station, calcPower(operation));
16 MU_WRITE_ANGLE(mu,toAngle(manipulator->angle));
17 // ... other changed properies
18 }

The integration relies on the interface provided by the simulator. In this
work, we focus on the C-Interface provided by Tecnomatix Plant Simulation,
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which allows loading custom shared libraries into the simulator, and SimTalk,
the Plant Simulation internal scripting language. However, many other simu-
lators provide conceptually similar interfaces [75].

The simulator provides a C interface that cannot call C++ methods and
neither instantiate classes. Because of this limitation, instantiate and
deinstantiate methods need to be implemented separately. Their purpose
is to initialize and destroy the C++ class before and after the simulation ex-
ecution. The UF_Value structure is defined in the cwinfunc.h header file
and it is used to perform data exchange between the component implemen-
tation and the simulator environment. Each UF_Value contains two values:
the data to exchange and its datatype. Each simulator datatype is mapped
to the least bit-consuming C data-type providing enough bits: for example,
time and acceleration are mapped to double, string to char* and
so on. The C-Interface requires that each function expects an UF_Value to
use as an argument and another one to bring its return value. To interact with
the C++ class a simulate method is then added. It performs the following
operations:

1. a property abstraction translates the MU physical features into a boolean
representation (Listing 5.1, line 7);

2. the C++ controller is simulated with the provided inputs till the end out-
put is raised indicating the operation completion (Listing 5.1, lines 10-
13);

3. time and power consumption are calculated according to the simulation,
and exported to the Plant Simulation Station object (Listing 5.1, lines 14-
15);

4. the simulation results are converted into physical properties which are
back-propagated to the MU (Listing 5.1, line 16).

Such a set of operations allows the product state to be kept consistent between
machines, by storing it in the MU object.

Finally, the C++ strategy enriched with C-Interface headers and the pre-
viously defined functions is compiled into a shared library. The compiled file
can be loaded by Plant Simulation.

5.4.2 Plant Simulation C-Interface import

Plant Simulation strongly relies on object-oriented concepts. Each simulator
object is an instance of a class with its properties and methods. The import
phase generates special Station objects that uses the previously generated
shared library functions to simulate their operation.
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Listing 5.2: Sketch of the EntranceControl of the ManipulatorsStation object in Plant
Simulation (written using SimTalk language).

1 -- @brief Sketch of the EntranceControl in SimTalk.
2 -- load dll
3 var fd := loadLibrary(".\printer.dll")
4 if fd > 0 -- check loading phase
5 -- simulate the controller
6 callLibrary(fd, "simulate", @, ?)
7 -- unload dll
8 freeLibrary(fd)
9 else

10 -- stop the station
11 ?.Failed := trueer changed properies

The ManipulatorsStation object is created by deriving the Station
class and editing its EntranceControl method. The method written using
the SimTalk language and it is automatically called by the simulator whenever
an MU enters the station. Its purpose is to call the simulate function of the
synthesized C++ controller. The code is sketched in Listing 5.2 and it relies
on the SimTalk methods loadLibrary, callLibrary and freeLibrary

which are the ones developed to handle external libraries. The loadLibrary
method (Listing 5.2, line 3) opens the provided file path and returns its file
descriptor, or a number lower than zero when an error occurs. Such an even-
tuality is checked in Listing 5.2 at line 4 and sets the station to a Failed state
(in this state the object cannot process any MU), leading to the end of simu-
lation. The callLibrary method calls a function into the provided library
file descriptor by name. It is used to execute the external code (Listing 5.2,
line 6). Two special arguments are provided:

• @ represents the current MU;
• ? indicates the ManipulatorsStation.

The freeLibrary method unloads a previously loaded file (Listing 5.2,
line 8). The ManipulatorsStation object is finally saved and made avail-
able to the simulator libraries.

5.4.3 Experimental Results

We build a tool-chain implementing the proposed methodology: the consis-
tency checking and synthesis of the contracts is performed by using GR1C [27].
Meanwhile, we develop a tool receiving as input the JSON specifications pro-
duced by GR1C, and implementing the code generation described above. We
applied the tool-chain to build a virtual prototype of the ICE laboratory case
study. Then, we used the prototype to validate the system through simulation,
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Fig. 5.5: The ICE case study being simulated into Plant Simulation.

and to evaluate the power consumption of the different machines involved in
the production system.

Table 5.3: Time required to perform the consistency checking and synthesis step, and
the code generation for the non-decomposed (i.e., holistic) system specification, and
for the different actions of the robotic assembling station. The numbered columns refer
to the machine’s elementary actions: (1) Compose, (2) Decompose, (3) Pick, (4) Place,
(5) Move, (6) Turn. The last column reports the time required to obtain the machine
coordinator.

Holistic
System

Decomposed System
(1) (2) (3) (4) (5) (6) Coord.

Consistency
Checking &

Synthesis (s)

Time
Out

0.20 0.20 0.19 0.17 0.13 0.11 0.24

Code
generation (s)

- 0.12 0.12 0.08 0.08 0.07 0.06 0.15

Total
Time (s)

- 0.33 0.32 0.27 0.25 0.20 0.17 0.39

Table 5.3 reports the time necessary to generate the virtual prototype of
the collaborative robotic assembly machine. It reports distinctly the time re-
quired to perform the synthesis from contracts, that also incorporates the time
required for the consistency checking, and the time required for the code
generation. The holistic system column refers to the machine specified by a
single A/G contract: it specifies all the operations of a single machine and
their coordination. Therefore, it is specified using a different modeling ap-
proach. The same reactive synthesis tools and algorithms are used for both
the decomposed and the non-decomposed scenarios. The decomposed system
columns report the synthesis and code generation time required when us-
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ing the decomposed system specification, as proposed in this work. The non-
decomposed (i.e., holistic) system specification leads to complexity issues, as
its consistency check and synthesis reaches the time-out we set to six hours:
this contract is characterized by a much higher number of LTL properties and,
consequently, is harder to carry out the consistency check and the synthesis.
On the other hand, decomposing the system specification into multiple sub-
problems allows keeping the required time extremely limited.

Table 5.4: Time required to perform the consistency checking and synthesis step for
all the machines in the production line. The last column reports the total time required
for the entire production line.

3D Printer
Conveyor

Belts
Quality
Check

Robotic
Assembly

Milling
Machine

Total

Consistency
Checking &

Synthesis (s)
0.25 0.67 2.58 1.24 0.48 5.22

Code
generation (s)

0.07 0.20 0.76 0.68 0.20 1.91

Total
Time (s)

0.32 0.87 3.34 1.92 0.68 6.39

Table 5.4 reports the results for all the machines in the production line.
It is reported both the time required for the synthesis from the A/G contracts
and the time required for the code generation. Each column refers to a ma-
chine. For instance, Column (4) refers to the robotic assembly station. As
such, its values are the sum of the values in Table 5.1. For all the machines,
the processing time is minimal. The most time-consuming specification is the
Quality Checking cell. This is due to the fact that the cell relies on cameras.
Thus, its specification has to model multiple two-dimensional spaces to rep-
resent the signals analyzed by the cameras. The last column reports the total
synthesis and code-generation time. It shows the efficiency of our methodol-
ogy that allows generating virtual prototypes for production lines from their
specifications.

The validation of a production line consists of verifying that the compo-
sition of each manufacturing step fulfills the production requirements, fol-
lowing the components specifications. The process validation is obtained by
simulating the manufacturing plant agents with appropriate inputs and ver-
ifying that each component produces expected outputs. To perform such a
simulation, we load into Plant Simulation the components generated by our
methodology, and we build the simulation scenario, as depicted in Figure 5.5.
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5.5 Conclusion

We presented a methodology to build the virtual prototype of a production
line through the formalization of its specifications and automatic code gen-
eration. We have shown the effectiveness of the proposed methodology by
applying it to a real production line. We were able to generate its virtual pro-
totype, and use the generated virtual prototype to analyze the correctness of
the line.

The experiments showed that the virtual prototypes for production ma-
chines are generated in a few seconds, after having formalized the produc-
tion line specification as temporal contracts. This could be particularly hard
for untrained designers, but it sensibly reduces its complexity starting from a
library of pre-designed contracts associated to each action of a taxonomy, like
the DIN 8580.
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Application to a Service-Oriented Manufacturing
Architecture

Fig. 6.1: The classic Automation Pyramid (on the left, colored in blue), and the pro-
posed modification of the software architecture (colored in red). The architecture is
modified by adding the Automation Manager presented in this work.

The reconfiguration of a production line is a multi-layered problem, bridg-
ing business aspects to automation control [94]. Traditional monolithic in-
formation systems, currently used by most companies (e.g., MESs), do not
provide the necessary flexibility and agility to support efficient system recon-
figuration. The concept of SOA has been recently proposed in the industrial
automation context [33]. SOA systems distribute the responsibility of carrying
out functionalities across the different manufacturing components. As such,
the granularity and flexibility of production processes based on services are
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some of the fundamental pillars for carrying out an efficient reconfiguration.
Nonetheless, the adoption of SOA-based technologies in a production environ-
ment are far from being an easy task, especially considering the reluctance of
stakeholders to embrace new (and potentially production-breaking) technolo-
gies [95]. Especially at the business level, getting rid of a monolithic MES in
favour of a distributed architecture may not be a viable option for companies.

In this context, this chapter proposes a variation to the classic automation
pyramid. It modifies the traditional software architecture by automating the
supervisory layer, which becomes Automated Supervisory. The modified layer,
as depicted in Figure 6.1, encloses the Automation Manager, which is com-
posed of multiple software modules carrying out a specific functionality. In
particular, the Automation Manager provides:

• Seamless integration with existing software architecture,
• Automated reconfiguration of the production system,
• Easy integration of new technologies,
• Autonomous execution of production orders,
• Resource management
• Advanced scheduling,
• Support for data analysis.

The flexibility of such an approach is guaranteed by its compatibility with
standard industrial communication protocols (i.e., OPC UA [96]), to interact
with services at PLC level. Furthermore, the adoption of the ISA-95 standard
ensures terminology and data compatibility with most commercial MESs, thus
easing the adaptation of existing manufacturing systems to implement the
proposed software architecture. To concretely implement a reconfiguration
strategy, this chapter also proposes an advanced scheduling algorithm. It ex-
ploits the information structured in the three different abstraction levels of the
process model described in Section 3.5. The algorithm takes advantage of the
restructured information to make more precise decisions on whether a pro-
cess can be interrupted, interleaved and preempted, thus potentially improv-
ing the performance of the production system. Furthermore, the scheduler is
reactive: it can react to unforeseen events (e.g., new high-priority orders or
machine failures) and reschedule the production.

To demonstrate the applicability and the efficiency of the proposed archi-
tecture, we integrated the Automation Manager into a real production line
equipped with machines providing SOA features. The model-based scheduler
is developed as a module of the same Automation Manager and, thus, is part
of the same software architecture. We show that, despite a little overhead,
the advantages in configuration simplicity and software flexibility provided by
the proposed architecture are relevant. Furthermore, we evaluate the results
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of the proposed model-based scheduling algorithm. We show how exploiting
hierarchically structured information allows increasing the average machine
utilization and throughput, while minimizing the makespan, especially for
high-priority orders.

Therefore, the summary of the contributions of this Chapter are:

• A software architecture that facilitates production reconfiguration. It pro-
vides control over the production line by exploiting the concept of “ser-
vices”. Through the OPC UA protocol, the proposed software is capable of
driving machines’ execution in a more granular fashion than traditional
MESs.

• A service-based scheduling algorithm that exploits the underlying control
provided by the service-oriented architecture. Furthermore, it takes ad-
vantage of the knowledge integrated into the hierarchical recipe model
proposed in Section 3.5, improving preemption and interleaving.

This Chapter is structured as follows: Section 6.1 reports some key back-
ground concepts on SOM, industrial communication protocols and production
scheduling. Section 6.2 describes a service-based data collection architecture
that is driven by the Automation Manager, which is illustrated in Section 6.3.
The evaluation of the advantages and overheads of the proposed architec-
ture is reported in Section 6.4. Then, Section 6.5 characterizes the service
and model-based scheduling algorithm. It also discusses the improvements
in scheduling and reconfiguration efficiency against a traditional approach.
Section 6.6 concludes the Chapter.

6.1 Background

In this section, we present some background concepts to better understand the
proposed architecture. In particular, we start with a description of the classical
structure of the manufacturing software in subsection 6.1.1 to highlights on
which level we place our solution. Then, in subsection 6.1.2 we present the
communication protocol adopted within the proposed architecture. Lastly, we
give a brief introduction to production scheduling in subsection 6.1.3, which
is implemented in our architecture.

6.1.1 Levels of Automation in Manufacturing

The architectural model, followed by smart manufacturing and also referred
to as the Automation Pyramid is shown on the left of Figure 6.1. It consists of
five layers with different structures, requirements, and temporal constraints:
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• The Field level consists of sensors, actuators, and applications with real-
time behavior that physically act on the production floor.

• The Control level is where the automation starts: it consists of PLCs taking
information from all the sensors to make decisions on how to control the
actuators to complete a programmed task.

• The Supervisory level provides high-level supervision with Supervisory
Control and Data Acquisition (SCADA) and Human-Machine Interaction
(HMI) controlling multiple machines and collecting data from them.

• The Planning level contains the MES monitoring the entire manufactur-
ing processes transforming raw materials into finished products. It also
provides a complete real-time vision of the different shop floor metrics
potentially useful to optimize the production processes.

• The Management level connects the production infrastructure with the En-
terprise Resource Planning (ERP) system focused on the administration of
the company resources, such as purchases, sales, and financial reports.

To simplify the integration of new technologies within manufacturing it
is necessary to define a standard terminology and a unique data represen-
tation used throughout all the automation levels. ISA-95, also known as the
IEC 62264 standard [7] aims at guiding the development and integration of
manufacturing software within a business. It defines functionalities, responsi-
bilities, standard terminology, and data exchange between the enterprise and
process control levels. This allows simplifying the integration and develop-
ment of software within the manufacturing industry.

The communication between different layers of the automation pyramid
use interface exposed at each level. In the lower levels characterized by real-
time constraints we found Profinet, EtherCAT, Sercos. The other level use pro-
tocol based on Ethernet, such as OPC UA.

6.1.2 Communication Protocols

Among the plethora of today’s manufacturing standards, we propose an ar-
chitecture that is consistent with ISA-95, since all internal data structure is
modeled according to the standard’s specifications. Furthermore, all commu-
nication with the machines is based on the OPC UA protocol.

Nowadays, OPC UA plays a very dominant role in industrial applications,
as it became a de facto standard for Machine to Machine (M2M) communi-
cation in industrial automation. OPC UA is a platform-independent service
oriented protocol developed by the OPC Foundation and standardized in IEC
62541 [96]. The communication is based on a client/server structure, where
the server contains and exposes the information model, which is a graph
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structure representing a wide variety of information, such as type hierarchies
and inheritance. The basic components of this structure are nodes contain-
ing the data and the references that create relationships between nodes. An
OPC UA client communicates with the server through a standardized set of
services, such as management of the information model, read/write of nodes,
and methods calls. Due to its versatility, OPC UA allows to model data trans-
port compliant with the ISA-95 standard [97].

Distributed applications need scalable, fault-tolerant and with low la-
tency communication channels to interact with each other. Apache Kafka is
a distributed publish-subscribe messaging system developed to process real-
time data with low latency. It is designed to be scalable, durable, and fault-
tolerant [98]. Messages are stored as records including any kind of informa-
tion, and they are stored until a specified retention period has passed. Kafka
records are organized into topics, where producer applications publish new
messages and consumers read the data by subscribing to a specific topic. Top-
ics are divided into several partitions, this allows the creation of a group of
consumers that increase the processing throughput by splitting the data be-
tween them.

While Kafka is more suitable for low-latency and high throughput applica-
tions, RabbitMQ performs best when request-response messages and security
are the primary concerns [99]. It is a message broker and queuing server
that supports different messaging protocols, among which the most impor-
tant are Advanced Message Queuing Protocol (AMQP) and Streaming Text
Oriented Messaging Protocol (STOMP) [100]. Producers publish messages
into a queue, which are stored until the consumer retrieves them. It also sup-
ports delivery acknowledgment and the possibility to assign permission such
as rights to read and write to different users.

6.1.3 Production Scheduling

Efficient production scheduling is crucial to achieve efficient manufacturing
processes. An optimal schedule allows increasing the productivity, maximizing
throughput, and minimizing delay and interruption of production. In manu-
facturing, a schedule is an optimal allocation of recipes in a specific time-
frame. In particular, a recipe is represented by a set of jobs (sequence of opera-
tions) that can be carried out by a subset of machines with respect to different
constraints. Thus, production scheduling requires extensive knowledge of the
tasks offered by each machine as services. Practical scheduling problems are
proved to be NP-hard [101] and, therefore, difficult to solve due to the num-
ber and variety of jobs and potentially conflicting goals. Furthermore, when
manufacturing systems encounter unexpected conditions, such as machine
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breakdown, rush orders, process time delay, the schedule may no longer be
the optimal one or may become not feasible due to these unexpected events.
In the literature, there are many proposed solutions to solve the scheduling
problems, most of them are based on Artificial Intelligence techniques such
as Ant Colony Optimization [102], Particle Swarm Optimization [103], Arti-
ficial Bee Colony [104], Genetic Algorithms [105]. There are also other so-
lutions based on state-space search algorithms, Partial Order Planning [106],
PERT Method [107], Mixed Integer Linear Programming (MILP) [108], and
CSP [109].

6.2 Services and Data Collection Architecture

A market characterized by rapid changes in consumer demands requires soft-
ware architectures able to provide agile reconfiguration. However, today’s so-
lutions are still based on a monolithic MES structure, where the reconfigu-
ration of the production process requires a long configuration time and the
integration of new software and technologies is challenging.

The reference system is constructed as modular SOA-enabled architecture
located in a Kubernetes cluster connecting the automation level to classical
MES solutions. An overview of the architecture’s structure is provided in Fig-
ure 6.2. It consists of different applications, communicating with each other
through Kafka and RabbitMQ. Therefore, the integration of new applications
is transparent and does not require stopping the entire production. The com-
munication is realized through OPC UA clients directly connected with the
machines and exposing their functionalities. The main actor is the Automa-
tion Manager managing the communication with the MES and extending its
functionalities to add reconfiguration of the production line, autonomous ex-
ecution of production orders and advanced scheduling. This section describes
the main components of the architecture, while Section 6.3 deep dives into
the Automation Manager.

6.2.1 OPC UA Servers

Each machine in the system is equipped with an OPC UA server module. The
piece of equipment and its server module are strongly intertwined. The data
model (in particular the machine status and sensors data) exposed by the
server depends on the functions developed to externally control the machine.
To create the OPC UA server module, the machine’s functions are wrapped
and exposed as OPC UA methods. Then, the OPC UA data model is enriched
with state variables that a client can read to know the status of the running
operations.
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Fig. 6.2: Automation of the Supervisory level by introducing the proposed service-
oriented architecture. Arrows show the commands and data flow through the automa-
tion pyramid and our novel architecture.

6.2.2 Data Collection Infrastructure

An Industrial Internet of Things (IIoT) Data Collection Infrastructure mon-
itors the connected equipment and stores the gathered data. It acts as a
service platform allowing, among other functionalities, to interact with the
OPC UA servers through the RPC paradigm. All the architecture nodes are
deployed into the Kubernetes cluster. The Data Collection Infrastructure fea-
tures a multi-node Apache Kafka instance handling data streams. Meanwhile,
a multi-node RabbitMQ instance is in charge of handling remote procedure
calls through queues.

The Data Collection Infrastructure communicates with the equipment
through multiple OPC UA Client nodes: an active instance (and configuration)
is active for each OPC UA server. This node creates a persistent connection
with the machine and creates an OPC UA subscription, specifying the OPC UA
variables to monitor. Each time a variable changes, the client is notified with
the new value, which is written to the configured Kafka topic. The OPC UA
client nodes are also connected to the RabbitMQ instance and listen for RPC
requests from the configured queues. Each RPC request contains the method
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to call, its arguments and an universally unique identifier (i.e. the uuid) used
to route the answer to the correct sender. Allowed requests for this client are:
the read of variable, the write on a variable, or the invoke executes an OPC UA
method.

Figure 6.2 shows the data and command flows into the Data Collection
Infrastructure and the Automation Manager. Each machine has its own Kafka
topic and RabbitMQ remote procedure call queue, managed by the corre-
sponding OPC UA client instance. The Automation Manager (or a generic
controller) can exploit this platform by executing machine operations through
RabbitMQ and getting equipment statuses and sensors data through Apache
Kafka.

6.3 Service-Automation Manager

The Automation Manager is the core component connecting the different
pieces of software deployed in the Kubernetes cluster and the MES. It is or-
ganized in three different layers and many sub-components, depicted in Fig-
ure 6.3, necessary to handle the communication with the MES and the ma-
chines transparently. The top layer contains the software Driver interfacing
the Automation Manager with the upper layers of the automation pyramid;
the bottom layer is the software Driver connecting the manager with the lower
layers of the pyramid; the middle layer contains the manager Core, a set of
Applications, and a Logger. The Automation Manager is compliant with ISA-
95 standard. Thus, it is compatible with any existing software infrastructure
based on the same standard. It takes in input information about the plant
structure from both the MES, which contains the production line structure
and recipes and from a set of configuration files describing the machine capa-
bilities and recipe implementations. These characteristics are meant to ease as
much as possible its integration within already existing manufacturing plants.

6.3.1 Drivers

The Driver levels contain the components enabling the communication with
other pieces of software. The Equipment Connector exposes for the other lev-
els basic functionalities of OPC UA, such as variable read/write, methods call,
and subscriptions for data changes. It communicates with the OPC UA clients
connected to the machines within the cluster. The MES Connector manages
the communication with the MES. It is implemented as an RPC client calling
functions defined by an RPC server connected directly with the MES. As an
advantage of using RPC interfaces, the integration with any other MES only
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Fig. 6.3: The internal structure of the Automation Manager.

requires to simply implement the corresponding RPC server. This driver allows
navigating within the MES configuration and notifying the actions executed
by the architecture, such as execution of operations and reconfiguration. The
last driver is the Logger. It publishes log messages on two different Kafka top-
ics: one consists of messages useful for debugging purposes of the system; the
other includes messages logging actions executed by the architecture, such as
the execution of recipes or machine services. This allows notifying the entire
architecture of the status of each level.

6.3.2 Core

The second level contains the Core components, defining and implementing
industrial processes. The MES represents production recipes as a sequence
of dependant tasks, where each one is associated specifically to a class of
working cells (e.g., a work center). On the one hand, this allows to model
production processes at a higher level of abstraction, hiding unnecessary im-
plementation details. On the other hand, this is not enough to execute tasks
without human intervention. Therefore, the recipe representation in the Core
of the Automation Manager is extended with a low-level model that describes
the implementation of tasks on the working cells. This representation consists
of a sequence of actions with input and output parameters and an execution
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flow, formalized a directed cyclic graph: the actions are nodes of the graph,
connected by directed edges to represent dependencies. An action can be a
service exposed by the Equipment Connector or a logical construct (e.g., cre-
ation of variables, the sum of variables, if, cycle, etc.) proposed by the Core.
This extension allows executing tasks with a simple visit of the graph nodes.
Thus, the software also integrates a parsing module able to interpret the graph
and carry out the actions defined by it while following the dependency flow.
Then, the actual execution of tasks is managed by the Resource Manager. It
retrieves the manufacturing structure from the MES and, for each working
cell, it connects to the correct machine’s client. This ensures that when an
operation is executed on a working cell, it has access solely to those clients.
It also guarantees that a maximum of one operation is executed on a working
cell at the same time.

6.3.3 Applications

The scheduling of production processes on different machines in a dynamic
environment is still an open problem. In the literature, this problem is known
as Dynamic Flexible Job Shop Scheduling (DFJSS). Although there are many
solutions to the static counterparts of this problem, known as Job Shop
Scheduling (JSS) and Flexible Job Shop Scheduling (FJSS), when we intro-
duce the dynamic component that characterizes real systems the solutions
for these problems are not applicable. The reason is that every time an un-
expected event occurs (e.g., the arrival of new orders, machine breakdowns
and delays), the schedule is no longer optimal or even not feasible anymore.
Therefore, it must be recalculated, which is a time-consuming process. To
solve this problem, the most used solution consists of totally reactive schedul-
ing where the decisions are taken dynamically when the machines are in an
idle state [110]. Nonetheless, exploiting exclusively dynamic techniques does
not provide any certification of optimality. Therefore, a promising direction
is to introduce static-reactive scheduling, characterized by a first phase that
produces a static schedule of the jobs, dynamically updated on the arrival
of events [111]. In the first implementation of the proposed architecture,
we opted for this hybrid approach to implement scheduling. It consists of
a static phase exploiting constraint programming to produce an optimal so-
lution while minimizing energy consumption and delays. Then, a dynamic
component continuously recalculates the scheduling to react whenever an
unexpected event occurs, such as new job arrivals and machine breakdowns.

Furthermore, to achieve more precise scheduling, we developed a data
analysis application receiving timing data about executed production pro-
cesses. The gathered data is used to update the completion time estimation
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of production processes. To support the integration of applications based on
different technologies, an expansion interface exposes the functions of the
SOA-enabled architecture’s core.

6.4 Architecture Evaluation

The evaluation of the methodology has been carried out in the Industrial
Computer Engineering (ICE) Laboratory (Figure 2.3). The production line is
governed by a state-of-the-art system implementing the automation pyramid,
centered around a commercial, monolithic MES offering some advanced fea-
tures. Each machine composing the plant exposes services through OPC UA
servers, while the commercial MES is orchestrating the execution of the differ-
ent production processes. However, production orders are manually executed
by operators, and features such as reconfiguration or advanced scheduling are
not available. Therefore, to assess the applicability of the proposed architec-
ture, we implemented and deployed it to the ICE laboratory production line.
We first defined and implemented the Kubernetes cloud architecture. Subse-
quently, we configured and deployed the Automation Manager software mod-
ules. To test the novel functionalities, such as scheduling, resource manage-
ment, recipe representation and communication with the MES and machines,
we have implemented and tested three different production processes on the
production line.

First, we evaluate the proposed software architecture qualitatively, by an-
alyzing the newly available features. Then, we evaluate it quantitatively by
measuring the overhead introduced due to the new functionalities.

6.4.1 Qualitative Analysis

We provide an evaluation of the proposed architecture’s effectiveness in Ta-
ble 6.1. It summarizes the functionalities implemented by the traditional ar-
chitecture compared to those provided by the presented solution. Among the
new features introduced, the Automation Manager reduces the effort neces-
sary to configure and reconfigure the entire software architecture, from the
low-level task implementation to the high-level recipe representation and ma-
chine structure. It does so by providing a set of configuration files that con-
tain the structure of the production line and the implementation of produc-
tion processes, in terms of sequences of tasks. This allows creating a flexible
implementation of productive processes, based on actions (e.g., services) ex-
posed by the machines and recipes specified within our novel architecture as
a sequence of these actions. It also introduces the possibility to adapt the re-
alization of production processes at run-time, to minimize the total execution
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time or to pursue a specific production objective. Furthermore, the hybrid
scheduler continuously adapts the production plan as a response to unfore-
seen events and manages the execution of production processes on the entire
plant. Therefore, it reconfigures the system by automatically changing the
sequence of manufacturing operations during a certain time frame. In addi-
tion, our novel architecture offers a containerized environment where new
business functionalities can be developed as single applications on top of the
Automation Manager.

Table 6.1: Comparison of functionalities available when using the traditional software
stack against the proposed SOA-enabled architecture.

Functionalities
Traditional

Pyramid

Automated

SOA

Data collection

Product monitoring

Process monitoring

Inventory tracking

Advanced production planning

Resource management

Automatic reconfiguration

Autonomous process execution

Integration of new software modules

Run-time adaptive scheduling

Reduced configuration time

Reduced deployment time

6.4.2 Overhead Analysis

Additional features come at a price in terms of computational overhead, as it is
reasonable to expect. Table 6.2 reports the overhead necessary to call OPC UA
functions comparing a direct connection with the machines and through the
proposed architecture. We compared the delay of different services, such as
read/write of variables, method calls, and subscription to variables. For each
operation, the last line reports the additional overhead (in percentage) re-
quired when using the proposed architecture.

The additional overhead introduces a significant communication delay, as
it ranges between 40% and 70%. However, this communication delay is in the
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Table 6.2: Comparison between the communication delay derived from a direct con-
nection with OPC UA and with the proposed architecture.

Transport

Type
Read (s) Write (s) Methods (s)

Subscription

Update (s)

OPC-UA 0.008 0.009 0.010 0.150

SOA 0.013 0.013 0.014 0.255

Overhead 62.50% 44.45% 40.00% 70.00%

context of complex physical processes, such as those involved in a manufac-
turing line. For this reason, we also evaluated the behavior of the proposed
architecture by using it to coordinate different manufacturing processes. Ta-
ble 6.3 reports the total execution time for three production recipes of dif-
ferent sizes. The table compares the time required using the state-of-the-art
architecture with our proposed solution. The total execution times do not
consider the transportation time required to move materials on the conveyor
belts. This is because transportation data is highly variable and influenced by
many physical factors that do not depend only on the control software archi-
tecture. The fourth and fifth columns of the table report the execution times
obtained with the two different configurations. The last column reports the
overhead introduced by the proposed architecture. Considering the number
of service calls of each recipe we can see that the delay introduced is minimal
and consequently negligible from the total execution time.

Furthermore, comparing Tables 6.2 and 6.3, it is worth noticing that while
the additional overhead is significant when considering single operations, it
becomes negligible in the context of a complete manufacturing process. In
most cases, the introduced overhead is not a limitation. In fact, even at higher
operation frequencies, physical processes typically dominate computational
processes in terms of execution times. This is due to the fact that manufac-
turing processes are strongly dominated by mechanic operations, in which
timing is measured in tens rather than tenths of seconds.

6.5 Services and Models-based Advanced Scheduling

In this section, we propose a reactive-dynamic scheduling algorithm exploit-
ing the proposed three-level modeling approach. The scheduling algorithm
exploits the information represented in the model, aiming at minimizing the
makespan of the production while maximizing the machine utilization. The
algorithm exploits the increased granularity of the model to schedule the sub-
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Table 6.3: Comparison between the execution time when using the state-of-the-art
and the proposed architecture to govern three different complete production recipes.

Recipe Tasks
Service

Calls

OPC UA

Time (s)

SOA

Time (s)

SOA

Overhead

1 4 54 70.34 70.85 0.72%

2 5 44 66.73 67.04 0.46%

3 11 132 158.83 159.63 0.50%

tasks (i.e., services) specified within the tasks. Furthermore, knowing the en-
capsulated services within a sub-task, it is possible to identify the required
resources (i.e., tools, materials etc.). This allows to schedule these sub-tasks
taking into account the various delays, such as waiting times for the retrieval
of missing resources.

6.5.1 Scheduling Problem Statement

Let M be a set of the machines available in the production system. Let R =

{r1, r2, . . . , rn} be the set of recipes. The relation Rp = {(rn, pn) | rn ∈ R, pn ∈
N} associates a recipe rn with a priority pn. Let Tn = {t1, t2, . . . , tn} the set
of tasks of a recipe n. For each task ti ∈ T , STi = {sti1, sti2 . . . , stij} is
the set of sub-tasks of ti, as modeled in the hierarchical representation of
the production process. The set of possible allocations between sub-tasks STi

and machines M is defined by the relation PA = {(stij ,mk, dij) | stij ∈
STi,mk ∈ M,dij ∈ N}, where dij is the duration of the sub-task stij allocated
on the machine mk. The actual allocation between sub-tasks and machines is
formalized as a relation S = {(stij ,mk, dij , τij) | stij ∈ STi,mk ∈ M,dij ∈
N, τij ∈ Z+}, where τij is the starting time of the sub-task on a machine
expressed as positive integer number.

The objective of the scheduling algorithm is to find an assignment S, that
minimizes the makespan while maximizing the machine utilization Uk. The
makespan MS is computed as the dIfference between the starting time of the
latest allocated sub-task plus its duration, and the starting time of the first
allocated sub-task:

MS = max
∀stij∈S

(τij + dij)− min
∀stij∈S

τij (6.1)

The machine utilization uk, is defined as a percentage of the total production
time in which the machine k is busy:

uk =

∑︁
∀⟨stij ,mk⟩∈S dij

MS
· 100 (6.2)
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6.5.2 Scheduling Algorithm

The scheduling algorithm takes decisions based on the information stored in
the model and the priorities assigned at runtime to the recipes. In particu-
lar, whenever a new order arrives, the recipes of the requested products are
added to the set of recipes to be scheduled. Meanwhile, in case of delays
or machine unavailability, the priority of the corresponding recipe is lowered.
This allows to allocate other tasks that are actually “runnable”, optimizing the
machines utilization. Once the missing materials or machines become avail-
able, the priority of the tasks is restored. Then, the scheduler is invoked each
time an unexpected event occurs. An unexpected event could be the arrival of
new orders, delays in retrieving materials or machines incorrectly set-up for
an allocated task.

Algorithm 2 Service-based Scheduling

1: τ ← getCurrT ime()

2: for {(stij ,mk, dij , τij)} in S do
3: if τ < τij then
4: S ← S \ {(stij ,mk, dij , τij)}
5: R← sort R by p

6: for rn in R do
7: for ti in Tn do
8: assign(ti)

The algorithm is made of two procedures. The first is described by the
Algorithm 2. Its main functionality is to update the schedule S at each invo-
cation. In particular, at line 1, the procedure retrieves the current time. Lines
2-6 remove from the previous schedule all the sub-tasks that are not already
allocated and started on a machine at time τ . Line 7 sorts the set of recipes
according to their priority. We chose this sorting parameter to handle high-
priority orders first. Then, the algorithm evaluates each sorted recipe (line
8-12). For each rn ∈ R, and each task ti ∈ Tn, the algorithm invokes the
support function assign(ti) (line 10).

The assign(ti) function is described by the Algorithm 3. It provides a ma-
chine assignment for every sub-task composing a task. It does so by searching
for unused time slots in the schedule of each machine. Therefore it aims at
maximizing the busy-times of machines and, thus, at maximizing the utiliza-
tion of such a piece of equipment. The function only schedules sub-tasks that
are not executed or already allocated. In fact, as implemented in lines 2-4,
the algorithm checks whether the sub-task stij is included in the set of sub-
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Algorithm 3 Assign function
Input: ti

1: for stij in ti do
2: if stij in S then
3: skip

4: st_m← 0

5: st_end←∞
6: st_τij ←∞
7: for {(stij ,mk, dij)} in PA do
8: τij = findFreeT imeSlot(stij ,mk)

9: if (τij + dij) < st_end then
10: st_m← m

11: st_τij ← τij
12: st_end← (τij + dij)

13: S ← S ∪ {(stij , st_m, dij , st_τij)}

task already allocated S. If it is, the sub-task is skipped. Lines 5-7 define local
variables used to save the best solution found, which is the first machine that
is able to complete the sub-task. For each possible allocation in PA, the algo-
rithm searches (lines 8-15) for the best one, identified as the earliest starting
sub-task on a machine mk. The function findFreeT imeSlot(stij ,mk) at line 9
retrieves the starting time-slot of the sub-task stij executed by the machine
mk. In particular, the function searches the first free time-slot capable of con-
taining stij , within the schedule S of the machine mk. It also considers the
machine function layer of the model, to assess whether a dependency within
two sub-tasks composing the same task is present. A dependency means that
the sub-tasks may share resources (i.e., materials) and, thus, must be allocated
on the same machine. In such a situation, the function returns +∞. Lines 10-
14 check whether the time-slot found by the findFreeT imeSlot(. . . ) function
is better than the one found in the previous cycle. In such a case, the sub-task
is allocated to the machine (lines 11-13) at the found time-slot, and then the
schedule is updated (line 16).

The algorithm also maximizes the utilization of the machine: a more gran-
ular representation of tasks as sub-tasks allows the scheduler to allocate sub-
tasks in smaller time-slots than taskConsidering the equation 6.2, the imple-
mented allocation strategy allows shrinking the gap between the numerator
and denominator. The complexity of the algorithm is linear on the cardinal-
ity of S; the complexity of the findFreeTimeSlot is also linear as it relies on
interval trees.



6.5 Services and Models-based Advanced Scheduling 91

Milling

Machine

3D

Printer

Robotic

Assembly

QC

Station

Production Processes

Scheduler

Tasks

Services

Functions

Plant

Model OPC UA Services

Products recipes

QC Robotic 3D Milling

Unexpected External Events

Cmds
Plant

Status

M
u

lt
i-

le
v
el

M
o
d

el

Fig. 6.4: The figure shows the experimental setup used to assess the methodology.
The three-level model of the production processes is built by modeling the production
recipes and the manufacturing line equipment. Then, this representation is used to
implement a service-based scheduler. Lastly, the scheduler is executed in a real pro-
duction environment.

6.5.3 Experimental Setup

Figure 6.4 summarizes the experimental setup used to evaluate the ad-
vantages the proposed approach. We applied the presented modeling and
scheduling techniques to the ICE laboratory. The system is able to implement
the Service-oriented Manufacturing paradigm: each machine exposes to the
user its functionalities as a set of services. The communication is realized
through the OPC UA protocol: a well-known standard for industrial machine
communication [96]. Furthermore, the system is governed by a commercial
MES communicating with the machines.

The production recipes available for the plant have been modeled accord-
ing to the three-level modeling approach described in Section 3.5. Each level
in the models have been expressed using SysML activity diagrams. SysML pro-
vides an intuitive and well-defined graphical language, explicitly tailored to
express the structure and behavior of complex systems. Thus, SysML aims at
easing the specification and modeling phase for all the three levels of the pro-
duction model. Furthermore, SysML supports the XML Metadata Interchange
(XMI): an XML-based format easing data exchange, manipulation, and anal-
ysis. Thus, allowing to easily implement procedures able to analyze and ma-
nipulate the data carried by models.
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Then, we implemented the algorithm, and made it able to take as input
the proposed three-level model, expressed using the SysML syntax. The al-
gorithm implementation is interfaced with the MES to monitor unexpected
external events. Finally, it interfaces with the OPC UA servers deployed on
the production plant, in order to monitor the state of the system, and to send
commands to the machines to execute the decisions the algorithm takes.

We first describe how production recipes are expressed in SysML, while fol-
lowing the proposed hierarchical modeling strategy. Then, we provide more
details about the algorithm implementation and its interfacing with the pro-
duction plant’s infrastructure. Lastly we report the results obtained by exploit-
ing the implemented scheduler. We compare the results to those achieved by
using the native scheduler provided by the commercial MES governing the
system.

6.5.4 Implementation

The production recipes described by applying the proposed hierarchical mod-
eling approach are concretely expressed using SysML. Each level described in
section 3.5 is modeled as an activity diagram. We started defining the data
types related to task, service, and machine: the essential types allowing to ex-
press all the information necessary within each model. Then, we described the
production recipes at the first level of the hierarchy. We modeled the nodes
of the graph as an object of type task, on which we specified the parameters,
such as name, materials, etc. Each task is assigned to one or more machine
objects. On these objects, we specified the parameters related to the machine-
task relation, such as tools, electrical consumption, execution time, etc. The
dependencies between tasks are specified through control-flow arrows.

Each task described in the first level is further refined at the second level
of the hierarchy. The correspondent nodes of the graph are represented as an
object of type service. The service nodes store the information of each service,
i.e., inputs, outputs, etc. Thus, leading to activity diagrams as the one reported
in Figure 6.5. It represents the service-level model, expressed as a SysML
activity diagram, of task T2 of the case study previously shown in Figure 3.8.

Furthermore, the model is annotated with the information about the
calls to the OPC UA protocol required to invoke each service. The order of
OPC UA service calls is modeled by using control-flow arrows, while condi-
tional branching in invocation sequences is modeled by decision nodes in the
activity diagram.

Finally, each machine function represented in the lower level is also mod-
eled by a SysML activity diagram. The activity diagram models the PLC be-
haviors related to machine service. The nodes of the graph are modeled as
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Fig. 6.5: Service-level model of the task “T2” represented as a SysML activity diagram.
It expresses all the information contained in the second level of our proposed model.
Each node is specified by a typed object. The arrows describe the edges of the graph
in the middle layer of Figure 3.8.

an object of type service, which contains the information related to PLC func-
tionalities, such as inputs, outputs, etc. The nodes of the graph are specified
with control-flow arrows that allow modeling the sequence of the low-level
services.

We automatically extract the essential information stored in the XMI de-
scription of the SysML model, and we store such information into a JSON
file. This representation will provide the input to our implementation of the
algorithm described in section 6.5. The scheduler is implemented as a soft-
ware module of the Automation Manager, describe in Section 6.3. The closed-
loop communication between the scheduler, the Automation Manager and the
MES allows interracting with the machines, retrieving the current state of the
plant, and fetching new orders. The communication is carried out through the
OPC UA protocol.

6.5.5 Results and discussion

We compare the results obtained by the scheduler implemented by the com-
mercial MES, which relies on a classical RTN-based task representation,
against our service-based scheduler, which exploits the proposed hierarchi-
cal information model. Table 6.4 reports the result obtained with the two
different approaches. As a benchmark, we input 450 production processes
instances (i.e., production orders), randomly generated from a pool of 4 dif-
ferent recipes. The first row compares the total makespan obtained by the



94 6 Application to a Service-Oriented Manufacturing Architecture

Table 6.4: Comparison between the scheduling of 450 production recipes, using a clas-
sical RTN-based representation against the proposed hierarchical modeling approach.

Param
RTN

Representation
Hierarchical

Representation
Diff. (%)

Cycle Time 20:56:19 (h) 20:17:23 (h) -3,1%

Avg. Change
Overtime

5:42:47 (h) 5:05:16 (h) -10,95%

Avg.
Utilization

74,47% 80,85% +6,38%

Throughput 235,96 (u) 245,75 (u) +4,14%

Avg. Time To
Complete HP

1:02:08 (h) 0:57:08 (h) -8,07%

Avg. Time To
Complete LP

2:19:25 (h) 2:16:45 (h) -1,92%

two approaches, calculated using Equation 6.1 and Equation 6.2. The pro-
posed scheduler is able to reduce the total execution time needed to com-
plete the 450 orders by almost 40 minutes. Thus, providing an improvement
of 3.1% with respect to the state-of-the-practice approach. The next three
lines show the comparison of the average amount of time in which the ma-
chines are not used (e.g., the change time), the average machines utilization,
and the throughput. The proposed approach decreases the average change
time, while increasing both the average machine utilization and the system
throughput. Thus, the proposed approach successfully hits its target of reduc-
ing the makespan, while increasing the average machine utilization.

The improvement is due to the scheduling algorithm enabling a more pre-
cise interleaving than the traditional task-resources representation. In fact,
dividing one task of a recipe in sub-tasks means partitioning the time neces-
sary to complete such a task. Therefore, the algorithm is able to fill machines
downtimes with sub-tasks of different tasks or even of different recipes. As a
consequence, the throughput also increases due to the algorithm ability to fill
the production line’s execution time-span more efficiently. Lastly, the last two
rows compare the average time to complete production recipes at high prior-
ity (HP) and low priority (LP). The completion time for a recipe is calculated
as the difference between the time instant in which the last task ends and
the time instant in which its first task starts. While reducing the completion
time for both new high and low priority orders, the proposed representation
allows handling more efficiently the arrival of new higher priority orders. In
general, the scheduler routine in charge of managing the priorities of the tasks
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is able to handle more accurately the allocation of sub-tasks whether certain
conditions are met (e.g., required materials availability).

Nonetheless, such a methodology can be applied only to manufacturing
systems built both conceptually and concretely around the concept of “ser-
vice”. In fact, it assumes that the various machines composing the plant are
capable of implementing and exposing functionalities enclosed in such con-
structs. Furthermore, the presented work assumes that the production domain
(i.e., the type of manufacturing industry) handles processes that can be in-
terrupted, with materials temporarily stored in buffers. Therefore, additional
constraints and aspects would be needed for this work to be applicable to the
production of non-durable goods (e.g., food and beverages).

6.6 Conclusion

This chapter presented a variation of the traditional automation pyramid soft-
ware stack to control SOA systems, which introduces manufacturing services
at PLC level and an Automation Manager to control them. The interaction of
the manager with the other pyramid’s software components relies on well-
known manufacturing communication standards. The results of the applica-
tion of the proposed architecture to a real production plant showed that the
overhead introduced is negligible. Nonetheless, the added functionality over
state-of-the-art architecture proved to increase production flexibility.

Furthermore, by exploiting the multi-level modeling approach to manu-
facturing processes, this chapter proposes a scheduling procedure for produc-
tion processes with more comprehensive knowledge of how tasks are imple-
mented on machines. Therefore, the proposed scheduler is aware of the status
of the machines and buffers and, thus, whether and when the task may be
preempted. We assess the proposed approach by modeling in SysML four pro-
duction recipes and scheduling a high number of instances. The results show
that the conjunction of the modeling approach with the proposed schedul-
ing algorithm, offers better performances than a traditional method based
on a plain task-resources representation. Overall, the achieved increased ef-
ficiency should allow reducing the production costs of the single units being
produced.
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Modeling in Industry 5.0: What Is Missing
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Fig. 7.1: While in the vision proposed by Industry 4.0 the human is mainly supervising
and “observing” the system, Industry 5.0 aims at putting the human back at the center
of manufacturing. To pursuit such a task, models of manufacturing systems must be
adjoined with models of human behaviors and, thus, novel modeling methodologies
must be investigated.

Industrialization underwent four main evolutions in human history, im-
pacting on population and economic growth, and establishing important so-
cial changes. Each industrial revolution has brought to humankind new tech-
nical innovations, made possible by the acquisition of a a better understand-
ing of the natural environment and its resources: the use of steam, fossil fuels
and electrical energy have contributed to lifting the burden of moving heavy
and complex physical machines from animals and humans. The last iteration
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of such revolutions, dubbed “Industry 4.0” [112], proposes to transition from
mechatronics systems to CPSs incorporating data and intelligence, that in the
context of manufacturing has been dubbed CPPS. Such systems are capable of
communicating with each other, acquiring and transmitting real-time produc-
tion data used to optimize production processes. This main contribution leads
to increased production throughput while reducing costs and waste. All these
innovations have been made possible through the adoption of key-enabling
technologies such as IoT and Cloud computing. Furthermore, the develop-
ment of virtual models of the manufacturing system, i.e., Digital Twins, en-
ables the simulation of the entire production and allows performing what-if
analysis.

The pursuit for production optimality and efficiency proposed by modern
manufacturing often leads to an inevitable conclusion: human labor is nei-
ther as efficient nor as cost-effective as machine labor. This is particularly true
in repetitive and dull production tasks that characterize the “mass produc-
tion” trend. Consequently, the cost in terms of manpower will be quite evident
in the following years, when the Industry 4.0 principles will be fully imple-
mented. Indeed, on a global scale, human labor is implemented by consumers.
Thus, negatively affecting human labor may lead to decreased demand, mak-
ing the investments to reach full automation not sustainable.

In this context, pushed by human resilience, the concept of Industry
5.0 [113] is emerging, intending to find a sustainable trade-off between au-
tomation and human labor. As depicted in Figure 7.1, it proposes to put the
human back at the center of manufacturing: rather than exploiting the man-
power and the human muscles, it capitalizes on human brainpower, adding
to the production loop the creativity and the problem-solving abilities that
cannot be transferred to autonomous machines. In this context, nonetheless,
autonomous and intelligent systems are a fundamental addition to achieving
the maximum process efficiency: collaborative robots (cobots) will be able to
support the human during the production, by observing, learning and offering
help when needed.

In an Industry 5.0 context, the design of cognitive and collaborative man-
ufacturing systems is even more complex, since the process must deal with
uncertainties of humans’ behaviors. In future industries, collaborative robots
(Cobots) are not only required to autonomously offer assistance, by recogniz-
ing the type of job the human worker is executing, but must also keep a safe
working condition by not creating dangerous situations. As such, modeling
such systems requires a language and a modeling environment able to cap-
ture the complexity of their possible behaviors, to perform in-depth analysis
and carry out safe control strategies and AI algorithms.
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By establishing the novel modeling requirements being posed by Industry
5.0 and how collaborative systems should be designed, this chapter defines
“what is missing” in this field. Therefore, we assume the modeling state-of-
the-art presented by Chapter 3, where we identified the modeling trends of
traditional production systems, while we investigate the research work be-
ing accomplished on Industry 4.0 CPPSs. The contributions proposed in this
chapter are:

• The identification of novel requirements of the Industry 5.0 paradigm.
Such a set of requirements are specifically meant to deal with the human-
centric vision of future production lines.

• A discussion on how modeling languages and methodologies could be
adapted to support the design of such a class of systems. In particular, we
focus on trying to imagine how the SysML language features would be
able to respond to Industry 5.0 requirements.

This chapter is organized as follows. Section 7.1 defines Industry 5.0 and
the requirements of such a manufacturing trend. Section 7.2 instead proposes
possible research directions on modeling languages and methodologies com-
patible with Industry 5.0 requirements. In addition, Subsection 7.2.4 proposes
a development direction for SysML. Finally, Section 7.3 draws our conclu-
sions.

7.1 From Industry 4.0 to Industry 5.0

The starting point of the Industry 4.0 evolution has been the so-called soft-
ware automation pyramid (see Figure 7.2). Under this view, there is a contin-
uous bi-directional information flow from the actual plant to the management
software (e.g., ERP). Level by level, electrical signals become strings of bits,
then abstract data types, then data objects and finally services. A huge variety
of protocols has been created to model the exchange of information among
the different levels. Few of them, are able to act as a unifying protocol man-
aging all kinds of information exchange between all levels of the automation
pyramid. The possibility of abstracting actual protocols has been the basis of
Industry 4.0 since an entire production plant can become a service-oriented
software architecture. This sensibly reduces the complexity of developing soft-
ware applications managing data from the sensor/actuator level up to the
cloud infrastructure. Data managing is thus becoming the core problem of a
production line and Industry 4.0 focused its revolution on using such data.
This allows optimizing the production, make predictions and facilitate recon-
figuration, thus moving from mass production in large batches to personalized
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Fig. 7.2: The automation pyramid: the starting point of Industry 4.0. Role of OPC-UA
as a unifying protocol focused on data.

production in small and differentiated batches. Research and development in
this area allowed to define protocols able to implement these requirements,
among them OPC-UA [96] is one of the most successful. However, such proto-
cols are useful to manage the heterogeneous information in the system once
the system is up and running, while they are not meant to express the infor-
mation of a system being designed (or redesigned). Thus, alongside protocols,
models became necessary to design and implement systems able to fulfill the
main design requirements of Industry 4.0 manufacturing systems. In partic-
ular, six main design requirements can be listed to implement Industry 4.0
principles:

• Interoperability: the ability of cyber-physical systems (i.e., work assem-
bly stations), humans and Smart Factories to connect and communicate
with each other via the Internet of Things and the Internet of Services;

• Reconfigurability: the set of operations to produce a good (recipe) must
no longer be fixed and statically scheduled, the system must adapt to the
variations of its surrounding conditions and production requirements;

• Virtualization: a virtual copy of the Smart Factory which is created by
linking sensor data (from monitoring physical processes) with virtual
plant models and simulation models;
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• Decentralization: the ability of cyber-physical systems within Smart Fac-
tories to make decisions on their own Real-Time Capability: the capability
to collect and analyze data and provide the insights immediately;

• Service Orientation: offering of services (of cyber-physical systems, hu-
mans and Smart Factories) via the Internet of Services;

• Modularity: flexible adaptation of Smart Factories for changing require-
ments of individual modules.

The core (a bit naïf) assumption of Industry 4.0 is that the production
is completely automatic, thus the role of humans is limited to control and
supervision. However, this is not feasible in the majority of production lines,
particularly because flexibility, adaptation and precision of robotic activities
are still far away from human abilities. People must still play a productive
role in an Industry 5.0 production line.

However, differently from the third industrial era, Industry 5.0 promotes
a significant change in the adaptation philosophy: people have not to adapt
their behavior to the machines, but machines must automatically adapt
their activities to the human ones. Thus, there is a new list of design re-
quirements to implement this new Industry 5.0 principle:

• Uncertainty: this is related to the unpredictability of the human behav-
iors that must be represented under some level of uncertainty. Indeed,
uncertainty impacts how interoperability and reconfigurability are imple-
mented by Industry 5.0 systems, as subsystems must reconfigure and in-
teroperate by considering that other subsystems may be humans. Facing
the non-determinism becomes crucial and this must be taken into consid-
eration by all languages, models and theories;

• Cognition: an evolved MES is necessary to control the production line;
it cannot be based on simple deterministic algorithms, but it has to im-
plement cognitive methods that must be continuously reinforced by the
experience; in other words, AI and Machine Learning (AI/ML) must be-
come the core technologies to program this kind of architectures in order
to allow the system to co-exist with natural intelligence of human agents;

• Safety: a higher level of safety must be reached to guarantee the coop-
eration between humans and robots, since all operations scheduled by a
robot must be checked for safety before their execution by considering the
current and the possibly predictable human behaviors.

Indeed, these new requirements require a technological leap, as well as
an advancement of the tools necessary to support the design of the new tech-
nologies that must be supported by novel modeling and design languages
and methods. The next section analyze how to fulfill these requirements, by
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analyzing what is missing and by proposing a future SysML development di-
rection.

7.2 Modeling Industry 5.0: what is missing and possible
directions

Industry 5.0 is still in its infancy. To the best of our knowledge, no research
effort exists today in proposing modeling tools or methodologies for this
trend. In particular, modeling CPSs with humans in the loop is still an open
task [114, 115].

Fig. 7.3: Relations between Industry 5.0 requirements asserted in Sec. 7.1, systems
types and possible associations with SysML diagrams.

As stated in Sec. 7.1, one of the main requirements of Industry 5.0 is re-
configurability: it involves guaranteeing a certain resiliency and adaptation
degree of the CPPS to real-time changes in the environment. In this regard, to
carry out the best reconfiguration strategy, it would be fundamental to have
models spanning over business, processes and control viewpoints: integrating
the widest possible set of information increases the quality of the control strat-
egy carried out by the reconfiguration procedure. By also considering humans
in the manufacturing loop, a degree of complexity is added on top, since
it involves modeling nondeterministic behaviors. Of course, models are not
enough in this case to represent all the possible behaviors. It is necessary to
employ cognitive methods, which require experimenting with AI techniques
to carry out control strategies based on observations. Nonetheless, models
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can aid the “learning” procedures of AI algorithms, by providing a basic set
of information that can be helpful to interpret the current system status. This
is particularly true also for safety considerations: the cooperation between
humans and robots can be dangerous for human operators. Therefore, pos-
sible critical situations must be predicted and avoided. Different techniques
can be exploited, most of them based on pattern recognition and AI-based
prediction using different types of learning techniques. In all these scenarios,
models can aid the process of carrying out the best possible strategy. These
techniques introduce in the system different levels of uncertainties, making
systems non-deterministic. While multiple mathematical frameworks allow
reasoning on non-deterministic systems, no system modeling language at the
state of the art provides the designer the tools necessary to specify such sys-
tems efficiently.

To support the engineering of Industry 5.0 systems, engineers must be
put in the condition to comfortably specify non-deterministic behaviors in-
trinsic to humans’ behaviors, and those introduced when using AI techniques.
As such, future system modeling language must allow specifying uncertainties
and their semantics must be built on top of probabilistic and stochastic mathe-
matical formalisms. Furthermore, to be effective for system design, they must
allow designers to select the appropriate degree of abstraction and is capable
of scaling on the level of details.

Reusing models is also a winning strategy in the context of modeling com-
plex manufacturing systems: as presented in Chapter 3, it allows to cut down
the modeling effort in a multi-faceted scenario. SysML is a suitable language
because it is expressive and it is extensible with profiles and stereotypes. Fur-
thermore, it is XMI-based and, thus, it can be manipulated and translated to
other languages (e.g., formal languages, programming languages, etc.).

Figure 7.3 depicts the set of Industry 5.0 characterizing features intro-
duced in Sec. 7.1, i.e., reconfigurability, uncertainty, cognition, and safety. The
figure relates each feature with the mathematical formalisms required to rep-
resent them.

7.2.1 Uncertainty Requirement

Uncertainty requirement strongly impacts on the interoperability and the re-
configurability of the system. The system must be able to interoperate with
non-epistemic agents (i.e., human beings), that may potentially act irra-
tionally or through apparently unexplicable paths. Thus, machines may in-
terpret and predict the behavior of these agents only through models con-
templating probabilistic, as well as statistical behaviors. At the same time,
uncertainties in the environment surrounding the machines may lead to the
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necessity of system adaptation, i.e., reconfiguration. This implicates carrying
out optimization procedures to maximize the effectiveness of the adaptation.
Furthermore, system reconfiguration may still need to consider future possi-
ble uncertainties that may be caused by the intervention of human agents, as
well as by external causes. As such, stochastic models used to represent the
uncertainty of the system may act as triggers for the models specifying the
system reconfiguration.

Thus, modeling uncertainty in the context of Industry 5.0 requires the
ability of capturing stochastic systems formalisms, which typically involve
representations based on probabilistic and statistical methods, as well as
optimization specifications. Formal techniques able to capture, within the
same framework both optimization and statistical models are gaining matu-
rity [116, 117, 118]. However, a language capable of modeling these aspects
within the same framework, while providing an intuitive syntax and seman-
tics to designers has yet to be proposed.

7.2.2 Cognition Requirement

Cognition requirement not only associated with stochasticity but also to sys-
tem’s dynamics. In fact, the cognition process must implement techniques
dedicated to recognizing patterns of the dynamical behavior of a certain com-
ponent or set of components. On the other hand, recognizing the role of the
human actor in Human-Robot Collaboration (HRC) is also a key component
of Industry 5.0 systems. Such a process involves determining a set of tasks
that the human is capable of carrying out in the manufacturing process. It
is also necessary to estimate his/her performances, to evaluate whether the
robot’s cooperation would be beneficial to the overall production. In HRC
tasks, the decision-making procedures of robots must deal with the mental
state of the human as well as the sense of trust he/she has in the robotic
collaborator. Such collaboration facets must exploit inference models and re-
inforcement learning, to correctly perceive the human’s status and intentions,
dealing also with uncertainty. Furthermore, it is also necessary to strengthen
communication models, to provide convincing decisions explanations to hu-
man operators.

Modeling cognitive-aware systems, thus, requires methodologies and lan-
guages able to capture multiple facets of human behaviors and emotional pro-
cesses. Mathematical models have been proposed to guide the decision pro-
cess and control synthesis of HRC, exploiting non-learning techniques such as
optimization based on Markov Chains [119] and learning techniques such as
Reinforcement Learning [120]. Nonetheless, an inclusive framework for the
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modeling and specification of cognitive-aware systems has yet to be proposed,
limiting the applicability of such techniques to domain experts.

7.2.3 Safety Requirement

Safety requirement is a feature associated with both stochastic and dynami-
cal systems. In Human-Robot interactions and collaborations, safety can be
related to avoiding both physical and psychological harm. Different cate-
gories of methodologies have been developed to provide safety in HRC en-
vironments [121]. Safety through control proposes methods to prevent un-
wanted contacts between the human and the robot by detecting at run-time
unwanted system’s states and reacting to recover from a dangerous situa-
tion. Safety through motion planning category proposes more proactive ap-
proaches suggesting human-aware motion planning techniques exploiting dy-
namical models. Such models exploit differential equations and, thus, a strong
mathematical foundation to define the kinematics of the robotic systems. In
methodologies related to Safety through prediction, the motion planner is ad-
joined with predicted human behaviors and movements, to proactively pro-
pose movements instead of continuously replanning. Safety through psycho-
logical considerations is more focused on extra-functional motion properties,
e.g., acceleration, velocity, distance from the human, etc, since they are the
most influential parameters on human’s well-being.

In general, safety requires setting the boundaries of unwanted behaviors.
At the state of the art, the specification of such requirement still relies mostly
on complex mathematical notations, based on complex logic, automata, and
equations [122]. The use of formal mathematical frameworks is imposed by
the critical importance of the concepts being expressed. However, this makes
the life of engineers harder. Some attempts of proposing domain specifica-
tion languages able to simplify the specification task, while still guaranteeing
strong formal support, have been already presented [69, 123]. However, no
general designer-friendly language has been proposed so far, able to intu-
itively and effectively capture different types of safety requirements, while
providing the formalisation required to tackle safety issues.

7.2.4 SysML support to Industry 5.0 models

While many features of Industry 4.0 may be represented by using SysML and
other state-of-the-art modeling and description languages, this is not the case
of industry 5.0. Neither SysML nor other modeling languages at the state-
of-the-art provide the necessary language standardized constructs to specify
every type of Industry 5.0 system. Focusing on SysML, among the different
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diagrams, it implements the parametric diagram type, that can capture, to a
certain degree, the dynamics of a system. However, such a type of diagram
is not able to represent in a standardized manner, for example, probability
distributions or stochastic equations for numerical approximations. As such,
the language has to be extended to robustly support the design such systems.
To optimize a system according to the system’s requirements is a process in-
volving, as an example, linear programming techniques and an optimization
model. Such a model should be designed with the support of SysML diagrams,
such as the requirements diagram. However, in requirements diagrams, re-
quirements are specified only in natural language. Therefore, a methodology
to extend the expressiveness of SysML able to include formal specifications is
still missing.

Thus, a research effort is necessary to extend the existing modeling and
specification languages, and to define new ones as well, able to effectively
support engineers. This effort should move toward easier ways of specify-
ing models which are supported by stochastic, dynamical and optimization
mathematical frameworks underneath, to allow the designer to better tackle
reconfigurability, uncertainty, cognition and safety requirements of Industry
5.0 systems.

7.3 Conclusion

The complexity of Industry 5.0 systems poses new challenges in their design.
A unifying modeling methodology, able to thoroughly capture all the aspects
and viewpoints does not exist. Methodologies based on SysML prove that such
a language has the appropriate degree of expressiveness to model complex
CPPSs, as shown in Chapter 3. Therefore, we proposed future directions to
model Industry 5.0 systems exploiting SysML and tackling new design re-
quirements. Such a set of requirements emerged by (re-)positioning humans
inside the production line and, therefore, trying to exploit humans’ capabili-
ties while assuring a strict safety degree.
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Summary of the Experimental Results

This Chapter collects the experimental results of the methodologies proposed
by this thesis, applied to the production line presented in Section 2.3. In par-
ticular, it reports the results of the compositional design approach proposed
in Chapter 4, applied to the robotic case study defined in Subsection 4.1.2.
Such a case study is similar to mobile robots available in the ICE Laboratory.
Thus, the generated software could be easily implemented in such Automated
Guided Vehicles (AGVs). Furthermore, experimental results for the virtual
prototyping flow of Chapter 5 are collected and reported. Such prototypes
are a direct representation of the structure and functionalities of machines
composing the ICE production line. Finally, the Chapter details the results
of the software architecture proposed in Chapter 6. The architecture is cur-
rently installed in the ICE laboratory. The experimental data of the advanced
scheduling algorithm described in Section 6.5 reflect actual production exe-
cuted on the real plant.

8.1 Compositional Design using Assume-Guarantee
Contracts

Table 8.1 reports the time required by the various design phases, i.e., the real-
izability, synthesis, the control software generation and its execution based on
the finite state machines produced by reactive synthesis tools. The different
entries have been obtained by varying the three main design problem dimen-
sions, i.e., the number of blocks in the two-dimensional space representation,
the number of robots, and the number of targets. The Non-decomposed for-
malization columns report the time required to synthesize the control strategy
from the contract representing the system “holistically”. The last four columns
report the time required by applying the presented approach. In both cases,
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Table 8.1: Comparison between the time needed to obtain the final control strategy
using the holistic system contracts, and decomposing the design problem. The experi-
ments have been carried on by varying the three main dimensions of the problem.

Problem Dimension Non-decomposed system formalization Decomposed system formalization

# Blocks # Robots # Targets
Synthesis
time (s)

Code
Generation (s)

Total
Time (s)

Synthesis
time (s)

Code
Generation (s)

Simulation for
Validation (s)

Total
Time (s)

9 2 2 20.36 20.47 40.83 6.85 37.31 0.01 44.17
16 1 2 31.48 25.83 57.31 20.54 40.46 0.03 61.21
16 2 2 3924.18 1906.16 5831.37 33.13 244.48 0.02 277.63
16 2 4 3924.22 1910.79 5835.01 33.17 247.97 0.04 281.18
16 2 6 3924.60 1913.95 5838.55 33.17 247.96 0.07 281.20

16 3 6
Time Out
(6 hours)

Time Out
(6 hours)

Time Out
(6 hours)

71.59 380.86 0.04 452.49

16 4 6 Time Out Time Out Time Out 184.35 810.34 0.05 994.74
16 4 8 Time Out Time Out Time Out 184.35 814.56 0.06 998.97
25 2 4 Time Out Time Out Time Out 55.54 292.94 0.08 348.56
25 2 6 Time Out Time Out Time Out 55.54 295.08 0.09 350.71
25 3 9 Time Out Time Out Time Out 142.79 504.25 0.12 647.16
25 4 12 Time Out Time Out Time Out 238.83 943.75 0.17 1182.75
25 5 15 Time Out Time Out Time Out 312.64 1351.49 0.21 1664.34

we reported the time necessary to perform reactive synthesis, code genera-
tion, and the total time required. In the case of the decomposed system for-
malization, we report also the simulation time required for validating the gen-
erated code. The approach proposed in this work allows synthesizing also the
instances that are intractable by the state-of-the-art approach. In particular, it
shows good scalability also when increasing the number of robots in the sys-
tem, as highlighted by the experiments using the 16 and 25 blocks occupancy
grids.

Table 8.2: Qualitative comparison of the generated code.

Blocks Robots Target
Synthesized

States
Number of

ROS Messages
Non-

decomp.
Decomp.

Non-
decomp.

Decomp.

9 2 2 10704291 2664 * 2 15 19
16 1 2 3435704 8432 35 39
16 2 2 72938223 8432 * 2 20 24
16 2 4 72938223 8432 * 2 40 48
16 2 6 72938223 8432 * 2 55 67

Table 8.2 provides a qualitative comparison between the code produced by
our approach, and the code generated by using the non-decomposed system
specification. We compare the number of states composing the synthesized
Mealy Machines. Then, for each scenario we simulate the generated code
using Gazebo, we monitor their behavior and we quantify it by counting the
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ROS messages used to control the system. It is important noticing that in ROS
messages are the main software primitive.

Using the non-decomposed specification leads the generated Mealy Ma-
chines to grow exponentially. Meanwhile, using the presented approach, i.e.,
synthesizing multiple Mealy Machines from the multiple contracts compos-
ing the decomposed system specification, allows generating smaller Mealy
Machines. Thus, the proposed methodology provides a more compact imple-
mentation for the same given set of requirements.

Overall, this set of experiments shows that the proposed decomposition
strategy allows managing systems otherwise intractable.

Table 8.3: Results obtained by the Gazebo simulation.

Blocks Robots Targets Steps
ROS

Messages
Simulation
Time (s)

9 2 2 3 19 20.53
16 1 2 7 39 98.21
16 2 2 4 24 34.78
16 2 4 8 48 85.67
16 2 6 11 67 110.24
16 3 6 8 52 75.27
16 4 6 7 47 60.02
16 4 8 10 66 82.86
25 2 4 12 68 104.13
25 2 6 15 87 119.44
25 3 9 17 103 133.26
25 4 12 20 124 94.86
25 5 15 19 125 70.32

Table 8.3 shows that the simulation time using Gazebo is many orders of
magnitude higher than the system-level simulation used for validation. This
is due to the fact that Gazebo simulates every detail of the systems’ physical
behavior. Meanwhile, the system-level simulation emulates the details inter-
esting the control strategies of the different robots, while relying on a coarse
abstraction of the system’s kinematics.

8.2 Virtual Prototyping using Assume-Guarantee Contracts

Table 8.4 reports the time necessary to generate the virtual prototype of the
collaborative robotic assembly machine. It reports distinctly the time required
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Table 8.4: Time required to perform the consistency checking and synthesis step, and
the code generation for the non-decomposed (i.e., holistic) system specification, and
for the different actions of the robotic assembling station. The numbered columns refer
to the machine’s elementary actions: (1) Compose, (2) Decompose, (3) Pick, (4) Place,
(5) Move, (6) Turn. The last column reports the time required to obtain the machine
coordinator.

Holistic
System

Decomposed System
(1) (2) (3) (4) (5) (6) Coord.

Consistency
Checking &

Synthesis (s)

Time
Out

0.20 0.20 0.19 0.17 0.13 0.11 0.24

Code
generation (s)

- 0.12 0.12 0.08 0.08 0.07 0.06 0.15

Total
Time (s)

- 0.33 0.32 0.27 0.25 0.20 0.17 0.39

to perform the synthesis from contracts, that also incorporates the time re-
quired for the consistency checking, and the time required for the code gen-
eration. The holistic system column refers to the machine specified by a single
A/G contract: it specifies all the operations of a single machine and their
coordination. Therefore, it is specified using a different modeling approach.
The same reactive synthesis tools and algorithms are used for both the decom-
posed and the non-decomposed scenarios. The decomposed system columns re-
port the synthesis and code generation time required when using the decom-
posed system specification, as proposed in this work. The non-decomposed
(i.e., holistic) system specification leads to complexity issues, as its consistency
check and synthesis reaches the time-out we set to six hours: this contract is
characterized by a much higher number of LTL properties and, consequently,
is harder to consistency check and synthesize. On the other hand, decom-
posing the system specification into multiple subproblems allows keeping the
required time extremely limited.

Table 8.5 reports the results for all the machines in the production line.
It is reported both the time required for the synthesis from the A/G contracts
and the time required for the code generation. Each column refers to a ma-
chine. For instance, Column (4) refers to the robotic assembly station. As
such, its values are the sum of the values in Table 5.1. For all the machines,
the processing time is minimal. The most time-consuming specification is the
Quality Checking cell. This is due to the fact that the cell relies on cameras.
Thus, its specification has to model multiple two-dimensional spaces to rep-
resent the signals analyzed by the cameras. The last column reports the total
synthesis and code-generation time. It shows the efficiency of our methodol-
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Table 8.5: Time required to perform the consistency checking and synthesis step for
all the machines in the production line. The last column reports the total time required
for the entire production line.

3D Printer
Conveyor

Belts
Quality
Check

Robotic
Assembly

Milling
Machine

Total

Consistency
Checking &

Synthesis (s)
0.25 0.67 2.58 1.24 0.48 5.22

Code
generation (s)

0.07 0.20 0.76 0.68 0.20 1.91

Total
Time (s)

0.32 0.87 3.34 1.92 0.68 6.39

ogy that allows generating virtual prototypes for production lines from their
specifications.

8.3 Application to a Service-Oriented Manufacturing
Architecture

Table 8.6: Comparison between the communication delay derived from a direct con-
nection with OPC UA and with the proposed architecture.

Transport

Type
Read (s) Write (s) Methods (s)

Subscription

Update (s)

OPC-UA 0.008 0.009 0.010 0.150

SOA 0.013 0.013 0.014 0.255

Overhead 62.50% 44.45% 40.00% 70.00%

Table 8.6 reports the overhead necessary to call OPC UA functions com-
paring a direct connection with the machines and through the proposed ar-
chitecture. We compared the delay of different services, such as read/write
of variables, method calls, and subscription to variables. For each operation,
the last line reports the additional overhead (in percentage) required when
using the proposed architecture. The additional overhead introduces a signifi-
cant communication delay, as it ranges between 40% and 70%. However, this
communication delay is in the context of complex physical processes, such as
those involved in a manufacturing line.

Table 8.7 reports the total execution time for three production recipes of
different sizes. The table compares the time required using the state-of-the-
art architecture with our proposed solution. The total execution times do not
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Table 8.7: Comparison between the execution time when using the state-of-the-art
and the proposed architecture to govern three different complete production recipes.

Recipe Tasks
Service

Calls

OPC UA

Time (s)

SOA

Time (s)

SOA

Overhead

1 4 54 70.34 70.85 0.72%

2 5 44 66.73 67.04 0.46%

3 11 132 158.83 159.63 0.50%

Table 8.8: Comparison between the scheduling of 450 production recipes, using a clas-
sical RTN-based representation against the proposed hierarchical modeling approach.

Param
RTN

Representation
Hierarchical

Representation
Diff. (%)

Cycle Time 20:56:19 (h) 20:17:23 (h) -3,1%

Avg. Change
Overtime

5:42:47 (h) 5:05:16 (h) -10,95%

Avg.
Utilization

74,47% 80,85% +6,38%

Throughput 235,96 (u) 245,75 (u) +4,14%

Avg. Time To
Complete HP

1:02:08 (h) 0:57:08 (h) -8,07%

Avg. Time To
Complete LP

2:19:25 (h) 2:16:45 (h) -1,92%

consider the transportation time required to move materials on the conveyor
belts. This is because transportation data is highly variable and influenced by
many physical factors that do not depend only on the control software archi-
tecture. The fourth and fifth columns of the table report the execution times
obtained with the two different configurations. The last column reports the
overhead introduced by the proposed architecture. Considering the number
of service calls of each recipe we can see that the delay introduced is minimal
and consequently negligible from the total execution time.

Table 8.8 compares the results obtained with a traditional scheduler based
on RTN and our service-based scheduler, which exploits the proposed hierar-
chical information model. As a benchmark, we input 450 production processes
instances (i.e., production orders), randomly generated from a pool of 4 dif-
ferent recipes. The first row compares the total makespan obtained by the two
approaches. The proposed scheduler is able to reduce the total execution time
needed to complete the 450 orders by almost 40 minutes. Thus, providing an
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improvement of 3.1% with respect to the state-of-the-practice approach. The
next three lines show the comparison of the average amount of time in which
the machines are not used (e.g., the change time), the average machines uti-
lization, and the throughput. The proposed approach decreases the average
change time, while increasing both the average machine utilization and the
system throughput. Thus, the proposed approach successfully hits its target of
reducing the makespan, while increasing the average machine utilization.
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Conclusion and suggestions for future research

This chapter concludes this thesis by summarizing the methodologies compos-
ing the conceptual design framework MOOD4I. It outlines the contributions of
each approach and also suggests future research directions, aiming to further
extend the possibilities of the framework.

9.1 Summary of the proposed approach

The Industry 4.0 is a new industrial automation trend introduced at the
Hanover Fair in 2011. It proposes to revolutionize the entire manufacturing
world by integrating many new technologies, to massively improve produc-
tion volumes and quality while creating and optimizing business models to
obtain an always-increasing cost efficiency. In this context, Cyber-Physical
System (CPS) provides a new degree of controllability to production ma-
chines, while supplying extremely precious data about the executed processes.
The integration of CPSs in manufacturing systems (i.e., industrial machines),
generated a new class of systems, named Cyber-Physical Production Systems
(CPPSs). The complexity of designing production lines composed of CPPSs
is rising along with new market trends oriented toward product customiza-
tion and on-demand production. Therefore, this thesis proposes a conceptual
design framework, to cope with novel Industry 4.0 paradigms and systems.

The starting point of this thesis is to gather the constitutional set of in-
formation about the production plant to be designed. In particular, Modeling,
Formalization & Design for Industry (MOOD4I) requires to define the topol-
ogy of the production line, the production requirements, and the processes
that will be applied to the system. Such a set of information can be expressed
in different languages (e.g., Automation Markup Language (AML) and Sys-
tem Modeling Language (SysML)) and according to multiple standards (e.g.,
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International Society of Automation (ISA)-95). Nonetheless, a fundamental
feature of a modeling framework is to reuse models already available to the
designers, constructed using other languages. Therefore, MOOD4I proposes a
mapping from AML and SysML, to reuse AML descriptions to construct equiv-
alent SysML. Furthermore, the part of this thesis related to modeling CPPSs
proposes a strategy to hierarchically define a production recipe. Such a mod-
eling strategy is aimed at encapsulating the most complete knowledge of the
process, from the business to the automation viewpoints.

The second part of the thesis describes a formalization approach to the de-
sign problem. In particular, the formalization exploits the Assume-Guarantee
(A/G) reasoning through contracts, to decompose the problem and, therefore,
to individually deal with parts of the system. The formalization makes use of
both the knowledge of the system gathered from the SysML models and the
knowledge about the machines provided by a manufacturing processes tax-
onomy (e.g., the DIN 8580). The set of formalized contracts decomposing the
design problem is used by the framework to achieve two targets: the con-
struction of a virtual prototype that can be simulated to assess the feasibility
of a recipe or to generate implementations to be deployed onto a real system.
Both targets rely on reactive synthesis algorithms, to obtain implementations
from contract-based specifications.

The third part of the thesis deals with the reconfiguration of CPPSs, which
is a fundamental task to be carried out by flexible manufacturing systems im-
plementing agile production. The reconfiguration problem originates from a
business point of view and actuates on the automation layer. Therefore, to
bridge such viewpoints, the proposed architecture is centered on the concept
of “production services”. Each service implements a precise functionality at
the control level and it is also visible from a business viewpoint. It contributes
to the overall production process in a specific manner. Therefore, a key role in
the architecture is played by the Automation Manager component, which is
the software “glue” between the MES and the PLCs composing the system. To
fully exploit the potential of such an architecture and the fact that MOOD4I
proposes an in-depth production recipe modeling strategy, the final part of the
thesis also defines an advanced scheduling algorithm. Such an algorithm is ex-
ecuted at runtime and reacts to events that may happen during the production
(e.g., new orders, or machine stops). It handles such events by proposing an
interruption and interleaving strategy of processes, exploiting the knowledge
of the process provided in the SysML model. The last part of the thesis can,
therefore, be considered as a platform on which the design framework (and,
thus, the model-based techniques proposed) can be applied. Assuming the
functionality of components is implemented through services, the MOOD4I
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framework is capable of modeling, prototyping, and design implementations
while guaranteeing their correctness.

The last part of the thesis takes a look beyond Industry 4.0, where ma-
chines and humans will collaborate to carry out even more complex produc-
tion tasks. In fact, Industry 5.0 suggests putting the human back at the center
of manufacturing, to exploit its intuitions and ingenuity for a more efficient
and resilient manufacturing. Therefore, this part of the thesis carries out an
speculative analysis on potential limitations of actual design languages and
methodologies, to understand Industry 5.0 requirements and outline research
directions to cope with such demands.

9.2 Directions for future research

The directions for future works may be a consequence of the limitations of
the current framework or may arise from the desire to improve and explore
new paths. The list of the following ideas comprises both categories, in which
some are already under study:

• The formalization process of A/G contracts specified in both Section 4.3
and Section 5.3 is not automated. To achieve such a goal, the set of
SysML diagrams must be mapped to a formalization framework that is
built around A/G contracts. In this regard, the Contract-based Heteroge-
neous Analysis and System Exploration (CHASE) framework [69] would
perfectly suit such a task: it provides a library of constructs that, on the
one hand, can be related to SysML diagrams elements and, on the other
hand, have a direct mapping to logic formulas. Therefore, by exploiting
such a framework, MOOD4I could automatically produce the set of A/G
contracts that constitutes the specifications of the design problem.

• As Chapter 7 defined, Industry 5.0 systems have an additional set of re-
quirements to be compliant with. Other than refining modeling languages
(e.g., SysML) for Industry 5.0, the architecture and the scheduling algo-
rithm proposed in Chapter 6 must be improved. As an example, the un-
certainty of human behaviors requires scheduling algorithms that must be
able to handle and react to such a class of unexpected events. A key role
in this context may also be played by the models: categorizing the events
caused by human behaviors and understanding them is the first task for
the system to correctly react and reconfigure.

• The virtual prototyping and compositional design methodologies pre-
sented in Chapter 4 and Chapter 5 rely on simulation to verify the cor-
rectness of the system. Whether the simulation may fail, the designer has
no clue which part of the specification is not correct. Contrariwise, formal
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verification techniques (e.g., model checking) can provide a counterexam-
ple as proof of property violation. In this context, Counterexample-guided
Abstraction Refinement (CEGAR) methodologies provide a way to refine
the specifications based on such proof. CEGAR techniques, nonetheless,
have a common problem: the interpretation of the counterexample is hard
and, therefore, it is difficult to correctly understand the incorrect part of
the specification to refine. In this regard, a possible future work could
integrate CEGAR techniques in MOOD4I and exploit SysML, to construct
diagrams implementing the counterexample.



Summary of the proposed innovative
contributions

This chapter reports the innovative contributions to the State of the Art by the
work proposed in this thesis. The articles are grouped into four main groups:

• the first group is the cyber-physical production systems modeling, which
includes methodologies and concepts from Chapter 3 and Chapter 7;

• the second group includes articles related to compositional design using
assume-guarantee contracts, which refers to the methodology shown in
Chapter 4;

• the third group comprises articles related to virtual prototypization using
assume-guarantee contracts, which has been described in Chapter 5;

• and the final group consists of methodologies related to model-based and
service-oriented advanced scheduling, illustrated in Chapter 6.

The contributions inside each group are chronologically ordered.

Cyber-physical production systems modeling

1. S. Spellini, S. Gaiardelli, M. Lora and F. Fummi, “Enabling Component
Reuse in Model-based System Engineering of Cyber-Physical Production Sys-
tems” in 26th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), 2021, pp. 1-8,
doi: 10.1109/ETFA45728.2021.9613572.

2. S. Gaiardelli, S. Spellini, M. Lora and F. Fummi, “Modeling in Industry
5.0: What Is There and What Is Missing: Special Session 1: Languages for
Industry 5.0” in Forum on specification & Design Languages (FDL), 2021,
pp. 01-08, doi: 10.1109/FDL53530.2021.9568371.
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Compositional design using assume-guarantee contracts

1. S. Spellini, M. Lora, S. Chattopadhyay and F. Fummi, “Work-in-Progress:
Introducing Assume-Guarantee Contracts for Verifying Robotic Applica-
tions” in International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2018, pp. 1-2, doi: 10.1109/CODE-
SISSS.2018.8525885.

2. S. Spellini, M. Lora, F. Fummi and S. Chattopadhyay, “Compositional De-
sign of Multi-Robot Systems Control Software on ROS” in ACM Trans. Em-
bed. Comput. Syst. 18, 5s, Article 71 (October 2019), 24 pages

Virtual prototypization using assume-guarantee contracts

1. R. Chirico, S. Spellini, M. Panato, M. Lora and F. Fummi, “A Contract-
based Methodology for Production Lines Validation” in IEEE 17th Interna-
tional Conference on Industrial Informatics (INDIN), 2019, pp. 695-698,
doi: 10.1109/INDIN41052.2019.8972100.

2. S. Spellini, R. Chirico, M. Lora and F. Fummi, “Languages and Formalisms
to Enable EDA Techniques in the Context of Industry 4.0” in Forum for Spec-
ification and Design Languages (FDL), 2019, pp. 1-4,
doi: 10.1109/FDL.2019.8876899.

3. S. Spellini, R. Chirico, M. Panato, M. Lora and F. Fummi, “Production
Recipe Validation through Formalization and Digital Twin Generation” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2020, pp. 1698-1703, doi: 10.23919/DATE48585.2020.9116343

4. S. Spellini, R. Chirico, M. Panato, M. Lora and F. Fummi, “Virtual Proto-
typing a Production Line Using Assume-Guarantee Contracts” in IEEE Trans-
actions on Industrial Informatics, vol. 17, no. 9, pp. 6294-6302, Sept.
2021, doi: 10.1109/TII.2020.3038679.

Model-based and service-oriented advanced scheduling

1. S. Gaiardelli, S. Spellini, M. Panato, M. Lora and F. Fummi, “A Software
Architecture to Control Service-Oriented Manufacturing Systems” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2022, pp.
40-43, doi: 10.23919/DATE54114.2022.9774522

2. S. Gaiardelli, S. Spellini, M. Lora and F. Fummi, “A Hierarchical Model-
ing Approach to Improve Scheduling of Manufacturing Processes”, in IEEE
International Symposium on Industrial Electronics, 2022, pp. TBA, doi:
TBA



List of Acronyms

A/G Assume-Guarantee
AGV Automated Guided Vehicle
AML Automation Markup Language
AMQP Advanced Message Queuing Protocol
B2MML Business To Manufacturing Markup Language
BDD Block Definition Diagram
CAEX Computer Aided Engineering Exchange
CEGAR Counterexample-guided Abstraction Refinement
CHASE Contract-based Heterogeneous Analysis and System Exploration
COLLADA COLLAborative Design Activity
CPPS Cyber-Physical Production System
CPS Cyber-Physical System
DFJSS Dynamic Flexible Job Shop Scheduling
DIN Deutsches Institut für Normung
DRC DARPA Robotic Challenge
ERP Enterprise Resource Planning
FJSS Flexible Job Shop Scheduling
FSM Finite State Machine
GR(1) General Reactivity of rank 1
HMI Human-Machine Interaction
HRC Human-Robot Collaboration
IBD Internal Block Diagram
ICE Industrial Computer Engineering
IIoT Industrial Internet of Things
IoT Internet of Things
ISA International Society of Automation
JSS Job Shop Scheduling
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LTL Linear Temporal Logic
M2M Machine to Machine
MBSE Model-based System Engineering
MES Manufacturing Execution System
MILP Mixed Integer Linear Programming
MOM Manufacturing Operations Management
MOOD4I Modeling, Formalization & Design for Industry
MU Mobile Unit
OPC UA OPC Unified Architecture
OWL Web Ontology Language
PBD Platform-Based Design
PLC Programmable Logic Controller
PPE Personal Protective Equipment
QC Quality Checking
ROS Robot Operating System
RPC Remote Procedure Call
RTN Resource Task Network
SCADA Supervisory Control and Data Acquisition
SME Small and Medium Enterprise
SOA Service Oriented Architecture
SOM Service Oriented Manufacturing
STN State Task Network
STOMP Streaming Text Oriented Messaging Protocol
SWRL Semantic Web Rule Language
SysML System Modeling Language
UML Unified Modeling Language
XMI XML Metadata Interchange
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A

Robotic design code

The integration into ROS of a code implementation requires to create a ROS
node for each component of the defined system (i.e., a robot). Listing A.2
depicts the structure of a generic ROS node. The set of control strategies gen-
erated and validated for each robot in the system, as described in Section 4.3,
is the starting point to create multiple ROS nodes, each enclosing the control
strategy of one component. The structure of such a control strategy is depicted
in the listing A.1. In particular, it outlines the code implementation of the FSM
that realizes the control strategy for such an agent.

Listing A.1: Code structure of the synthesized control software. The control logic is
implemented by the executeMachine function, that models the behavior of an FSM.

1 String state;
2 int32_t steps_out;
3 int32_t target_out;
4
5 void Robot::executeMachine( bool up_in, bool down_in, bool left_in,
6 bool right_in, int32_t target_in, int32_t pos_in )
7 {
8 if (state == std::string("0"))
9 {

10 if (up_in == false && down_in == false && left_in == false
11 && right_in == false && target_in == 0L && pos_in == 0L)
12 {
13 state = "20";
14 steps_out = 1L;
15 command_out = 0L;
16 }
17 else if (up_in == true && down_in == false && left_in == false
18 && right_in == false && target_in == 0L && pos_in == 0L)
19 {
20 state = "28";
21 steps_out = 1L;
22 command_out = 0L;
23 }
24 ...
25 else if(state == std::string("1"))
26 {
27 ...
28 }
29 ...
30 }
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Listing A.2: Code structure of a generic ROS node.

1 /// @brief Code structure representing a generic ROS node.
2 Input inputs;
3
4 void callback(const messages::input &message) {
5 inputs = *message;
6 }
7
8 int main(int argc, char** argv) {
9 init(argc, argv, "controller");

10 NodeHandle nh("~");
11 Rate r(1);
12
13 Controller implementation_ctrl;
14
15 Publisher p = nh.advertise<Output>("topic", 1);
16 Subscriber s = nh.subscribe<Input>
17 ("topic",1, &callback);
18
19 Output outputs;
20
21 while (ros::ok()) {
22 implementation_ctrl.executeMachine(input);
23 outputs = implementation_ctrl.output
24 p.publish(outputs);
25 spinOnce();
26 r.sleep();
27 }
28
29 shutdown();
30 return 0;
31 }



B

Contract-based Specifications

The set of elementary actions identified for the manipulator arm is formalized
in a set of A/G contracts. Table B.1 reports the specification of the move action,
which represents the movement between two positions in space of a piece
that has been picked by the manipulator. Table B.2 reports the A/G contract
related to the pick action, which controls the picking of an object with the
manipulator clamp. Similarly, Table B.3 illustrates the contract that specifies
the placing of an object in the range of action of the arm.

Table B.1: Sketch of the move action contract.

Operation Cmove

Contract Cmove = (Vmove, Amove, Gmove)

Variables
Vmove = {command,move_executed, xpos, ypos, xtarget,

ytarget, grip,moving}

Assumptions
Amove = {□(command = move→ grip = true),

□♢(command = move)}

Guarantees

Gmove = {(□(command = move↔⃝(moving))),

(□(moving ∧ (xpos < xtarget)→⃝(xpos = xpos+ step))),

(□(moving ∧ (ypos < ytarget)→⃝(ypos = ypos+ step))),

(□(moving ∧ (xpos > xtarget)→⃝(xpos = xpos− step))),

(□(moving ∧ (ypos > ytarget)→⃝(ypos = ypos− step))),

(□((xpos = xtarget ∧ ypos = ytarget)→⃝(move_executed)))}
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Table B.2: Sketch of the pick action contract.

Operation Cpick

Contract Cpick = (Vpick, Apick, Gpick)

Variables Vpick = {command, pick_executed, grip, picking, pos}

Assumptions Apick = {¬(grip),□♢(command = pick)}

Guarantees

Gpick = {(□(command = pick ∧ pos→⃝(picking))),

(□(picking →⃝(pick_executed ∧ grip))),

(□♢(pick_executed ∧ grip))}

Table B.3: Sketch of the place action contract.

Operation Cplace

Contract Cplace = (Vplace, Aplace, Gplace)

Variables Vplace = {command, place_executed, grip, placing, pos}

Assumptions Aplace = {¬(grip),□♢(command = place)}

Guarantees

Gplace = {(□(command = place ∧ pos→⃝(placing))),

(□(placing →⃝(place_executed ∧ ¬grip))),

(□♢(place_executed ∧ ¬grip))}
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