
Theoretical Computer Science 411 (2010) 360–376

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

An axiom system for sequence-based specification
Lan Lin a,∗, Stacy J. Prowell b, Jesse H. Poore a
a Department of Electrical Engineering and Computer Science, The University of Tennessee, 203 Claxton Complex, 1122 Volunteer Blvd., Knoxville, TN 37996, USA
b Software Engineering Institute, Carnegie Mellon University, 4500 Forbes Avenue, Pittsburgh, PA 15213, USA

a r t i c l e i n f o

Article history:
Received 29 January 2008
Received in revised form 18 May 2009
Accepted 26 June 2009
Communicated by P. Stevens

Keywords:
Software specification
Sequence-based specification
Axiom system
Representation
Automaton
Mealy machine

a b s t r a c t

This paper establishes an axiomatic foundation and a representation theorem for the
rigorous, constructive process, called sequence-based specification, of deriving precise
specifications from ordinary (informal) statements of functional requirements. The
representation theorem targets a special class of Mealy state machines, and algorithms
are presented for converting from the set of sequences that define the specification to the
equivalentMealymachine, and vice versa. Since its inception, sequence-based specification
has been effectively used in a variety of real applications, with gains reported in quality
and productivity. This paper establishes themathematical foundation independently of the
process itself.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Modern software development processes for safety critical systems require rigorous methods for code development
and testing to support dependability assurance cases [16]. Although process and methods are not sufficient to guarantee
dependability, the case for dependability must rest, in large part, on rigorous development methods. To be credible for
dependability cases, such methods must have sound mathematical foundations to support application and interpretation
of results, provide audit trails of evidence to support correctness arguments, have effective tool support, and produce
specifications that lend themselves to validation and formal verification. Sequence-based specification is an instance of such
a method, with the axiom system and representation theorem presented here.
Safety critical systems usually have requirements expressed inwork productswith varying degrees of formality including

natural language, notations of science and engineering, diagrams, tables of values and references to standards, among
other artifacts. The sequence-based specification method was developed to convert such informal statements of functional
requirements to precise specifications through a rigorous and constructive process called sequence enumeration. These
specifications then become the basis for both code development and testing.
Sequence-based specifications support automated testing, by which we mean the automatic generation, execution and

evaluation of test cases. The sequence-based specifications, together with specially designed tools, have been the basis for
several successful industrial applications of this form of automated testing [4].
Sequence-based specification, through the consideration of all sequences of use, explores an evolving behavioral

description of a software system. Since its inception, it has been effectively used in a variety of real applications, ranging
from automotive components to medical devices to scientific instrumentation. Gains in quality and productivity have been
reported fromprojects carried out by the authors [25,26] and other collaborators in industry [4,5,15]. In particular, Broadfoot

∗ Corresponding author. Tel.: +1 865 9748733.
E-mail addresses: lin@eecs.utk.edu (L. Lin), sprowell@cmu.edu (S.J. Prowell), poore@eecs.utk.edu (J.H. Poore).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.06.041

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82413985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:lin@eecs.utk.edu
mailto:sprowell@cmu.edu
mailto:poore@eecs.utk.edu
http://dx.doi.org/10.1016/j.tcs.2009.06.041

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 361

and Broadfoot (Hopcroft) [5,15] have incorporated the method with elements of Communicating Sequential Processes (CSP)
[13] and Failures Divergence Refinement (FDR) [27]. Enumeration of usage scenarios has proved to be practical in application
and immensely powerful in eliciting errors and omissions in statements of requirements (even of mature systems). It has
also been demonstrated to result in specifications that lend themselves to the generation of code, or at least code structure
(see [26], part III for a detailed example).
Sequence-based specification emerged from the functional treatment of software as described by Mills [20–22]. The

development was most directly influenced by the trace-assertion method of Parnas [3,23] and the algebraic treatment
of regular expressions by Brzozowski [6]. The primary distinction of this method from its nearest neighbors (the trace-
assertion method [7–10,17,23] and software cost reduction [12]) is that the state machine for the software system to be
built is discovered through systematic enumeration of input sequences and recording sequence equivalences based on
future behavior. In trace-assertion specifications, the a priori automaton is conceived by the specification writer and is
introduced indirectly by a set of important traces called canonical traces, a trace equivalence relation, and a rewriting system
that transforms any trace to its canonical representative. For this reason, trace-assertion specifications are descriptive;
they describe the function of a software system, whose automaton is obtained by experience and insight. Sequence-based
specifications are constructive; they elicit and discover the details of the automaton and the system’s behavior through a
constructive (enumeration) process.
Sequence-based specifications take the form of a set of strings that are equivalent to a certain class of Mealy machines.

In this paper, we explore an axiomatic treatment of sequence-based specification and use the axiom system to prove a
number of important properties about sequence-based specifications. The need for an axiomatic approach first arose from
our interest in looking at an enumeration solely as a mathematical object. We want to provide a list of axioms and show
that, if a set of sequences satisfy these axioms, then it serves as a specification regardless of whether the sequences were
obtained by the enumeration process or in some other way. The results go beyond, and extend to, a theoretical framework,
in which concepts of sequence-based specification are defined formally, connections to the black box functions of Mills [22]
aremade, a precise relationship between enumerations and statemachines is established, and an algorithm for enumeration
minimization is developed. The axiom system provided the basis for tools to assist in managing requirements changes and
their implications on specifications and design.
The axiomatic foundation for the constructive process of sequence-based specificationmight contribute to dependability

assurance cases for software systems designed by use of the method. The axiom system improves our ability to prove
assertions and has shown itself to be a practical tool in a number of activities stated below.

Checking enumerations. We have developed a prototype tool called Proto_Seq [1] to assist with sequence-based
specification. Our experience with field applications shows that sometimes the practitioner ‘‘hacks’’ the sequences in the
specification file (in XML format) to make changes instead of redoing the work in the tool. In such cases, it is critical to know
whether the hacked sequences are correct by the enumeration rules as enforced explicitly by the normal workflow under
tool control. By expressing these rules in a list of axioms, we provide the basis for checking a set of sequences to see if it is
a correct formal specification, regardless of how the set was obtained.

Systematic transformation to state machines. A state machine can be generated from a sequence-based specification.
In this paper we establish a representation theorem for enumerations in terms of a special subset of Mealy machines (called
enumeration Mealy machines), and present algorithms to convert them from one form to the other.

Deriving requirements change algorithms. Change management is one of the most complex and difficult problems
to deal with in requirements engineering. Using the results presented in this paper, we have developed a theory that
exactly prescribes the impact of requirements changes on specifications and state machines [19]. The representation
theorem, established here, provides a precise connection between enumerations and their corresponding Mealy machines,
and hints at utilizing state machines to model and manage requirements changes and specification changes. The axiom
systemwas indispensable in formulating all our change algorithmsmathematically and proving their correctness. Following
the theoretical framework presented in this paper, we are able to provide strong evidence about the correctness and
completeness of our proposed change management theory.

Applying string rewriting techniques. In the course of constructing a sequence-based specification, various patterns
might be observed. For example, some pairs of inputs commute with respect to sequencing; some inputs are idempotent.
More complex patternsmay involve three ormore inputs. These ad hoc observations lead to the systematic study of applying
string rewriting techniques to sequence-based specification, whichwe are currently working onwith promising results. The
axiom system presented in this paper provides a theoretical framework to integrate the string rewriting theory to enhance
the enumeration process. The end product will be an enumeration in which a significant number of decisions are made
automatically and consistently throughout.

Comparisons with other specification methods. The axiom system enables looking at specifications using various
rigorous representations, including finite state machines, regular expressions, and prefix-recursive functions, hence the
rigorous comparisons with other mathematically described specification methods. We have also developed a complete
collection of algorithms for moving among enumerations, state machines, regular expression sets, and prefix-recursive
function sets [18], which provides the potential to import results from theories that are well-established.

Model checking. Our work concerns the tool-assisted, systematic transformation of informal requirements to precise
specifications to state machines. Since the enumeration is constructed in a rigorous manner, the state machine is
discovered in a constructive process that assures completeness and traceable correctness. With the axiom system and

362 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

Table 1
Safe controller requirements.

Tag Requirement

1 The combination consists of three digits (0–9) which must be entered in the correct order to unlock the safe. The combination is fixed in
firmware.

2 Following an incorrect combination entry, a ‘‘clear’’ key must be pressed before the safe will accept further entry. The clear key also resets any
combination entry.

3 Once the three digits of the combination are entered in the correct order, the safe unlocks and the door may be opened.
4 When the door is closed, the safe automatically locks.
5 The safe has a sensor which reports the status of the lock.
6 The safe ignores keypad entry when the door is open.
7 There is no external confirmation for combination entry other than unlocking the door.
8 It is assumed (with risk) that the safe cannot be opened by means other than combination entry while the software is running.
D1 Sequences with stimuli prior to system initialization are illegal by system definition.
D2 Re-initialization (power-on) makes previous history irrelevant.

the transformation theory built on it, it is not necessary to use model checking for properties such as completeness and
determinism, nor for certain verification steps such as the correct refinement from black boxes to state boxes and the
establishment of their behavioral equivalence [15].
The remainder of the paper is organized as follows. Section 2 introduces sequence-based specification with a simple

example of a safe controller. Section 3 gives our terminologies and notations. Section 4 presents the axiom system. Since
we remain interested in the box structure representations of Mills [22], we discuss the relationship of enumerations to the
black box functions of [24]. Examples are developed on the basis of the safe controller in Section 2 to illustrate the theoretical
details. Section 5 presents our transformation theory relevant to the representation of enumerations as Mealy machines. A
representation theorem is established. An enumeration minimization algorithm is presented that connects to the classical
literature on Mealy machine minimization. Section 6 concludes the paper with directions of the continuing work.

2. Background: Sequence-based specification

The first step in applying sequence-based specification is to identify a system boundary that defines what is inside
and what is outside the software system to be developed. It consists of interfaces between the system and the external
entities with which the system directly communicates. These entities compose the software’s environment. Events (inputs,
interrupts, invocations) in the environment that can affect system behavior are called stimuli. Observable system behaviors
are called responses. Consider all finite sequences of stimuli. They represent all possible scenarios of system use.
Sequence-based specification facilitates deriving the system’s behavior solely in terms of external stimuli and responses,

through a process called sequence enumeration. As the name suggests, it is the literal enumeration of sequences of stimuli
in increasing order of length, and within the same length in any arbitrary strict total order, and the assignment of correct
responses to each enumerated sequence. Because some sequences may generate no externally observable behavior across
the system boundary, we introduce a null response denoted by 0 and map such sequences to 0. We also introduce an illegal
response denoted by ω to which we map all sequences that are not physically realizable. A sequence is illegalwhen it maps
to ω; otherwise, it is legal.
For any enumerated sequence, besides mapping it to a response, we also check whether or not it can be equated to a

previously enumerated sequence in the following sense: their responses to future stimuli will be identical according to
the requirements. Such sequences are calledMealy equivalent, as they represent the same system state when the system is
modeled as a Mealy machine. If a sequence is not found Mealy equivalent to any prior sequence, it is unreduced; otherwise,
it is reduced to an unreduced (Mealy equivalent) prior sequence.
Enumeration starts with the empty sequence (denoted by λ), which ismapped to 0 and unreduced. To form all sequences

of length n+1 (n is a non-negative integer), we extend all sequences of length n by every stimulus. However, not all of them
need to be considered for two reasons:

- If a sequence is illegal, its extensions need not be enumerated as they must all map to ω.
- If a sequence is reduced to a prior sequence, its extensions need not be enumerated as they must exhibit the same
behavior as the same extensions of the prior sequence.

Therefore, we only extend both legal and unreduced sequences for the next enumeration length. When there are no more
sequences to extend, the enumeration is complete.
The following example of a safe controller is from [24]. We will use it as a running example throughout the paper to

illustrate the theories aswe develop them. In this section,we showa complete enumeration of the safe obtained by following
the process described above.
The requirements for the safe controller are given in Table 1. They are tagged for traceability and to ease the work of

verifying the correctness of every decision made in the specification process. The last two rows in the table record two
derived requirements (D1 and D2) discovered during sequence enumeration.

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 363

Fig. 1. Safe controller system boundary.

Table 2
Safe controller stimuli.
Stimulus Description Interface

B Bad combination entry Keypad
C Clear key press Keypad
D Door closed Door sensor
G Good combination entry Keypad
L Power on with door locked Power, door sensor
U Power on with door unlocked Power, door sensor

Table 3
Safe controller responses.
Response Description Interface

lock Locking the door Lock actuator
unlock Unlocking the door Lock actuator

The system boundary is cut between the system and a list of interfaces in the environment representing the external
power, keypad, door sensor, and lock actuator. We diagram the system boundary in Fig. 1, and identify all stimuli and
responses from the list of interfaces in Tables 2 and 3. To make work efficient, we discard treating the distinct digit presses
(0–9) separately and, instead, use G to denote entering the correct three digits in order and B to denote entering an incorrect
three-digit combination entry (any digit could be wrong). Note that L (power on with door locked) and U (power on with
door unlocked) are two different stimuli, because the power and the door sensor are both outside the system boundary, and
we are combining the power on stimulus (received from the power interface) and the door status stimulus (received from
the door sensor interface) into L and U .
A complete enumeration is developed in Table 4, which can be read as follows. First, the empty sequence represents the

initial system state (no input has been received). It is mapped to 0 and unreduced, as enforced by the rules of the method.
Then it is extended by every stimulus to get all to-be-enumerated sequences of length one (the sequences B through U).
Among the length-one sequences, only two of them, namely L and U , are legal, as any event prior to the power-on event

cannot be perceived by software; thus, the derived requirement D1. The sequences L and U represent two distinct states of
the system other than the initial state (power is turned on but the door can be either locked or unlocked). They both map to
0 as there is no externally observable behavior when power is turned on, and they get extended by every stimulus to form
all to-be-enumerated sequences of length two (the sequences LB through UU).
The length-two sequences are considered in lexicographical order (the order they show up in the table) for the generated

responses and possible reductions to prior sequences. For instance, the sequence LG represents the usage scenario where
power is first turned on with the door of the safe being locked followed by a good combination entry. This will unlock the
door and, hence, the response of LG is mapped to unlock. The sequence LG gets the system to the same state as the prior
sequence U as, in both cases, the system has power and the door is unlocked. The decisions regarding the response and the
equivalence of LG are traced to the requirements 1, 3 and 7.
Similarly, the only legal and unreduced sequence of length two, the sequence LB, is extended to get all to-be-enumerated

sequences of length three. There are six of them (the sequences LBB through LBU) and it turns out that all of them are either
illegal or reduced to prior sequences, therefore, the enumeration terminates at length three.
The process is constructive and considers every scenario of use for correct response and equivalence according to the

requirements as originally presented and corrected, refined or extended.

364 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

Table 4
Safe controller sequence enumeration.
Sequence Response Equivalence Trace

λ 0 Method
B ω D1
C ω B D1
D ω B D1
G ω B D1
L 0 5
U 0 5
LB 0 1,2,7
LC 0 L 2,7
LD ω B 8
LG unlock U 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2

3. Terminology and notation

Let Z and N denote the integers and positive integers, respectively.
The length of a stringw is denoted by |w|. The empty string is denoted by λ.
If X is a fixed (finite) alphabet, then X∗ and X+ denote the Kleene closure and the positive closure of X , respectively.
Unless stated explicitly as partial, a function f : X → Y is total (or complete). When f is partial, domf denotes the set of

elements on which f is defined.
Consider partial functions of the form f : X → Y × Z . If f (u) = (r, v), we write u 7→

f
r and u F

f
v. The f will be dropped

where it is clear from context. Alternatively they are sometimes written as 7→ (u) = r and F(u) = v. Define u 67→ r by
u 67→ r ↔ ∃r ′ 6= r. u 7→ r ′.
A set of strings is prefix-closed if every string in the set has all its prefixes also in the set.

4. Axiomatic sequence-based specification

4.1. Enumeration

We first define an enumeration as a mathematical object. Here S denotes a stimulus set that is non-empty and finite.
R denotes a response set that includes the two special responses, 0 and ω, and at least one other (observable) response. ≺
denotes a strict total order among all stimulus sequences such that any shorter sequencemust relate to any longer sequence
by≺; it represents an order inwhich stimulus sequenceswill be enumerated. An enumeration is defined as a partial function
that maps certain stimulus sequences to (response, stimulus sequence) pairs. The domain of this partial function comprises
all enumerated sequences. The enumeration function, when projected to the first component in the pair, defines a response
mapping (7→) for enumerated sequences. When projected to the second component, it defines a reduction function (F)
among enumerated sequences. The rules that guide the enumeration process are characterized in six axioms.

Definition 4.1 (Enumeration). Let S be a non-empty alphabet and R be a set that properly contains {0, ω}. Let≺ be a strict
total order on S∗ such that for all u, v in S∗, |u| < |v| implies u ≺ v. A partial function E : S∗ → R× S∗ is an enumeration iff
the following hold for all x in S:

Axiom 1. λ 7→ 0;
Axiom 2. u F v implies v ≺ u or v = u;
Axiom 3. u F v implies v F v;
Axiom 4. ux ∈ dom E implies u F u;
Axiom 5. ux ∈ dom E implies u 67→ ω;
Axiom 6. u F v, u 7→ ω, v 67→ ω, vx ∈ dom E imply vx 7→ ω.

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 365

The paraphrasing below is an intuitive statement of the enumeration axioms. It uses ideas that are informally described
in Section 2. Their precise definitions will be given shortly.

Axiom 1. The empty sequence is mapped to 0.
Axiom 2. A sequence can only be reduced to a prior sequence (according to≺).
Axiom 3. A sequence can only be reduced to an unreduced sequence.
Axiom 4. A reduced sequence is not extended.
Axiom 5. An illegal sequence is not extended.
Axiom 6. An illegal sequence cannot be reduced to a legal sequence if the legal sequencewhen extended by a stimulusmaps

to a legal response (because an illegal sequence when extended must remain illegal, the illegal sequence and the
legal sequence in question cannot be Mealy equivalent).

An enumeration becomes complete or finite when it satisfies additional axioms.

Definition 4.2 (Complete Enumeration). An enumeration E : S∗ → R× S∗ is complete iff the following holds for all x in S:

Axiom 7. u 67→ ω, u F u imply ux ∈ dom E .

Definition 4.3 (Finite Enumeration). An enumeration E : S∗ → R× S∗ is finite iff

Axiom 8. |R| ∈ N, |dom E | ∈ N.

Informally, we paraphrase the two axioms as follows.

Axiom 7. In a complete enumeration every legal and unreduced sequence is extended by every stimulus.
Axiom 8. In a finite enumeration the response set is finite and there are finitely many enumerated sequences.

To illustrate, we define in function form the safe enumeration developed in Section 2. Since the reduction function F
requires a mapped value for every enumerated sequence, we treat each unreduced sequence as ‘‘being reduced to itself’’.

Example 4.4. Let E : S∗ → R× S∗ be a partial function, where S = {B, C,D,G, L,U}, R = {lock, unlock, 0, ω}, S∗ has a strict
total order≺ defined by

∀u, v ∈ S∗. |u| < |v| → u ≺ v
∀u ∈ S∗. uB ≺ uC ≺ uD ≺ uG ≺ uL ≺ uU
∀u, v ∈ S∗.∀x, y ∈ S. u ≺ v→ ux ≺ vy,

and

E(λ) = (0, λ) E(B) = (ω, B) E(C) = (ω, B) E(D) = (ω, B)
E(G) = (ω, B) E(L) = (0, L) E(U) = (0,U) E(LB) = (0, LB)
E(LC) = (0, L) E(LD) = (ω, B) E(LG) = (unlock,U) E(LL) = (0, L)
E(LU) = (0,U) E(UB) = (0,U) E(UC) = (0,U) E(UD) = (lock, L)
E(UG) = (0,U) E(UL) = (0, L) E(UU) = (0,U) E(LBB) = (0, LB)
E(LBC) = (0, L) E(LBD) = (ω, B) E(LBG) = (0, LB) E(LBL) = (0, L)
E(LBU) = (0,U).

It is easily checked that E as defined satisfies Axioms 1–8 for a complete and finite enumeration.

An enumerated sequence can be classified as legal or illegal, reduced or unreduced.

Definition 4.5 (Illegal/legal Sequence). Let E : S∗ → R× S∗ be an enumeration. Then u is an illegal sequence in E iff u 7→ ω,
and u is a legal sequence in E iff u 67→ ω.

Definition 4.6 (Unreduced/reduced Sequence). Let E : S∗ → R× S∗ be an enumeration. Then u is an unreduced sequence in
E iff u F u, and u is a reduced sequence in E iff u F v for v ≺ u. Let UE = {u : u F u}.

UE denotes the set of all unreduced sequences in the enumeration E .
Alternatively, we call a sequence that is both legal and unreduced an extensible sequence. EE denotes the set of all

extensible sequences in the enumeration E .

Definition 4.7 (Extensible Sequence). Let E : S∗ → R× S∗ be an enumeration. Then u is an extensible sequence in E iff u is
legal and unreduced in E . Let EE = {u : u 67→ ω, u F u}.

Note that both UE and EE are prefix-closed sets by Axioms 4 and 5.

Example 4.8. Given the enumeration E defined in Example 4.4, UE = {λ, B, L,U, LB}, EE = {λ, L,U, LB}.

366 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

In the enumeration process, one might miss identifying the equivalences between enumerated sequences and extend
sequences that should have been reduced (to prior sequences). These are called ‘‘missed equivalences’’ [24]. As it pointed
out, missed equivalences will not make an enumeration wrong; they only introduce redundant states into the system, and
the specification writer ends up doing more work than necessary.
Given a complete enumeration, unreduced sequences can be checked against each other to see if their responses to future

stimuli will always agree, as implied by the completed enumeration. If so, such unreduced sequences are indistinguishable,
in the sense that they represent redundant system states, and missed equivalences can be identified among them. The
indistinguishability relation (∼) is defined on its complement relation, the relation of distinguishability (6∼) among all
unreduced sequences.

Definition 4.9 (Distinguishability/Indistinguishability). Let E : S∗ → R × S∗ be a complete enumeration. The relation
6∼ ⊂ UE × UE is the smallest relation satisfying the following rules:

Rule 1. (a 7→ ω, ∃x ∈ S. bx 67→ ω)→ a 6∼ b;
Rule 2. (∃x ∈ S. 7→ (ax) 6= 7→ (bx))→ a 6∼ b;
Rule 3. (a 6∼ b, ∃x ∈ S. (cx F a, dx F b))→ c 6∼ d.

The relation∼ ⊂ UE × UE is defined by ∀a, b ∈ UE . a ∼ b↔ (a, b) 6∈ 6∼.

Two unreduced sequences in a complete enumeration are distinguishable if their responses to future stimuli could be
different. This happens in the following situations:

- One is illegal; the other is legal. The extension of the legal sequence by one arbitrary stimulus remains legal. (Rule 1)
- Both are legal. Their extensions by one arbitrary but the same stimulus map to different responses. (Rule 2)
- Both are legal. Their extensions by one arbitrary but the same stimulus reduce to two already distinguishable sequences.
(Rule 3)

If an unreduced sequence is distinguishable from all its prior unreduced sequences, it is called canonical. A canonical
sequence is an unreduced sequence with no missed equivalences.

Definition 4.10 (Canonical Sequence). Let E : S∗ → R× S∗ be a complete enumeration. Then u is a canonical sequence in E
iff u ∈ UE and ∀v ∈ UE . u ∼ v→ u ≺ v or u = v.

A complete enumeration is minimal when it satisfies an additional axiom.

Definition 4.11 (Minimal Enumeration). A complete enumeration E : S∗ → R× S∗ isminimal iff

Axiom 9. u F u, v F v, u 6= v imply u 6∼ v.

Informally,

Axiom 9. A complete enumeration is minimal when all its unreduced sequences are pairwise distinguishable.

Example 4.12. Given the enumeration E defined in Example 4.4, by Definition 4.9 we have

λ 6∼ B as B 7→ ω, L 7→ 0(Rule1) B 6∼ L as B 7→ ω, LB 7→ 0(Rule1)
λ 6∼ L as G 7→ ω, LG 7→ unlock(Rule2) B 6∼ U as B 7→ ω,UB 7→ 0(Rule1)
λ 6∼ U as D 7→ ω,UD 7→ lock(Rule2) B 6∼ LB as B 7→ ω, LBB 7→ 0(Rule1)
λ 6∼ LB as B 7→ ω, LBB 7→ 0(Rule2) L 6∼ U as LG 7→ unlock,UG 7→ 0(Rule2)
U 6∼ LB as UD 7→ lock, LBD 7→ ω(Rule2) L 6∼ LB as LG 7→ unlock, LBG 7→ 0(Rule2).

Since elements in UE are pairwise distinguishable, they are all canonical sequences. E satisfies Axiom 9 as well for a
complete, finite, and minimal enumeration.

The nine axioms have captured different aspects of an enumeration. However, it is necessary to show that these nine
axioms are consistent, none contradicts another; that they are independent, none implies another. These properties are
established by the following lemma.

Lemma 4.13.

i. Axioms 1–9 for enumerations are consistent;
ii. Axioms 1–8 for enumerations are independent.

Proof. For (i) we show an example enumeration satisfying all the nine axioms. Let the partial function E : S∗ → R × S∗
be defined as follows for S = {a}, R = {0, ω, r}: E(λ) = (0, λ), E(a) = (r, λ). S∗ is equipped with the strict total order ≺
defined by an ≺ an+1 (n ∈ Z, n ≥ 0).
For (ii) it suffices to showAxiom i cannot be derived from the rest of the axioms, where 1 ≤ i ≤ 8.We exhibit an example

partial function that satisfies Axioms 1–8 except Axiom i for each i. �

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 367

Although Axioms 1–8 do not imply Axiom 9 (we can exhibit another example that satisfies Axioms 1–8 but not Axiom 9),
Axiom 9 entails Axioms 1–7 in the sense that Axioms 1–7 are a necessary accompaniment of Axiom 9 rather than a direct
logical implication, as 6∼ is only defined for a complete enumeration.
The next two lemmas characterize all the enumerated sequences in an enumeration.

Lemma 4.14. Let E : S∗ → R× S∗ be an enumeration. Then u ∈ dom E implies one of the following must hold:

i. u is reduced;
ii. u is unreduced and u 7→ ω;
iii. u is extensible.

Proof. A direct consequence of Axiom 2. �

Lemma 4.15. Let E : S∗ → R × S∗ be an enumeration. Then u ∈ dom E implies u = λ or u = u′x, where x ∈ S and u′ is an
extensible sequence.

Proof. A direct consequence of Axioms 1, 4 and 5. �

In a complete and minimal enumeration, every unreduced sequence must be canonical, as proved below.

Lemma 4.16. Let E : S∗ → R× S∗ be a complete and minimal enumeration. Then u ∈ UE implies u is canonical.

Proof. Suppose the implication is not true, and we have u ∈ UE but u is not canonical. Then there must exist v in UE such
that u ∼ v and it is not the case that either u ≺ v or u = v, hence v 6= u. However, u ∈ UE , v ∈ UE , v 6= u imply u 6∼ v,
since E is a minimal enumeration, a contradiction. �

4.2. Black box function

Following [21,22] a black box function maps every stimulus sequence to a response. The empty sequence is mapped to
the null response.

Definition 4.17 (Black Box Function). Let S be a non-empty alphabet and R be a set that properly contains {0, ω}. A black
box function is a total function BB : S∗ → Rwith BB(λ) = 0.

With a complete enumeration, we have enough information to deduce the mapped response for any stimulus sequence,
whether or not it is actually enumerated. We first define an extension of the two functions, 7→ and F, algebraically, then
prove the extended response mapping ˆ7→ is a black box function of particular interest.

Definition 4.18. Let E : S∗ → R× S∗ be a complete enumeration. We extend 7→ and F to total functions on S∗ as follows:

F̂ : S∗ → dom E ˆ7→ : S∗ → R
F̂(λ) = λ ˆ7→(λ) = 0
∀u ∈ S∗.∀x ∈ S. ∀u ∈ S∗.∀x ∈ S.

F̂(ux) =
{
F̂(u) if F̂(u) 7→ ω
F(F̂(u)x) if F̂(u) 67→ ω

ˆ7→(ux) =
{
ω if F̂(u) 7→ ω
7→ (F̂(u)x) if F̂(u) 67→ ω.

We show the two extended functions are well-defined total functions.

Lemma 4.19. F̂ : S∗ → dom E and ˆ7→ : S∗ → R are well-defined given a complete enumeration E : S∗ → R× S∗.

Proof. It suffices to show F̂(u) and ˆ7→(u) are well-defined for any u in S∗.
Let Si = {u ∈ S∗ : |u| = i} for i ∈ Z, i ≥ 0.
F̂(u) and ˆ7→(u) are well-defined iff either u = λ (thus F̂(u) = λ, ˆ7→(u) = 0) or u = u′x, where x ∈ S, and (i) F̂(u′) is

well-defined, (ii) F̂(u′) ∈ dom E , and (iii) F̂(u′)x ∈ dom E if F̂(u′) 67→ ω.
Let Pi be true iff for all u in Si, F̂(u) and ˆ7→(u) are well-defined. Induct on i to show Pi. �

ˆ7→ and F̂ are 7→ and F extended from dom E to S∗, respectively. We would like the extended functions to agree with the
unextended functions on the shared part of the domain, as proved by the following theorem.We also observe that the range
of F̂ is the set of all unreduced sequences in E (UE).

Theorem 4.20. For any u ∈ dom E, ˆ7→(u) = 7→ (u), F̂(u) = F(u).

Proof. Induct on |u|. �

In [24] an algorithm is given that computes a black box function implied by any complete and finite enumeration. We
will describe the algorithm here as a mathematical function. First we define its domain and codomain:

E = {E : E is a complete and finite enumeration},
B = {BB : BB is a black box function with a finite codomain}.
The algorithm can be defined as a total function β : E→ B.

368 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

Algorithm 4.21 (Black Box Function Computation).

1. Let E : S∗ → R× S∗ be in E.
2. BB : S∗ → R is defined by:
3. ∀u ∈ dom E . BB(u) = 7→ (u)
4. ∀u ∈ (S∗ − dom E). (u = u′xw, u′ 7→ ω, x ∈ S, w ∈ S∗)→ BB(u) = ω
5. ∀u ∈ (S∗ − dom E). (u = u′xw, u′ 67→ ω, x ∈ S, w ∈ S∗, u′x 6∈ dom E)→ BB(u) = BB(F(u′)xw).
6. β(E) = BB.

Given a complete and finite enumeration E and an arbitrary stimulus sequence u, the algorithm proceeds as follows to
find the mapped response for u. If u is an enumerated sequence, we read off its response from E (Line 3); otherwise, we find
the longest prefix u′ of u that is enumerated. Such a sequence u′must exist, as the empty sequencemust have been extended
by every single stimulus. There are two possibilities: either u′ is illegal, or u′ is reduced to a prior sequence; otherwise u′
must have been extended and there would exist a longer prefix of u than u′ that gets enumerated in E , a contradiction. If u′
is illegal, u is mapped toω (Line 4); otherwise, we replace u′ with the prior sequence it is reduced to in the original sequence
u, and repeat the algorithm on the new sequence (Line 5), until a mapped response is finally derived.
We show β is a well-defined function.

Lemma 4.22. β : E→ B is well-defined.

Proof. Given E : S∗ → R × S∗ in E, R is finite and BB(λ) = 7→ (λ) = 0. It remains to show BB is a well-defined function.
Consider any string u in S∗. The only difficult case is when u 6∈ dom E , and its longest prefix in dom E (denoted by u′) has
u′ 67→ ω (Line 5). We claim u′ must be reduced (if not, u′xwould have been a longer prefix of u in dom E). Now we consider
a new string formed by replacing u′ with F(u′) in u. If F(u′) 7→ ω, BB(u) = ω; otherwise, we have F(u′)x in dom E . Since |w|
is finite, if we continue in this fashion, finally either BB(u) = ω by Line 4, or BB(u) = BB(v) = 7→ (v) by Line 3 for some v
in dom E . �

Example 4.23. Given the enumeration E defined in Example 4.4, we apply Algorithm 4.21 to find the response for an
arbitrary stimulus sequence, say LBCUDG. Let the black box function be denoted by BB, then BB(LBCUDG) = BB(LUDG) =
BB(UDG) = BB(LG) = unlock.

Example 4.24. Given the enumeration E defined in Example 4.4, we have the following algebraic derivation

F̂(L) = F(F̂(λ)L) = F(L) = L
F̂(LB) = F(F̂(L)B) = F(LB) = LB
F̂(LBC) = F(F̂(LB)C) = F(LBC) = L
F̂(LBCU) = F(F̂(LBC)U) = F(LU) = U
F̂(LBCUD) = F(F̂(LBCU)D) = F(UD) = L
ˆ7→(LBCUDG) = 7→ (F̂(LBCUD)G) = 7→ (LG) = unlock.

The result is not coincidental, but holds for every possible stimulus sequence. As proved by the following theorem, the
extended response mapping ˆ7→ is the same black box function computed by Algorithm 4.21.

Theorem 4.25. Let E : S∗ → R× S∗ be a complete and finite enumeration. Then ˆ7→ = β(E).

Proof. ˆ7→ and β(E) as defined are both black box functions from S∗ to R. Since β(E) is defined recursively as

β(E)(u) =

{
7→ (u) if u ∈ dom E
ω if u = u′xw, u′ 7→ ω, x ∈ S, w ∈ S∗
β(E)(F(u′)xw) if u = u′xw, u′ 67→ ω, x ∈ S, w ∈ S∗, u′x 6∈ dom E,

it suffices to show

ˆ7→(u) =

{
7→ (u) if u ∈ dom E
ω if u = u′xw, u′ 7→ ω, x ∈ S, w ∈ S∗
ˆ7→(F(u′)xw) if u = u′xw, u′ 67→ ω, x ∈ S, w ∈ S∗, u′x 6∈ dom E .

If u ∈ dom E , by Theorem 4.20 ˆ7→(u) = 7→ (u). If u 6∈ dom E , we write u = u′xw, where u′ ∈ dom E , x ∈ S, w ∈ S∗, but
u′x 6∈ dom E . Let xw = vy, where y ∈ S, then u = u′xw = u′vy.
If u′ 7→ ω, induct on |v| to show ˆ7→(u′vy) = ω.
If u′ 67→ ω, induct on |v| to show F̂(u′v) = F̂(F(u′)v), hence ˆ7→(u′vy) = ˆ7→(F(u′)vy) by the definition of ˆ7→. �

With the extended ˆ7→ function, we can prove that the indistinguishability relation∼ over all unreduced sequences is an
equivalence relation. This resultwill be used in Section 5.3 tomerge indistinguishable unreduced sequences for enumeration
minimization.

Lemma 4.26. Let E : S∗ → R× S∗ be a complete enumeration. The relation∼ ⊂ UE × UE is an equivalence relation.

Proof. We show a 6∼ b ↔ ∃w ∈ S+. ˆ7→(aw) 6= ˆ7→(bw), hence a ∼ b ↔ ∀w ∈ S+. ˆ7→(aw) = ˆ7→(bw). We claim ∼ is an
equivalence relation as equality is an equivalence relation. �

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 369

5. Transformation theory

5.1. Enumeration Mealy machine

A complete and finite enumeration encodes a finite state automaton with Mealy outputs (a Mealy machine). The inverse
image of every unreduced sequence under F̂ is a block in the partitioning of S∗ and corresponds to a state. The F and the 7→
functions respectively determine the transition function and the output function of the Mealy machine. We define below a
special subset of Mealy machines and explore their relationship to enumerations.

Definition 5.1 (Enumeration Mealy Machine). An enumeration Mealy machine is a Mealy machineM = 〈Q ,Σ,Γ , δ, ν, q0〉,
where Γ properly contains {0, ω}, a strict total order ≺ exists for Σ∗ such that for all u, v in Σ∗, |u| < |v| implies u ≺ v,
and the following hold assuming δ̂ is a function from Q ×Σ∗ to Q defined by (i) for all q in Q , δ̂(q, λ) = q, and (ii) for all q
in Q ,w inΣ∗, and a inΣ , δ̂(q, wa) = δ(δ̂(q, w), a), and ν̂ is a function fromΣ∗ to Γ defined by (i) ν̂(λ) = 0, and (ii) for all
w inΣ∗ and a inΣ , ν̂(wa) = ν(δ̂(q0, w), a):

Constraint 1. Q = {q0, . . . , qn−1};
Constraint 2. For all q in Q , there existsw inΣ∗ such that δ̂(q0, w) = q;
Constraint 3. Let min X denote the smallest element of X according to ≺ for X ⊂ Σ∗. Then c0 ≺ · · · ≺ cn−1, where

ci = min {z : δ̂(q0, z) = qi};
Constraint 4. For all qi in Q and a inΣ , ν̂(ci) = ω implies δ(qi, a) = qi;
Constraint 5. For all q in Q and a, b inΣ , ν(q, a) = ω implies ν(δ(q, a), b) = ω.

We would like an enumeration Mealy machine to be a Mealy machine that can be derived from a complete and finite
enumeration. Therefore, its output alphabet Γ must contain the two special responses (0 and ω) and at least one other
observable response, and all input strings must observe a strict total order ≺ such that any shorter string must relate to
any longer string by≺. Following the convention in [14], we extend the output function to all input strings such that (i) the
output for the empty string is 0, and (ii) the output for any non-empty string is the output of the last transition on the path
generated by the string from the initial state.
Five constraints are enforced. Some are results of the enumeration rules or axioms (Constraint 2, Constraint 5). Others are

added to ensure a one-to-one correspondence between complete and finite enumerations and enumerationMealymachines
(it will become clear in Section 5.2 why they are needed). Informally, we describe the constraints below.

Constraint 1. For an n-state enumeration Mealy machine, the set of states are named q0, . . ., qn−1.
Constraint 2. Every state is reachable from (i.e., connected from) the initial state q0.
Constraint 3. Let ci be the first word according to ≺ that takes the automaton from the initial state q0 to the state qi, then

the sequence of words c0, . . ., cn−1 are ordered by≺.
Constraint 4. If ci as defined above has ω as its output, then the state qi is a trap state (i.e., all outgoing arcs from qi return

to qi).
Constraint 5. If one incoming arc to the state qi has ω as its output, then all outgoing arcs from qi have ω as their output.

Example 5.2. The enumeration E defined in Example 4.4 encodes a state machineM defined below. In Section 5.2 we will
show how to deriveM mechanically from E , and vice versa.
LetM = 〈Q , S, R, δ, ν, q0〉, where Q = {q0, q1, q2, q3, q4}, S, R, and the strict total order≺ on S∗ are defined the same as

for E , and δ : Q × S → Q and ν : Q × S → R are defined as in Fig. 2. It can be checked thatM satisfies the five constraints
required for an enumeration Mealy machine.

In the enumeration process, as unreduced sequences are being identified, states of the system are being discovered. If all
the unreduced sequences are canonical, they represent distinct system states; otherwise, there are missed equivalences
among indistinguishable unreduced sequences, and the states they represent are indistinguishable in the following
sense: from such states, if we inject the same non-empty input string, we will get the same output. (We can extend
the output function following the convention in [14] such that the output for any non-empty input string injected to
any state is the output of the last transition on the path generated by the string from the given state.) We define the
distinguishability/indistinguishability relations among states of an enumeration Mealy machine as follows, one as the
complement of the other.

Definition 5.3 (Distinguishability/indistinguishability). LetM = 〈Q ,Σ,Γ , δ, ν, q0〉 be an enumeration Mealy machine. The
relation 6∼ ⊂ Q × Q is the smallest relation satisfying the following rules:

Rule 1. (∃x ∈ Σ . ν(a, x) 6= ν(b, x))→ a 6∼ b;
Rule 2. (a 6∼ b, ∃x ∈ Σ . (δ(c, x) = a, δ(d, x) = b))→ c 6∼ d.

The relation∼ ⊂ Q × Q is defined by ∀a, b ∈ Q . a ∼ b↔ (a, b) 6∈ 6∼.

370 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

Fig. 2. A state machine for the safe controller.

Two states of an enumeration Mealy machine are distinguishable if the same non-empty input string injected to the two
states could generate different outputs. This happens in the following situations:

- From the two states, one arbitrary but the same input generates different outputs. (Rule 1)
- From the two states, one arbitrary but the same input leads to two already distinguishable states. (Rule 2)

We can combine (merge) indistinguishable states of an enumeration Mealy machine and simplify the automaton. If all
the states are pairwise distinguishable, the enumeration Mealy machine is minimal.

Definition 5.4 (Minimal Enumeration Mealy Machine). An enumeration Mealy machineM = 〈Q ,Σ,Γ , δ, ν, q0〉 isminimal
iff for all a, b in Q , a 6= b implies a 6∼ b.

Example 5.5. Given the enumeration Mealy machineM defined in Example 5.2, by Definition 5.3, Rule 1

q0 6∼ q1 as ν(q0, L) = 0, ν(q1, L) = ω q1 6∼ q2 as ν(q1, B) = ω, ν(q2, B) = 0
q0 6∼ q2 as ν(q0, B) = ω, ν(q2, B) = 0 q1 6∼ q3 as ν(q1, B) = ω, ν(q3, B) = 0
q0 6∼ q3 as ν(q0, B) = ω, ν(q3, B) = 0 q1 6∼ q4 as ν(q1, B) = ω, ν(q4, B) = 0
q0 6∼ q4 as ν(q0, B) = ω, ν(q4, B) = 0 q2 6∼ q3 as ν(q2,G) = unlock, ν(q3,G) = 0
q3 6∼ q4 as ν(q3,D) = lock, ν(q4,D) = ω q2 6∼ q4 as ν(q2,G) = unlock, ν(q4,G) = 0,

hence states in Q are pairwise distinguishable, andM is a minimal enumeration Mealy machine.

With the extended output function defined for (state, non-empty input string) pairs,we can prove the indistinguishability
relation among all states of an enumeration Mealy machine is an equivalence relation.

Lemma 5.6. LetM = 〈Q ,Σ,Γ , δ, ν, q0〉 be an enumerationMealymachine. The relation∼ ⊂ Q×Q is an equivalence relation.

Proof. We show a 6∼ b ↔ ∃u ∈ Σ+. ν(a, u) 6= ν(b, u), where ν is extended to Q × Σ+ by: ∀q ∈ Q .∀u ∈ Σ∗.∀a ∈
Σ . ν(q, ua) = ν(δ̂(q, u), a). Therefore, a ∼ b ↔ ∀u ∈ Σ+. ν(a, u) = ν(b, u). We claim ∼ is an equivalence relation as
equality is an equivalence relation. �

5.2. Enumeration to and from state machine

We first present two algorithms that transform complete and finite enumerations to enumeration Mealy machines, and
vice versa. Then we establish a representation theorem. These two algorithms are also new contributions of this paper.
We will describe these algorithms as mathematical functions. Following the notation in Section 4.2, E denotes the set of

all complete and finite enumerations. We define
M = {M : M is an enumeration Mealy machine}.
The transformation from enumeration to state machine is defined as a total functionΦ : E→M.

Algorithm 5.7 (Enumeration to State Machine Transformation).

1. Let E : S∗ → R× S∗ be in E.
2. Let UE = {u : u F u} = {c0, . . . , cn−1}, where c0 ≺ · · · ≺ cn−1.
3. Let Q = {q0, . . . , qn−1}.
4. δ : Q × S → Q is defined by:
5. ∀ci ∈ UE .∀cj ∈ UE .∀a ∈ S. cia F cj → δ(qi, a) = qj

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 371

6. ∀ci ∈ UE .∀a ∈ S. ci 7→ ω→ δ(qi, a) = qi.
7. ν : Q × S → R is defined by:
8. ∀ci ∈ UE .∀a ∈ S.∀r ∈ R. cia 7→ r → ν(qi, a) = r
9. ∀ci ∈ UE .∀a ∈ S. ci 7→ ω→ ν(qi, a) = ω.
10.Φ(E) = 〈Q , S, R, δ, ν, q0〉.

Given any complete and finite enumeration E (Line 1), we find all its unreduced sequences and order them by the pre-
defined strict total order≺ over all stimulus sequences (Line 2). They will get mapped to states q0, . . . , qn−1 (assume there
are n states in total), respectively (Line 3), and a smaller sequence by ≺ will be mapped to a state with a smaller index
(this will satisfy Constraints 1 and 3 required in the definition for an enumeration Mealy machine). If the state qi is mapped
from a legal and unreduced sequence ci (hence ci must have been extended in E), the transitions out of qi as well as their
associated outputs can be defined by existing rows in the enumeration table that define the responses and reductions for
the extensions of ci by every single stimulus (Lines 5 and 8); otherwise, the state qi must be mapped from an illegal and
unreduced sequence ci, hence qi is made a trap state (Line 6) with all its outgoing arcs outputting ω (Line 9), in order to
satisfy Constraints 4 and 5 required for an enumeration Mealy machine.
The transformation from state machine to enumeration is defined as a total function Ψ :M→ E.

Algorithm 5.8 (State Machine to Enumeration Transformation).

1. LetM = 〈Q ,Σ,Γ , δ, ν, q0〉 be inM, where Q = {q0, . . . , qn−1}.
2. Let c0, . . . , cn−1 be defined by ci = min {z : δ̂(q0, z) = qi}.
3. Let Q ′ = {qi : qi ∈ Q , ν̂(ci) 6= ω}.
4. E : Σ∗ → Γ ×Σ∗ is defined by:
5. λ 7→ 0, λ F λ.
6. ∀qi ∈ Q ′.∀a ∈ Σ .∀qj ∈ Q . δ(qi, a) = qj → cia F cj
7. ∀qi ∈ Q ′.∀a ∈ Σ .∀r ∈ Γ . ν(qi, a) = r → cia 7→ r .
8. Ψ (M) = E .

Given any enumeration Mealy machine M with the state set Q (Line 1), we first compute for every state the smallest
possible word according to the pre-defined strict total order ≺ over all input strings that takes the automaton from the
initial state to the state (Line 2). The computed words represent all the unreduced sequences in the converted enumeration.
We collect all the states whose computed words do not map toω by the extended output function (on all input strings) into
the set Q ′ (Line 3). The elements in Q ′ now correspond to all legal and unreduced sequences in the resulting enumeration.
We construct the enumeration by extending only these legal and unreduced sequences, referring to the transition function
for equivalence declarations (Line 6) and the output function for response mappings (Line 7). As a special case, the empty
sequence is mapped to 0 and unreduced (Line 5).
In the representation theorem that follows, we show the two transformation functions are well-defined total functions,

and establish the one-to-one correspondence between complete and finite enumerations and enumerationMealymachines.

Theorem 5.9 (Representation Theorem).

i. Φ : E→M is a well-defined total function;
ii. Ψ :M→ E is a well-defined total function;
iii. Φ : E→M and Ψ :M→ E are inverse bijections.

Proof. For (i) it suffices to show Φ(E) ∈ M for all E in E. For (ii) it suffices to show Ψ (M) ∈ E for allM inM. For Part (iii)
it suffices to showΦ ◦ Ψ = 1M and Ψ ◦ Φ = 1E, where 1M :M→M and 1E : E→ E are identity mappings. �

Example 5.10. Given the enumeration E defined in Example 4.4, we apply Algorithm 5.7 to obtain the state machine M
defined in Example 5.2, and then apply Algorithm 5.8 to transform it back.
Unreduced sequences in UE are mapped as follows according to the strict total order ≺ on S∗: λ = c0, B = c1, L = c2,

U = c3, LB = c4. They correspond to states q0, q1, . . . , q4 respectively. It follows thatΦ(E) = M .
Starting from M , we can compute the first words according to the strict total order ≺ on S∗ taking the automaton from

the starting state to each state: c0 = λ, c1 = B, c2 = L, c3 = U , c4 = LB. They correspond to all the unreduced sequences
in the resulting enumeration Ψ (M). Since c1 = B is the only sequence among them that is mapped to ω by ν̂, all the others
are extended by every input symbol in Ψ (M), as required by Algorithm 5.8. Again, it follows that Ψ (M) = Ψ (Φ(E)) = E .

With the representation theorem, it becomes intuitively clear that computing the mapped response for any stimulus
sequence from a complete and finite enumeration by Algorithm 4.21 or equivalently, through the derivation of ˆ7→ as defined
in Definition 4.18, simulates computing the output generated by the input string by the extended output function of the
corresponding Mealy machine, as proved below.

Theorem 5.11. Let E : S∗ → R× S∗ be in E, and letΦ(E) = 〈Q , S, R, δ, ν, q0〉. Then ˆ7→ = ν̂ .

372 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

Proof. ˆ7→ and ν̂ as defined are both total functions from S∗ to R. Since we have shown in the proof of Theorem 4.25 that ˆ7→
can be defined recursively as

ˆ7→(u) =

{
7→ (u) if u ∈ dom E
ω if u = u′xw, u′ 7→ ω, x ∈ S, w ∈ S∗
ˆ7→(F(u′)xw) if u = u′xw, u′ 67→ ω, x ∈ S, w ∈ S∗, u′x 6∈ dom E,

it suffices to show

ν̂(u) =

{
7→ (u) if u ∈ dom E
ω if u = u′xw, u′ 7→ ω, x ∈ S, w ∈ S∗
ν̂(F(u′)xw) if u = u′xw, u′ 67→ ω, x ∈ S, w ∈ S∗, u′x 6∈ dom E .

The proof is mechanical and follows the definition ofΦ(E). �

Example 5.12. As a third way to derive the mapped response for an arbitrary stimulus sequence LBCUDG, given the
enumeration E defined in Example 4.4, we do an algebraic derivation of ν̂(LBCUDG), where ν is the output function ofΦ(E).

ν̂(LBCUDG) = ν(δ̂(q0, LBCUD),G)

= ν(δ(δ(δ(δ(δ(δ̂(q0, λ), L), B), C),U),D),G)
= ν(δ(δ(δ(δ(δ(q0, L), B), C),U),D),G)
= ν(δ(δ(δ(δ(q2, B), C),U),D),G)
= ν(δ(δ(δ(q4, C),U),D),G)
= ν(δ(δ(q2,U),D),G)
= ν(δ(q3,D),G)
= ν(q2,G)
= unlock.

The representation theorem also leads to observations in presenting a bigger picture of the sequence-based specification
method and understanding the theoretical ramifications.
Let us consider again the function β : E → B defined in Section 4.2. We first claim it is not injective, by the example

below.

Example 5.13. Consider E1, E2 in E, where E1 : S∗ → R × S∗, E2 : S∗ → R × S∗ for S = {a}, R = {0, ω, r}, and the strict
total order≺ on S∗ defined by an ≺ an+1 for all non-negative integer n:

E1(λ) = (0, λ) E1(a) = (r, λ)
E2(λ) = (0, λ) E2(a) = (r, a) E2(aa) = (r, a).

Note that β(E1) = β(E2) = BB for E1 6= E2, where BB : S∗ → R is defined by BB(λ) = 0, and ∀u ∈ S+. BB(u) = r , hence
β is not injective.
This implies that there may exist more than one complete and finite enumeration for a black box function whose

codomain is finite. In practice, we often encounter situations inwhich different people come upwith different enumerations
(specifications) that describe the behavior of the same software system under development. If they are all done correctly,
all of them should produce the same black box function as implied by requirements with only variations in the form.
Next we claim neither is β surjective, by the following argument.
From the representation theorem we see |E| = |M|. Since every enumeration Mealy machine is a special deterministic

finite state automaton, the number of all enumeration Mealy machines is countably infinite. Therefore, |E| is a countable
number. However, consider a proper subset ofB defined byB′ = {BB : BB is an element ofB from S∗ to R, where S = {a},
R = {0, ω, r}}. |B′|, and hence |B|, is uncountable by the diagonalizationmethod. Since |E| is countable, but |B| is uncount-
able, β cannot be surjective.
The above discussion implies that there may exist black box functions with finite codomains for which no complete and

finite enumerations can be found. This result should not be surprising as, applying the same counting argument, we could
deduce that there exist black box functions with finite codomains that are not computable by any Turing machine, which
agreeswith our understanding that there are simplymore functions than Turingmachines to compute them [14]. Sequence-
based specification was developed to work with real-world problems that can be programmed for computers. The method
concerns itself with such problems whose black box functions compose a small portion ofB.

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 373

5.3. Enumeration and state machine minimization

As illustrated in Section 4.1, a complete and finite enumeration may contain missed equivalences and hence not be
minimal. We give an algorithm that converts any complete and finite enumeration to a complete, finite, and minimal
enumeration that computes the same black box function. This algorithm is also a new contribution of this paper. With
the representation theorem, it should become clear that enumeration minimization amounts to merging indistinguishable
unreduced sequences that represent indistinguishable states in the corresponding state machine.
Let E′ = {E : E is a complete, finite, and minimal enumeration}.
Enumeration minimization is defined as a total function α : E→ E′.

Algorithm 5.14 (Enumeration Minimization).
1. Let E : S∗ → R× S∗ be in E.
2. Let UE = {u : u F u} = {c0, . . . , cn−1}, where c0 ≺ · · · ≺ cn−1.
3. Let U ′E = UE − {cj : ∃ i < j. ci ∼ cj}.
4. Let E ′ : S∗ → R× S∗ be defined by:
5. λ 7→ 0, λ F λ.
6. ∀ci ∈ U ′E .∀a ∈ S. (cia F

E
cj, cj ∈ U ′E)→ cia F

E ′
cj

7. ∀ci ∈ U ′E .∀a ∈ S. (cia F
E
cj, cj 6∈ U ′E , cj ∼ ck, ck ∈ U

′
E)→ cia F

E ′
ck

8. ∀ci ∈ U ′E .∀a ∈ S.∀r ∈ R. cia 7→
E
r → cia 7→

E ′
r .

9. α(E) = E ′.

Given any complete and finite enumeration E (Line 1), we collect in the setUE all its unreduced sequences and order them
according to the pre-defined strict total order ≺ on all stimulus sequences (Line 2). We further reduce UE to U ′E to contain
only the canonical sequences that are distinguishable from all their prior unreduced sequences (Line 3). The elements in UE

but not in U ′E are to be merged with their indistinguishable counterparts in U
′
E . The resulting enumeration E ′ is constructed

as follows. The empty sequence is defined explicitly (Line 5). Only canonical sequences in U ′E are extended. To define these
extensions, we refer to E for responses (Line 8) and reductions (Lines 6–7). If the reduction in E is to an element outside of
U ′E , the reduction in E ′ is made to its indistinguishable counterpart in U ′E (Line 7).
We show α is well-defined and a surjection. The constructed object must satisfy all the nine axioms required for a

complete, finite, and minimal enumeration.

Lemma 5.15. α : E→ E′ is a well-defined surjection.

Proof. We show α(E) ∈ E′ for all E in E. Note that E′ (E. Since α(E) = E for all E in E′, α is surjective. �

Consider any complete and finite enumeration E . It implies a black box functionwhich can be computed in three different
but equivalent ways: by Algorithm 4.21, by the extended response mapping, or by the extended output function of the
converted Mealy machine. The black box function, thus computed, will be referred to as the enumeration’s ‘‘underlying’’
black box function.
As established by the following theorem, enumeration minimization does not change the underlying black box function.

Theorem 5.16. β = β ◦ α.
Proof. Let E : S∗ → R × S∗ be in E. Induct on |u| to show F̂

E
(u) ∼ F̂

α(E)
(u) in E for all u in S∗. Then ˆ7→

E
= ˆ7→

α(E)
, hence

β(E) = β(α(E)) by Theorem 4.25. �

In parallel, we give an enumeration Mealy machine minimization algorithm, also expressed in function form. This
algorithm is essentially the same as the existing Mealy machine minimization algorithm in [11], except that we are dealing
with a special subset of Mealy machines and, hence, we name the states of the minimized automaton in a particular way
that guarantees all the constraints for enumeration Mealy machines are still satisfied after minimization.
LetM′ = {M : M is a minimal enumeration Mealy machine}.
Enumeration Mealy machine minimization is defined as a total function γ :M→M′.

Algorithm 5.17 (Enumeration Mealy Machine Minimization).
1. LetM = 〈Q ,Σ,Γ , δ, ν, q0〉 be inM.
2. Let Q ′ = Q − {qj : ∃ i < j. qi ∼ qj}.
3. Let Q ′′ = {q0, . . . , q|Q ′|−1}.
4. Let θ : Q → Q ′′ be defined by:
5. ∀q ∈ Q . (q ∼ qi, qi ∈ Q ′, |{qj : qj ∈ Q ′, j < i}| = k)→ θ(q) = qk.
6. Let δ′ : Q ′′ ×Σ → Q ′′ and ν ′ : Q ′′ ×Σ → Γ be defined by:
7. ∀q ∈ Q ′.∀a ∈ Σ .∀p ∈ Q . δ(q, a) = p→ δ′(θ(q), a) = θ(p)
8. ∀q ∈ Q ′.∀a ∈ Σ .∀r ∈ Γ . ν(q, a) = r → ν ′(θ(q), a) = r .
9. LetM ′ = 〈Q ′′,Σ,Γ , δ′, ν ′, q0〉.
10. γ (M) = M ′.

374 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

Given any enumeration Mealy machine M (Line 1), its state set Q can be partitioned into equivalence classes based on
the indistinguishability relation. From each equivalence class, we pick the state with the smallest index and collect them in
the set Q ′ (Line 2). Theymust be pairwise distinguishable, and are the states that remain in theminimized automaton. Since
states in Q ′ only constitute a subset of the original state set Q , they need to be renamed from q0 to q|Q ′|−1 (Line 3), without
changing the ordering of indices among them. We define a θ function that maps any state in Q to its indistinguishable and
renamed counterpart in Q ′′ (Lines 4–5). A newMealy machineM ′ is constructed fromM by including only states in Q ′ (now
renamed in Q ′′) and redirecting arcs to elements outside of Q ′ to their indistinguishable and renamed counterparts in Q ′′
(Lines 6–9).
We show γ is well-defined and a surjection. The constructed objectmust satisfy the definition for aminimal enumeration

Mealy machine.

Lemma 5.18. γ :M→M′ is a well-defined surjection.

Proof. We show γ (M) ∈M′ for allM inM. Note thatM′ (M. Since γ (M) = M for allM inM′, γ is surjective. �

As expected, enumeration Mealy machine minimization does not change the extended output function.

Theorem 5.19. Let M = 〈Q ,Σ,Γ , δ, ν, q0〉 be inM, and γ (M) = 〈Q ′,Σ,Γ , δ′, ν ′, q0〉. Then ν̂ = ν̂ ′.

Proof. The Q ′ as stated in the theorem corresponds to the Q ′′ in Algorithm 5.17. We show ν̂ = ν̂ ′ forM andM ′ as defined
in the algorithm. Induct on |u| to show δ(q0, u) ∼ δ′(q0, u) inM for all u inΣ∗. �

The result that follows is exemplified by Example 5.10. As we transform between enumerations and enumeration Mealy
machines, minimality is preserved.

Theorem 5.20.

i. E ∈ E′ ↔ Φ(E) ∈M′;
ii. M ∈M′ ↔ Ψ (M) ∈ E′.

Proof. We show for every E in E′, the constructedΦ(E) is inM′, and for everyM inM′, the constructed Ψ (M) is in E′. The
‘‘if’’ parts of both (i) and (ii) follow from the established ‘‘only if’’ parts and the representation theorem. �

The domain of Φ (or Ψ , respectively) can then be restricted to a subset E′ (orM′), with the codomain being reduced
accordingly toM′ (or E′). LetΦ ′ and Ψ ′ denote the restricted transformation functions. We have a representation theorem
for complete, finite, and minimal enumerations in terms of minimal enumeration Mealy machines.

Theorem 5.21. Φ ′ : E′ →M′ and Ψ ′ :M′ → E′ are inverse bijections.

Proof. By Theorem 5.20 Φ ′ : E′ → M′ and Ψ ′ : M′ → E′ are well-defined total functions. We show Φ ′ ◦ Ψ ′ = 1M′ and
Ψ ′ ◦ Φ = 1E′ , where 1M′ :M

′
→M′ and 1E′ : E

′
→ E′ are identity mappings. �

Because we have expressed both the transformation algorithms and the minimization algorithms as mathematical
functions, we can apply function composition and prove that the diagram in Fig. 3 commutes, hence transformations (to
enumerations or statemachines) andminimizations (of the corresponding form) can be applied in an arbitrary orderwithout
affecting the final result.

Theorem 5.22.

i. Φ ◦ α = γ ◦ Φ;
ii. α ◦ Ψ = Ψ ◦ γ .

Proof. For (i) both sides are total functions from E toM′. Let E : S∗ → R× S∗ be in E. LetM = Φ(E) = 〈Q , S, R, δ, ν, q0〉,
M1 = Φ ◦α(E) = 〈Q1, S, R, δ1, ν1, q0〉, andM2 = γ ◦Φ(E) = 〈Q2, S, R, δ2, ν2, q0〉. It follows from Theorems 5.11 and 5.19,
and the proof of Theorem 5.16 that ν̂1 = ˆ7→

α(E)
= ˆ7→

E
= ν̂ = ν̂2. GivenM1,M2 ∈ M′ we claim Q1 = Q2, δ1 = δ2, and ν1 = ν2,

henceM1 = M2.
Part (ii) follows from Part (i) and the representation theorem. �

6. Conclusions and future work

The axiomatization of sequence-based specification has proved its worth on a theoretical basis, as demonstrated in this
paper. The relationship between enumerations and state machines is now precise with the representation theorem. We
believe that the axiom system will facilitate the comparison of sequence-based specification with other mathematically
describedmethods, as well as the transformation of artifacts from onemethod to another. We hope that this will contribute
to the eventual unification of formal ideas for software development.

L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376 375

Fig. 3. A transition diagram.

The axiomatization of sequence-based specification has proved its worth on a practical basis, as demonstrated in
our theory for managing requirements changes [19], the change algorithms and their implementation in a prototype
enumeration tool. The axiom systemwas essential to the development of the change algorithms thatmaximize the potential
automation support for stimulus addition and deletion, response changes, legality changes, and equivalence changes. These
algorithms meet a very great need in field application of sequence-based specification, and have a huge practical impact on
maintaining specifications over time in the presence of change.
Further work is underway to improve the sequence-based specification method. Field use of the method has revealed

that large productivity gains are possible with the adoption of ideas from string rewriting theory. Effective application of
these ideas will require corresponding enhancement of the Proto_Seq tool.
Effective abstractions are key to the productive use of the method, especially with respect to handling timing, interrupts,

and continuity. We expect that a thorough algebraic treatment of abstraction will produce benefits in application. We
need better capability to introduce, remove, change abstractions, compare enumerations with different abstractions, and
to minimize information loss during abstraction. Our fieldwork has demonstrated that abstractions occur in patterns; as
field experience expands, we anticipate automated support for abstraction management. Definition of abstractions within
enumeration tools, as well as their automatic removal, is important for code generation.
We are also addressing timing and continuity directly by attempting to extend the constructive process to handle timing

and continuity in the forms typically encountered in applications of Simulink [2] and similar development environments.
The axiom system presented in this paper provides a theoretical framework to explore these lines of inquiry.

Acknowledgment

The authors wish to thank Michael D. Vose for reviewing an earlier version of the paper and the many insightful
suggestions and discussions, and the anonymous referees for their helpful comments to improve this paper.

References

[1] ESP Project. http://sqrl.eecs.utk.edu/esp/index.html.
[2] The Mathworks. http://www.mathworks.com/products/simulink.
[3] W. Bartussek, D.L. Parnas, Using assertions about traces to write abstract specifications for software modules, in: Proceedings of the 2nd Conference
of the European Cooperation on Informatics, Springer-Verlag, 1978, pp. 211–236.

[4] T. Bauer, F. Bohr, D. Landmann, T. Beletski, R. Eschbach, J.H. Poore, From requirements to statistical testing of embedded systems, in: Proceedings of
the 4th International Workshop on Software Engineering for Automotive Systems, IEEE Computer Society, 2007, pp. 3–9.

[5] G.H. Broadfoot, P.J. Broadfoot, Academia and industry meet: Some experiences of formal methods in practice, in: Proceedings of the 10th Asia-Pacific
Software Engineering Conference, IEEE Computer Society, 2003, pp. 49–59.

[6] J. Brzozowski, Derivatives of regular expressions, Journal of the ACM 11 (4) (1964) 481–494.
[7] J. Brzozowski, Representation of a class of nondeterministic semiautomata by canonical words, Theoretical Computer Science 356 (2006) 46–57.
[8] J. Brzozowski, H. Jürgensen, Theory of deterministic trace-assertion specifications, Technical Report CS-2004-30, University of Waterloo, 2004.
[9] J. Brzozowski, H. Jürgensen, Representation of semiautomata by canonical words and equivalences, International Journal of Foundations of Computer
Science 16 (5) (2005) 831–850.

[10] J. Brzozowski, H. Jürgensen, Representation of semiautomata by canonical words and equivalences, part II: Specification of software modules,
International Journal of Foundations of Computer Science 18 (5) (2007) 1065–1087.

[11] A. Gill, Introduction to the Theory of Finite-State Machines, McGraw-Hill, New York, 1962.
[12] C.L. Heitmeyer, Software cost reduction, in: J.J. Marciniak (Ed.), Encyclopedia of Software Engineering, Wiley-Interscience, 2001.
[13] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[14] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 1979.
[15] P.J. Hopcroft, G.H. Broadfoot, Combining the box structure development method and CSP for software development, Electronic Notes in Theoretical

Computer Science 128 (6) (2005) 127–144.
[16] D. Jackson, M. Thomas, L.I. Millett (Eds.), Software for Dependable Systems: Sufficient Evidence? National Research Council, The National Academies

Press, Washington, DC, 2007.

http://sqrl.eecs.utk.edu/esp/index.html
http://sqrl.eecs.utk.edu/esp/index.html
http://sqrl.eecs.utk.edu/esp/index.html
http://sqrl.eecs.utk.edu/esp/index.html
http://sqrl.eecs.utk.edu/esp/index.html
http://sqrl.eecs.utk.edu/esp/index.html
http://sqrl.eecs.utk.edu/esp/index.html
http://sqrl.eecs.utk.edu/esp/index.html
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink

376 L. Lin et al. / Theoretical Computer Science 411 (2010) 360–376

[17] R. Janicki, E. Sekerinski, Foundations of the trace assertion method of module interface specification, IEEE Transactions on Software Engineering 27
(7) (2001) 577–598.

[18] L. Lin, Management of requirements changes in sequence-based software specifications, Ph.D. Thesis, University of Tennessee, 2006, http://sqrl.eecs.
utk.edu/btw/files/lin.pdf.

[19] L. Lin, S.J. Prowell, J.H. Poore, The impact of requirements changes on specifications and state machines, Software – Practice and Experience 39 (6)
(2009) 573–610.

[20] R.C. Linger, H.D. Mills, B.I. Witt, Structured Programming: Theory and Practice, Addison-Wesley, 1979.
[21] H.D. Mills, The new math of computer programming, Communications of the ACM 18 (1) (1975) 43–48.
[22] H.D. Mills, Stepwise refinement and verification in box-structured systems, IEEE Computer 21 (6) (1988) 23–36.
[23] D.L. Parnas, Y. Wang, The trace assertion method of module interface specification, Technical Report 89-261, Queens University, 1989.
[24] S.J. Prowell, J.H. Poore, Foundations of sequence-based software specification, IEEE Transactions on Software Engineering 29 (5) (2003) 417–429.
[25] S.J. Prowell, W.T. Swain, Sequence-based specification of critical software systems, in: Proceedings of the 4th American Nuclear Society International

Topical Meeting on Nuclear Plant Instrumentation, Controls and Human-Machine Interface Technology, 2004.
[26] S.J. Prowell, C.J. Trammell, R.C. Linger, J.H. Poore, Cleanroom Software Engineering: Technology and Process, Addison-Wesley-Longman, 1999.
[27] A.W. Roscoe, Model-checking CSP, in: A Classical Mind: Essays in Honor of C.A.R. Hoare, Prentice Hall, 1994, pp. 353–378.

http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf
http://sqrl.eecs.utk.edu/btw/files/lin.pdf

	An axiom system for sequence-based specification
	Introduction
	Background: Sequence-based specification
	Terminology and notation
	Axiomatic sequence-based specification
	Enumeration
	Black box function

	Transformation theory
	Enumeration Mealy machine
	Enumeration to and from state machine
	Enumeration and state machine minimization

	Conclusions and future work
	Acknowledgment
	References

