16 research outputs found

    Verifying SeVeCom Using Set-based Abstraction

    Get PDF

    Verification Based on Set-Abstraction Using the AIF Framework

    Get PDF

    Abstraction by Set-Membership:Verifying Security Protocols and Web Services with Databases

    Get PDF
    The abstraction and over-approximation of protocols and web services by a set of Horn clauses is a very successful method in practice. It has however limitations for proto-cols and web services that are based on databases of keys, contracts, or even access rights, where revocation is pos-sible, so that the set of true facts does not monotonically grow with state transitions. We extend the scope of these over-approximation methods by defining a new way of ab-straction that can handle such databases, and we formally prove that the abstraction is sound. We realize a translator from a convenient specification language to standard Horn clauses and use the verifier ProVerif and the theorem prover SPASS to solve them. We show by a number of examples that this approach is practically feasible for wide variety of verification problems of security protocols and web services

    SInCom 2015

    Get PDF
    2nd Baden-WĂĽrttemberg Center of Applied Research Symposium on Information and Communication Systems, SInCom 2015, 13. November 2015 in Konstan

    Conception Assistée des Logiciels Sécurisés pour les Systèmes Embarqués

    Get PDF
    A vast majority of distributed embedded systems is concerned by security risks. The fact that applications may result poorly protected is partially due to methodological lacks in the engineering development process. More specifically, methodologies targeting formal verification may lack support to certain phases of the development process. Particularly, system modeling frameworks may be complex-to-use or not address security at all. Along with that, testing is not usually addressed by verification methodologies since formal verification and testing are considered as exclusive stages. Nevertheless, we believe that platform testing can be applied to ensure that properties formally verified in a model are truly endowed to the real system. Our contribution is made in the scope of a model-driven based methodology that, in particular, targets secure-by-design embedded systems. The methodology is an iterative process that pursues coverage of several engineering development phases and that relies upon existing security analysis techniques. Still in evolution, the methodology is mainly defined via a high level SysML profile named Avatar. The contribution specifically consists on extending Avatar so as to model security concerns and in formally defining a model transformation towards a verification framework. This contribution allows to conduct proofs on authenticity and confidentiality. We illustrate how a cryptographic protocol is partially secured by applying several methodology stages. In addition, it is described how Security Testing was conducted on an embedded prototype platform within the scope of an automotive project.Une vaste majorité de systèmes embarqués distribués sont concernés par des risques de sécurité. Le fait que les applications peuvent être mal protégées est partiellement à cause des manques méthodologiques dans le processus d’ingénierie de développement. Particulièrement, les méthodologies qui ciblent la vérification formelle peuvent manquer de support pour certaines étapes du processus de développement SW. Notamment, les cadres de modélisation peuvent être complexes à utiliser ou ne pas adresser la sécurité du tout. Avec cela, l’étape de tests n’est pas normalement abordée par les méthodologies de vérification formelle. Néanmoins, nous croyons que faire des tests sur la plateforme peut aider à assurer que les propriétés vérifiées dans le modèle sont véritablement préservées par le système embarqué. Notre contribution est faite dans le cadre d’une méthodologie nommée Avatar qui est basée sur les modèles et vise la sécurité dès la conception du système. La méthodologie est un processus itératif qui poursuit la couverture de plusieurs étapes du développement SW et qui s’appuie sur plusieurs techniques d’analyse de sécurité. La méthodologie compte avec un cadre de modélisation SysML. Notre contribution consiste notamment à étendre le cadre de modélisation Avatar afin d’aborder les aspects de sécurité et aussi à définir une transformation du modèle Avatar vers un cadre de vérification formel. Cette contribution permet d’effectuer preuves d’authenticité et confidentialité. Nous montrons comment un protocole cryptographique est partiellement sécurisé. Aussi, il est décrit comment les tests de sécurité ont été menés sur un prototype dans le cadre d’un projet véhiculaire

    Sécurité et protection de la vie privée dans les systèmes embarqués automobiles

    Get PDF
    Electronic equipment has become an integral part of a vehicle's network architecture, which consists of multiple buses and microcontrollers called Electronic Control Units (ECUs). These ECUs recently also connect to the outside world. Navigation and entertainment system, consumer devices, and Car2X functions are examples for this. Recent security analyses have shown severe vulnerabilities of exposed ECUs and protocols, which may make it possible for attackers to gain control over a vehicle. Given that car safety-critical systems can no longer be fully isolated from such third party devices and infotainment services, we propose a new approach to securing vehicular on-board systems that combines mechanisms at different layers of the communication stack and of the execution platforms. We describe our secure communication protocols, which are designed to provide strong cryptographic assurances together with an efficient implementation fitting the prevalent vehicular communication paradigms. They rely on hardware security modules providing secure storage and acting as root of trust. A distributed data flow tracking based approach is employed for checking code execution against a security policy describing authorized communication patterns. Binary instrumentation is used to track data flows throughout execution (taint engine) and also between control units (middleware), thus making it applicable to industrial applications. We evaluate the feasibility of our mechanisms to secure communication on the CAN bus, which is ubiquitously implemented in cars today. A proof of concept demonstrator also shows the feasibility of integrating security features into real vehicles.L'équipement électronique de bord est maintenant devenue partie intégrante de l'architecture réseau des véhicules. Elle s’appuie sur l'interconnexion de microcontroleurs appelés ECUs par des bus divers. On commence maintenant à connecter ces ECUs au monde extérieur, comme le montrent les systèmes de navigation, de divertissement, ou de communication mobile embarqués, et les fonctionnalités Car2X. Des analyses récentes ont montré de graves vulnérabilités des ECUs et protocoles employés qui permettent à un attaquant de prendre le contrôle du véhicule. Comme les systèmes critiques du véhicule ne peuvent plus être complètement isolés, nous proposons une nouvelle approche pour sécuriser l'informatique embarquée combinant des mécanismes à différents niveaux de la pile protocolaire comme des environnements d'exécution. Nous décrivons nos protocoles sécurisés qui s'appuient sur une cryptographie efficace et intégrée au paradigme de communication dominant dans l'automobile et sur des modules de sécurité matériels fournissant un stockage sécurisé et un noyau de confiance. Nous décrivons aussi comment surveiller les flux d'information distribués dans le véhicule pour assurer une exécution conforme à la politique de sécurité des communications. L'instrumentation binaire du code, nécessaire pour l’industrialisation, est utilisée pour réaliser cette surveillance durant l’exécution (par data tainting) et entre ECUs (dans l’intergiciel). Nous évaluons la faisabilité de nos mécanismes pour sécuriser la communication sur le bus CAN aujourd'hui omniprésent dans les véhicules. Une preuve de concept montre aussi la faisabilité d'intégrer des mécanismes de sécurité dans des véhicules réels
    corecore