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Summary (English)

On the Internet computers communicate using security protocols. For example,
when using an online banking application a client may log in with NemID,
ensuring that the bank can authenticate the client. Similarly, the TLS protocol
provides a confidential communication channel between the client and the bank
ensuring that the data they exchange are protected from eavesdroppers and
authenticates the bank to the client.

A question is whether protocols are designed well enough so that they always
achieve their security goals like confidentiality and authentication. If not, an
attacker may be able to hijack and manipulate communication to break the
goals, even when all honest participants only use the protocols as intended. To
combat this, protocols are formally verified which provides strong guarantees
that their goals cannot be violated even in the presence of dishonest participants
and powerful adversaries that control the communication network. There is
a rich body of research on the formal verification of security protocols, i.e.,
mathematically proving the correctness. However, significantly less literature
exists on the composition of protocols: In the banking example the TLS protocol
usually provides a secure channel over which NemID runs, that is, the protocols
are used in a composed fashion. It turns out that such composed protocols
might not be secure even when their component protocols have been verified in
isolation.

Composed protocols, however, can be rather difficult to verify since they are
often too big for automated methods to verify in a reasonable amount of time.
Worse still, a rather large amount of protocols are used on the Internet, and their
number is growing; one cannot possibly verify the composition of all of them.
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To mitigate these problems, we prove several compositionality results that have
the following basic form: given a number of protocols that are secure in isolation
and that satisfy a number of simple prerequisites, then also their composition is
secure. Hence compositionality reduces a complex protocol verification problem
to easier ones.

Existing compositionality results are for relatively simple “stateless” protocols,
where the behavior of the protocol participants only depends on the messages
they receive within a single session. In this work we present the first compo-
sitionality result for stateful protocols, where each participant may additionally
maintain databases, meaning that the behavior of the participants also depends
on what is contained in the databases. For instance, a keyserver may maintain
a database of currently valid public keys. As part of the protocol, participants
can insert entries into, or delete entries from, their databases. Moreover, the
databases may be used in more than one protocol, for instance, the keyserver
may offer several different protocols for establishing new keys, and revoking and
updating existing keys. The contribution of this thesis is to provide a very gen-
eral result for the composition of such stateful protocols and how they coordinate
the access to any shared databases.

The proofs of compositionality results, however, are long and often contain
subtle details. If there is a glitch in the proof of a compositionality theorem, then
we may falsely rely on the security of a composition that is actually insecure.
In fact, as part of this work we have found several such mistakes in existing
compositionality results.

The problem of flawed mathematical proofs due to their complexity is very old.
A new way to mitigate this problem are proof assistants like Isabelle/HOL, that
require the user to formulate a proof in such detail that a computer can check
the proof. Since this relies only on the correctness of a very small core program
that checks basic logical deductions, it is virtually impossible to conduct a flawed
proof that is accepted by the proof checker.

Compositionality results are a lot easier to prove if one assumes a typed model
where ill-typed attacks cannot happen. Typing results shows that this is a sound
restriction for a large class of protocols. Such results are useful by themselves,
in that they can make protocol verification faster for automated tools. They
also combine very well with compositionality results, both in terms of methods
and in terms of requirements on protocols. Therefore we use typing results as a
basis for compositionality results. As part of this thesis we formalize an existing
typing result in Isabelle/HOL and we establish and formalize in Isabelle/HOL
a new typing result for stateful protocols.

The main objective of this thesis is to formalize and prove existing and new
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compositionality results in Isabelle/HOL. This means that we can be sure that
the compositionality results we present here are really correct. Moreover, if
we have an Isabelle/HOL proof that a set of given protocols is each secure in
isolation and satisfies the prerequisites of the compositionality theorem, then
we immediately obtain a complete Isabelle/HOL proof that their composition
is also secure.
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Summary (Danish)

Titel: Typing og Sammensætning for Tilstandsfulde Sikkerhedsprotokoller

På Internettet kommunikerer computere ved brug af sikkerhedsprotokoller. For
eksempel, når en online bankapplikation bliver brugt så kan en klient logge ind
med NemID, hvilket sikrer at banken kan autentificere klienten. Tilsvarende kan
TLS protokollen give en konfidentiel kommunikationskanal mellem klienten og
banken, hvilket sikrer at dataene der bliver udvekslet er beskyttet mod aflytning
og som autentificerer banken til klienten.

Et spørgsmål er, om protokoller er designet godt nok til at de altid opnår de-
res sikkerhedsmål såsom konfidentialitet og autenticitet. Hvis ikke så kan en
angriber måske kapre og manipulere kommunikation for at bryde målene, selv
hvis alle parter kun bruger protokollen som tilsigtet. For at bekæmpe dette så
er protokoller ofte formelt verificerede, hvilket giver stærke garantier for at de-
res mål ikke kan blive krænket, selv under tilstedeværelsen af uærlige deltagere
og magtfulde modstandere som kontrollerer kommunikationsnetværket. Der har
været masser af forskning inden for formel verifikation af sikkerhedsprotokol-
ler, dvs. matematisk at bevise deres korrekthed. Dog eksisterer der væsentligt
mindre litteratur inden for sammensætningen af protokoller: I bankeksemplet
bliver TLS protokollen ofte brugt til at give en sikker kanal over hvilken Ne-
mID kører, dvs. protokollerne bliver brugt på en sammensat måde. Det viser sig
at sådanne sammensatte protokoller ikke nødvendigvis er sikre selv om deres
komponent-protokoller er blevet formelt verificerede i isolation.

Sammensatte protokoller kan også være ret svære at verificere fordi de ofte er
for store til at blive verificeret af automatiske metoder inden for en rimelig tids-
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periode. Endnu værre, så bliver der på Internettet brugt et ret stort antal af
protokoller, og dette antal stiger; det er urimeligt at tro at sammensætningen
af alle de protokoller kan verificeres. For at afhjælpe disse problemer så beviser
vi adskillelige sammensætningsteoremer som har følgende grundlæggende form:
hvis et givet antal protokoller hver især er sikre i isolation, og som opfylder et
antal enkle forudsætninger, så er deres sammensætning også sikker. Sammen-
sætningteoremer reducerer dermed et komplekst protokolverifikationsproblem
til et enklere problem.

Eksisterende sammensætningsresultater virker kun for simple “tilstandsløse”
protokoller, hvor protokoldeltagernes adfærd kun er afhængig af de beskeder de
modtager indenfor en enkelt session. I denne afhandling præsenterer vi det første
sammensætningsresultat for tilstandsfulde protokoller, hvor hver deltager også
kan vedligeholde databaser, hvilket betyder at deltagernes adfærd også afhænger
af hvad databaserne indeholder. En nøgleserver kan, for eksempel, vedligeholde
en database indeholdende gyldige offentlige nøgler. Som en del af protokollen så
kan deltagerer indsætte poster i, eller fjerne poster fra, deres databaser. Databa-
serne kan endvidere blive brugt i mere end én protokol af gangen. Nøgleserveren
kan for eksempel udbyde flere forskellige protokoller til at etablere nye nøgler,
og annullere og opdatere eksisterende nøgler. Denne afhandlings bidrag er at
give et meget generelt resultat for sammensætningen af sådanne tilstandsfulde
protokoller og hvordan de koordinerer adgangen til delte databaser.

Beviserne for sammensætningsresultater er lange og indeholder ofte subtile de-
taljer. Hvis der er en fejl i et bevis for et sammensætningsteorem så risikerer
vi fejlagtigt at stole på sikkerheden af en sammensætning af protokoller som
egentlig er usikker. Som en del af dette arbejde har vi endda fundet adskillelige
af sådanne fejl i eksisterende sammensætningsresultater.

Problemet med fejl i matematiske beviser på grund af deres kompleksitet er me-
get gammel. En ny måde at afhjælpe dette problem er bevisassistenter såsom
Isabelle/HOL, som kræver at brugeren formulerer beviser i et så detaljeret om-
fang at en computer selv kan tjekke beviserne. Da dette kun afhænger af en lille
kerne program der tjekker basale logiske deduktioner, så er det næsten umuligt
at udføre et fejlagtigt bevis som vil blive accepteret af bevistjekkeren.

Sammensætningsresultater er meget nemmere at bevise hvis man antager en
typed model hvor såkaldte dårligt-typede angreb ikke kan finde sted. Typere-
sultater viser at dette er en sund restriktion for en stor klasse af protokoller.
Sådanne resultater er i sig selv nyttige, idet de kan gøre protokolverifikation hur-
tigere for automatiserede værktøjer. De passer også meget godt sammen med
sammensætningsresultater, både hvad angår metoder og hvad angår kravene
til protokoller. Derfor bruger vi typeresultater som grundlag for sammensæt-
ningsresultater. Som en del af denne afhandling så formaliserer vi eksisterende
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typeresultater i Isabelle/HOL og vi etablerer og formaliserer i Isabelle/HOL et
nyt typeresultat for tilstandsfulde protokoller.

Hovedformålet med denne afhandling er at formalisere og bevise eksisterende
og nye sammensætningsresultater i Isabelle/HOL. Dette betyder, at vi kan være
sikre på at sammensætningsresultaterne som vi præsenterer her rent faktisk er
korrekte. Derudover, hvis vi har et bevis i Isabelle/HOL for at nogle protokoller
hver for sig er sikre i isolation, og som opfylder kravene for vores sammen-
sætningsteorem, så kan vi med det samme få fat på et fuldstændigt bevis i
Isabelle/HOL for korrektheden af protokollernes sammensætning.
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Notation

Chapter 2
V The set of variables. 10
Σ The set of function symbols. 10
Σn The symbols of Σ of arity n. 10
C The constants (i.e., Σ0). 10
Cpub The public constants. 10
Cpriv The private constants. 10
s, t, u,m, e Terms (also called messages) over signature Σ

and variables V.
10

M Sets of terms. 10
f, g, h Arbitrary function symbols, usually ranging

over Σ \ C.
10

x, y, z, v Arbitrary variables from V. 10
X,Y, Z Sets of variables. 10
a, b, c, d, i, n Arbitrary constants from C (a, b usually de-

notes honest agents, i usually denotes the
intruder, c, d usually denotes arbitrary con-
stants, and n usually denotes a nonce).

10

f(t1, . . . , tn) Composed terms. 10
Fun f [t1, . . . , tn] Composed terms (in Isabelle notation). 10
Fun c [] Constants (in Isabelle notation). 10
Var x Variables (in Isabelle notation). 10
x̄, ȳ, c̄, ū Finite sequences of terms. 10
fv(t) The variables occurring in the term t. 11
subterms(t) The set of subterms of t. 10
v The subterm relation. 10



xiv Notation

< The proper subterm relation (t < s iff t 6= s
and t v s).

10

θ, σ, δ, τ, γ Substitutions. 11
α Variable renamings. 11
dom(θ) The substitution domain of the substitution

θ.
12

subst-domain θ The substitution domain of the substitution
θ (in Isabelle notation).

12

ran(θ) The substitution range of the substitution θ. 12
subst-range θ The substitution range of the substitution θ

(in Isabelle notation).
12

I Interpretations. 13
interpretationsubst I Denotes that I is an interpretation (in Isa-

belle notation).
13

[x1 7→ t1, . . . , xn 7→ tn] The substitution with domain {x1, . . . , xn}
and range {t1, . . . , tn}.

12

[] The identity substitution. 12
M ` t Denotes that the intruder can derive t given

the messages in M .
15

Chapter 3
M `c t Denotes that the intruder can derive t given

the messages in M without performing de-
composition.

50

a, s Constraint steps. 49
A, B Symbolic constraints (also called intruder

strands).
24

(A, θ) Constraint states. 26
trmsst A Denotes the set of terms of the constraint A 42
wf X(A) Denotes that A is a well-formed constraint

w.r.t. the variables in X.
27

wf st X A Denotes that A is a well-formed constraint
w.r.t. the variables inX (in Isabelle notation).

27

dual(A) The dual of the constraint A. 49
dualst A The dual of the constraint A (in Isabelle no-

tation).
49

fv(A) The free variables of the constraint A. 27
bvars(A) The bound variables of the constraint A. 27
 The lazy intruder constraint reduction rela-

tion.
34

JM ;AK I Constraint semantics for stateless constraints.
Denotes that I is a model of A given the ini-
tial knowledge M .

27
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JM ;AKc I Constraint semantics for stateless constraints,
using `c instead of `. Denotes that I is a
model of A given the initial knowledge M .

29

I |= (A, θ) Constraint semantics. Denotes that I is a
model of A (i.e., J∅;AK I) and that the sub-
stitution θ supports the interpretation I.

26

I |= A Constraint semantics. Equivalent to
I |= (A, []).

26

I |=c A Constraint semantics. Equivalent to
J∅;AKc I.

29

send(t), receive(t) Message transmission constraints. 24
Send t, Receive t Message transmission constraints (in Isabelle

notation).
24

t
.
= t′ Equality constraints on messages. 26

Equality t t′ Equality constraints on messages (in Isabelle
notation).

26

∀x̄. t 6 .= t′ Inequality constraints on messages. 26
Inequality x̄ t t′ Inequality constraints on messages (in Isa-

belle notation).
26

Γ A function assigning types to terms. 39
Ta The set of atomic types. 39
TAtom β An atomic type β (in Isabelle notation). 39
TComp f [τ1, . . . , τn] A composed type (in Isabelle notation). 39
tfrstp a Denotes that the constraint step a is type-flaw

resistant (in Isabelle notation).
42

tfrst A Denotes that the constraint A is type-flaw re-
sistant (in Isabelle notation).

42

SMP(M) The sub-message patterns of the messages in
the set M .

41

Chapter 4
S Strands, usually honest agent strands. 63
insert(t, s) Insertion of element t into database s. 63
Insert t s Insertion of element t into database s (in Isa-

belle notation).
63

delete(t, s) Deletion of element t from database s. 63
Delete t s Deletion of element t from database s (in Isa-

belle notation).
63

t ∈̇ s Positive set-membership constraints. 63
InSet t s Positive and negative set-membership con-

straints (in Isabelle notation).
63

∀x̄. t 6 ∈̇ s Negative set-membership constraints. 63
NotInSet x̄ t s Negative set-membership constraints (in Isa-

belle notation).
63
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assert(t) Emits the event t. 63
event(t) Positive constraints on events. 63
∀x̄. ¬event(t) Negative constraints on events. 63
JM,D;AKs I Constraint semantics for stateful constraints.

Denotes that I is a model of A given the
initial intruder knowledge M and the initial
database mapping D.

71

I |=s A Constraint semantics for stateful constraints.
Equivalent to J∅, ∅;AKs I.

71

tfrsstp a Denotes that the stateful constraint step a is
type-flaw resistant (in Isabelle notation).

109

tfrsst A Denotes that the stateful constraintA is type-
flaw resistant (in Isabelle notation).

109

Chapter 5
P Arbitrary protocols. 115
` Labels. 117
? The star label. 117
A|` Projection of the constraint A to the steps

labeled ` or ?.
117

A|? Projection of the constraintA to the ?-labeled
steps.

117

P|` Projection of the protocol P to the steps la-
beled ` or ?.

117

P|?, P? Projection of the protocol P to the ?-labeled
steps.

117

L The set of protocol-specific labels. 117
P1 ‖ P2 The parallel composition of protocols P1 and

P2.
117

‖i∈L Pi The parallel composition of all protocols Pi
indexed by L.

117

GSMP(M) The ground sub-message patterns of the mes-
sages in M .

123

M `A,Sechom t Denotes that the intruder can derive t given
the messages in M using only homogeneous
terms (w.r.t. the constraint A and the shared
secrets Sec).

132
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Chapter 1

Introduction

The typical use of communication networks like the Internet is to run a wide va-
riety of security protocols in a composed fashion, such as TLS, IPSec, DNSSEC,
and many others. For instance, protocols may be run side-by-side (i.e., in paral-
lel), in sequence, or in a layered fashion where one protocol builds upon another
(i.e., vertically).

While the security properties of many protocols have been analyzed in great
detail, much less research has been devoted to their parallel composition. It
is far from self-evident that the parallel composition of secure protocols is still
secure, in fact one can systematically construct counter-examples. One such
problem is if protocols have similar message structures of different meaning,
so that an attacker may be able to abuse messages, or parts thereof, that he
has learned in the context of one protocol, and use them in the context of
another where the same structure has a different meaning. Thus, we have to
exclude that the protocols in some sense “interfere” with each other. However,
it is unreasonable to require that the developers of the different protocols have
to work together and synchronize with each other. Similarly, we do not want
to reason about the composition of several protocols as a whole, neither in
manual nor automated verification because composed protocols are often too
big to automatically verify in a reasonable amount of time. Instead, we want a
set of sufficient conditions and a composition theorem of the form: every set of
protocols that satisfies the conditions yields a secure composition, provided that
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each protocol is secure in isolation. The conditions should also be realistic so
that many existing protocols like TLS (without modifications) actually satisfy
them, and they should be simple, in the sense that checking them is a static
task that does not involve considering actual protocol runs.

Existing parallel compositionality results like [HT94, GT00, ACG+08, Gut09,
CD09, cCC10, CDKR13, ACD15, AMMV15] only apply to simple “stateless”
protocols in which participants only have state local to a single session, like a ses-
sion key. A more interesting and general class of protocols is one in which agents
can additionally manipulate a global mutable state. In such protocols updating
the global state during one session might influence other running sessions and we
call such protocols stateful. There exist several tools and approaches for verifying
stateful protocols [Möd10, ARR11, Gut12, AAA+12, MSCB13, MB16, KK16].
In a stateful protocol participants may maintain, e.g., a database independent
of sessions. For instance, a keyserver may maintain a database of currently
valid public keys. As part of the protocol, participants can insert entries into,
or delete entries from, their databases. Moreover, the databases may be used in
more than one protocol, for instance, the keyserver may offer several different
protocols for establishing new keys, and revoking and updating existing keys.

The reason why stateful protocols are fundamentally different from stateless ones
is that the global state in a stateful protocol does not necessarily grow monoton-
ically during protocol execution: negative membership checks and deletion of
elements from databases implies that what was true at some point in a protocol
execution may not be true at a later point. We present in this thesis the first
compositionality result that supports stateful protocols.

Besides establishing new compositionality results a great part of this work is con-
cerned with the formalization of our technical results in Isabelle/HOL [NPW02].
Proof assistants like Isabelle allow us to formalize and check proofs with an al-
most “absolute” precision and reliability: once a theorem is proved, the chance
of a mistake or hole in the proof is extremely low. This is very attractive for
proofs of security protocols since security protocols are relatively small systems
that are critical to our infrastructure and often have very subtle flaws that are
easily overlooked. Paulson and Bella have proved numerous existing protocols
secure in Isabelle and have established a general paradigm of modeling proto-
cols [Pau98, Pau99, BMP06, Bel07].

Despite many automated proof tactics in Isabelle, conducting security proofs is
still labor-intensive. There are many automated tools like ProVerif [Bla01] that
can verify most of the protocols proven correct in Isabelle by Paulson and Bella
within minutes. However, an implementation mistake in such a tool can easily
lead to a “false negative”: no attack is found even though there is one. To get full
reliability, one could directly model such a method in Isabelle, using Isabelle as
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a kind of interpreter. A more efficient way is to have automated tools generate
proofs that Isabelle can check as in the works of Brucker and Mödersheim [BM09]
and Meier et al. [MCB13] (and by Goubault-Larrecq [Gou08] for Coq).

Many of the mentioned works [Pau98, Pau99, BMP06, Bel07, BM09] rely on
a typed protocol model that excludes that the attacker can send any ill-typed
messages and thereby rules out any type-flaw attacks. In general, such a re-
striction to a typed model makes many aspects of the analysis easier. It can
significantly reduce verification time and in some approaches [BP05, AC08] pro-
tocol verification even becomes decidable in a typed model. Most notably, in the
abstract interpretation method used by [Bla01, BM09], protocol security is still
undecidable, but under the restriction to a typed model the question becomes
decidable.

There are in fact several results that show the relative soundness of a typed
model if the protocol satisfies certain reasonable sufficient conditions of a syn-
tactic nature (i.e., can be checked without an exploration of the state space of the
protocol): Heather et al. [HLS03], Chrétien et al. [CCD14],Mödersheim [Möd12],
Arapinis and Duflot [AD14], and Almousa et al. [AMMV15]. Such typing re-
sults are of the form: if a protocol satisfies certain typing conditions, and has an
attack, then it has a well-typed attack. That is, if a protocol that satisfies the
sufficient conditions has an attack then it has a well-typed attack, in which the
attacker only sends well-typed messages. In other words, if the protocol is secure
in a typed model then it is secure in an untyped model. So if we can verify that
the protocol has no attack in the typed model (with whatever method), then it
also has no attack in the untyped model. Typing results are closely related to
compositional reasoning. They have similar pre-requisites and proof techniques
that fit quite well together, e.g., the mentioned works [CD09, AMMV15] rely on
typing results to obtain parallel composition results. In fact, both typing results
and compositionality results are part of the larger class of relative soundness re-
sults that all reduce a complex protocol verification problem to easier ones.

In a nutshell, when proving a typing result, one shows (for a given class of
protocols) that from an ill-typed attack we can construct a similar well-typed
attack, i.e., every ill-typed message that the intruder sends can be replaced
with a well-typed one so that all the remaining steps of the attack can still
be performed in a similar way. To avoid messy and round-about arguments,
many existing typing results argue via a constraint-based representation of the
intruder. In these constraints, all messages sent and received by the intruder
may contain variables where the corresponding honest agent would accept any
value. Every attack is then a solution of such a constraint. There is a sound,
complete, and terminating reduction procedure for such intruder constraints
that we call the lazy intruder. It thus suffices to show that for the considered
class of protocols, this reduction procedure will never instantiate any variable
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with a term of a different type than the variable has. If the procedure leaves any
variables uninstantiated (i.e., its concrete value does not matter for the attack
to work) then the intruder may as well choose a well-typed value here. This
therefore allows to conclude that if there is a solution (i.e., attack), then there
is a well-typed one.

All the mentioned relative soundness results—both the typing results and the
compositionality results—have so far been classical pen-and-paper proofs. They
contain complex proof arguments that, despite not being formalized out to the
last detail, span easily ten pages (including all relevant formal definitions and
lemmas with their proofs). It is not unlikely that such a result can have mistakes,
from simple holes in a proof to wrong statements. Relying on such results bears
some similarity to relying on unverified tools: we may wrongly accept a protocol
composition as secure that actually is not (in the considered model). “Checking”
the proof of such a result may be as complex a task as verifying a verification
tool. Another parallel to verification tools is: different works often have subtle
differences in the protocol models and in the sufficient conditions that a casual
user (who did not study the result in detail) may fail to notice. This bears
the risk that in a hand-wavy fashion, one may accidentally apply a typing or
compositionality result to protocols for which it does not hold (or, at least, has
not been proven to hold).

All mentioned relative soundness results also only apply to stateless protocols.1
Proving a relative soundness result for stateful protocols, however, is not trivial.
If we consider as a global state a database to which entries can be added (without
bound) and deleted, and where negative checks are allowed (i.e., that no entry
of a particular form is present), then this is not possible with a straightforward
extension of existing results. While one could encode the positive operations and
checks as special messages, the negative ones essentially amount to checking that
a particular operation or message did not occur, and this negation is at odds
with the intruder constraints needed to perform the main proof argument of a
relative soundness result.

Content and Contributions

The work presented in this thesis is based on three major publications, each of
which has a dedicated chapter in this thesis:

• Formalizing and Proving a Typing Result for Security Protocols in Is-
1An exception being the typing result of [Möd12], but this paper contains significant mis-

takes and its result does not hold in this generality; we explain this in detail in Section 4.4.3.
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abelle/HOL [HM17] by Hess and Mödersheim, published at the 30th IEEE
Computer Security Foundations Symposium in 2017.

• A Typing Result for Stateful Protocols [HM18] by Hess and Mödersheim,
published at the 31st IEEE Computer Security Foundations Symposium
in 2018.

• Stateful Protocol Composition [HMB18] by Hess, Mödersheim, and Brucker,
published at the 23rd European Symposium on Research in Computer Se-
curity in 2018.

Formalizing a Typing Result in Isabelle The first major contribution
is the formalization in Isabelle of the typing result of [AMMV15] for stateless
protocols. This work is presented in Chapter 3 and is based on [HM17].

As said before, to prove a typing result one needs to make an argument of the
form: if a protocol has an attack then there exists an attack in which the intruder
only makes well-typed choices. To make such an argument precise many works
use a constraint-based approach where attacks on protocols are represented
by symbolic constraints whose solutions constitute concrete attacks. The con-
straints are then reduced to simpler forms using a sound, complete, and termi-
nating constraint-reduction system called the lazy intruder. Then it is sufficient
to show that, given certain requirements on the constraints, the lazy intruder
never makes an ill-typed choice during constraint-reduction and that the simple
constraints have well-typed solutions. As part of formalizing the typing result,
we formalize the lazy intruder in Isabelle and prove its soundness, completeness,
and termination, and that it never makes an ill-typed choice during constraint
reduction, for so-called type-flaw resistant constraints.

One aspect that makes the lazy intruder complicated, both in terms of an im-
plementation in tools and in terms of proving completeness, lie in the intruder’s
ability to analyze (e.g., decrypt) messages that he knows. To make the formal-
ization of the lazy intruder in Isabelle smoother we consider the following idea:
we at first restrict the intruder so that he cannot analyze messages himself, but
instead some external service performs the message analysis for the intruder.
We then prove this equivalent to the standard intruder model. In order to fa-
cilitate easier reasoning in Isabelle we also introduce a new representation of
constraints based on strands [THG99]. With the lazy intruder formalized, and
its crucial properties proven, we can prove the typing result.

During the formalization effort we found several flaws in the work of [AMMV15].
There are mistakes in both the definitions of the lazy intruder and in the
proofs that the simple constraints have well-typed solutions. In fact, their re-
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sult [AMMV15] is not provable unless one makes an additional condition on
protocols, and we provide such a condition. To make sure our fixed proofs are
actually correct, we have verified them by formalizing them in Isabelle. Most
importantly, this formalization serves as the foundation on which we later es-
tablish our typing and compositionality results for stateful protocols.

Establishing a Typing Result for Stateful Protocols Next we establish
a new typing result that supports a large class of stateful protocols with a global
state that consists of a collection of sets. This work is based on [HM18] and is
presented in Chapter 4.

To have a simple and yet powerful formalism to work with, we first introduce a
notion of strands with set operations to model honest agents. We use these new
strands to define a notion of constraints with set operations that extends the
constraints of Chapter 3. We call these constraints stateful. The set operations
in stateful constraints then represent at which point the particular set operations
occurred during an attack.

The typing result is established in a precise and declarative way that uses the
typing result of Chapter 3 for stateless protocols as a basis. We show that we can
reduce the satisfiability of stateful constraints to the satisfiability of constraints
without set operations. This allows us to apply the result of Chapter 3 on
the constraint-level. We finally lift the result to stateful protocols by defining a
symbolic protocol transition system that builds up constraints during transitions
and then applying the constraint-level results to constraint reachable in the
transition system.

The formalism with set operations for honest agents and for intruder constraints
is useful beyond our results to represent and work with stateful protocols. While
our formalism is deliberately reduced to the essentials, we show how to connect
other more complex formalisms for stateful protocols, namely using rewriting
and process calculi, so that our results can be also applied accordingly in these
languages.

We additionally point out several mistakes in a related typing result [Möd12].
A corrected version of [Möd12] that incorporates our fixes has been made avail-
able2.

As in Chapter 3 we again formalize the typing result of Chapter 4 in Isabelle,
extending the Isabelle formalization of Chapter 3.

2https://people.compute.dtu.dk/samo/taslanv3.pdf

https://people.compute.dtu.dk/samo/taslanv3.pdf
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Establishing a Compositionality Result for Stateful Protocols In Chap-
ter 5 we establish the main result of this thesis, namely a parallel composition-
ality result for stateful protocols. This work is based on [HMB18].

We first extend the constraints of the previous chapters to incorporate labels that
indicate which protocols the steps of the constraints came from. The proof of
the main result is by a reduction to a problem on constraints: given a constraint
that represents an attack on a composed protocol, we show that the projections
of the constraint represent attacks on the individual protocols in isolation.

A key feature of our compositionality result is that we allow for databases to be
shared. For instance, in the keyserver example, there could be several different
protocols for registering, certifying, and revoking keys that all work on the
same public-key database. Since such a shared database can potentially be
exploited to trigger harmful interference, an important part of our result is a
clear coordination of the ways in which each protocol is allowed to access the
database. This coordination is based on assumptions and guarantees on the
transactions that involve the database. Moreover, this also allows us to support
protocols with the declassification of long-term secrets (e.g., that the private
key to a revoked public key may be learned by the intruder without breaking
the security goals).

Both the extension of the compositionality paradigm to stateful protocols and
the support for shared databases are significant generalizations over previous
results. Our result is so general that it even covers many forms of sequential
composition as a special case, since one can, e.g., model that one protocol inserts
keys into a database of fresh session keys, and another protocol “consumes” and
uses them.

Building on the foundation developed in earlier chapters we formalize the core
of the compositionality result, namely the result on the level of constraints,
in Isabelle. The connection to the protocol level is also proved in Isabelle for
stateless protocols, but still outstanding for stateful protocols. We have of course
proved this result on paper.

More Benefits of Formalizing in Isabelle Since all our results are formal-
ized in Isabelle we can use them directly in Isabelle-formalized security proofs
like any other proved theorem in Isabelle. For instance, we may use any of the
previously mentioned verification methods—manual or automatic—to prove the
security of protocols in the typed model, and then use the Isabelle-formalized
typing and compositionality theorems to infer that their parallel composition is
secure in the untyped model as a theorem entirely proved within Isabelle. For-
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malizing the results in Isabelle also ensures that our theorems are only applicable
if all the sufficient conditions are indeed satisfied (otherwise they will remain as
open subgoals to prove). To demonstrate the practical feasibility of our result
we show that the TLS 1.2 [DR08] handshake protocol satisfies the requirements
of our typing result. Moreover, we define two stateful keyserver protocols and
show that they satisfy the conditions of our compositionality result.

Since Isabelle-formalized proofs are often significantly more verbose than their
pen-and-paper counterparts we have decided to present all the important proofs
in a digestible form in the style of ordinary mathematical textbook proofs. The
reason is that we have discovered and fixed flaws in existing proofs during formal-
ization in Isabelle, asked ourselves how the proofs ideally should be presented,
and extracted the essence of the Isabelle-formalized proofs. Thus the presen-
tation is in a style that is also familiar to mathematicians that do not know
Isabelle.

The full Isabelle formalization (with all proofs) is available at the following
websites:

http://orbit.dtu.dk/en/publications/typing-and-compositionality-
for-stateful-security-protocols(72a413dc-d339-4931-8c59-

5bb6cfc62bec).html
https://people.compute.dtu.dk/~samo/StateProtCompIsabelle.zip

http://orbit.dtu.dk/en/publications/typing-and-compositionality-for-stateful-security-protocols(72a413dc-d339-4931-8c59-5bb6cfc62bec).html
http://orbit.dtu.dk/en/publications/typing-and-compositionality-for-stateful-security-protocols(72a413dc-d339-4931-8c59-5bb6cfc62bec).html
http://orbit.dtu.dk/en/publications/typing-and-compositionality-for-stateful-security-protocols(72a413dc-d339-4931-8c59-5bb6cfc62bec).html
https://people.compute.dtu.dk/~samo/StateProtCompIsabelle.zip


Chapter 2

Preliminaries

In this chapter we summarize some standard definitions along with a discussion
of how we model them in Isabelle/HOL whenever there are some differences.
Isabelle itself is a generic proof assistant suited for implementing different logical
formalisms. The most widespread instance is Isabelle/HOL which is based on a
higher-order logic and which is what we use in this thesis. While Isabelle and
Isabelle/HOL are different we usually use both notions to refer to Isabelle/HOL.

We also give some new definitions and prove some small lemmas that are neces-
sary for our technical results in subsequent chapters. This also gives us a chance
to review a few features of Isabelle that are relevant for following the thesis in
detail. In fact, we simplify the Isabelle notation in several places. For instance,
the syntax of Isabelle/HOL resembles the syntax of a functional programming
language and so function application is usually written without parentheses, i.e.,
f t. We use the notation f t when we wish to make it clear that the expression
is written in Isabelle-notation. In all other instances we use the notation f(t).

2.1 Term Algebra

At the core of all definitions are the protocol messages that we model in a free
first-order term algebra as is often done.
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The standard notions like unification are already part of several Isabelle libraries
namely the Unification example theory that ships with Isabelle and the IsaFoR li-
brary [TS09], and we point out only where our definitions augment them.1

Our definitions are parameterized over a set V of variables (typically denoted
with letters x, y, z) and a set Σ of function symbols (typically denoted with
letters f, g, h). We also assume a function arity : Σ → N that assigns each
function symbol its arity. We denote by C the subset of Σ of constants, i.e., the
function symbols of arity 0 (typically denoted with letters a, b, c). The set Σ is
furthermore partitioned into the public symbols Σpub (which the intruder has
access to) and the private symbols Σpriv (which the intruder cannot access). To
express this partitioning in Isabelle we assume a predicate public : Σ→ bool. By
Σn we then denote the subset of Σ containing all symbols of arity n. Similarly,
Σnpub (respectively Σnpriv ) denotes the public (respectively private) symbols of
arity n. The set of public constants and the set of private constants are then
denoted by Cpub respectively Cpriv . We later define that the intruder has access
to all constants in Cpub and that Cpub is infinite (modeling that the intruder has
access to an unlimited supply of constants).

We now define the set of terms over Σ, V in Isabelle as an inductive datatype:

datatype (Σ,V) term = Var V | Fun Σ ((Σ,V) term list)

Here we have slightly changed the Isabelle notation that would have instead of Σ
and V two type variables, which we for ease of notation do not distinguish from
the universes of those values.2 Moreover, the expression Fun f [Var x, Fun c []]
represents the term f(x, c) in more conventional notation, and we will use that
notation whenever possible. We also say that a term of the form Fun f [t1, . . . , tn]
is composed iff n > 0. Otherwise, if n = 0 then the term represents the constant
f . Similarly, if a term is of the form Var x then it represents the variable x
and so we say the term is a variable. For finite sequences (or lists) of terms
[t1, . . . , tn] we use the notation t̄. Hence x̄ denotes a list of variables and c̄ de-
notes a list of constants. Moreover, we denote by subterms(t) the set of subterms
of a term t defined as expected. We also extend the definition of subterms to
sets of terms as expected. By v we denote the subterm relation defined as t′ v t
iff t′ ∈ subterms(t). The proper subterm relation is then denoted by < and is
defined as t′ < t iff t′ 6= t and t′ v t. Note that because the term definition
introduces the data constructors Var and Fun as injective functions, we obtain

1All of the IsaFoR theory that we depend on has in a recent update become part of the
library First-Order Terms [ST18] published at the Archive of Formal Proofs (the AFP, https:
//www.isa-afp.org/). Hence our formalization no longer depends on libraries external to the
Isabelle distribution and the AFP, and we intend to publish our formalization at the AFP in
the near future.

2In Isabelle, one has to rather write UNIV to refer to the set of values that belong to a
particular type.

https://www.isa-afp.org/
https://www.isa-afp.org/
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a free term algebra, i.e., f(t1, . . . , tn) = g(s1, . . . , sm) iff f = g and ti = si for
1 ≤ i ≤ n = m.

Typically there is only a small finite set of non-constant function symbols rep-
resenting the cryptographic primitives and the like; therefore this set is actually
fixed in several other works on protocol security [Pau98, Bel07, MCB13] with
one data constructor for each function symbol. Our parameterized version has
the advantage that our proofs do not depend on the particular choice of opera-
tors used, so we do not have to update our proofs when adding a new operator.
A slight disadvantage is that we cannot control as part of the data-type defini-
tion that a function symbol f with arity f = n is only applied to a list of exactly
n arguments. We can fix this by the following notion of well-formed terms:

Definition 2.1 A term t is well-formed, written wf trm t, if it satisfies the
following definition:

wf trm t ≡ ∀f T. Fun f T v t −→ length T = arity f

This definition is lifted to sets of terms M as expected:

wf trms M ≡ ∀t ∈M. wf trm t

We deal only with well-formed terms and for simplicity omit writing it as a
side-condition on all terms we use from this point onwards. We further define
the function fv for the free variables of a term as standard, and say that a term
t is ground if fv(t) = ∅. Both definitions are extended to sets as expected.

2.2 Substitutions and Interpretations

We use for substitutions and unifications the definitions and theorems of the
IsaFoR library where substitutions (typically denoted with letters θ, δ, and σ)
are functions from variables V to terms (Σ,V) term. They are homomorphi-
cally extended to functions on terms as expected, and we simply write θ(t) for
applying substitution θ to term t (omitting the extensions function).

The composition θ · δ of substitutions θ and δ is defined as follows (this is
following the convention of IsaFoR):

(θ · δ)(t) ≡ δ(θ(t))
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The substitution domain subst-domain : (Σ,V) subst → V set of a substitution
is the set of variables that are not mapped to themselves:

subst-domain θ ≡ {x | θ(x) 6= Var x}

For substitutions with finite domain we will use the common notation of value
mappings, like θ = [x 7→ s, y 7→ t] for the substitution θ with substitution do-
main {x, y} sending x to s and y to t. Thus, [] denotes the identity substitution.

The substitution range subst-range : (Σ,V) subst → (Σ,V) term set is defined
in terms of the domain by applying the substitution to every element of the
domain (where f 8 S denotes the image of f under the set S):

subst-range θ ≡ θ 8 subst-domain θ

As a convention we write dom and ran instead of subst-domain and subst-range
when we are not writing in Isabelle style.

To denote the substitution [x1 7→ t1, . . . , xn 7→ tn] with domain {x1, . . . , xn}
and range {t1, . . . , tn}, for some n, we sometimes use the notation [x̄ 7→ t̄].

Every substitution that we will use has either a finite domain or its domain is the
set of all variables V and it maps them to ground terms. The latter kind we call
interpretations. We thus divert here from the common convention that substitu-
tion and interpretation are two disjoint notions, because they are conceptually
so similar (e.g., they can be applied to all term-based data-structures) that hav-
ing them separated would lead to two similar versions of many definitions and
lemmas.

It is cumbersome to work with substitutions where some variable occurs both
in the domain and the range like [x 7→ f(x)] as they are, for instance, not
idempotent. Thus, we introduce a notion of well-formedness of substitutions
that excludes any variable to occur both in domain and range and that requires
a finite domain (because we will not use this notion on interpretations):

wf subst θ≡ subst-domain θ ∩ fv(subst-range θ) = ∅ ∧ finite (subst-domain θ)

Intuitively, a well-formed substitution represents a set of solutions (e.g., all
solutions to a unification problem). We can prove the following lemma that is
useful later when we compose substitutions in constraint reduction:

Lemma 2.2 If θ1 and θ2 are well-formed substitutions such that

1. subst-domain θ1 ∩ subst-domain θ2 = ∅ and
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2. subst-domain θ1 ∩ fv(subst-range θ2) = ∅

then the composition θ1 · θ2 is also well-formed.

An interpretation (typically denoted by the letter I) is a substitution mapping
every variable to a ground term:

interpretationsubst I ≡ subst-domain I = V ∧ ground (subst-range I)

We define that a substitution θ supports an interpretation I as follows:

θ supports I ≡ ∀x. I(θ(x)) = I(x)

A substitution θ is idempotent iff θ · θ = θ. We have proven that well-formed
substitutions are idempotent.

Finally, we say that a substitution θ is ground iff θ maps every variable in its
domain to a ground term, i.e., ground (subst-range θ). Hence interpretations
are ground.

2.2.1 Injective and Fresh Substitutions

A function f is said to be bijective between sets A and B if it is injective
on A and surjective between A and B. In Isabelle/HOL these concepts are
defined as follows, where inj -on defines injectivity, bij -betw defines bijectivity,
and f 8A = B expresses surjectivity of f between A and B:

inj -on f A ≡ ∀x ∈ A. ∀y ∈ A. f x = f y −→ x = y
bij -betw f A B ≡ inj -on f A ∧ f 8 A = B

For substitutions θ we are only interested in injectivity on the substitution
domain and bijectivity between the substitution domain and range. We therefore
say that θ is injective if and only if inj -on θ (subst-domain θ). Similarly, θ is
bijective if and only if bij -betw θ (subst-domain θ) (subst-range θ). Note that
an injective substitution is also bijective and so we will use these two concepts
interchangeably.

Later on we will need a stronger version of injectivity to express that a substi-
tution maps different variables to different subterm-disjoint terms (i.e., terms
that do not share any subterms). We call this property subterm injectivity.
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Formally, we say that a function f is subterm injective on A if and only if
subterm-inj -on f A where:

subterm-inj -on f A ≡ ∀x ∈ A. ∀y ∈ A. (∃t. t v f x ∧ t v f y) −→ x = y

That is, for f to be subterm injective it must be the case that f x and f y do
not share subterms for all distinct x, y ∈ A.

Analogous to substitution injectivity we say that a substitution θ is subterm
injective if and only if subterm-inj -on θ (subst-domain θ). Thus a subterm
injective substitution is also an injective substitution.

Finally, we say that a substitution θ is fresh with respect to terms t1, . . . , tn iff
θ is subterm injective and subterms(subst-range θ)∩subterms({t1, . . . , tn}) = ∅.

2.2.2 Unification

A most general unifier (mgu) θ between two terms, t1 and t2, is defined as a
substitution satisfying the following standard definition:

MGU θ s t ≡ θ(s) = θ(t) ∧ (∀δ. δ(s) = δ(t) −→ (∃γ. δ = θ · γ))

In other words, θ is a unifier which can be used to construct any other unifier
δ of s and t using composition with a third substitution γ. Well-formed mgus
are furthermore restricted to the variables of the terms being unified. That is:

wf MGU θ s t ≡ wf subst θ ∧MGU θ s t ∧
subst-domain θ ∪ fv(subst-range θ) ⊆ fv(s) ∪ fv(t)

The IsaFoR library provides the function

mgu :: (Σ,V) term⇒ (Σ,V) term⇒ (Σ,V) subst option

that computes the most general unifier of two terms if one exists. We proved
that this unifier is always well-formed:

Lemma 2.3 If mgu s t = Some δ then wf MGU δ s t.

(The data constructor Some is from the option datatype and the expression
Some δ indicates here that a most-general unifier δ of s and t has been found.)

In addition to being well-formed we have also proved that the mgus computed
by mgu satisfy the following useful property:



2.3 Dolev-Yao Style Intruder 15

Lemma 2.4 If mgu s t = Some δ then

subterms(ran(δ)) \ V ⊆ δ((subterms(s) ∪ subterms(t)) \ V)

The proof is by induction over the (standard) mgu algorithm, showing that the
property to prove is an invariant of the algorithm.

Some important consequences of Lemma 2.4 are that constants appearing in
subst-range δ must occur in s and t, and that for any composed term of the
form f(y1, . . . , yn) appearing in subst-range δ we can find a term of the form
f(x1, . . . , xn) occurring in s or t where δ(xi) = yi for all i ∈ {1, . . . , n}.

2.3 Dolev-Yao Style Intruder

We now define a standard symbolic Dolev-Yao style intruder deduction relation
M ` t to formalize that the intruder can derive the term t from the set of
terms M , the intruder knowledge. Our model is similar to standard Dolev-Yao
models but we parameterize ours over arbitrary signatures Σ instead of fixing
a particular set of cryptographic primitives. The relation ` is then defined
inductively as the least relation closed under the following rules:

Definition 2.5 (The Intruder Model)

M ` t
(Axiom),
t ∈M

M ` t1 · · · M ` tn
M ` f (t1, . . . , tn)

(Compose),
f ∈ Σn,
public f

M ` t M ` k1 · · · M ` kn
M ` ti

(Decompose),
Ana t = (K,T ), ti ∈ T,

K = {k1, . . . , kn}

The first rule expresses that the intruder can derive everything in his knowledge.
The second rule allows the intruder to compose messages by applying public
function symbols to messages he can already derive. (Note that f might have ar-
ity n = 0, in which case it is a constant.) To that end, we use the function public
defined earlier that yields true for all public constants and function symbols. The
third rule allows the intruder to decompose (i.e., analyze) messages. To avoid
that we have to write a special decryption rule for each operator to consider,
we assume a function Ana as an analysis interface. Intuitively, Ana t = (K,T )
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means that the intruder can analyze the term t provided that he knows the “keys”
in K and then obtain as the result of analysis the terms of T . For instance, to
decrypt the message crypt(k,m) and obtain m we can require that the inverse
key inv(k) must be provided, and we write Ana crypt(k,m) = ({inv(k)}, {m}) to
formally express this. Note that this would be similar to introducing a destruc-
tor dcrypt and an algebraic equation dcrypt(inv(k), crypt(k,m)) ≈ m if we were
not using the free algebra. More generally, if Ana t = (K,T ) then the analysis
of the term t results in the terms in T provided that all “keys” in K can be
derived. The advantage of this interface function is that in order to add a new
operator to the model, one simply has to specify the Ana function for it, but
none of the following definitions or theorems require an update.

In Isabelle we use the notion of a locale to parameterize our theory over arbitrary
signatures and analysis theories that satisfy our requirements. A locale allows
us to assume the existence of functions and types in all proofs and definitions
inside the scope of the locale. For instance, we parameterize our theory over Ana
functions satisfying certain requirements. Those requirements are explained in
detail in Chapter 3.

The locale definition for our intruder model, intruder-model, fixes the functions
arity , public, and Ana, and two types Σ and V, that must satisfy seven require-
ments (the last of which is our requirement that there are infinitely many public
constants):

locale intruder-model =
fixes arity :: Σ⇒ nat
and public :: Σ⇒ bool
and Ana :: (Σ,V) term⇒ ((Σ,V) term set× (Σ,V) term set)

assumes
∧
t K M. Ana t = (K,M) =⇒ fv(K) ⊆ fv(t)

and
∧
t K M. Ana t = (K,M) =⇒ finite K

and
∧
t k K M f S. Ana t = (K,M)
=⇒ (

∧
g T. Fun g T v t =⇒ length T = arity g)

=⇒ k ∈ K =⇒ Fun f S v k =⇒ length S = arity f
and

∧
x. Ana (Var x) = (∅, ∅)

and
∧
f T K M. Ana (Fun f T ) = (K,M) =⇒M ⊆ T

and
∧
t δ K M. Ana t = (K,M)
=⇒ K 6= ∅ ∨M 6= ∅ =⇒ Ana (δ(t)) = (δ(K), δ(M))

and infinite {c | public c ∧ arity c = 0}

Here the Isabelle notation of the form
∧
t1 · · · tn. P1 =⇒ . . . =⇒ Pm =⇒ Q

denotes statements of the form ∀t1, . . . , tn. P1 ∧ · · · ∧Pm −→ Q in more conven-
tional notation.

The advantage of using a locale is that we do not need to fix a particular
signature and analysis theory for our term model. Instead, to use our result,
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one can interpret the locale in Isabelle by providing functions that are proven to
satisfy the type restrictions and requirements of the locale. For instance, locale
interpretation in Isabelle could look as follows:

interpretation intruder-model arityc publicc Anac
proof
〈proof 〉

end

where arityc, publicc, and Anac are some user-defined functions and 〈proof 〉 is
a proof that the provided functions satisfy the locale requirements. Everything
in the scope of the interpreted locale is then available to use, e.g., to apply our
results to protocols that uses particular signatures Σ and variables V.

Note that the requirements on Ana regulate that the analysis interface is mean-
ingful on symbolic terms containing variables in addition to ground terms. Note
in particular that the third assumption defines that all “keys” K must be well-
formed if the term t to be decomposed is well-formed. The terms in M are also
well-formed since we require that the terms in M are immediate subterms of
the terms in t, namely the fifth requirement:3∧

f T K M. Ana (Fun f T ) = (K,M) =⇒M ⊆ T

Example 2.1 There are at least two ways to model asymmetric encryption,
both of which are used in formal methods and protocol verification. We gave
an example earlier where we used a function inv from public to private keys.
Another possibility is to instead have a function pub from private to public keys.
Both of these approaches have subtle advantages and disadvantages as we will
see in later chapters.

As a concrete Ana theory using pub instead of inv consider the following set
of non-constant operators (with their arities): asymmetric encryption crypt/2,
symmetric encryption scrypt/2, signatures sign/2, a function pub/1 that yields
the public key for a given private key, hash function hash/1, a key derivation
function kdf/2 and message structuring formats fi/i (i ∈ N), together with the
following Ana function:

Ana scrypt(k,m) = ({k}, {m})
Ana crypt(pub(k),m) = ({k}, {m})
Ana sign(k,m) = (∅, {m})
Ana fi(t1, . . . , ti) = (∅, {t1, . . . , ti})
and in all other cases: Ana t = (∅, ∅)

3Note that we have here simplified the Isabelle notation slightly. In Isabelle one would need
to write M ⊆ set T instead of the expression M ⊆ T since M is a set while T is a list. The
function set is a function provided by Isabelle that converts a list to the set containing exactly
the elements of the input list, i.e., set [a1, . . . , an] = {a1, . . . , an}. We leave all applications
of the set function implicit.
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This describes the decryption of symmetric and asymmetric encryptions as ex-
pected; the contents of signatures we assume can be obtained without knowing
the signing key (i.e., the signature primitive includes the signed text in clear).
The functions pub, hash, and kdf are one-way in the sense that they do not
yield any information in analysis. The non-cryptographic message structuring
formats fi exist only to structure clear-text messages. Like [AMMV15] we use
these formats instead of the classical “concatenate” operator: this allows for
modeling abstractly the actual mechanisms of the implementation to structure
messages unambiguously, such as tags, length information, or character encod-
ings; compare for instance the TLS example in Section 3.2.2. The formats are
transparent, i.e., the analysis function yields all direct subterms without requir-
ing any key. For signatures, we similarly allow the intruder to obtain the signed
message without any key. This models a signature scheme where the message
being signed is given along with a signature on a hash of that message; thus one
does not need any key to obtain the message, but only to verify the signature.
We will come back to signature verification later.

Let M = {scrypt(kdf(n1, n2), secret), n1, n2} then for instance M ` secret since
the intruder can first compose the key kdf(n1, n2) and then decrypt the encrypted
message. �

2.3.1 Free Algebra

Recall that our definition of terms yields a free term algebra, i.e., two terms
are equal only if they are syntactically equal. This prevents many interesting
properties of operators like the property gxy = gyx that is needed for all Diffie-
Hellman-based protocols. Modeling algebraic properties in Isabelle is not trivial:
one has to work with a quotient algebra (every term represents the set of terms
that are algebraically equal) and thus everything becomes more complex, see
for instance [SP13, HK13]. Therefore most protocol verification in Isabelle uses
the free algebra. Most typing results also are limited to the free algebra (an
exception being [Möd11]).

One may wonder, however, how this free algebra model compares to other pro-
tocol models like the Applied-π calculus model of ProVerif [Bla01] that supports
algebraic properties to some extent. As an example, to describe signature veri-
fication, one may specify a destructor function verify that takes as arguments a
signed message and a public key and yields true if the signature is correct w.r.t.
that public key. This is expressed by the rewrite rule:

verify(sign(privkey ,msg), pub(privkey))→ true
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(Similar rewrite rules we have for decryption functions and the like.) This is in
fact an algebraic property and it cannot be directly expressed in a free algebra
term model. Note that internally, ProVerif works with Horn clauses in the
free algebra as well. Therefore a transformation step is taken when translating
a given Applied-π-calculus specification into Horn clauses. In the example of
signature verification or similar theories of constructors and destructors, this
would amount to pattern matching. Consider for instance an honest agent who
receives an arbitrary message x and checks that applying verify with a particular
key pub(privkey) yields true; ProVerif’s transformation would yield an agent
who now receives only messages of pattern sign(privkey , y) where y is a variable
to which the content of the signature is bound. This is precisely how free algebra
approaches handle constructors—having no explicit destructors anymore.

Furthermore, ProVerif also allows for equations and it similarly applies a com-
pletion procedure to the Horn clauses to take into account all algebraic variants
of a term. Note this feature may easily lead to non-termination and one must
carefully craft the algebraic properties for this, see for instance [KT09]. In prin-
ciple one can apply the same transformation also to strands in order to handle
some algebraic properties, but we leave this as future work.
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Chapter 3

Formalizing a Typing Result
in Isabelle/HOL

In this chapter we formalize the typing result of Almousa et al. [AMMV15]
in Isabelle. Typing results are of the form: if a protocol P satisfies certain
typing conditions, and if P is secure in a well-typed model, then P is se-
cure also in an untyped model. In order to prove such a typing result, one
needs to make arguments of the form “in every step of an attack where the
intruder sends something ill-typed, he may send something well-typed instead
and the attack would work similarly.” To make such arguments in a clear and
precise way—avoiding hand-wavy and roundabout proofs—existing typing re-
sults [CD09, Möd12, AD14, AMMV15] use a popular verification technique that
uses symbolic intruder constraints and that we simply refer to as the lazy in-
truder. This idea is originally used to cope with the infinity induced by the
Dolev-Yao model in automated verification [MS01, RT03, BMV05]: the intruder
is lazy in the sense that he chooses parts of messages that he sends only in a
demand-driven way, i.e., if a particular form is necessary for a particular attack.
One can use this technique in a different way for the typing results by showing
(for protocols that satisfy some requirements) that the lazy intruder never makes
ill-typed choices, and all type-flaw attacks are ill-typed choices of message parts
that the lazy intruder did not instantiate. This allows one to conclude that, if
there is a solution to the constraints, then there is a well-typed one. This is
at the core of all typing results and we thus formalize the lazy intruder in Isa-
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belle, including the proof that the reduction procedure for constraints is sound,
complete, and terminating, because the typing result relies on this.

During the formalization effort we discovered a number of errors in [AMMV15].
We have fixed these problems by imposing some additional conditions on the
class of protocols. We argue that these conditions are reasonable restrictions
and still more liberal than those of other typing results. This is discussed in
detail in Section 3.3. To illustrate the feasibility of our requirements, as a
real-world case study, we prove in Isabelle that the Transport Layer Security
(TLS 1.2 [DR08]) protocol satisfies the requirement of the typing result, namely
type-flaw resistance.

In order to facilitate easier reasoning in Isabelle, we have also made several
simplifications to the lazy intruder. We also prove in Isabelle that these sim-
plifications are without loss of generality, i.e., we prove the equivalence to a
standard transition system with a full intruder. We use the Isabelle formal-
ization of the lazy intruder only as a means to prove the main typing result,
however it can also be employed directly to conduct lazy intruder-based proofs
in Isabelle. More generally, we believe that all tools that use the lazy intruder
technique can benefit from the simplification we made to the technique here.

Since this chapter consists of many definitions and theorems, including several
variants of theorems, we here give a shortlist of definitions and the main typing
result, i.e., everything that one needs to consider in order to apply our result:

• Given a protocol described as a countable set of closed strands, we define
a state transition system with constraints (Definition 3.21).

• We define the semantics of constraints using a standard Dolev-Yao intruder
deduction relation (in the free algebra) (Section 3.1.2 and Definition 2.5).

• We define the notion of type-flaw resistance for protocols (Definition 3.17).

• We define a requirement on the use of operators in the protocol, called
analysis-invariance, needed to fix a mistake in [AMMV15] (Definition 3.24).

• The main result is that for any reachable state of a type-flaw resistant,
analysis-invariant protocol, there is a solution for the constraints if and
only if there is a well-typed solution (Theorem 3.27).
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3.1 Modeling the Lazy Intruder in Isabelle/HOL

A naïve approach to model checking security protocols would be to devise a
transition system that contains transitions for honest agents and term compo-
sition/decomposition steps for the intruder. Since term composition is infinite,
one would not only bound the number of honest agents and the number of pro-
tocol runs they can participate in, but also the complexity of messages that the
intruder can compose. (In fact, the typing result shows that for a large class
of protocols this bounding of the intruder is without loss of attacks.) But even
under tight bounds, the search space is infeasibly large. Therefore a technique
has emerged that replaces this “eager” exploration of what the intruder can do
by a symbolic approach with constraints and a demand-driven, “lazy” evaluation
of these constraints [MS01, RT03, BMV05]. We thus like to call this technique
the lazy intruder. While a successful method in the analysis and verification (for
a bounded number of sessions) of security protocols, it has also been used as a
proof argument for typing and compositionality results [CD09, AD14, AMMV15]
like the one we formalize here in Isabelle. Note that in this way of using the
lazy intruder, there is no bound on the number of sessions.

In most works the lazy intruder constraints are of the formM ` t where nowM
and t can contain variables. Intuitively, M is the knowledge that the intruder
had at a point where he sent a message of the form t to some honest agent.
Here the term t may contain variables, so that t is a pattern of what messages
the agent would accept and the variables are the places where the agent does
not expect a particular value. This is where the lazy intruder is lazy: we do
not right away try to determine a value for each variable. Therefore, the next
messages this honest agent sends may contain variables from t and this is how
variables can end up in the intruder knowledge M ′ in a successor state.

For a feasible procedure for checking the satisfiability of constraints, one needs
to require a well-formedness condition on constraints: they can be ordered as
M1 ` t1, . . . ,Mn ` tn (the order in which the constraints occurred) where

1. Mi ⊆Mi+1 (for 1 ≤ i < n): the intruder knowledge grows monotonically;
and

2. fv(Mi) ⊆
⋃i−1
k=1 fv(tk): all variables originate from a term sent by the

intruder.

A large part of this chapter is to formalize in Isabelle/HOL these lazy intruder
constraints, a reduction procedure for the constraints, and to prove the sound-
ness, completeness, and termination of this procedure. Completeness and termi-
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nation are quite difficult even as standard pen-and-paper proofs. We therefore
had to first seek for any possibilities to make the task and the formalization
as easy and light-weight as possible. The main simplifications are a different
representation and an “out-sourcing” of decomposition steps, as we explain next.

The formalization we present here is a so-called deep embedding, i.e., we formalize
constraints as objects in Isabelle that we can reason about. This is in contrast to
a shallow embedding where we simply consider them as HOL formulae that use
the ` predicate. A shallow embedding would have advantages (both in terms
of simplicity and performance) if one would like to directly perform constraint
reasoning in Isabelle. A deep embedding is however necessary for our purpose,
since we want to reason about a procedure that manipulates constraints, and in
particular prove that this procedure is complete and terminates (the soundness
proof could also be expressed in a shallow embedding).

3.1.1 The Lazy Intruder on the Beach

The first idea for keeping matters simple is to change the representation of the
constraints by using strands.1 A strand is a sequence of send and receive oper-
ations and strand spaces are a nice formalism to reason about protocol execu-
tions [THG99]. We therefore define an intruder strand (or intruder constraint)
as a list of received and sent messages:

datatype (Σ,V) strand-step =
Send ((Σ,V) term)

| Receive ((Σ,V) term)

type-synonym (Σ,V) strand = (Σ,V) strand-step list

Thus, the intruder knowledge at each point in the strand are the messages
that the intruder has received up to this point, and each sent message must be
something he can construct from the knowledge at that point.

Example 3.1 In this chapter we use the analysis theory defined in Exam-
ple 2.1. Consider now the following constraints in traditional representation:

{crypt(pub(ka), secret), ki} ` crypt(pub(x), y)
{crypt(pub(ka), secret), ki, y} ` secret

In the strand representation we would write this as:

Receive crypt(pub(ka), secret).Receive ki.
Send crypt(pub(x), y).Receive y.Send secret.0

1Note that the word strand in Danish and German means beach.
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Instead of [st1, . . . , stn] we rather write st1. . . . .stn.0 like in process calculi. �

The advantage of our representation is that we have “built-in” the first condition
of the well-formedness: that the intruder knowledge monotonically grows. The
second condition—that all variables originate in terms sent by the intruder—is
now easy to formulate as wf st ∅ where wf st is defined as follows:

wf st X 0 iff True
wf st X (Receive t.A) iff fv(t) ⊆ X and wf st X A

wf st X (Send t.A) iff wf st (X ∪ fv(t)) A

Here the parameter X of wf st X A is meant to denote the free variables of all
sent messages that have occurred in a prefix of the parameter A. The intruder
knowledge of an intruder strandA, written ik st A, is the set of received messages.
That is, t ∈ ik st A iff Receive t occurs in A.

3.1.2 Constraint Semantics

We define the semantics of intruder strands based on the Dolev-Yao deduction
relation `. Recall that an interpretation I maps all variables to ground terms.
We write JM ;AK I to denote that I is a solution of an intruder strand A where
M is an (initially empty) set of messages available to the intruder at the start,
and define this relation as follows:

JM ; 0K I iff True
JM ; Send t.AK I iff M ` I(t) and JM ;AK I

JM ; Receive t.AK I iff J({I(t)} ∪M);AK I

Thus, every message he receives is simply added to the parameterM that collects
the intruder knowledge in this inductive definition. For every message t that
the intruder sends, we require that he can derive it from knowledge M (under
the interpretation I).

Example 3.2 Consider the intruder strand from the previous example. Any
I with I(x) = ka and I(y) = secret is a solution of the constraint. Consider only
the prefix up to (and including) the first Send step; then also I(x) = I(y) = ki
is a solution, and so is any interpretation that maps x and y to terms that the
intruder can generate from his knowledge at that point. �

During constraint reduction below we will consider pairs (A, θ) of an intruder
strand A and a well-formed substitution θ that represents the (partial) solution
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obtained so far (like the solution for x and y in the example above). At the
beginning of the reduction, θ is simply the identity. Whenever θ is augmented
during reduction, we apply it also to A, i.e., A contains no variables in the
domain of θ (that are already “solved”).2 Formally:

Definition 3.1 A constraint state is a pair (A, θ), where A is an intruder
strand and θ is a substitution. A constraint state (A, θ) is furthermore well-
formed if

1. A is a well-formed intruder strand,

2. θ is a well-formed substitution, and

3. the domain of θ and the variables of A are disjoint.

The interpretation I is said to be a model of (A, θ) (with initial intruder knowl-
edge M0) written M0, I |= (A, θ), iff θ supports I and JM0;AK I holds. For the
default M0 = ∅ we simply write I |= (A, θ), and I |= A if additionally θ = [].

3.1.3 Extending Constraints with Message Checks

Intruder constraints have been extended in [AMMV15] with positive message
checks t .

= t′ (called equalities) and universally quantified negative message
checks ∀x̄. t 6 .= t′ (called inequalities).

To support such constraints in our Isabelle-formalization we augment the datatype
strand-step with two new constructors called Equality and Inequality . The
datatype is therefore defined as follows:

datatype (Σ,V) strand-step =
Send ((Σ,V) term)

| Receive ((Σ,V) term)
| Equality ((Σ,V) term) ((Σ,V) term)
| Inequality (V list) ((Σ,V) term) ((Σ,V) term)

Here a step of the form Equality t t′ represents the constraint that t and t′ must
be equal whereas Inequality x̄ t t′ represents that t and t′ must be unequal under
every instantiation of the variables x̄.

2In Isabelle, we have to define explicitly an extension of substitution to functions on con-
straints (defined homomorphically as expected) but we leave this implicit in the notation in
this thesis, for simplicity.
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Now that we have introduced quantification over variables in our constraint
language we need to distinguish between the variables bound by a quantifier
and the remaining variables. For a given constraint A we therefore define its
bound variables to be those which occur in the variable list x̄ of some inequality
Inequality x̄ t t′ whereas the remaining variables are its free variables.

With the syntax extended we must also extend the semantics. Given an inter-
pretation I an Equality t t′ constraint is satisfied if t and t′ are equal under I
while an Inequality x̄ t t′ constraint is satisfied if no grounding of the variables
in x̄ unifies t and t′ under I.

Definition 3.2 The constraint semantics J·; ·K is defined as follows:

JM ; 0K I iff True
JM ; Send t.AK I iff M ` I(t) and JM ;AK I

JM ; Receive t.AK I iff J({I(t)} ∪M);AK I
JM ; Equality t t′.AK I iff I(t) = I(t′) and JM ;AK I

JM ; Inequality x̄ t t′.AK I iff JM ;AK I and
(∀δ. subst-domain δ = x̄ ∧ ground (subst-range δ) −→ I(δ(t)) 6= I(δ(t′)))

The well-formedness condition is also extended. To prevent free variables from
being captured by quantifiers during constraint reduction we require the free
and the bound variables of constraints to be disjoint. The full well-formedness
condition thus becomes the following:

Definition 3.3 An intruder strand A is well-formed iff the free variables and
the bound variables of A are disjoint and wf st ∅ A holds where:

wf st X 0 iff True
wf st X (Receive t.A) iff fv(t) ⊆ X and wf st X A

wf st X (Send t.A) iff wf st (X ∪ fv(t)) A
wf st X (Equality t t′.A) iff fv(t′) ⊆ X and wf st (X ∪ fv(t)) A

wf st X (Inequality x̄ t t′.A) iff wf st X A

Note that we here allow variables to originate at the left-hand side t of posi-
tive checks Equality t t′. Such variables are essentially abbreviations of terms
occurring at the right-hand side t′ and the variables in t′ originate from earlier
steps of the constraint. Note also that we have no requirements on the variables
occurring in inequalities but that this does not imply that variables can origi-
nate from there. Thus each occurrence of a variable in a constraint either still
originates from the intruder or is an abbreviation of something that does.
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Definition 3.4 (The Composition-only Intruder Model) We
define a restricted variant `c of the relation ` that is the closure only under
(Axiom) and (Compose), but omitting (Decompose):

M `c t
(Axiom),
t ∈M

M `c t1 · · · M `c tn
M `c f (t1, . . . , tn)

(Compose),
f ∈ Σn,
public f

Figure 3.1: The definition of the composition-only intruder model.

3.1.4 Out-sourcing Analysis

One aspect that makes the lazy intruder complicated, both in terms of an im-
plementation in tools, and in terms of proving completeness and termination of
the reduction procedure below, is analysis of terms. For instance, if the intruder
learns an encrypted term where the subterm for the key contains a variable,
then whether he can decrypt the term may depend on the substitution for that
variable. In general, one then has to make a case split: the case that the mes-
sage can be deciphered and the case that it cannot, since ignoring either case
may eliminate solutions. In fact, in the case a message has not been decrypted,
after each received message another case split is necessary whether or not the
term should now be decrypted. Another complication arises from the fact that
a term in the intruder knowledge could directly be a variable that may represent
a decryptable term, and one has to carefully argue that the term in question
was known to the intruder earlier (and could have been decrypted then), but
this argument requires that the earlier constraints have already been simplified.

To avoid these complications, we now consider the following idea: we limit the
intruder to composition steps only (i.e., we define a restricted variant of `, called
`c, and which is defined in Definition 3.4), and “out-source” all decomposition
steps to the transition system. To that end, we can imagine special honest
agents that perform decryption operations for the intruder. We discuss this in
detail (and prove correctness) in Section 3.3.

One may wonder why we even bother with the lazy intruder and do not simply
out-source also the composition steps of `c as well. Recall that the lazy intruder
was conceived to counter the problem that the `c closure is infinite (while closure
under analysis is finite). In other words, in a forward exploration of a transition
system, composition leads to blind exploration (while analysis is not a problem).
A backwards search like lazy intruder constraint solving is a clear demand-driven
way to handle composition steps. Exactly this demand-driven, lazy aspect is
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what we shall exploit in the typing results: while the intruder can compose
ill-typed messages, this is never necessary to mount the attack, and this “never
necessary” is captured by the laziness of the intruder. Not having analysis steps
as part of that argument does not hurt, because the analysis of terms is not
what introduces ill-typed messages. In fact, we believe that even for automated
tools that use the lazy intruder technique, the out-sourcing of analysis could be
beneficial, since it drastically simplifies the technique, and as far as we can see
every provision for efficiency (e.g., eagerly performing analysis steps that require
no substitution) can be similarly applied at the transition system level.

We define a variant J·; ·Kc of the semantics J·; ·K restricted to composition steps
by replacing ` with `c in the definition of J·; ·K. Similarly, we define |=c by
replacing J·; ·K with J·; ·Kc in the definition of |=.

3.1.5 Constraint Reduction

The goal of the constraint reduction procedure is to determine all solutions of
a constraint. There are in general infinitely many solutions, but they can be
finitely represented, namely by simple constraints:

Definition 3.5 An intruder strand A is simple if and only if

1. t ∈ V for every Send t that occurs in A,

2. no positive check Equality t t′ occurs in A, and

3. every negative check Inequality x̄ t t′ occurring in A is satisfiable.

The point is that simple constraints are always satisfiable: the remaining vari-
ables are arbitrary, so the intruder can choose any term from his knowledge.
A key point of the typing result is: when the variables are annotated with an
intended type (and the intruder knows values for each type), then there always
also exists a well-typed solution for a simple constraint.

Note that inequalities occurring in simple constraints must be satisfiable. Satis-
fiability of inequalities can in fact be determined using the mgu algorithm: given
Inequality x̄ t t′ pick any substitution θ whose range consists of fresh constants
and whose domain covers the free variables of the inequality and is disjoint from
the bound variables. Then Inequality x̄ t t′ is satisfiable if and only if θ(t) and
θ(t′) are not unifiable (i.e., mgu θ(t) θ(t′) = None where the data constructor
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None is from the option data type and indicates here that there is no most-
general unifier of θ(t) and θ(t′)). Lemma 3.7 shows that such a verification
procedure is sufficient.

However, it is not trivial to prove that a substitution θ as defined in the previous
paragraph is a solution to a satisfiable inequality. An attempt at proving such
a statement exists in [AMMV15] (more specifically, their Lemma 2), but we
discovered during our Isabelle-formalization effort that their proof is incomplete
at best: They rely on obtaining an arbitrary substitution ξ whose range needs
to be disjoint from the range of θ, but θ is fixed before ξ is obtained and so the
substitution ranges may overlap. We saw no way to repair their proof, and so we
decided to prove the statement differently, in Lemma 3.6. Note that Lemma 3.6
will also be useful later on and for that purpose we here prove a slightly more
general lemma than what is needed at this point.

Lemma 3.6 Let θ = [x̄ 7→ l̄] be a fresh substitution w.r.t. terms s and t where
l̄ are ground terms, and let σ = [x̄ 7→ ū] where ū are ground terms. Assume that
at least one of the following conditions hold:

1. all terms in the range of θ (i.e., l̄) are constants, or

2. there does not exist a subterm of s or t of the form f(z1, . . . , zn) such that
z1, . . . , zn are variables, n > 0, and {z1, . . . , zn} ∩ x̄ = ∅.

If θ(s) and θ(t) are unifiable then σ(s) and σ(t) are unifiable.

Proof. We essentially need to prove that unifiability of s and t are independent
of the variables in x̄, if we know that θ(s) and θ(t) are unifiable. Intuitively, this
means that a most general unifier of s and t cannot constrain the variables in
x̄. Otherwise some instance (i.e., substitution) ς of the variables from x̄ would
not be supported by a most general unifier of s and t, rendering ς(s) and ς(t)
non-unifiable.

First, we obtain an mgu δ of s and t. This is possible since θ(s) and θ(t) are
unifiable. Together with our assumptions, Lemma 2.3, and Lemma 2.4 we have
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the following properties of δ:

For any unifier γ of θ(s) and θ(t) there exists a τ such that θ · γ = δ · τ (1)
If c v δ(z) then either c v s or c v t, for any z ∈ dom(δ) and c ∈ C (2)

dom(δ) ∩ fv(ran(δ)) = ∅ (3)
If f(z1, . . . , zn) v δ(z) then there exists a subterm of s or t
of the form f(z′1, . . . , z

′
n) for some z′1, . . . , z

′
n ∈ V such that (4)

δ(z′i) = zi for all i ∈ {1, . . . , n}, for any z ∈ V and f ∈ Σ

From (1) we can obtain a substitution τ such that θ(x) = τ(δ(x)) for all x ∈ x̄.

In the following let ȳ denote the variables (fv(s) ∪ fv(t)) \ x̄. Suppose that
there exists an x ∈ dom(δ) ∩ x̄. Then θ(x) = τ(δ(x)). Now suppose also
that x′ ∈ fv(δ(x)) for some x′ ∈ x̄. Then x 6= x′ and τ(x′) v τ(δ(x)) and
τ(δ(x′)) = θ(x′). The variable x′ cannot be in the domain of δ because of (3)
and so τ(δ(x′)) = τ(x′) = θ(x′). But then θ(x′) v θ(x), contradicting subterm
injectivity of θ. Therefore fv(δ(dom(δ) ∩ x̄)) ⊆ ȳ.

We can furthermore show that δ is injective on dom(δ) ∩ x̄: If δ(x) = δ(x′),
for arbitrary x, x′ ∈ x̄, then θ(x) = τ(δ(x)) = τ(δ(x′)) = θ(x′) and so x = x′

because of injectivity of θ.

Hence δ is of the form

δ = [y1 7→ t1, . . . , yk 7→ tk, x1 7→ s1, . . . , x` 7→ s`]

where fv({s1, . . . , s`}) ⊆ ȳ \ {y1, . . . , yk}.

We can also show that each si is a variable, implying that δ(dom(δ) ∩ x̄) ⊆
ȳ. Suppose that there exists a variable xi ∈ dom(δ) ∩ x̄ such that δ(xi) is a
composed term or a constant. No constant c can occur in δ(xi) because otherwise
c v τ(δ(xi)) = θ(xi) by the properties of τ and either c v s or c v t by (2),
contradicting freshness of θ. So all atomic subterms of δ(xi) must be variables.
We can now perform a case analysis on whether l̄ ⊆ C:

• If l̄ ⊆ C then θ(xi) = ci for some ci ∈ C. Since θ(xi) = τ(δ(xi)) and since
δ(xi) is either a composed term or a constant it must be the case that
δ(xi) = ci. However, we just showed that no constant can occur in δ(xi)
and so we have arrived at a contradiction.

• If l̄ 6⊆ C then we know by the assumptions of this lemma that no subterm
of the form f(y1, . . . , yn) where n > 0 can occur in s or t. We also know
that fv(δ(xi)) ⊆ ȳ and so we can obtain a subterm u′ of δ(xi) of the form
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f(y′1, . . . , y
′
m) where {y′1, . . . , y′m} ⊆ ȳ, because no constant occur in δ(xi).

This term u′ cannot occur in s or t by the assumptions of this lemma. So it
must be the case that there exists some j ∈ {1, . . . ,m} such that δ(xj) = y′j
by (4), and so also xi 6= xj because δ(xi) is a composed term while δ(xj)
is not. But then y′j occurs in both δ(xi) and δ(xj), implying that θ(xi)
and θ(xj) share the subterm τ(y′j), contradicting subterm injectivity of θ.

In both cases we arrive at a contradiction and so the assumption that δ(xi) is
either a constant or a composed term is false. Hence δ(xi) ∈ ȳ \ {y1, . . . , yk} for
all xi ∈ dom(δ) ∩ x̄ and so {s1, . . . , s`} ⊆ ȳ \ {y1, . . . , yk}.

We can now obtain a unifier of s and t whose domain is a subset of ȳ as follows:
Let α = [s1 7→ x1, . . . , s` 7→ x`]. Then δ · α (i.e., λz. α(δ(z))) is a unifier of s
and t because δ is, and for each xi ∈ dom(δ) ∩ x̄ the variable renaming α sends
δ(xi) back to xi, so xi /∈ dom(δ · α).

Let δ′ = δ · α. Since δ′ is a unifier of s and t we have that δ′ · σ is also a unifier
of s and t. We now show that σ · δ′ · σ = δ′ · σ, which implies that δ′ · σ is a
unifier of σ(s) and σ(t). For any variable z:

• If z ∈ x̄ then σ(z) = u is a ground term and z /∈ dom(δ′). Hence
σ(δ′(σ(z))) = σ(δ′(u)) = u and σ(δ′(z)) = σ(z) = u.

• If z ∈ ȳ then z /∈ dom(σ). Hence σ(δ′(σ(z))) = σ(δ′(z)).

• Otherwise σ(δ′(σ(z))) = z = σ(δ′(z)).

Thus σ(s) and σ(t) are unifiable. �

We can now use Lemma 3.6 to show that satisfiability of inequalities can be
determined using the mgu algorithm:

Lemma 3.7 3 Let θ = [ȳ 7→ c̄] be a fresh substitution w.r.t. the terms t and
t′ where c̄ are fresh constants and ȳ are the free variables of Inequality x̄ t t′.
Then Inequality x̄ t t′ is satisfiable if and only if θ(t) and θ(t′) are not unifiable.

Proof. Note that fv(θ(t)) ⊆ x̄ and fv(θ(t′)) ⊆ x̄. Note also that θ is injective
because c̄ are fresh constants.

3Note that the statement “If θ(t) and θ(t′) are not unifiable then Inequality x̄ t t′ is
satisfiable” is not formalized in Isabelle yet. The other direction of the implication—namely
the one relying on Lemma 3.6 and the one needed in later proofs—is fully formalized in
Isabelle.
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If Inequality x̄ t t′ is unsatisfiable then σ(t) and σ(t′) must be unifiable for any
ground substitution σ whose domain is the set of free variables of the inequality.
So in particular θ(t) and θ(t′) must be unifiable. Therefore, if θ(t) and θ(t′) are
not unifiable then Inequality x̄ t t′ is satisfiable.

For the other direction we can apply Lemma 3.6. �

The goal of the reduction procedure is now to transform a given constraint
into an equivalent set of simple constraints. That is, we define a reduction
relation  on constraint states4 (see Definition 3.8), and for a given (A0, θ0),
we consider the reachable constraints, i.e., (A0, θ0) ∗ (A, θ). (The relation ∗
denotes the reflexive transitive closure of while + then denotes the transitive
closure.) We prove in Isabelle that there are finitely many (termination), and
that the union of the models of the reachable simple constraints is exactly the
set of models of (A0, θ0) (soundness and completeness). Strictly speaking, for
termination we prove that the relation  is well-founded, i.e., there are no
infinite reduction chains. To prove that there are only finitely many reachable
constraints one could furthermore prove that the relation is finitely branching
and then apply König’s lemma. However, well-foundedness alone is sufficient
for our purposes.

The (ComposeLI ) rule of Definition 3.8 corresponds to the (Compose) rule of the
Dolev-Yao model, i.e., if the intruder has to produce f(t1, . . . , tn) for a public
symbol f , one way to do it is to produce each of the ti (in whatever way) and
apply f to them.

The (UnifyLI ) rule of Definition 3.8 corresponds to the (Axiom) rule of the
Dolev-Yao model: it states that the intruder can send a message s if he has
previously learned a message t that can be unified with s. More precisely, the
most general unifier δ of s and t (if it exists) represents all interpretations of
the constraint, under which s and t are equal, and thus under which the Send s
can be removed as this requirement is satisfied. However, we have to integrate
δ by composing it with the existing solution θ and applying it to the rest of
the constraint, so that no variable in the domain of δ remains in the intruder
strand.

Note that the (UnifyLI ) rule is not applicable if the term s to be generated
is a variable, because we are lazy: since so far there is no more constraint on

4This relation φ  ψ is sometimes written
ψ

φ, i.e, in the form of a proof calculus for
satisfiability. One can read each such rule top down: every solution of ψ is also a solution
of φ. The procedure, however, works by backwards exploring the rules: the solutions of φ
include all solutions of ψ.
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Definition 3.8 The lazy intruder is the least relation between constraint
states closed under the following rules (where map is provided by Isabelle
and is defined as usual, i.e., it satisfies the equation map f [a1, . . . , an] =
[f a1, . . . , f an]):

(ComposeLI ) :
(A.Send f(t1, . . . , tn).A′, θ) (A.(map Send [t1, . . . , tn]).A′, θ)

if simple A, f ∈ Σn, and public f

(UnifyLI ) :
(A.Send s.A′, θ) (δ(A.A′), θ · δ)

if s, t /∈ V, simple A, t ∈ ik st A, and mgu s t = Some δ

(EqualityLI ) :
(A.Equality s t.A′, θ) (δ(A.A′), θ · δ)

if simple A and mgu s t = Some δ

Figure 3.2: The definition of the lazy intruder.

what s should be precisely, it is pointless to explore options—the intruder can
always generate something. This is a key to the typing result later. In following
reduction steps, this variable may be replaced with a more concrete term, and
then we explore how that term can be generated. Finally, the rule also forbids
that the term t that we unify with s is a variable (and this is again crucial in the
typing result), but that this restriction is without loss of generality is a tricky
part of the completeness proof.

For the (EqualityLI ) rule of Definition 3.8 we simply compute the most general
solution δ to the equality constraint. As with the (UnifyLI ) rule we must inte-
grate δ by composing it with the existing solution θ and apply δ to the remaining
constraint.

Note that in contrast to many other lazy intruder methods, these rules are only
applicable to the first step of the form Equality t t′ or Send t where t is not a
variable, i.e., all prior constraint steps must be simple already. This restriction
is without loss of generality again as our proofs show; since this removes some
non-determinism, it also makes some arguments later easier, because we can
rely on the prefix to be simple.

Example 3.3 Let us reduce the constraint from Example 3.1 (with [] as initial
substitution). With one  step (addressing the first Send) we can get (using
(ComposeLI )) to: . . .Send pub(x).Send y.Receive y.Send secret.0.

Since we cannot unify the pub(x) with anything, we then are forced to make
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another compose, leading to: . . .Send x.Send y.Receive y.Send secret.0 The
remaining non-simple Send secret cannot be solved (if secret ∈ Cpriv ), i.e., it
has no successor under  . Since it is not simple, it does not have any solution
by completeness of the lazy intruder (the actual completeness theorem will be
introduced later).

From the original constraint we can however also reach another constraint when
using (UnifyLI ) between the received encrypted message and the one to be sent,
giving the unifier δ = [x 7→ ka, y 7→ secret]: . . .Receive secret.Send secret.0
which can trivially be solved with another unify step. �

3.1.6 Proving Soundness & Completeness

A large part of the contribution of this chapter lies in the Isabelle proof of
the soundness and completeness of lazy intruder reduction. This is following
basically the proofs in [AMMV15]. In fact, with analysis (that we out-source
to the transition system) we found several mistakes in [AMMV15]; these are
discussed on the transition system level in Section 3.3.2, along with a correction.

We first prove that all reductions preserve well-formedness of the constraint
states:

Lemma 3.9 (Well-formedness preservation) If (A1, θ1) is a well-
formed constraint state and (A1, θ1)  ∗ (A2, θ2) then (A2, θ2) is also a well-
formed constraint state.

Proof. Such invariants of the reduction system are of course first proved for
single reductions  and then follows for  ∗ by an induction on the reflexive
transitive closure. The single-reduction case follows from a case analysis on the
lazy intruder relation. �

From the well-formedness we can quite easily derive soundness, i.e., that no
reduction step introduces new solutions:

Theorem 3.10 (Soundness) If (A, θ) is well-formed, (A, θ)  ∗ (A′, θ′),
and I |=c (A′, θ′), then I |=c (A, θ).

Proof. Again proven by induction on the reflexive transitive closure and case
analysis on the lazy intruder relation. �
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The proof of completeness relies on the termination which we thus prove first.

Lemma 3.11 (Termination) The relation is well-founded, i.e., for any
state (A, θ) there are no infinite reduction chains (A, θ) (A′, θ′) · · · .

Proof. Not having to deal with analysis rules in this proof makes mat-
ters simpler. The standard approach is here to define a well-founded mea-
sure < on constraint states, and show that on every reduction the constraint
state decreases according to the measure, so there cannot be an infinite chain
(A1, θ1)  (A2, θ2)  · · · of reductions. The measure < is lexicographically
first in the number of free variables and secondly in the size of constraints (sum
of the size of constraint terms). A unification or equality step where the unifier
is not the identity reduces the first component of this measure, while all other
steps leave it equal and reduce the second component. �

The next step is to show that all simple constraints are satisfiable:

Lemma 3.12 (Simple constraints are satisfiable) If (A, θ) is
well-formed and A is simple then there exists an interpretation I such that
I |=c (A, θ).

Proof. Here the idea is to consider any injective interpretation I that interprets
the variables of A with fresh elements of Cpub (i.e., the range of I consists of
public constants that do not occur anywhere in (A, θ)). Then all Send steps
of the simple intruder strand A are satisfied under I. We also know from
Lemma 3.7 that I must be a solution to the inequalities occurring in A. Since
subst-domain θ and fv(subst-range θ) are disjoint we know that θ · θ = θ and so
θ supports θ · I. Finally, since the domain of θ is disjoint from the variables of
A we have that (θ · I)(A) = I(A) and thus θ · I is a solution to (A, θ). �

The most difficult lemma to prove is that for any non-simple constraint with a
solution I there exists a reduction  that preserves I.

Lemma 3.13 (Completeness, single step) If (A, θ) is a well-formed
constraint state, I |=c (A, θ), and A is not simple, then there exists (A′, θ′) such
that (A, θ) (A′, θ′) and I |=c (A′, θ′).

Proof. In a nutshell, when given a constraint (A, θ) with a model I, then
every sent term t must be composed from the setM of previously received terms
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under I, (i.e., I(M) `c I(t)), every Equality t t′ occurring in A is satisfied (i.e.,
I(t) = I(t′)), and every Inequality x̄ t t′ of A is satisfied.

Since A is satisfiable and not simple we know that there exists a prefix of A of
the form B.Send t or B.Equality t′ t′′ where B is a simple intruder constraint
and t is not a variable.

In the case where the prefix ends with Equality t′ t′′ we know that I(t′) = I(t′′)
and so there exists a most general unifier δ of t′ and t′′. We can therefore apply
the (EqualityLI ) rule to proceed with the reduction. We can also prove that δ
supports I because δ is a most general unifier of t′ and t′′, and so I is also a
model of the reduced constraint after application of (EqualityLI ).

Otherwise, consider the first Send t of A where t is not a variable. Recall that
`c is inductively defined, by a set of rules: i.e., I(t) is either obtained with the
(Axiom) rule or with the (Compose) rule defining `c. In the (Compose) case,
we can invoke the (ComposeLI ) rule of the lazy intruder and get to the solution.
In case of the (Axiom) rule, there must be a term s ∈M such that I(s) = I(t).
If s is not a variable, we can use the (UnifyLI ) rule. If s ∈ V however, then by
well-formedness s occurs previously in the part of the constraint that is already
simple, i.e., Send s occurs previously in the strand and the intruder thus uses
a term that he previously sent. This term I(s) was itself derived with `c using
(Axiom) or (Compose). In the case of (Axiom), there is another earlier received
term s′ with I(s′) = I(t) which we could have picked instead. In the (Compose)
case the (ComposeLI ) of the lazy intruder is applicable. �

More generally, the proof shows that for every concrete solution I, for every
relevant step of the ground Dolev-Yao intruder `c under I, we can find a cor-
responding step of the lazy intruder—where relevant steps are only those steps
that are needed to solve one non-simple step of the constraint. The difficult
cases in the proof are those where we need to regress to other steps that the
intruder has made before (exploiting the well-formedness). Note that if one
also considers analysis steps, this regression becomes much more complicated,
since one needs to consider also analysis of terms that may be a variable or
that resulted from a composition step. For that reason one needs then to also
consider proof normalization, i.e., eliminating redundant parts of proofs where
the intruder first composes terms that he then decomposes again.

From this, we obtain the completeness: a well-formed constraint is either simple
(and thus satisfiable), or we can make further reductions (and no solution gets
lost), or else we are stuck at an irreducible constraint (that is thus unsatisfiable).
Together with termination we thus have that all satisfiable constraints can be
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reduced to simple ones without losing any solutions:

Theorem 3.14 (Completeness) If (A, θ) is well-formed and I |=c (A, θ)
then there exists a (A′, θ′) such that A′ is simple, (A, θ) ∗ (A′, θ′), and I |=c

(A′, θ′).

Proof. If A is simple then the conclusion follows by reflexivity of  ∗. So in
the following we will assume that A is not simple.

We say that a state (B, σ) is stuck if there is no successor state (B′, σ′) in  
with model I. From Lemma 3.9 and Lemma 3.13 it follows that for any stuck
(B, σ) with model I where (A, θ) + (B, σ) the constraint B must be simple.

Now denote by I the subrelation of defined as (B, σ) I (B′, σ′) iff (B, σ) 
(B′, σ′) and I is a model of both (B, σ) and (B′, σ′), for any two states (B, σ)
and (B′, σ′). The transitive closure is then denoted by  +

I .

The idea is now to show that there exists a stuck state (A′, θ′) reachable from
(A, θ) in I , i.e., (A, θ) +

I (A′, θ′) where +
I (A′, θ′) has no successor in I .

This implies that such a A′ is simple, and that I is a model of (A′, θ′), thereby
proving the theorem. The proof is by contradiction: We first assume that there
is no stuck state (A′, θ′) reachable from (A, θ) in  I and then we show that
this assumption leads to a contradiction. More specifically, we will show that
there exists an infinite chain in  I , contradicting Lemma 3.11 because  I is
a subrelation of  .

Formally, we express in higher-order logic an infinite chain in  I as a function
f from the natural numbers to states such that f i  I f (i + 1) for all i ∈ N.
We can easily construct such a function if we can show the following:

1. There exists a state (B, σ) such that (A, θ) I (B, σ).

2. For any (B, σ) such that (A, θ)  +
I (B, σ) there exists some state (B, σ′)

where (B, σ) I (B′, σ′).

An application of Lemma 3.13 proves the first requirement. So all that remains
is to show that there always exists a successor state in  I for any state (B, σ)
reachable from (A, θ) in  I . However, we know by assumption that any such
(B, σ) cannot be stuck, and so we can always pick a successor state of (B, σ) in
 I , proving the second requirement. �
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3.2 Typed Model

So far there has been no notion of types. We now define a simple type system and
consider the restriction where the intruder is limited to sending only well-typed
messages. The main result of this section is the formalization of a typing result
on intruder constraints for a large class of protocols, i.e., that the restrictions
imposed on the intruder is without loss of attacks for many protocols: if a
constraint state (A, θ) has a solution I, then it also has a well-typed solution
I ′. Thus, if we can verify a protocol in a typed model (all constraints that
arise only have well-typed solutions) then we can infer that it is also secure in
the untyped model. In this section we first develop the typing result on the
level of constraints (without analysis) and then extend it to entire protocols and
transition systems in Section 3.3.

3.2.1 The Type System

Recall that our notion of terms is parameterized over a set Σ of function
symbols, so one can easily introduce new operators without updating all the
proofs. Similarly, for the type system we introduce another set over which
our result is parameterized: a finite set Ta of atomic types. An example is
Ta = {Agent,Nonce,SymmetricKey,PrivateKey}. (Note that public keys do not
have an atomic type in this example, because we build them using operator pub
from private keys.) Next, we introduce composed types as built like terms from
Ta and the operators of Σ, for instance crypt(pub(PrivateKey),Nonce) could be
a composed type. As types are thus very similar to normal terms, we re-use the
definition for terms:

type-synonym (Σ,Ta) term-type ≡ (Σ,Ta) term

Thus, we put atomic types in every place where normal terms would have vari-
ables. (Note that our type system has no type variables, atomic types are like
constants.) To avoid confusion and make definitions nicer to read, we intro-
duce two synonyms for the constructors Var and Fun of terms, namely TAtom
and TComp, and consistently use them when talking about types in Isabelle-
notation. We inherit all previous notions from terms, e.g., well-formedness for
types (all operators are used with correct arity). However, we additionally re-
quire that no constants occur in types. Further, our result is parameterized over
a typing function Γ : (Σ,V) term ⇒ (Σ,Ta) term-type that maps each term to
a type and that must satisfy the following properties:

1. Γ(c) ∈ Ta for every c ∈ C.
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2. Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every f ∈ Σ \ C.

3. Γ(v) must be a well-formed type for every v ∈ V.

In fact, it is sufficient to specify Γ for all constants (as atomic types) and all
variables (as arbitrary well-formed types), and then homomorphically extend Γ
to arbitrary terms. Thus, every well-formed term t has a well-formed type Γ(t).

Finally, we want to give the intruder an unbounded supply of terms of every
type. Thus we require the following:

1. Cpub contains infinitely many constants of every atomic type:

∀a. infinite {c. Γ (Fun c []) = TAtom a ∧ public c}

2. all functions of arity greater than zero (i.e., all symbols of Σ\C) are public.

Note that we now only consider public function symbols for the symbols occur-
ring in Σ \ C, i.e., we require that public returns true for all symbols of Σ \ C.
One can simulate however a private function symbol of arity n > 0 by a public
function symbol of arity n+1 where the additional argument is used with a spe-
cial constant that is never given to the intruder; in this way all results can be
lifted to a model with both private and public function symbols. For instance
we can encode inv ∈ Σ1 in terms of a public symbol inv′ ∈ Σ2 and a special
secret constant secinv.

Note also that we require every atomic type to have an infinite number of values.
This is necessary because we need to find solutions to inequalities, and for that
reason we need to always be able to pick an arbitrary number of fresh constants.

To model the type system in Isabelle/HOL we extend the intruder-model locale
by parameterizing over typing functions Γ that satisfy our requirements:

locale typed-model = intruder-model arity public Ana
for arity :: Σ⇒ nat
and public :: Σ⇒ bool
and Ana :: (Σ,V) term⇒ ((Σ,V) term set× (Σ,V) term set)

+ fixes Γ :: (Σ,V) term⇒ (Σ,Ta :: finite) term-type
assumes

∧
c. arity c = 0 =⇒ ∃a. ∀T. Γ(Fun c T ) = TAtom a

and
∧
f T. arity f > 0 =⇒ Γ(Fun f T ) = TComp f (map Γ T )

and
∧
a. infinite {c. Γ(Fun c []) = TAtom a ∧ public c}

and
∧
t f T. TComp f T v Γ(t) =⇒ arity f > 0

and
∧
x. wf trm Γ(Var x)

and
∧
f. arity f > 0 =⇒ public f



3.2 Typed Model 41

The notation Ta :: finite expresses that Ta must be a type with a finite number
of values, i.e., that Ta must be of sort finite.

An important point why this type system is of foundational interest is that it
limits the size of terms that can be substituted for a variable, e.g., when the
protocol requires a value to be of type nonce, it cannot be a composed term
in the typed model anymore. Abstract interpretation approaches like the one
used in ProVerif (where Σ is finite) become decidable under this restriction, and
several Isabelle proof methodologies are based on a typed model [Pau98, Pau99,
BMP06, Bel07, BM09]. This restriction on substitutions—that they preserve
typing—is captured by the following definition:

Definition 3.15 A substitution δ is well-typed if and only if Γ(δ(x)) = Γ(x)
for all x ∈ V.

The requirement that we need for our typing result is that the messages and sub-
messages of a protocol must have a different shape whenever they have different
types. For that reason we specify the set of sub-message patterns given the set
of messages M . In the next section we will use as M the set of all messages of
the protocol description (containing variables, hence message patterns).

Definition 3.16 (Sub-message patterns) The set of sub-message pat-
terns SMP(M) of a set of messages M is defined as the least set closed under
the following rules:

1. M ⊆ SMP(M).

2. If t ∈ SMP(M) and t′ < t then t′ ∈ SMP(M).

3. If t ∈ SMP(M) and δ is a well-typed substitution then δ(t) ∈ SMP(M).

4. If t ∈ SMP(M) and Ana t = (K,T ) then K ⊆ SMP(M).

The intuition behind this definition is that during constraint reduction we can
get to subterms of the initially given terms, apply substitutions, and (when we
revisit term analysis) analyze messages. Note that the fourth rule is only closed
under the “keys” K required for analysis Ana t = (K,T ). This is because the
result T of analyzing a term t must always be immediate subterms of t and
so the second rule already covers the terms in T . We will show that for the
considered class of protocols these substitutions will always be well-typed, so
we never fall out of SMP(M).

The intention is that we can apply SMP to the message patterns trms(P) of a
protocol P, and SMP(trms(P)) is then an over-approximation of the messages
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that the intruder might ever learn from the honest agents of P (or send out to the
honest agents) in any well-typed protocol run. The definition is generalized over
an arbitrary set of terms, so that we can also apply SMP to messages occurring in
a strand or a constraint. Consider, for instance, the set of sub-message patterns
SMP(trms(P)) built from the terms that occur in some protocol P. The set
then covers all message patterns of every message that might be sent over the
network, and any pattern in a check made by an honest agent, for well-typed
choices of the variables in the patterns.

We can now define the main requirement for our typing result, as a property of
the set SMP(M). We require that any two sub-message patterns, that are not
variables, are unifiable only if they have the same type. For now we keep the
definition on the level of constraints—later, when we formally define our protocol
model for this chapter, we will lift all relevant definitions to the protocol-level.

Definition 3.17 (Type-flaw resistance) We say a setM of messages
is type-flaw resistant, written tfrset M , where tfrset is defined as follows:

tfrset M ≡ (∀s, t ∈ SMP(M) \ V. (∃δ. δ(s) = δ(t)) −→ Γ(s) = Γ(t))

We may also apply the notion of type-flaw resistance to an intruder strand A
to mean that the set of all terms trmsst A occurring in A is type-flaw resistant,
and that the steps of A satisfy the following predicate:

tfrstp (Equality t t′) iff (∃δ. δ(t) = δ(t′)) −→ Γ(t) = Γ(t′)
tfrstp (Inequality x̄ t t′) iff ∀x ∈ (fv(t) ∪ fv(t′)) \ x̄. Γ(x) ∈ Ta

or ∀f T. Fun f T ∈ subterms t ∪ subterms t′

−→ T = [] ∨ (∃s ∈ T. s /∈ x̄)
tfrstp s iff True if s is not an equality or inequality step

Formally, type-flaw resistance of an intruder strand is thus defined as follows:

tfrst A ≡ tfrset (trmsst A) ∧ list-all tfrstp A

where list-all P L is true iff all elements occurring in the list L satisfy P (we
can apply list-all to our strands since they are technically lists).

Hence type-flaw resistance requires that the left-hand side and right-hand side
of positive checks have the same type if they are unifiable and that the negative
checks satisfy one of two different conditions. These conditions are sufficient
to show that type-flaw resistant message checks have well-typed models. The
condition for positive checks ensures that only well-typed substitutions are pro-
duced during constraint reduction when solving these checks. For a negative
check we require that its free variables have atomic types or that there is no
composed subterm of the form f(x1, . . . , xn) where n > 0 and all xi are bound
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variables. Essentially, the second condition for negative checks allows us, in most
cases, to have both bound and free variables of composed type. This is useful in
situations where we wish to model that an honest agent decrypts a message and
responds differently depending on whether the message successfully decrypts.

Note that the conditions for inequalities essentially define where we allow free
variables of composed type to occur in inequalities. The reason for such restric-
tions is that inequalities such as Inequality [x1, . . . , xn] y f(x1, . . . , xn) where
n > 0 (i.e., ∀x1, . . . , xn. y 6

.
= f(x1, . . . , xn) in more conventional notation) do not

have any well-typed solution if y and f(x1, . . . , xn) have the same type (which
is the only interesting case). Thus we require either that all free variables have
atomic types or that there is no composed term whose immediate parameters
are all bound variables.

The notion of type-flaw resistance also requires that we cannot unify any sub-
terms (except variables) that have different types, i.e., terms that have different
meaning must be clearly distinguishable. This is a bit more general than re-
sults that are based on adding tags to messages to make them distinguishable,
like [HLS03, BP05] since we do not impose a particular mechanism to disam-
biguate messages, such as tags, but rather have a very general definition: to
prove type-flaw resistance you just have to ensure that terms of different types
are not unifiable (hence distinguishable). We illustrate this with a real-world
example, also formalized in Isabelle, by proving type-flaw resistance of TLS.

3.2.2 TLS Example

As a real-world example, let us consider the messages of the TLS Handshake
protocol [DR08]. TLS defines several concrete message structuring formats,
e.g., the first message of the TLS handshake is called clientHello, and contains
essentially five distinct pieces of information (such as a time stamp and a random
number); the concrete message format includes also length information and a tag
(to distinguish the clientHello from other messages). We represent it in our term
algebra by an abstract function of five arguments clientHello(T,R, S,C,K) and
define it as a transparent function in Ana, i.e., the intruder can extract all fields
from a known message of this format (without knowing any keys). All other
formats of TLS are modeled the same way. The entire TLS handshake protocol
can then be represented by the following set of message patterns M (i.e., all
messages occurring in the TLS handshake protocol are well-typed instances of
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the messages in M):

clientHello(T1, RA, S,Cipher ,Comp),
serverHello(T2, RB , S,Cipher ,Comp),
serverCert(sign(Pr ca, x509(B,PB))),
clientKeyExchange(crypt(PB , pmsForm(PMS ))),
finished(prf(clientFinished(

prf(master(PMS , RA, RB)), RA, RB , hash(HSMsgs))))

Here crypt is again asymmetric encryption, sign is signature, and master, prf and
hash are one-way functions for hashing, key derivation, and MAC’ing; all other
functions are formats. Most variables are of atomic type except for PB being
of type pub(PrivateKey) and HSMsgs which represents the concatenation of all
handshake messages, i.e., its type is concat(clientHello(. . .), . . . , finished(. . .)) for
yet another format concat.

One may wonder at this point how this finite setM is sufficient to represent the
protocol with an unbounded number of sessions. In fact, we will define below a
protocol by an unbounded number of strands for the honest agents (essentially
the initial state of a transition system). In fact, the sent and received messages
of these strands shall be well-typed instances of M : We rename variables so
that strands use pairwise disjoint sets of variables, but this renaming is well-
typed, and we may instantiate some variables with ground terms, e.g., in all
client strands the variable PMS shall be instantiated with a unique constant of
the according type. Collecting all messages from these strands we thus obtain
an infinite set M ′. However, SMP(M) ⊇ SMP(M ′) since M ′ contains only
well-typed instances of M , and thus if M is type-flaw resistant, so is M ′. More
generally, for checking that a protocol is type-flaw resistant, it is sufficient to
consider any set M that subsumes all messages of the protocols’ honest agent
strands as well-typed instances.

It is not too difficult to show that M for TLS is type-flaw resistant (we have
in fact formally proven it in Isabelle): every operator except prf is applied
to arguments of the same type throughout SMP(M); for prf the argument is
either of the form clientFinished(·) or master(·) (but never a variable, because prf
is always applied to non-variable arguments in M and it does not occur in the
type of any term in M). Due to the free algebra, it follows almost immediately
that two unifiable elements of SMP(M) \ V have the same type.
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3.2.3 Constraint-level Typing Result & Formalization in
Isabelle

For our typing result on the constraint-level we first prove that well-typedness
and type-flaw resistance are invariants of the constraint reduction:

Lemma 3.18 (Invariants) If (A, θ) is well-formed, A is type-flaw resis-
tant, θ is well-typed, and (A, θ)  ∗ (A′, θ′), then A′ is type-flaw resistant and
θ′ is well-typed.

Proof. Follows by induction on the reflexive transitive closure of  and case
analysis on  . The proof idea is that all terms in the constraint reduction
are elements of SMP(A) and thus any unifier between non-variable terms must
be well-typed and SMP(A′) ⊆ SMP(A). Note that preservation of type-flaw
resistance is actually the core of the typing result: in no step of the constraint
reduction does the intruder need to do something ill-typed and he can instead
choose something well-typed. �

Recall that by Lemma 3.12, every simple constraint has an interpretation. We
now show that it even has a well-typed interpretation. This is because the
intruder can generate terms of any type (as he knows constants of any type
and can compose with public functions). The most difficult part to show here
is that the inequalities also have a well-typed solution (that is also compatible
with what the intruder can construct).

Lemma 3.19 (Simple constraints are well-typed satisfiable)
If (A, θ) is well-formed, A is simple, and θ is well-typed, then there exists a well-
typed interpretation Iτ such that Iτ |=c (A, θ).

Proof. Denote by Xineq the free variables of the inequalities of A. We first
define two substitutions that will serve as the solutions to the inequalities of A
and to the Send steps of A:

• For the Send steps (which contain the messages that the intruder has to
generate) we define the following substitution:

Isend ≡ λ v. ε t.Γ(v) = Γ(t) ∧ ∅ `c t

where ε is the Hilbert operator, i.e., ε t. φ yields a value t such that φ
holds, and ∅ `c t means that the intruder can generate t without any prior
knowledge except for the public constants.
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• For the inequalities we obtain a substitution Iineq satisfying the following:

1. dom(Iineq) = Xineq,
2. Iineq is fresh w.r.t. subterms(trmsst A)), and
3. Iineq is well-typed and each term in subst-range Iineq is well-formed.

Both Isend and Iineq exists and the proof is as follows:

1. We have already defined Isend, but using the Hilbert operator. Hence what
remains to be shown is that, given any variable v, we can always find a
term t such that Γ(v) = Γ(t) and ∅ `c t. Recall that we have assumed
that there exists infinitely many public constants of each atomic type, and
that all function symbols with arity greater than zero are public. Terms
of any well-formed type can therefore be derived using (Compose) alone,
and this can be shown by induction.

2. For Iineq we need a stronger argument since it has to be fresh. For that
reason we first define a function fresh-pgwt that constructs a fresh term
given a well-formed type τ and a finite set S of “used” symbols from Σ:

fresh-pgwt S (TAtom a) ≡
Fun (ε c. c /∈ S ∧ Γ(Fun c []) = TAtom a ∧ public c) []

fresh-pgwt S (TComp f T ) ≡ Fun f (map (fresh-pgwt S) T )

Given a set of terms M we denote by SM the symbols from Σ that occurs
inM . For finiteM and well-formed terms t the term fresh-pgwt SM (Γ(t))
then has the following properties:

• subterms(fresh-pgwt SM (Γ(t))) ⊆ {t | ∅ `c t},
• fresh-pgwt SM (Γ(t)) is well-formed,
• Γ(fresh-pgwt SM (Γ(t))) = Γ(t), and
• no symbol f ∈ SM occurs in fresh-pgwt SM (Γ(t)), implying that

subterms(fresh-pgwt SM (Γ(t))) and subterms(M) are disjoint.

Now let SA be the symbols from Σ occurring in trmsst A. Note that SA is
finite. Since we want the domain of Iineq to be exactly the free variables
occurring in the inequalities of the simple constraint A, which is a finite
set, we can construct Iineq inductively as follows:

(a) If Xineq = ∅ then we use the empty substitution Var for Iineq.
(b) In the inductive case assume that Xineq = X ′ineq ∪ {x} where x /∈

X ′ineq. For the induction hypothesis assume that σineq is a substitu-
tion that satisfy the properties we need and that dom(σineq) = X ′ineq.
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We now have to construct a substitution σ′ineq with dom(σ′ineq) =
X ′ineq ∪ {x} and which also satisfy the properties we need for Iineq.
The construction is as follows. First, let Sσ be the symbols from Σ
that occurs in subst-range σineq. Then define σ′ineq as follows:

σ′ineq ≡ λv. if v = x then fresh-pgwt (SA ∪ Sσ) (Γ(x)) else σineq(v)

It follows from the properties of fresh-pgwt and σineq that this sub-
stitution has the desired properties, thus concluding the case.

Define Isimple as the substitution θ · Iineq · Isend. We show in the following that
Isimple is a well-typed model of (A, θ).

First, note that θ is idempotent because of well-formedness, i.e., θ(θ(t)) = θ(t)
for any term t. Hence θ supports Isimple by definition of substitution support
and substitution composition.

Note also that a) Isimple is an interpretation because Isend maps every vari-
able to a ground term, and b) Isimple is well-typed because all its component
substitutions (i.e., θ, Iineq, and Isend) are well-typed.

It remains to be shown that J∅;AKc Isimple. Since θ(A) = A (this again follows
from well-formedness) we can instead prove J∅;AKc (Iineq · Isend), and we do so
by a case analysis on each step occurring in A:

• Consider any intruder deduction constraint Send t of A. We need to show
that M `c (Iineq · Isend)(t) where M is the intruder knowledge available
at the point in A where Send t occurs. Since all intruder deduction con-
straints in simple constraints are of the form Send x for some variable x
all variables of the same type can safely be interpreted as the same public
ground term. Hence ∅ `c (Iineq ·Isend)(x) and thus Iineq ·Isend is a solution
to the Send steps of A because `c is monotonic in the intruder knowledge.

• Now consider any Inequality x̄ t t′ occurring in A. Note that this inequal-
ity is satisfiable because A is simple. Note also that Iineq sends all free
variables of Inequality x̄ t t′ to ground terms, and so it suffices to show
that Iineq is a model of Inequality x̄ t t′. From type-flaw resistance we
know that the inequality constraint has one of two different forms:

1. All free variables of the inequality have atomic types. Hence Iineq
sends all the free variables of the inequality to constants because
Iineq is well-typed.

2. In the second case we know that there is no subterm of t and t′ of
the form f(t1, . . . , tn) where n > 0 and t1, . . . , tn ∈ x̄.
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In both cases we can simply apply Lemma 3.6 to conclude the case.

Finally note that there are no constraints of the form Equality t t′ occurring in
simple constraints and so we have covered all constraint steps of A. Thus we
have shown that Iτ |=c (A, θ) for some well-typed interpretation Iτ . �

From this we get the typing result on the constraint level:

Theorem 3.20 (Constraint-level typing result) If (A, θ) is well-
formed and type-flaw resistant, θ is well-typed, and I |=c (A, θ), then there exists
a well-typed interpretation Iτ such that Iτ |=c (A, θ).

Proof. The proof is by a simple lifting argument using the previously estab-
lished results. In a nutshell we can reduce (A, θ) to a simple, type-flaw resistant,
and satisfiable constraint using the constraint reduction  . This reduced con-
straint then has some well-typed model which must also be a model of (A, θ)
by correctness of  . �

3.3 Protocol Transition Systems

The previous sections have established the typing result on the level of con-
straints and we now lift it to transition systems. Since we had out-sourced the
entire question of analysis, we also have to take care of it now.

3.3.1 Definitions

We now represent also the honest agents by strands (reusing the definition of
intruder strands), and we define a protocol to be a countably infinite set of such
honest agent strands:

type-synonym (Σ,V) protocol ≡ (Σ,V) strand set

As is usual we allow the intruder full control of all communication happen-
ing in the protocol: whenever an honest agent receives a message the intruder
must have sent it, and whenever an honest agent sends a message the intruder
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intercepts it. Hence, for protocol execution, we define a symbolic transition sys-
tem in which honest agents can send and receive messages (that might contain
variables, hence symbolic) and where we record the steps taken during these
transitions. A state (P;A) then consists of a protocol P and an intruder strand
A which represents the steps taken from the intruder’s point of view and which
we will build up during execution of P. Since the goal of this section is to lift
the typing result to the transition system, where we use the full semantics |=,
we interpret the constraints in states under |= and not |=c as we did in previous
sections. For the initial state the intruder strand is empty, that is (P0; 0) where
P0 denotes the initial protocol and 0 the empty intruder strand.

Definition 3.21 (Protocol transition system)

TS1 : (P;A)⇒• (P \ {0};A) if 0 ∈ P
TS2 : (P;A)⇒• ({S} ∪ (P \ {Send t.S});A.Receive t) if Send t.S ∈ P
TS3 : (P;A)⇒• ({S} ∪ (P \ {Receive t.S});A.Send t) if Receive t.S ∈ P
TS4 : (P;A)⇒• ({S} ∪ (P \ {Equality t t′.S});A.Equality t t′)

if Equality t t′.S ∈ P
TS5 : (P;A)⇒• ({S} ∪ (P \ {Inequality x̄ t t′.S});A.Inequality x̄ t t′)

if Inequality x̄ t t′.S ∈ P

The first rule simply removes empty strands, i.e., honest agents that have fin-
ished execution. The second rule allows honest agents to send messages, in
which case the intruder intercepts and receives this message. Hence we extend
the intruder knowledge (by adding a Receive step to the intruder strand) at that
point with the message that is sent. The third rule allows an honest agent to
receive a message, and in this case we require that the intruder must generate
this message. Thus we extend the intruder strand with an additional derivation
requirement by adding a Send step. The two remaining rules simply record the
positive and negative message checks made by honest agents. As usual we write
⇒•∗ for the reflexive transitive closure.

Note that we require intruder strands to be well-formed, including those emerg-
ing from an execution of a protocol. For this reason, we impose a requirement
on the variables in all honest-agent strands of the protocols we consider that
is dual to the requirement for intruder strands: while in the intruder strands
all variables must originate in a Send step, we require that in an honest agent
strand they are all originating in a Receive step. Moreover, the bound and free
variables occurring in a protocol must also be disjoint. Formally, we first define
the dual of a strand S as “swapping” the direction of the steps of S:

dualst 0 = 0
dualst (Send t.S) = Receive t.(dualst S)

dualst (Receive t.S) = Send t.(dualst S)
dualst (s.S) = s.(dualst S) otherwise
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Then we define protocol well-formedness using Definition 3.3:

Definition 3.22 A protocol P is well-formed, written wf sts P, where wf sts

is defined as follows:

wf sts P ≡ ∀S ∈ P. wf st ∅ (dualst S)∧ (∀S ∈ P. ∀S ′ ∈ P. fv(S)∩bvars(S ′) = ∅)

where bvars(S) are the bound variables of S (i.e., x ∈ bvars(S) iff there exists
x̄, t, and t′ such that Inequality x̄ t t′ occurs in S and x ∈ x̄).

It is now immediate that all intruder strands of reachable states are well-formed
if the initial protocol is well-formed.

3.3.2 Problems of [AMMV15]

Recall that in our Isabelle formalization of the lazy intruder, we have decided to
“out-source” the analysis step from the intruder to the transition system. There-
fore, we need to now show that the transition system from the previous section
(that assumes the full intruder in its semantics) is equivalent to a transition sys-
tem where the intruder is restricted to composition steps (i.e., `c) and that has
special transition steps for analysis—and make that work with the typing result.
Upon trying to prove these results in Isabelle we discovered several problems in
the result of Almousa et al. [AMMV15]. In fact, that paper handles analysis as
part of the lazy intruder, but the problems appear in a similar form. In fact,
discovering and provably fixing all such mistakes is indeed the main goal of the
Isabelle formalization of this chapter. We discuss first the errors and ways to
fix them, and then how other typing results are doing on these issues.

The lazy intruder analysis rule of [AMMV15] would in our notation look like
this:

(DecomposeLI ) (A.A′, θ) (A.Send K.Receive T.A′, θ)
if s ∈ ik st A,Ana s = (K,T ), T * ik st A

Here we use Send K and Receive T for sets K and T of messages as obvious
abbreviation for sequences of send and receive steps. The rule means, at any
point in an intruder strand, the intruder can attempt the analysis of a term s
that he learned before that point, and this attempt would mean that he has to
generate (“Send”) the key terms K and would obtain (“Receive”) the resulting
messages T . (In fact, our handling of analysis as part of the transition system
adds analysis steps that similarly produce such sending and receiving steps in
the intruder strand.)
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Like [AMMV15], we make the following requirement on the Ana function that
the resulting terms are subterms of the term being analyzed and that no new
variables are introduced:

Ana0 : Ana t = (K,T ) =⇒ T ⊂ subterms t

In [AMMV15] the keys K also need to be subterms of the term t being analyzed.
We have made a slight generalization here and do not require the keys to be
subterms of the term being analyzed. This is only because it allows us to model
private keys using a function inv from public to private keys (as we do in later
chapters) and it is not because it is needed to fix any mistakes in [AMMV15].
We do need to ensure that analysis does not introduce new variables in keys
and that the set of keys required for analysis is always finite and well-formed:

Ana1 : Ana t = (K,T ) =⇒ fv(K) ⊆ fv(t) ∧ finite K ∧ wf trms K

Variables should furthermore not be analyzable:

Ana2 : Ana (Var x) = (∅, ∅)

The Ana0 requirement is necessary for termination, since without such a restric-
tion to subterms one could encode undecidable problems into analysis. This is
however not enough as our first counter-example to correctness of [AMMV15]
shows:

Example 3.4 Suppose for two public unary operators f and g we define:
Ana f(g(x)) = (∅, {x}). Then the constraint Receive g(c).Send c has a solu-
tion since {g(c)} ` c. This solution would however be missed by (DecomposeLI ),
thus the lazy intruder of [AMMV15] is incomplete. �

The same problem does not occur in other typing results [AD14, CD09] because
they consider a fixed set of operators where none has a destructor-like behavior
upon analysis. A property of analysis that all these approaches use is that the
intruder does not learn anything new from analyzing terms that he composed
himself, e.g., encrypting a term and then decrypting it will not reveal new infor-
mation, and without loss of generality we thus can exclude intruder-composed
terms from analysis. Also [AMMV15] uses this argument, but as Example 3.4
shows, this is not true for all intruder theories they allow. We thus make an ad-
ditional restriction on Ana, namely that analysis can only yield direct subterms:

Ana3 : Ana f(t1, . . . , tn) = (K,T ) =⇒ T ⊆ {t1, . . . , tn}
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Example 3.5 Let now f be a binary operator with the following Ana rule:

Ana f(s, t) = (∅, {t}) if s ∈ V

This is hardly a reasonable analysis rule since it gives results only for symbolic
terms, but not for ground terms. The constraint Send x.Receive f(x, c).Send c
has no solution since there is no interpretation I with I({f(x, c)}) ` c. How-
ever, constraint reduction with rule (DecomposeLI ) yields a simple (and thus
satisfiable) constraint, and we thus also have a counter-example for soundness
of [AMMV15]. �

To correct this, we add the following requirement:

Ana4 : Ana t = (K,T ) 6= (∅, ∅) =⇒ Ana δ(t) = (δ(K), δ(T ))
for any substitution δ

Thus, when applying Ana on any analyzable term t, then any instance δ(t) must
allow for the same analysis under δ.

Example 3.6 Consider again our standard Ana from Example 2.1 (which sat-
isfies all four requirements). For the full intruder model ` (that is not restricted
to composition only) the lazy intruder with (DecomposeLI ) is not complete: The
constraint Send x.Receive crypt(x, c).Send c has the solution I = [x 7→ pub(c′)]
for some constant c′. However, this solution is not found by the lazy intruder
(with the above analysis rule) because Ana crypt(x, c) = (∅, ∅). The problem is
that the case Ana crypt(pub(k),m) does not match the term we need to analyze,
since it has the variable x in the key position (and this is actually what the au-
thors of [AMMV15] meant to do). As our example shows, however, one needs
to actually apply this rule under unification with a term in the intruder knowl-
edge, but that would require to apply the unifier (in the example [x 7→ pub(x′)]
for a new x′) to the rest of the constraint—while all other rules of [AMMV15]
explicitly denote such unifiers; moreover this reading of the rule would lead to
non-termination. �

In the other typing results like [AD14] (and also in [CD09]), this problem
does not occur because they fix the public-key infrastructure, i.e., they can-
not model that an honest agent receives an arbitrary public key x in a mes-
sage and use it for encrypting a message, i.e., crypt(x,m). When fixing the
public key infrastructure, all keys used for public key encryption are of the
form pub(·) (in our notation) and then the mentioned problem does not occur.
However, we do not want to impose this strong restriction to a fixed public
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key infrastructure and rather allow for protocols that can also exchange public
keys. A milder restriction is that all terms used as a first argument of crypt
must have the form pub(·), for instance the strand of an honest agent could
be: Receive pub(x).Send crypt(pub(x), c). This implies the restriction that this
agent only accepts a public key as input, i.e., restricting this bit to a typed
model by assumption. There are several ways to justify this restriction, e.g., it
is common in protocols where a new public key t can be introduced that the
creator has to sign any message with the corresponding private key, proving that
t = pub(s) for some private key s (and without the recipient learning s). Also,
when receiving a public key as part of a certificate from a trusted authority, one
may rely that the authority has required this kind of proof from the owner of
the public key, and thus it is justifiable to model the certified key to have the
form pub(·). In a later chapter we give an alternative solution using a private
function inv.

While the pub-requirement solves the problem for the concrete example crypt,
we need a general requirement for arbitrary operators. The example shows that
this cannot be a property of Ana alone, but relates to the use of the operators
in the protocol. Essentially, any message of the protocol that the intruder
can potentially analyze during an attack should have a similar requirement.
This includes the subterms of messages sent by honest agents, but that is not
sufficient. Recall that each variable in the protocol represents either a choice
made by the intruder or an abbreviation of something else (namely a term
occurring at the right-hand side of an equality constraint). The variables that
represent intruder choices can be safely ignored. The other variables, however,
are abbreviations of terms occurring at the right-hand side of positive message
checks and these abbreviations need to be taken into account. We therefore
define a function eqs-rhsst that collects the terms occurring at the right-hand
side of positive checks:

Definition 3.23 Let A be a constraint. Then the set of terms occurring at
the right-hand side of equalities of A, eqs-rhsst A, is defined as follows:

eqs-rhsst 0 = ∅
eqs-rhsst (Equality t t′.A) = {t′} ∪ eqs-rhsst A

eqs-rhsst (a.A) = eqs-rhsst A otherwise

The requirement on protocols is then as follows. Like with type-flaw resistance
we first define our requirement on sets of terms and then use this definition to
define a requirement for protocols and constraints:

Definition 3.24 A set of terms M is analysis-invariant iff

∀t ∈ (subterms M) \ V. ∀K,T, δ. Ana t = (K,T ) −→ Ana δ(t) = (δ(K), δ(T ))
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A protocol P0 is then analysis-invariant iff the set containing the messages of P0

that are either sent by honest agents or occur at the right-hand side of positive
checks is analysis-invariant, i.e., iff the set(⋃

ik st
8 (dualst

8 P0)
)
∪
(⋃

eqs-rhsst
8 P0

)
is analysis-invariant.

Similarly, a constraint A is analysis-invariant iff the set ik st A ∪ eqs-rhsst A is
analysis-invariant.

Thus we require that any subterm t of the protocol, except variables, can be ana-
lyzed if some instance δ(t) can be analyzed. This excludes a term like crypt(x, t)
since it cannot be analyzed while the instance crypt(pub(c), t) can. In general,
this restriction affects only those operators f where the analysis rule has the
form Ana f(t1, . . . , tn) where some ti is not a pattern variable; then the protocol
cannot use a variable for that argument.

These restrictions are sufficient to conclude the typing result on the transition
system level, as described next, and they still support strictly more protocols
than the previous typing results (except the flawed [AMMV15]).

3.3.3 Handling Analysis

As an intermediate step towards the result, we now define a second transition
system ⇒•c similar to ⇒•, but where the intruder does not handle analysis
himself (interpreting constraints under |=c instead of the full |= as in ⇒•) and
where we have special transitions for analysis. An easy way to handle this
would be to simply define a set of honest agents that behave like the analysis
functionality, e.g.,

Receive crypt(pub(x), y).Receive x.Send y

(This is similar to the penetrator strands of Thayer et al. [THG99].)

In fact, this works fine (and does not even need the requirement of analysis
invariance we introduced before) as far as the equivalence to the standard tran-
sition system ⇒• is concerned. However this does not directly work with the
typing result: the notion of type-flaw resistance would have to be satisfied on
the set of all honest agent strands, including the ones for analysis. This would
be violated for many reasonable protocols (that have no type-flaw problems).
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Luckily, there is a (more complicated) solution that requires no further restric-
tion on protocols.

The idea is that the intruder is allowed to attempt analysis for every non-variable
subterm of a term in his knowledge. Note that this includes subterms he may
be unable to derive, but as part of the analysis step he has to prove he can
produce them, so this is sound. Note also that some variables in the intruder
knowledge may not directly denote choices made by the intruder, because the
well-formedness requirements allow variables to be introduced at the left-hand
side of positive message checks and they can then later occur in messages trans-
mitted by honest agents. Such variables would instead be abbreviations of terms
occurring at the right-hand side of the checks and so we need to take this into
account. Thus the protocol transition system ⇒•c is defined like ⇒• plus the
following additional rule:5

TSc6 : (P;A)⇒•c (P;A.Send t.Send k1. · · · .Send km.
Receive s1. · · · .Receive sn)

where t ∈ subterms(ik st A ∪ eqs-rhsst A) \ V
and Ana t = ({k1, . . . , km}, {s1, . . . , sn})

Example 3.7 Consider the protocol P0 = {S1,S2,S3} where

S1 = Send ka.Send scrypt(kb, crypt(pub(ka), secret))
S2 = Receive scrypt(kb, x).Send x
S3 = Receive secret

Here, the strand S3 represents a strand to check a secrecy goal, i.e., we want
to check that we cannot reach a state where S3 has executed and the intruder
constraint is satisfiable. Consider the execution of the steps of S1 and S2, i.e.,
(P0; 0) ⇒•c

∗ ({S3};A) where

A = Receive ka.Receive scrypt(kb, crypt(pub(ka), secret)).
Send scrypt(kb, x).Receive x

For the intruder to obtain the secret, we can now make an analysis step with
rule (TSc6) for the term t = crypt(pub(ka), secret), yielding the state ({S3};A.D)
with

D = Send crypt(pub(ka), secret).Send ka.Receive secret

and then execute S3, yielding state (∅;A.D.A′) with A′ = Send secret. This
constraint A.D.A′ is satisfiable in |=c.

5Note that repeated application of TSc6 to the same subterm does not change the meaning
of the intruder constraint in the protocol transition system (because the intruder would then
send and receive the exact same messages multiple times) and we can therefore exclude that.
Hence we can make the protocol transition system finite for finite protocols (i.e., a bounded
number of protocol sessions).
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In the standard transition system the corresponding state would just omit the
analysis step, i.e., (P0; 0) ⇒•∗ (∅;A.A′). This constraint A.A′ is satisfiable for
the full intruder |=. �

More generally, we prove in Isabelle that the two transition systems are equiv-
alent. In particular, for every reachable state (P;A) of ⇒• and every solution
I |= A, an equivalent state (P;A′) of ⇒•c is reachable where A′ is like A aug-
mented with analysis steps, and I |=c A′. From the initial state (P0; 0) this can
be stated as follows:

Lemma 3.25 (transition systems equivalence, part 1) If proto-
col P0 is well-formed and analysis-invariant, (P0; 0) ⇒•∗ (P;A1. · · · .An), and
I |= A1. · · · .An where each Ai emerged from exactly one application of (TS1),
(TS2), (TS3), (TS4), or (TS5), then there exists D1, . . . ,Dn−1 such that

(P0; 0) ⇒•c
∗ (P;A1.D1. · · · .An−1.Dn−1.An)

and
I |=c A1.D1. · · · .An−1.Dn−1An

and where each Di emerged from zero or more applications of (TSc6).

The most complicated aspect of the proof is to show that, if I(ik st A) ` I(t) for
some intruder strand A with model I and some term t, then there exists some
sequence of (TSc6) steps D such that I(ik st (A.D)) `c I(t) and where I is also
a model of A.D. This proof proceeds by an induction on the derivation of I(t).
Not surprisingly, this case bears many similarities to completeness proofs of lazy
intruder constraint reduction systems like [AMMV15, CD09] where the intruder
can analyze terms. The most complicated case—both in our proof and the
proofs of completeness—is where the last step of the derivation is an application
of the (Decompose) rule, i.e., where I(t) is derived by analyzing another ground
term t′. In the completeness proofs we would in this case have to inspect the
derivation tree for t′, eliminate redundant parts (namely, analysis of intruder-
composed terms), and, in the case where the last step in the derivation is yet
another application of (Decompose), regress to a point in the derivation tree
for t′ where no (Decompose) has occurred yet. In our setting, because we have
a clear separation between term analysis and composition (because of the out-
sourcing of analysis and by considering the sub-relation `c of `), we immediately
get from the induction hypothesis that there exists some D′ (where I is still a
model of A.D′) such that I(ik st (A.D′)) `c t′. Hence we essentially perform
the regression by simply applying the induction hypothesis instead of inspecting
and transforming derivation trees, making the proof slightly easier.
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The other direction of the equivalence is more straightforward and does not
require any assumptions on the protocol. It follows easily by an induction on
reachability:

Lemma 3.26 (Transition systems equivalence, part 2) If

(P0; 0) ⇒•c
∗ (P;A1.D1. · · · .An−1.Dn−1.An)

and
I |=c A1.D1. · · · .An−1.Dn−1.An

where each Ai emerged from exactly one application of (TS1), (TS2), (TS3),
(TS4), or (TS5), and where each Di emerged from zero or more applications of
(TSc6), then

(P0; 0) ⇒•∗ (P;A1. · · · .An) and I |= A1. · · · .An

3.3.4 Lifting the Typing Result

With this equivalence between the transition systems proven, we can now lift
the typing result of Theorem 3.20 to constraints reachable in ⇒• where these
constraints are interpreted under the full intruder |= instead of |=c. First we
define that an entire protocol P0 (a set of strands for honest agents) is type-flaw
resistant if the set of all messages of P0 is type-flaw resistant and if its strands
satisfy tfrstp . Written formally, we require the following two conditions:

tfrset

(⋃
(trmsst

8 P0)
)

and ∀S ∈ P0. list-all tfrstp S

It is now immediate that all intruder strands reachable from (P0; 0) in both
transition systems we defined (including analysis steps) are also type-flaw re-
sistant, because the set of sub-message patterns are closed under subterms and
term analysis.

We can now first apply Lemma 3.25 to any satisfiable state (P;A1. · · · .An)
reachable in ⇒• to obtain an equivalent state (P;A1.D1. · · · .An−1.Dn−1.An)
with the same solution reachable in our intermediate transition system ⇒•c .
Then we can lift the typing result from the constraint level to ⇒•c , since here
constraints are interpreted in |=c, i.e., solving the constraints does not require
analysis steps and thus our constraint-level typing result Theorem 3.20 applies.
Then, by the equivalence to⇒• with the full intruder model |=, i.e., Lemma 3.26,
we obtain our main result that every reachable state of a type-flaw resistant and
analysis-invariant protocol has a solution iff it has a well-typed one:
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Theorem 3.27 If protocol P0 is well-formed, type-flaw resistant and analysis-
invariant, (P0; 0) ⇒•∗ (P;A), and I |= A, then there exists a well-typed inter-
pretation Iτ such that Iτ |= A.

As a consequence of Theorem 3.27 we can also find well-typed solutions to
constraints interpreted in |=. This is because dualst is its own inverse, i.e.,
dualst (dualst A) = A, and so any constraint A is reachable in ⇒• from the
initial protocol {dualst A}, i.e., ({dualst A}; 0) ⇒•∗ (∅;A).

Corollary 3.28 If the constraint A is well-formed, type-flaw resistant and
analysis-invariant, and I |= A, then there exists a well-typed interpretation Iτ
such that Iτ |= A.

3.4 Summary and Related Work

Over the past years, several typing results have emerged for security protocols,
gradually extending the class of protocols that can be supported, in particu-
lar [HLS03, AD14, AMMV15]. A common idea for proving such typing results
is to use a notion of symbolic constraints to represent executions (in particular
attacks) and show that whenever there is a solution then there is a well-typed
one. The requirement that the protocols have to fulfill for such a result is only
that all messages of different intended type have sufficiently different structure
to never be confused.

In the present chapter we established such a typing result in Isabelle: Given an
Isabelle proof of security of a protocol where the intruder is limited to well-typed
messages (e.g., like proofs in the works of [Pau98] and [Bel07]), then the typing
result allows us to lift this proof to an intruder model without the restriction
to well-typed messages. As an example, we have proven that the type-flaw
resistance requirement of our result is indeed satisfied by the TLS protocol.

The particular value of this is the high reliability of proofs checked with Isabelle,
in contrast to pen-and-paper proofs in partially natural language. This is illus-
trated by several errors we discovered in the pen-and-paper proofs of Almousa
et al. [AMMV15]. Strictly speaking, their result does not hold without further
restrictions on the supported operators and protocols. The complexity of such
results (as well as verification tools) makes such mistakes likely and this bears
the risk of accepting false security proofs. The Isabelle proof of the typing result
under some additional restrictions is thus also a step towards “cleaning up”.

In other typing results, such as Arapinis and Duflot [AD14], the problems
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of [AMMV15] do not arise, since they have fixed public key infrastructures (and
fixed sets of supported operators). Our restrictions in contrast are so liberal
that we do allow also for protocols where public keys are exchanged, though
one must ensure or assume that the received terms are indeed public keys, but
this is often in our opinion a realistic restriction—in the next chapter we give
slightly different conditions for the analysis interface Ana which does not require
us to impose a typing assumption on public keys.

At the core of our typing result is the formalization of the lazy intruder con-
straint reduction system and its correctness. This, as well as the proving of the
typing result, gives insights for modeling and proving protocols in general: Since
Isabelle forces one to be precise about every single detail, one is compelled to
abstract, generalize, and simplify as far as possible, to reduce the formalization
to the absolute essence. We have simplified the constraint representation and
shown how to “out-source” the analysis steps of the intruder to steps in the pro-
tocol transition system. We believe that such insights are helpful beyond the
result itself.
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Chapter 4

Extending the Typing
Result to Stateful Protocols

The previous chapter established a typing result in Isabelle/HOL. Until now this
typing result only supports “stateless” protocols that can only maintain local
state for single sessions. A more interesting and general class of protocols is one
in which agents can additionally manipulate a global state spanning multiple
sessions. Such protocols we call stateful. In stateful protocols updating the
global state during one session might influence other running sessions, and the
behavior of protocol participants is therefore also dependent on the global state.
In this chapter we extend the typing result of the previous chapter to stateful
protocols.

The chapter is organized as follows:

• In Section 4.1 we state the requirements on the analysis interfaces Ana
that we consider in the rest of the thesis.

• In Section 4.2 we introduce a new strand-based protocol model for stateful
protocols.

• In Section 4.3 we extend intruder constraints with set operations and define
a reduction mechanism on constraints that we prove sound and complete.
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• We prove our main theorem, the typing result, in Section 4.4.

• Finally, we present case studies and connections to other formalisms in
Section 4.5 and 4.6.

4.1 Changes to the Analysis Interface

Compared to Chapter 3 there is one small change that we make to the re-
quirements of the analysis interface Ana and a corresponding simplification: In
Chapter 3 the rule Ana4 is stated only for terms that do not yield (∅, ∅) while
in the remaining chapters we assume a stronger variant of Ana4. The version
of Ana4 used in Chapter 3 is necessary when modeling public-key encryption
with a function pub from private to public keys, but it also leads to compli-
cations when proving a typing result, namely the need for analysis-invariance
(Definition 3.24). Since we can model private keys using a function inv from
public to private keys instead, we have decided to assume a stronger version of
Ana4 (named Ana′4 below) that is also stated for terms that yield (∅, ∅). This
simplifies the typing result, since all constraints and protocols we consider are
now guaranteed to be analysis-invariant, and so we have decided to stick with
Ana′4 in all remaining chapters.

The analysis interfaces we consider in this chapter will therefore be subject to
the following restrictions:

Ana1: Ana(t) = (K,T ) implies that K is finite, fv(K) ⊆ fv(t), and that all keys
in K are well-formed if t is well-formed.

Ana2: Ana(x) = (∅, ∅) for variables x ∈ V.

Ana3: Ana(f(t1, . . . , tn)) = (K,T ) implies that T ⊆ {t1, . . . , tn}.

Ana′4: Ana(f(t1, . . . , tn)) = (K,T ) implies Ana(δ(f(t1, . . . , tn))) = (δ(K), δ(T )).

Recall that Ana must be defined for arbitrary terms, including terms with vari-
ables (while the standard Dolev-Yao deduction is typically applied to ground
terms). The four conditions regulate that Ana is also meaningful on symbolic
terms. The first requirement, Ana1, restricts the set of keys K to be finite and
to not introduce any new variables, but the keys are otherwise independent of
the term being decomposed. This is useful when modeling asymmetric decryp-
tion as we can then require the intruder to derive the inverse key inv(k) of the
key k used for the encryption. The second requirement, Ana2, ensures that



4.2 Stateful Protocols 63

variables cannot be decomposed. The third requirement Ana3 states that all
terms in T must be immediate subterms of the term being decomposed, and
so the intruder cannot obtain any new terms by decomposing something that
he composed himself. This is a technical requirement that is crucial in proofs
of typing results. In fact, the typing result of [Möd12] has a counter-example
because it lacks this requirement (see Section 4.4.3). Finally, the new rule Ana′4
expresses that decomposition is invariant under substitution.

Example 4.1 In concrete examples of the remaining chapters we use the fol-
lowing Ana theory on the usual set of cryptographic primitives, but instead of
the function pub from private to public keys we use the function inv from public
to private keys:

Ana(crypt(k,m)) = ({inv(k)}, {m})
Ana(scrypt(k,m)) = ({k}, {m})

Ana(sign(k,m)) = (∅, {m})
Ana(〈t, t′〉) = (∅, {t, t′}) where 〈·, ·〉 ∈ Σ2 is a pairing operator

Ana(t) = (∅, ∅) for all other terms t

4.2 Stateful Protocols

In this section we will define our protocol model. There are several protocol
models based on strands where protocol execution is defined in terms of a state
transition system, e.g., [CM12, AMMV15]. In these works a state is a set (or
multi-set) of strands that represents the honest agents, and a representation of
the intruder knowledge. We extend this model with strands that work with sets
to model long-term mutable state information. Thus a distinguishing feature of
our strands is that honest agents can query and update sets. A protocol state in
our model will thus contain not only short-term session information but also the
long-term contents of sets, and we call protocols based on these strands stateful.

4.2.1 Strands with Sets

We now define the syntax of strands with sets as an extension of the strands of
Chapter 3 (the part of the syntax marked with ? corresponds to the strands of
Chapter 3):
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S : := φ.S |
?︷ ︸︸ ︷

ψ.S | 0
with ψ : := send(t) | receive(t) | t .= t′ | ∀x̄. t 6 .= t′

and φ : := insert(t, s) | delete(t, s) | t ∈̇ s | ∀x̄. t 6 ∈̇ s

where t, t′, s range over terms, and x̄ ranges over finite sequences x1, . . . , xn of
variables from V.

Many formalisms have a notion of events. We can model such events using set
operations and a distinguished set events containing the emitted events. For
that reason we define the following syntactic sugar to express constraints on
events, where e range over terms:

assert(e) ≡ insert(e, events)
event(e) ≡ e ∈̇ events

∀x̄. ¬event(e) ≡ ∀x̄. e 6 ∈̇ events

That is, assert(e) emits the event e while event(e) and ∀x̄. ¬event(e) are positive
and negative queries on the emitted events. Note that we do not define syntactic
sugar for retracting events, although we could do that using a delete operation.
The common notion of events is that they are persistent, i.e., the set of emitted
events usually grow monotonically during protocol execution. For that reason
one should also ensure that deletion from events never occurs, but this is easy
to achieve.

Strands built according to the above grammar but using only the cases marked
with ? are referred to as ordinary strands. A strand consists of a sequence of
steps and we use here a process calculus notation where we delimit steps by
periods and mark the end of a strand with a 0. We normally omit writing the
end-marker 0 when it is obvious from the context. We will also omit writing the
quantifier ∀x̄ whenever x̄ is the empty sequence.

The steps can be categorized into three parts: the message transmission steps
(send and receive), the equality checks ( .= and 6 .=), and the set operations (insert,
delete, ∈̇, and 6 ∈̇). The most basic ones are the message transmission steps
which denote transmission over an insecure network. A send(t) step then means
that an agent transmits t and receive(t) means that an agent waits for a message
pattern (since it might contain variables) of the form t. Like [AMMV15], we have
extended strands with equalities and inequalities: they represent checks that
must hold true to proceed.Finally, the novel addition to the concept of strands
are the set operations. They allow for updates (insert and delete) and queries
(∈̇ and 6 ∈̇) of sets. Here, the delete operation allows for removal of elements
that have previously been inserted into a set, and so the contents of sets do not
necessarily grow monotonically during transitions. This is in contrast to the
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messages that the intruder has seen, i.e., the messages sent by honest agents;
we cannot force the intruder to forget a message he has learned. Thus the set
of messages sent over the network grow monotonically during transitions.

The set of terms occurring in a strand S is denoted by trms(S). The free
variables, denoted by fv(S), are the variables occurring in S which are not
bound by a universal quantifier, and when fv(S) = ∅ then S is said to be closed.
In many formalisms like process calculi, variables in a receive step would also be
considered as bound variables. Since we, however, also express pattern matching
here (since we allow arbitrary terms in receive steps, and, in particular, the same
variable can occur in several receive steps and more than once), we like to refer
to all such variables as free variables, anyway. We will later introduce a notion of
well-formed constraints that requires all free variables to first occur in a receive
step or a positive check, and thus corresponds to a notion of closedness in other
formalisms. Moreover, given a substitution δ we can apply it to a constraint S
as expected, written δ(S), by applying δ to every free occurrence of a variable
in S. Note that the variables of a substitution δ might clash with the bound
variables occurring in a strand S, e.g., for δ = [y 7→ f(x)] and S = ∀x. x 6 .= y
we have that δ(S) = ∀x. x 6 .= f(x). However, we can always avoid these issues
by variable-renaming. For simplicity we therefore assume that the bound and
free variables of strands are disjoint. Note also that we restrict ourselves here to
a “bare metal” formalism by discarding all notions that are not relevant to our
typing result. For instance, we have no notion of repetition, since one can simply
consider an infinite set of such strands. We then also do not need a construct
for creating fresh constants since we can simply consider a set of strands with
uniquely chosen constants. However, we do support an unbounded number of
sessions and freshly generated nonces, by modeling protocols as infinite set of
transaction strands. This is similar to Guttman’s original strand spaces [THG99]
that can model an infinite number of strands containing an infinite number of
fresh constants. The actual specification language for an end-user should include
constructs like creating fresh nonces and repetitions. For that reason we show
in Section 4.6 how to connect to formalisms like Set-π and AIF-ω.

4.2.2 A Keyserver Example

Before we proceed with the formal definition of our protocol model we introduce
a small keyserver protocol example adapted from [MB16]. In this protocol
each participant u has an associated keyring ring(u) of currently used public
keys. Any agent (or user) can register public keys with a trusted keyserver
and these public keys can later be revoked. The lifetime of a key may span
multiple sessions, but whenever it is revoked the corresponding private key will
be publicly known, and it should therefore not be used in a later session. Thus
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the keyserver needs to maintain the current status of keys and to model this
feature we consider sets valid(u) and revoked(u) containing the valid respectively
revoked keys for each user u. As an initial rule of the protocol we model an
out-of-band registration of fresh keys (e.g., the user physically visits the server).
Suppose we have a (countably infinite) set of constants that represents the users.
For every user u and for every j ∈ N we then declare the strand:

insert(pku,j , ring(u)).insert(pku,j , valid(u)).send(pku,j) (T1)

where each pku,j is a public key. Here, j is a “session number” and pku,j rep-
resents a fresh public key the user u “has created in session j”. This strand
represents an out-of-band registration between a user u and the server, e.g., the
user physically visits a registration office on the server side: the user u creates
a fresh key pku,j and inserts it into its keyring, and the server then additionally
inserts the key into its own set of valid keys. Lastly, the key is made public by
sending it out.

We will later define the semantics of protocols by a state transition system,
where in the initial state all sets are empty and no messages have been sent.
Then for user u = a and session j = 1, the above strand would get us to a new
state where pka,1 is contained in ring(a) and valid(a) and the message pka,1 has
been sent. Note that we do not have any built-in notion of set ownership, so we
can model here strands that represent a mutual action of a user and the server.

As a second rule we model a key-revocation mechanism consisting of two sep-
arate strands: one for the users and one for the server. In the first strand the
condition PK u,j ∈̇ ring(u) expresses that PK u,j can be any value in the keyring.
Not having any other condition, this models that the user can arbitrarily select
a key from its keyring. Then it generates a fresh key npku,j , inserts it into its
keyring, and sends the new key to the server, signed with the old key PK u,j :

PK u,j ∈̇ ring(u).insert(npku,j , ring(u)).send(sign(inv(PK u,j), 〈u,npku,j〉)) (T2)

for each user u and for each session j ∈ N. (Note that we also parameterize the
variables; later on, we will require that different strands have different variables.)
Rule T2 is, for instance, applicable to our concrete state where key pka,1 has
been registered: it gets us to a new state where npka,1 has been added to ring(a)
and the message sign(inv(pka,1), 〈a,npka,1〉) has now been sent.

Afterwards, in the second strand, it is the keyserver’s turn to act and its actions
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are initiated by an incoming message of the form sign(inv(PK i), 〈Ui,NPK i〉):

receive(sign(inv(PK i), 〈Ui,NPK i〉)).
(∀Ai. NPK i 6 ∈̇ valid(Ai)).(∀Ai. NPK i 6 ∈̇ revoked(Ai)).
PK i ∈̇ valid(Ui).insert(NPK i, valid(Ui)).
insert(PK i, revoked(Ui)).delete(PK i, valid(Ui)).
send(inv(PK i)) (T3)

for each i ∈ N. Again, this rule is applicable to the concrete state reached
above, moves the value pka,1 from valid(a) to revoked(a), and inserts npka,1 into
valid(a). Finally, the server discloses the private key inv(pka,1); while this is of
course not done in an actual implementation, it expresses that this protocol is
secure even if the intruder learns the private key to an old revoked key.

4.2.3 Transaction Strands

One may wonder about the execution model for the strands from the previous
example, in particular if that could cause race conditions on the checks and
modifications of the sets if parallel execution of several strands leads to some
interleaving of the respective set operations. Suppose for instance, in our key-
server example, that we register the key pka,1 using strand T1, and then send
out the messages sign(inv(pka,1), 〈a,npka,i〉) for i ∈ {1, 2} using T2. Then pka,1
is in valid(a) and ring(a) contains the keys pka,1, npka,1, and npka,2. If we now
run two instances of the strand T3, one for each of the signatures, and we as-
sume that they are executed step-by-step instead of one atomic block, then we
could end up in a state where both npka,1 and npka,2 have been registered at the
keyserver (i.e., inserted into valid(a)) but only one public key, pka,1, has been
revoked, because both instances of T3 can perform all their checks before up-
dating their databases. In fact, as we will define formally in the next subsection,
we adopt a transaction semantics: a transaction strand (or just transaction) is
defined to be a strand of the form receive(T ).L.send(T ′) where T and T ′ are
finite sets of terms, L is a strand that does not contain any send or receive steps,
and where we write receive({t1, . . . , tn}) as an abbreviation for receive(t1). · · · .
receive(tn) (and similarly for send steps). The idea is that such a transaction
is always performed atomically, i.e., as a single transition. This reflects, in our
opinion, very well the normal work-flow of a web server with a database: the
server receives an incoming request, performs some lookups and checks on its
database (possibly aborting the transaction), then performs some modifications
on its database, and sends a reply (which may be also a request to another
server). The key is that the server serializes the handling of such transactions
(to avoid said race conditions). A transaction semantics allows us to abstract
from the implementation of such serialization mechanisms and thus focus on
the verification of a larger system. Another example are crypto APIs, where a
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token receives an API command, performs some lookups and checks in its mem-
ory (possibly aborting the transaction), performs some updates to its memory
and then gives out a result. Also here, we typically do not want to reason about
race conditions from several API calls in parallel.

This is indeed slightly different from the “philosophy” of many process calculus
approaches (e.g., StatVerif [ARR11] and Set-π [BMNN15]) where one would
have to introduce explicit locking mechanisms. Also, the original notion of
strand spaces by Guttman [THG99] is actually based on a notion of only a
partial (instead of a total) order on send and receive steps in an execution; if
we regard however set operations as interactions with a database with locking,
then we obtain the partial order that our transaction semantics defines.

4.2.4 Transition Systems

Now that we have introduced the elements of our protocols we define a protocol
P to be a countable set of transaction strands where no variable occurs in
two different strands. The set of terms trms(P) occurring in P is defined as
expected.

Before giving the formal definition of the transition system we will first define
the notion of a database mapping D to be a finite set of pairs (t, s) of terms,
and for closed strands S we define the ground database mapping db(S) as

db(S) = {(t, s) | insert(t, s).S ′ is a suffix of S
and delete(t, s) does not occur in S ′}

Let D = {(t1, s1), . . . , (tn, sn)} be a database mapping and S a closed strand,
then we may write db(insert(D).S) as a shorthand for the database mapping
db(insert(t1, s1). · · · .insert(tn, sn).S).

States in the (ground) transition system are of the form (P;M,D) where P is
a protocol, M is the set of messages that has been sent over the network and
that we also refer to as the intruder knowledge, and D is a database mapping
representing the state of all databases (including the events that have occurred).
The initial state is (P0; ∅, ∅) for a protocol P0.

Definition 4.1 A transition relation on states is defined as:

(P;M,D)
σ,S
=⇒ (P \ {S};M ∪ σ(T ′), db(insert(D).σ(L)))

if the following conditions are met:
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C1: S = receive(T ).L.send(T ′) ∈ P is a transaction strand,

C2: σ is a ground substitution with domain fv(S),

C3: M ` σ(t) for all terms t ∈ T ,

C4: σ(t) = σ(t′) for all steps t .= t′ occurring in L,

C5: σ(δ(t)) 6= σ(δ(t′)) for all steps ∀x̄. t 6 .= t′ occurring in L and all ground
substitutions δ with domain x̄,

C6: σ((t, s)) ∈ db(insert(D).σ(L′)) for all prefixes L′.(t ∈̇ s) of L,

C7: σ(δ((t, s))) /∈ db(insert(D).σ(L′)) for all prefixes L′.(∀x̄. t 6 ∈̇ s) of L and all
ground substitutions δ with domain x̄,

Here the first side-condition C1 simply ensures that S is actually a transaction
strand of the protocol, and the second condition C2 ensures that σ is actually
an assignment of the free variables in S to concrete values. Condition C3 states
that the intruder must be able to derive the messages that S expects to receive.
The conditions C4 to C7 state that all checks and set updates performed by S
are satisfied under σ. As the effect of a transition the strand S is removed from
P, the intruder learns σ(T ′), and the databases are updated according to the
set operations of σ(L).

Note that the whole transaction strand S is “consumed” in each transition be-
cause we want the strands of protocols to be atomic transactions. This is differ-
ent from other strand-based approaches in which a transition only eliminates one
step of a strand and in which strands might contain multiple transactions (e.g.,
from a state containing the protocol {PK

.
= pka,1.receive(npka,1).send(PK )} we

can reach a state containing {receive(npka,1).send(PK )} and where PK must
be mapped to pka,1). Defining our protocol semantics on a transactional level,
however, is without loss of generality: it is always possible to break a strand
into smaller transaction strands while preserving the causal relationship of the
original strand (i.e., transaction i + 1 of a strand with n transactions can only
be performed after transaction i, for any i ∈ {1, . . . , n − 1}). For instance,
one can insert additional message-transmissions between steps, e.g., the strand
PK

.
= pka,1.receive(npka,1).send(PK ) can be split into two transactions, namely

PK
.
= pka,1.send(f(PK )) and receive(f(PK )).receive(npka,1).send(PK ) where f

is a fresh private symbol of arity one that we here use to preserve the causal re-
lationship and to carry state information. In general, to split a strand S1. · · · .Sn
containing transaction strands Si we can add additional steps that carry state in-
formation from Si to Si+1 and which ensure that Si+1 can only be performed af-
ter Si: Si.send(stateSi(x1, . . . , xm)) and receive(stateSi(x1, . . . , xm)).Si+1, where
stateSi ∈ Σmpriv is private and unique to Si and where fv(Si) = {x1, . . . , xm}.
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Such a transformation can also be used to link transactions S1, . . . ,Sn together,
or to split a transaction strand into smaller transactions if one wishes to have
greater granularity in state transitions. For tools based on transaction strands
such an encoding would be useful; it would be convenient for users if they are
allowed to specify strands containing multiple transactions. In this chapter,
however, we will not provide such an input language for a tool—rather, we have
decided to keep the protocol model simple by only allowing single-transaction
strands. This decision is legitimate, in our opinion, since the above encoding for
linking transactions can easily be automated and be transparent to end-users.

Finally, we note that protocol goals such as secrecy can also be encoded as
strands. For instance, we can extend our running keyserver example with
strands

receive(inv(PK ′i)).PK ′i ∈̇ valid(h).assert(attack)

for each honest user h and i ∈ N, and an event attack that denotes when an
attack has happened. Hence, if the private key of a valid public key for an
honest agent is leaked then there is a violation of secrecy, and in those cases we
emit the event attack using the construct assert. In other words, if there is a
reachable state (P;M,D) in which (attack, events) ∈ D then the protocol has a
vulnerability. In principle we support all properties expressible in the geometric
fragment [AMMV15] over events. This includes many reachability goals like
authentication.

4.3 Symbolic Constraints

At the core of all typing results is a sound and complete constraint reduction
system. It was originally used as an efficient procedure for model-checking of
security protocols [MS01, RT03, BMV05], but is also used as a proof tech-
nique when proving relative soundness results such as [CD09, Möd12, AD14,
AMMV15, HM17]. The constraints themselves arise from the symbolic explo-
ration of the protocol state space where each symbolic state contains a constraint
that represents the steps taken in the protocol so far. Any solution to a reach-
able constraint then represents (one or several) concrete runs of the protocol.
In this section we consider constraints for stateful protocols.

4.3.1 Syntax and Semantics

The most basic parts of a symbolic constraint are requirements on the intruder
to produce messages that honest agents expect to receive. For instance, if the
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messages m1, . . . ,mn (where each mi might contain variables) have been sent
out and some agent expects to receive a message pattern t it is standard to
represent as a constraint the requirement on the intruder to produce t given
the mi. Any solution I to such a constraint is an assignment of the variables
fv({m1, . . . ,mn, t}) to ground terms such that I({m1, . . . ,mn}) ` I(t) holds.
As shown in the previous chapter we can represent a (finite) set of such con-
straints by a strand, with send steps for messages the intruder has to generate,
and receive steps for messages that the intruder learns (all in the order this hap-
pens), e.g., the constraint we just explained can be represented as the strand
receive(m1). · · · .receive(mn).send(t). We additionally want to handle strands
with sets, and so we also just insert all the set operations (and similarly the
checks and event assertions) into the intruder strands in the order they happen
in a concrete execution. With this, our constraints are just like the strands for
honest agents but with the direction of send and receive steps inverted, i.e., a
send step from an honest agent becomes a receive step in our constraints and vice
versa. For these reasons we define the syntax of our constraints to range over
strands, i.e., they are defined as finite sequences of steps and are built from the
following grammar where t and t′ ranges over terms and x̄ over finite variable
sequences x1, . . . , xn:

A ::= send(t).A | receive(t).A | t .= t′.A | (∀x̄. t 6 .= t′).A |
insert(t, t′).A | delete(t, t′).A | t ∈̇ t′.A | (∀x̄. t 6 ∈̇ t′).A | 0

Similarly to the ordinary strands we call constraints that only contain receive,
send, equalities, and inequalities for ordinary or stateless constraints. We will
often reuse the operations defined on strands for symbolic constraints, since
they share the same syntax, and we also make the assumption that the bound
variables occurring in a constraint are disjoint from its free variables. Moreover,
we define the intruder knowledge ik(A) of a constraint A as the set of received
messages: ik(A) = {t | receive(t) occurs in A}.

An interpretation I for a constraint A (or just an interpretation if dom(I) = V)
is now defined to be a substitution such that fv(A) ⊆ dom(I) and ran(I) is
ground. We then inductively define a model relation JM,D; ·Ks between inter-
pretations and constraints where M and D are respectively the initial intruder
knowledge and the state of databases:
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Definition 4.2 (The semantics of stateful constraints)

JM,D; 0Ks I iff true
JM,D; send(t).AKs I iff M ` I(t) and JM,D;AKs I
JM,D; receive(t).AKs I iff JM ∪ {I(t)}, D;AKs I
JM,D; t

.
= t′.AKs I iff I(t) = I(t′) and JM,D;AKs I

JM,D; (∀x̄. t 6 .= t′).AKs I iff JM,D;AKs I and I(δ(t)) 6= I(δ(t′))
for all ground substitutions δ
with domain x̄

JM,D; insert(t, s).AKs I iff JM,D ∪ {I((t, s))};AKs I
JM,D; delete(t, s).AKs I iff JM,D \ {I((t, s))};AKs I
JM,D; t ∈̇ s.AKs I iff I((t, s)) ∈ D and JM,D;AKs I
JM,D; (∀x̄. t 6 ∈̇ s).AKs I iff JM,D;AKs I and I(δ((t, s))) /∈ D

for all ground substitutions δ
with domain x̄

Finally, we say that an interpretation I is amodel of (or solution to) a constraint
A, written I |=s A, iff J∅, ∅;AKs I.

We can now prove some useful lemmas about the constraint semantics. First, we
have a lemma that we frequently apply in proofs (without explicitly referencing
it) that allows us to split and merge constraints:

Lemma 4.3 Given a ground set of terms M , a ground database mapping D,
an interpretation I, and symbolic constraints A and A′, the following holds:

JM,D;A.A′Ks I if and only if JM,D;AKs I and JM ′, D′;A′Ks I
where M ′ = M ∪ ik(I(A)) and D′ = db(insert(D).I(A))

Secondly, we can prove a useful relationship between the side-conditions C1
to C7 of the ground transition system and the constraint semantics. First we
define the notion of the dual of a strand S by “swapping” the direction of receive
and send steps. Formally, dual(s) denotes the dual of the strand step s defined
such that dual(receive(t)) = send(t), dual(send(t)) = receive(t), and dual(s) =
s for any other step s. It is then extended homomorphically to strands as
expected. We will interpret dual strands as symbolic constraints and under this
interpretation we can prove the following relationship:

Lemma 4.4 Given a ground state (P;M,D), a transaction strand S ∈ P (con-
dition C1), and a ground substitution σ with domain fv(S) (condition C2), then
the conditions C3 to C7 hold if and only if JM,D; dual(S)Ks σ.
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4.3.2 Symbolic Transition System

Now that we have defined the syntax and semantics of constraints we can con-
struct a protocol transition system in which we build up constraints during
transitions. In this symbolic transition system a symbolic state (P;A) consists
of a protocol P and a constraint A, and the initial state (P0; 0) then consists of
the initial protocol P0 and the empty constraint 0. During transitions we then
build up a constraint by interpreting dual honest-agent strands as constraints:

Definition 4.5 A transition relation on symbolic states is defined as:

(P;A)
S

=⇒• (P \ {S};A.dual(S)) if S ∈ P

We will now impose a well-formedness requirement on protocols; variables in
honest-agent strands must either originate from a received message or in a
positive check (e.g., a set query). In ordinary protocols there is nothing non-
deterministic in the behavior of honest agents, so all free variables in their
strands shall first occur in messages they receive. Now that we add set op-
erations, we extend well-formedness naturally to set comprehensions: a set-
membership check like x ∈̇ s allows the agent to non-deterministically choose
any element from s for x—unless x is already constrained before, thus limiting
the choice accordingly.

We also require that reachable constraints in the symbolic transition system are
of a well-formed kind that is dual to the well-formedness of protocols; every
free variable of a constraint represents either a message that depends on choices
the intruder can make (e.g., variables originating from send steps), or originates
from a positive check. To that end we formally define constraint well-formedness
first and then use this definition to define protocol well-formedness:

Definition 4.6 A constraint A is well-formed w.r.t. variables X (or simply
well-formed when X = ∅), written wf X(A), where

wf X(0) iff true
wf X(send(t).A) iff wf X∪fv(t)(A)

wf X(receive(t).A) iff fv(t) ⊆ X and wf X(A)
wf X(t

.
= t′.A) iff fv(t′) ⊆ X and wf X∪fv(t)(A)

wf X(insert(t, s).A) iff fv(t) ∪ fv(s) ⊆ X and wf X(A)
wf X(t ∈̇ s.A) iff wf X∪fv(t)∪fv(s)(A)

wf X(a.A) iff wf X(A) otherwise

Here the set X collects the variables that have occurred in send steps or positive
checks. In other words, every free variable of a well-formed constraint originates
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from either a send step, a ∈̇ step, an event step, or at the left-hand side of a .
=

step (or a delete or a negative check such as an inequality, but in those cases
the new variables cannot be used elsewhere). We can then reuse the definition
of well-formedness of constraints to formally define a notion of well-formedness
of protocols:

Definition 4.7 A protocol P is well-formed iff for all strands S ∈ P the
symbolic constraint dual(S) is well-formed.

Note that the well-formedness requirement on t ∈̇ s allows us to model protocols
where we pick arbitrary elements from sets—as in the keyserver example.

Well-formedness of reachable constraints is now easy to prove. We write w
=⇒∗

here to denote the reflexive-transitive closure of ·
=⇒ where the label w =

(σ1,S1), . . . , (σn,Sn) denotes a sequence of transition labels, and similarly w′

=⇒•∗
denotes the reflexive-transitive closure of ·

=⇒• where w′ = S1, . . . ,Sn.

Lemma 4.8 (Well-formedness of reachable constraints) 1 If
P0 is a well-formed protocol and (P0; 0)

w
=⇒•∗ (P;A) then A is a well-formed

symbolic constraint and P is a well-formed protocol.

We now prove that the symbolic and ground transition systems are equivalent.
Essentially, if we consider for every reachable symbolic state (P;A) and every
model I of A the corresponding ground state (P; ik(I(A)), db(I(A))), then we
obtain exactly the reachable states of the ground transition system:

Theorem 4.9 (Equivalence of transition systems) 2 For any pro-
tocol P0,

{(P;M,D) | ∃w. (P0; ∅, ∅) w
=⇒∗ (P;M,D)} =

{(P; ik(I(A)), db(I(A))) | ∃w. (P0; 0)
w

=⇒•∗ (P;A) and I |=s A}

4.3.3 Reduction to Ordinary Constraints

The key to our typing result—that allows us to benefit from existing typing
results—is to first reduce the problem of solving general intruder constraints
(with set operations) to solving ordinary intruder constraints (without set oper-
ations). To that end we introduce a sound and complete translation mechanism

1Not proven in Isabelle.
2Not proven in Isabelle.
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that removes the stateful parts of constraints, for instance those reachable in
·

=⇒•∗. The translation tr(·) is then defined as follows, where D is a database
mapping that records what has occurred in the constraint so far:

Definition 4.10 (Translation of symbolic constraints) Given
a constraint A its translation into ordinary constraints is denoted by tr(A) =
tr∅(A) where:

trD(0) = {0}
trD(insert(t, s).A) = trD∪{(t,s)}(A)
trD(delete(t, s).A) = {(t, s) .

= d1. · · · .(t, s)
.
= di.

(t, s) 6 .= di+1. · · · .(t, s) 6
.
= dn.A′ |

D = {d1, . . . , di, . . . , dn}, 0 ≤ i ≤ n,
A′ ∈ trD\{d1,...,di}(A)}

trD(t ∈̇ s.A) = {(t, s) .
= d.A′ | d ∈ D,A′ ∈ trD(A)}

trD((∀x̄. t 6 ∈̇ s).A) = {(∀x̄. (t, s) 6 .= d1). · · · .(∀x̄. (t, s) 6 .= dn).A′ |
D = {d1, . . . , dn}, 0 ≤ n,A′ ∈ trD(A)}

trD(a.A) = {a.A′ | A′ ∈ trD(A)} otherwise

Intuitively, the set trD(·) of reduced constraints represents a disjunction of ordi-
nary constraints, and since we cannot represent disjunctions in our constraints
we use sets instead. Note also that D will always be finite and that this does not
mean that we are restricting ourselves to only finitely many sessions. Rather, in
each protocol execution only finitely many things have happened at any given
point and D then represents the state of the sets and events. Hence the trans-
lation always produces a finite set and for this reason we can interpret the set
as a finite disjunction of constraints.

We will now explain how each set operation is translated. The purpose of the
translation tr(A) is to capture precisely the models of A using only a finite
number of ordinary constraints, so we will proceed with the explanation with
this in mind.

The simplest case is the insert(t, s) case, and here we record the insertion for the
remaining translation. Now consider the t ∈̇ s case. For any model I of t ∈̇ s
with a given database mapping D = {(t1, s1), . . . , (tn, sn)} (where each entry
of D might contain variables) we know that I((t, s)) ∈ I(D). In other words,
some check (t, s)

.
= d for some d in D has I as a model if and only if t ∈̇ s has I

as a model, and by then constructing one constraint for each di ∈ D where we
require (t, s)

.
= di we get the desired result.

For the ∀x̄. t 6 ∈̇ s case we know that I(δ(t)) 6= I(δ(t′)) or I(δ(s)) 6= I(δ(s′))
for any (t′, s′) ∈ D and ground substitution δ with domain x̄. In other words,
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I(δ((t, s))) 6= I(δ((t′, s′))) for all (t′, s′) ∈ D and this is exactly what the trans-
lation expresses. We also have to make sure that the newly introduced quantified
constraints do not capture any variables of D. This is, in fact, the case for all
constraints reachable in our symbolic transition system, since we have previ-
ously assumed all strands of protocols to have disjoint variables from each other
and also that the bound and free variables of strands are disjoint. Thus this
property also holds for the reachable constraints.

The most interesting case is the translation of delete(t, s) steps. Since terms
may contain variables we do not know a priori which insertions to remove
from D, but we still need to ensure that t has actually been removed from the
set s in the remaining constraint translation—otherwise the translation would
be unsound. We accomplish this by partitioning the insertions D into those
{d1, . . . , di} that must be equal to (t, s) in the remaining translation and the
remaining D \ {d1, . . . , di} that are unequal to (t, s), and we thus add equality
and inequality constraints to express this partitioning. Consequently, we then
remove {d1, . . . , di} from D for the remaining translation. Note that there will
in general be cases where the choice of partitioning results in an unsatisfiable
constraint, but since we construct constraints for all possibilities the translation
still captures exactly the models of the original constraint. Note also that this
partitioning of D implies that an exponential number of constraints are con-
structed in this case, namely one for each subset of D. The translation is meant
to be used purely as a problem reduction—in a verification procedure one could
ensure that trivially unsatisfiable translations are ignored to reduce the number
of produced constraints.

Finally, we show that tr is indeed a reduction, i.e., that tr(A) captures exactly
the models of A, and that tr preserves well-formedness:

Theorem 4.11 (Semantic Equivalence) Let A be a constraint and I
an interpretation. Then A is semantically equivalent to its translation tr(A) in
the following sense:

I |=s A if and only if there exists A′ ∈ tr(A) such that I |= A′.

The translation furthermore preserves well-formedness:

If A is well-formed and A′ ∈ tr(A) then A′ is well-formed.
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4.4 Lifting Typing Results to Stateful Protocols

So far everything in this chapter has been untyped. We now again consider the
type system of Section 3.2 in which we annotate terms with types. In particular,
each message pattern that an honest agent in a protocol expects to receive will
have an intended type, and in a typed model we restrict all substitutions to well-
typed ones. In this typed model the intruder is therefore effectively restricted to
only sending messages which conform to the types. For protocols that satisfy the
syntactic type-flaw resistance requirement we then prove that this restriction is
sound, and this result we call a typing result. For proving our result we use the
reduction tr from constraints with sets to ordinary constraints, enabling us to
use existing typing results for protocols without sets and “lift” them to stateful
protocols.

Recall that Γ is a typing function that assigns a type to each term, and that
Ta is a set of atomic types. In our running example of this chapter we might
define Ta = {Value,Agent,Attack} where Γ(a) = Agent for all users and servers
a, Γ(pk) = Value for any element pk of a set, and Γ(attack) = Attack. Similarly,
the variables Ui have type Agent and the variables PK u,j , PK i, and NPK i

have type Value. All short-term public keys have type Value and all short-term
private keys have type inv(Value). Since we use terms to model families of sets
we have as a consequence that, e.g., keyrings of the form ring(u), for users u,
have type ring(Agent).

4.4.1 Type-Flaw Resistance for Stateful Protocols

In this subsection we will define a sufficient syntactical condition for stateful
protocols (i.e., verifying the condition does not require an exploration of the
state space of a protocol) that allows us to prove our typing result for protocols
that have this property. This condition is a conservative extension of type-
flaw resistance (Definition 3.17) from the previous chapter and so the following
condition will again be named type-flaw resistance since no confusion can arise.

We again require that all pairs t, t′ of sub-message patterns that are not vari-
ables (i.e., are non-variable) can only be unified if their types match, and this
will be our main condition of type-flaw resistance. This is a sufficient require-
ment to distinguish terms of different types and it therefore enables us to argue
that ill-typed choices are unnecessary. In a nutshell, the typing result works as
follows: with the condition of type-flaw resistance we ensure that the intruder
cannot take a message generated by an honest agent (or a non-variable subterm
of it) and use it in a different “context” of the protocol, i.e., a non-variable sub-



78 Extending the Typing Result to Stateful Protocols

term of a different type. The constraint-based representation then allows one
to argue that no attack relies on an ill-typed choice by the intruder like in the
previous chapter. We use again that there is a sound, complete, and terminat-
ing reduction procedure for (ordinary) intruder constraints that will instantiate
variables only upon unification of two elements of SMP—and such a unifier is
guaranteed to be well-typed for a type-flaw resistant protocol. All remaining
uninstantiated variables can be instantiated arbitrarily by the intruder, in par-
ticular in a well-typed way. Thus one can conclude that there is a well-typed
solution if there is one at all.

Definition 4.12 (Type-flaw resistance) First, let the set operation
tuples of a constraint (or strand) A be defined as:

setops(A) ≡ {(t, s) | insert(t, s) or delete(t, s) or t ∈̇ s or
(∀x̄. t 6 ∈̇ s) for some x̄ occurs in A}

and extend this definition to protocols P as follows:

setops(P) ≡
⋃
S∈P

setops(S)

Then type-flaw resistance is defined as follows:

1. A set of terms M is type-flaw resistant iff for all t, t′ ∈ SMP(M) \ V it
holds that Γ(t) = Γ(t′) if t and t′ are unifiable.

2. A strand (or constraint) A is type-flaw resistant iff trms(A) ∪ setops(A)
is type-flaw resistant, and for any terms t, t′ and variable sequences x̄:

(a) If t .= t′ occurs in A then Γ(t) = Γ(t′) if t and t′ are unifiable.

(b) If ∀x̄. t 6 .= t′ occurs in A then either

i. Γ((fv(t) ∪ fv(t′)) \ x̄) ⊆ Ta, or
ii. there does not exist a subterm of t or t′ of the form f(x1, . . . , xn)

where n > 0 and x1, . . . , xn ∈ x̄.
(c) If ∀x̄. t 6 ∈̇ t′ occurs in A then there does not exist a subterm of (t, t′)

of the form f(x1, . . . , xn) where n > 0 and x1, . . . , xn ∈ x̄.

3. A protocol P is type-flaw resistant iff the set trms(P)∪ setops(P) is type-
flaw resistant and for all S ∈ P the strand S is type-flaw resistant.

The main type-flaw resistance condition is defined in Definition 4.12(1) and it
states that matching pairs of messages that might occur in a protocol run must
have the same type. For equality steps t .= t′ any solution I must be a unifier
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of t and t′, and so they should have the same type. If t .= t′ is unsatisfiable (i.e.,
t and t′ are not unifiable) then their types do not matter. Hence we can later
prove that our reduction tr preserves type-flaw resistance, even if tr produces
some unsatisfiable equality steps. For inequality steps ∀x̄. t 6 .= t′ we only need
to require that the variables occurring in t and t′ (but not x̄) are atomic, or
that there are no composed subterm whose immediate parameters are all bound
variables. For the remaining constraint steps note that when we translate a set
operation such as delete(t, s) we construct steps of the form (t, s)

.
= (t′, s′) and

(t, s) 6 .= (t′, s′). Thus we must require that (t, s) and (t′, s′) are unifiable if they
have the same type and that the translated inequalities are type-flaw resistant
(note that inequalities with no bound variables—such as those occurring in the
translation of delete steps—satisfy type-flaw resistance). By requiring that the
set trms(A) ∪ setops(A) is type-flaw resistant we have that the translated set
operations must have the same type if they are unifiable. Similar conditions are
needed for the event steps, but we can here relax the requirements slightly since
their translations are simpler. Finally, a protocol is type-flaw resistant whenever
its strands are, and we must additionally require here that trms(P)∪ setops(P)
is type-flaw resistant because terms from different strands might be unifiable.

To see that these restrictions are necessary, suppose for a moment that we
would allow for composed types for variables in inequalities with bound variables
without the restrictions imposed by our type-flaw resistance requirements. We
can then easily construct constraints which only have ill-typed solutions. For
instance, consider the inequality ∀x. y 6 .= f(x) where Γ(y) = f(Γ(x)). For any
instance f(c) of y where Γ(f(c)) = Γ(y) there is an instance of x (namely c) that
does not satisfy the inequality. Hence the constraint has no well-typed solution.
However, there do exist ill-typed solutions; since we are working in the free
algebra, terms are equal if and only if they are syntactically equal, and hence
any instance of y that is not of the form f(c) for some c would be a solution
to the inequality. [Möd12] has no such restrictions on the type of universally
quantified variables and we thus found a counter-example to its typing result
(see Section 4.4.3). Thus it seems that a typing result for stateful protocols
necessarily requires a carefully restricted setting like our set-based approach.

Note also that we forbid set operations of the form ∀x1, . . . , xn. t 6 ∈̇ f(x1, . . . , xn)
such as the negative membership checks of the keyserver example. This is be-
cause the set expression f(x1, . . . , xn) is a term whose immediate parameters are
all bound variables. One solution would be to allow each negative membership
check to also be type-flaw resistant if all free variables of the check have atomic
types, which is similar to the requirements for inequalities. However, in that
case we would also need to require that variables occurring in insertions have
atomic type. Otherwise translation tr of negative membership checks may not
preserve type-flaw resistance. To avoid having such restrictions on the variables
occurring in insertions we instead solve the problem in a manner similar to how
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we support private functions in the typed model: We consider each occurrence
of a set expression term f(t1, . . . , tn) (e.g., ring(U), valid(U), and revoked(U) in
the keyserver example) to be syntactic sugar for the expression f ′(sec, t1, . . . , tn)
where f ′ here has arity n+ 1 and sec is some distinguished constant.

Example 4.2 As an example of type-flaw resistance we show that the key-
server protocol is type-flaw resistant. One approach to proving type-flaw resis-
tance of a protocol P is to first find a set of strand steps M that subsumes the
steps of P as well-typed instances. By proving type-flaw resistance of all steps
in M , and of the set of terms occurring in M , we can conclude that P must be
type-flaw resistant. For our example we can consider the following set, where
Γ({A,S, U}) = {Agent} and Γ(PK ) = Value:

M = {assert(attack), delete(PK , valid(U)),
∀A. PK 6 ∈̇ revoked(A),∀A. PK 6 ∈̇ valid(A),
insert(PK , valid(U)), insert(PK , ring(U)),
insert(PK , revoked(U)),PK ∈̇ valid(U),PK ∈̇ ring(U),
receive(inv(PK )), receive(sign(inv(PK ), 〈U,PK 〉)),
send(inv(PK )), send(PK ), send(sign(inv(PK ), 〈U,PK 〉))}

Hence all variables have atomic type and so the non-constant, non-variable sub-
message patterns of M consist of the composed terms and subterms closed under
well-typed variable renaming and well-typed instantiation of the variables with
constants. It is easy to see that each pair of non-variable terms among these
composed sub-message patterns have the same type if they are unifiable. Thus
the total set of terms of the protocol—and in each strand—is type-flaw resistant.

What remains to be shown is that each strand step in M satisfies requirement
2(c) of Definition 4.12 (the remaining requirement, 2(b), is trivially satisfied).
The only event step occurring in M is assert(attack), which is syntactic sugar
for an insertion operation, and so there is nothing that needs to be shown for
the event steps. For the remaining set operations we only need to show that the
negative checks satisfy type-flaw resistance. Recall that we encode set expression
terms like valid(A) as the term valid′(sec, A). With that in mind it is easy to see
that all negative set membership checks satisfy type-flaw resistance: The terms
(PK , valid′(sec, A)) and (PK , revoked′(sec, A)) are the only set expression terms
occurring in the negative membership checks of M and they do not have any
subterm of the form f(x1, . . . , xn) for some function symbol f and variables xi.
Thus the final requirement 2(c) is satisfied.

In general, type-flaw resistance is in our opinion a reasonable property to require
from protocols and their implementations: Most importantly one should not
have messages that encrypt raw data, like a nonce or a key, without any bit of
information what the data means, because this opens the door for the intruder to



4.4 Lifting Typing Results to Stateful Protocols 81

reuse messages from honest agents that he cannot produce himself (and whose
precise content he may not even know) in a different context. In fact, most
concrete implementations satisfy this. Our result extends previous typing results
in the scope of protocols that can be considered to stateful protocols; the type-
flaw resistance requirement is thus also extended accordingly, however this is in
some sense also conservative: all protocols that are type-flaw resistant according
to the notion of Definition 3.17 are also type-flaw resistant according to our
Definition 4.12. In a nutshell, the additional requirements for set operations and
events are simply to exclude that sets and events can be used as an “unchecked
side-channel” where type-flaws attacks can creep in. The requirements on set
operations are, in fact, only as strict as the requirements on inequalities and the
tuples (·, ·) that arise in the translation tr . In particular, we support arbitrary
types for set elements—the only restrictions being that negative set-membership
checks do not contain subterms of the form f(x1, . . . , xn), where the xi are
bound variables, and that unifiable set elements in the same set have the same
type. Thus we support set elements of atomic types, composed types, and even
non-homogeneous sets (i.e., sets containing elements of different types).

Finally, we prove that reachable constraints A, and their translations tr(A), are
type-flaw resistant whenever the initial protocol is:

Lemma 4.13 (Type-flaw resistance preservation) 3 If P0 is a type-
flaw resistant protocol and (P0; 0)

w
=⇒•∗ (P;A) then both P and A are type-flaw

resistant. Moreover, if A′ ∈ tr(A) then A′ is also type-flaw resistant.

4.4.2 The Typing Result

All that remains is to prove the actual typing result for stateful protocols. Recall
that we have formalized a typing result in Chapter 3 (more specifically Corol-
lary 3.28) that we can use to obtain well-typed models of ordinary constraints.
Note that all constraints and protocols we consider in this chapter (and the fol-
lowing chapter) are by definition analysis-invariant because of the requirement
Ana′4 on the analysis interface Ana. Restated with the new notions introduced
in this chapter the corollary is thus as follows:

Corollary 3.28 (Typing result: ordinary constraints) If A
is a well-formed and ordinary constraint, I |=s A, and A is type-flaw resistant,
then there exists a well-typed interpretation Iτ such that Iτ |=s A.

3Type-flaw resistance preservation for protocols is not proven in Isabelle. Type-flaw resis-
tance preservation of the reduction tr is fully formalized in Isabelle.
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By using our reduction tr together with Corollary 3.28 on ordinary constraints
we can prove the following:

Theorem 4.14 (Typing result: symbolic constraints) If A is a
well-formed constraint, I |=s A, and A is type-flaw resistant, then there exists
a well-typed interpretation Iτ such that Iτ |=s A.

Proof. From Theorem 4.11, Lemma 4.13(1), and the assumptions we can
obtain a type-flaw resistant ordinary constraint A′ such that A′ ∈ tr(A) and
I |=s A. Hence, we can obtain a well-typed interpretation Iτ such that Iτ |=s A′
by Corollary 3.28. By applying Theorem 4.11 again we can conclude the proof.
�

With this intermediate result we can prove the main result of the chapter:

Theorem 4.15 (Typing result: stateful protocols) 4 If P0 is a
type-flaw resistant protocol, and

(P0; ∅, ∅) w
=⇒∗ (P;M,D) where w = (σ1,S1), . . . , (σk,Sk)

then there exists a state (P;M ′, D′) such that

(P0; ∅, ∅) w′

=⇒∗ (P;M ′, D′) where w′ = (σ′1,S1), . . . , (σ′k,Sk)

for some well-typed ground substitutions σ′1, . . . , σ′k.

Proof. By using the equivalence between the ground and the symbolic transi-
tion system (Theorem 4.9) we need only to show that reachable constraints in the
symbolic transition system have well-typed models. Since reachable constraints
for type-flaw resistant protocols are also type-flaw resistant (Lemma 4.13(2)) we
only need to apply Theorem 4.14 to the reachable constraints. Thus we obtain
the desired result. �
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Declarations:
ik : pred (untyped)
X,n : nonce
Y : f(nonce)
attack : pred ()

Initial state:
ik(n)

Transition rules:
ik(Y ). ¬∃X : Y = f(X)⇒ attack()

Horn clauses:
∀X : ik(X)→ ik(f(X))

Figure 4.1: A TASLan specification that illustrates the flaw in [Möd12].

4.4.3 A Mistake in a Related Work

Typing for stateful systems has also been considered in [Möd12]; some of its
theorems have only proof sketches. Rigorously formalizing however the lazy
intruder and the typing result (parts of which are now formalized in Isabelle),
we have discovered several significant mistakes and we can demonstrate with
counter-examples, that the result of [Möd12] does not hold in this generality as
we explain in detail now.

[Möd12] allows a quite general specification of the intruder by a set of Horn
clauses. There are restrictions of the form of these Horn clauses [Möd12,
Sec. 2.1]: each clause expresses either that the intruder can generate new terms
by applying a function symbol to known terms (this corresponds to public func-
tion symbols in our work) or how the intruder can analyze terms, somewhat
corresponding to our specification of Ana. For that, the requirement on the
term obtained by the analysis is only that it must be a proper subterm of the
term being analyzed. This allows for instance for the following Horn clause
(where the predicate ik represents messages known by the intruder):

ik(f(g(x))→ ik(x)

Suppose now f is a public function and the intruder knows g(s) for a secret
s. Then he can with the above rule apply f to g(s) to obtain s. Such a step
is however not covered by the constraint reduction procedure in [Möd12], since
analysis steps can only be applied to terms that the intruder directly knows, not
ones he has to first compose. Now this leads to a counter-example for the typing

4Not proven in Isabelle.
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result if we assume that f is not a public symbol, but there is an honest strand
receive(x).send(f(x)) with variable x an atomic type, say, nonce. If the intruder
knows g(s) and s is a secret, then there is an ill-typed attack with x = g(s), but
no well-typed attack.

There is a second problem that there is no restriction on the type of univer-
sally quantified variables in [Möd12]. Indeed composed-typed variables can also
break the typing result as we have shown before. For instance, consider the
inequality ∀x. y 6 .= f(x) where Γ(y) = f(Γ(x)). For any instance f(c) of y
there is an instance of x (namely c) that does not satisfy the inequality. Hence
the constraint has no well-typed solution. However, there does exist ill-typed
solutions; since we are working in the free algebra terms are equal iff they are
syntactically equal, and hence any instance of x that are not of the form f(c)
for some c would be a solution to the inequality. The ASLan specification in
Figure 4.1 demonstrates this issue. Here the attack predicate cannot be derived
if Y is instantiated with a well-typed instance in the transition rule.

It turns out that the result from the present chapter is sufficient to fix the
mistakes of [Möd12] by applying the same restrictions on the intruder deduction
and on composed-typed variables. A fixed version of [Möd12], highlighting the
changes, is available at

https://people.compute.dtu.dk/samo/taslanv3.pdf

4.5 Case Studies

In this section we discuss how our typing result is applicable in practice on sev-
eral protocols, in particular that many protocols already satisfy the requirements
of type-flaw resistance or require only minor changes to do so.

As for examples of stateful verification, we consider the examples from the AIF
and AIF-ω tools, since this is the closest match to our formalization, as dis-
cussed in Section 4.6.1. Note that some of the examples have also similarly
been considered in SAPIC, in particular PKCS#11 and ASW.

4.5.1 Automatically Checking Type-Flaw Resistance

One crucial point of the typing result is that it is relatively easy to check, namely
by statically looking at the format of messages rather than traversing the entire

https://people.compute.dtu.dk/samo/taslanv3.pdf
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state space, and that this can also be done automatically as a static analysis of
a user’s specification before verification in a typed model.

Note that SMP(M) is in general infinite, but it is sufficient to check the following
finite representation SMP0 for type-flaw resistance: starting with SMP0 = M ,
we first ensure that for every message t ∈ SMP0 that contains a variable x of a
composed type f(τ1, . . . , τn), we ensure that also [x 7→ f(x1, . . . , xn)](t) ∈ SMP0

for some variables x1 : τ1, . . . , xn : τn that do not occur in t. (Even if some
τi are themselves composed types, this can be done by adding finitely many
messages, since all type expressions are finite terms.) Next, we close SMP0

under subterms and key terms of Ana. Finally, let us ensure by well-typed α-
renaming that all terms in SMP0 have pairwise disjoint variables. Note that
SMP0 is a representation of SMP(M) in the sense that every SMP(M) term
is a well-typed instance of an SMP0 term. Now the condition that every pair
s, t ∈ SMP0 \ V with Γ(s) 6= Γ(t) has no unifier, is equivalent to the type-flaw
resistance of M :

Lemma 4.16 M is type-flaw resistant if and only if

∀s, t ∈ SMP0 \ V. (∃δ. δ(s) = δ(t)) −→ Γ(s) = Γ(t)

Proof. Note that SMP0 ⊆ SMP(M), giving us one direction of the equiva-
lence. For the other direction, suppose there are any s, t ∈ SMP(M) \ V such
that Γ(s) 6= Γ(t). We need to show that s and t are not unifiable. Since SMP0

represents SMP(M), there exists terms s0, t0 ∈ SMP0 and well-typed substitu-
tions θ1 and θ2 such that s = θ1(s0) and t = θ2(t0). Hence also Γ(s0) 6= Γ(t0),
and so s0 and t0 are not unifiable by assumption. Thus s and t cannot be unified
either because s0 and t0 do not share variables. �

Note that for protocols with an infinite number of strands the initial set M
should be chosen carefully to prevent an infinite SMP0. In our keyserver ex-
ample, for instance, we can choose for M a more general and finite set where
all terms and set operations of the protocol are well-typed instances of terms
in M—such as in the type-flaw resistance example of Section 4.4.1. This is
sufficient to ensure finiteness of SMP0.

4.5.2 Extension of the Keyserver Example

We will now illustrate by a small example how type-flaw problems can arise
in practice, how type-flaw resistance is violated in such a case, and how the
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situation can be fixed. Suppose for the keyserver example, we augment the
protocol with an exchange where a user can prove to be alive, formalized by
having for each user u and each session j ∈ N the following transaction strand:

receive(Nj).PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), Nj))

where all Nj and PK u,j have atomic types. The idea is that anybody can send
the user a challenge Nj , and u answers with a signature on it. In this blunt form
it is obviously a bad idea, since an intruder can send an arbitrary term instead of
Nj . Indeed the protocol now violates type-flaw resistance: sign(inv(PK u,j), Nj)
has a unifier with the normal update message sign(inv(PK i), 〈Ui,NPK i〉), while
they have different types. The general recommendation is thus to use some
form of tag to indicate what the messages should mean. In fact, many protocol
standards already describe a concrete message format, e.g., in this case that
nonces and public keys have certain byte lengths, or even fields that indicate
the length, if it is not fixed; in contrast many protocol models model only
abstractly the exchanged information as tuples. It is thus recommended to
model the concrete message formats by transparent functions, i.e., functions
like pair that the intruder can compose and decompose, and check that the
concrete formats of the protocol standard are disjoint so that a confusion is
impossible. In this case we may have functions update(U,PK ) that is used in
the update message and functions challenge(N) and response(N) to model the
challenge response protocol to have rather the following form:

receive(challenge(Nj)).PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), response(Nj)))

One may argue that the formatting of the challenge message is irrelevant since
it is in cleartext. We suggest, however, to use formatting information also here,
since it is in fact good practice for implementations anyway and does not really
hurt.

With the change we now have again type-flaw resistance and our typing result
is applicable.

4.5.3 Secure Vehicle Communication

A set of examples for AIF is a model of the secure vehicle communication of
the SEVECOM project [SEV09, MM11]. These define a setup for hardware
security modules in cars that store a number of keys that can only be used via
a number of API commands. A main concern is the so-called root key update.
Here we have the following message patterns of incoming and outgoing messages,
where the variables K, K1, and K2 are of type Value: K, sign(inv(K),K), and
sign(inv(K2 ), pair(K1 ,K)), where we have omitted some message patterns that



4.5 Case Studies 87

can be obtained by well-typed substitutions. The corresponding set of sub-
message patterns

SMP({K, sign(inv(K),K), sign(inv(K2 ), pair(K1 ,K))})

is the closure of the message patterns under subterms, term decomposition, and
well-typed instantiation.

This is not directly type-flaw resistant: if we first consider a well-typed renam-
ing of the first signature, say, sign(inv(K3 ),K3 ) then there is a unifier with
the other signature sign(inv(K2 ), pair(K1 ,K)), namely identifying K3, K2, and
pair(K1 ,K). Indeed the two signature messages here have different type and
meaning (the first means key revocation, the second means key update), while
they have nothing signaling in the signed text which message it is. Indeed, if
we look at the standard [SEV09], it requires that the revocation and the update
signature contain specific text namely “REVOKE ROOT PUBLIC KEY” and
“LOAD ROOT PUBLIC KEY”. This had not been modeled in [MM11]. Again,
we recommend to use here transparent functions revoke/1 and update/2, to
model the format of the revoke and update messages, respectively, and for which
the intruder can directly extract the arguments, i.e., Ana(revoke(K)) = (∅, {K})
and Ana(update(K1 ,K2 )) = (∅, {K1 ,K2}). Then we have as SMP the follow-
ing set closed under subterms and well-typed substitutions (in this case study
closing under term decomposition is unnecessary as it is subsumed by closing
under subterms):

{K, sign(inv(K), revoke(K)), sign(inv(K2 ), update(K1 ,K))}

and indeed now type-flaw resistance is satisfied.

4.5.4 PKCS#11

The examples of AIF-ω contain a number of specifications of PKCS#11-based
APIs following [FS09, BCFS10]. Again the model of a crypto-device is here by a
number of transactions that consist of a command and arguments to the device,
which performs some checks, possibly generates some encryptions and makes
some notes and sends an output as a result. The question is if an intruder can
obtain something by combining several API calls in a way that had not been
anticipated. Again, the AIF-ω model of these calls is based on sets for describ-
ing the different flags associated to a key (e.g., whether it is a key that can be
extracted). The specification is again that all elements of the sets are declared
to have type Value, thus it only remains to check that the messages input and
output to the device fulfill the type-flaw resistance. Since the commands them-
selves are not encrypted, the AIF models do not model opcodes and the like and
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just present the bare arguments (e.g., key-handles, encrypted messages etc.) to
the device. We then obtain the following kinds of messages:

bind(N,K,K), h(N,K), K, senc(M,K)

Here K, N , and M are of type Value, and we have omitted some terms that are
redundant under well-typed substitution again. Also this is type-flaw resistant,
however there is an interesting point. As long as only the intruder is interacting
with the token interface, the type-flaw resistance is guaranteeing that he has
no gain from using ill-typed messages. However, when we consider extensions
of these examples (e.g., a richer API or a network with other tokens or honest
parties), then also more complex messages M in the symmetric encryption may
be produced (or received by honest agents) and the type-flaw resistance breaks.
It therefore seems like a good idea to not have raw encryptions of a key (like in
senc(M,K)) but to insert some more information into the encrypted message,
like a format as in the SEVECOM example above. Indeed this solves some of
the attacks that arise in the use of the API already, when we use different such
formats (or tags) for keys of different intended use (e.g., wrap-unwrap attacks).

4.5.5 ASW

The fair contract signing protocol ASW is another example of a protocol that
necessarily requires a global state. With AIF shipped a formalization of ASW
that abbreviates some protocol messages drastically, for instance the function
msg1(A,B, contract(A,B), h(NA)) to abbreviate a message from A to B that
is actually signed with the private key of A, and intruder rules that allow the
intruder to compose such a msg1-message if A is dishonest (and always decom-
pose it). To use it with our typing result and the Ana functions, we need to use
a more standard model, explicitly denoting the signature function, i.e., for msg1
we rather have sign(inv(pk(A)),m1(A,B, contract(A,B), h(NA))) where m1 is a
transparent function to model the concrete format of the message content.

Note that when this message is received by B, it has the form

sign(inv(pk(A)),m1(A,B, contract(A,B),HNA))

with a variable HNA of the composed type h(nonce), since B cannot check at
this point that this is indeed a hash of a nonce as it should be. The entire point
of this fair exchange is in fact that the nonces are revealed only later.

The second message has the form sign(inv(pk(B)),m2(B, t, h(NB))) where t =
sign(inv(pk(A)),m1(A,B, contract(A,B),HNA), i.e., the t is a message of the
first form; note that here the variables A and B must all agree in these forms
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since this is part of what the participants check. When A receives this message,
it has the form sign(inv(pk(B)),m2(B, t′,HNB)) with a composed-type variable
HNB since A similarly cannot check that this is really a hash of a nonce. In
contrast t′ has the form sign(inv(pk(A)),m1(A,B, contract(A,B), h(NA))) since
here the nonce NA has been created by A herself earlier.

Messages three and four of the protocol are simply the nonces NA and NB ; even
though we suggest not to have such raw data sent around (and rather wrap it
in another transparent format), this is not a problem with type-flaw resistance.

Note that for that part of the verification we have now the equations HNA =
h(NA) and HNB = h(NB) since after receiving the nonce from each other, the
agents should check out with the respective HNA and HNB received earlier.
Note also that if there was a continuation for the case that such a check fails, it
could not be handled by our typing result, because that would imply composed-
typed variables in inequalities.

The most interesting part of ASW is the communication with a server in case the
above four-step contract signing goes wrong, i.e., if one of the agents does not
receive an answer anymore, in particular if B has received message three from A
and thus has a valid contract, and dishonestly refuses to reveal the final message
four to A, so A does not have a contract. The protocol assumes that both agents
have resilient channels to a trusted third party, i.e., they eventually get an an-
swer. If A did not receive an answer to her message one, she can send an abort
message to the server of the form sign(inv(pk(A)), abortReq(t)) where t is the first
message she had sent. If A or B at a later point in the protocol (i.e., after at
least sending/receiving message two) do not obtain an answer, they can ask for
a resolve, which is of the form sign(inv(pk(X)), resolveReg(t1, t2)) where t1 and
t2 are the first two messages of the protocol and X is the agent A or B asking for
the resolve. The server should now look in his database of contracts, and if the
contract does not occur in the database yet, grant the abort or resolve request,
by the messages sign(inv(pk(s)), abort(t)) or sign(inv(pk(s)), resolve(t1, t2)), re-
spectively, where inv(pk(s)) is the private key of the server. The result is of
course also stored in the database, and this entry will be the reply to any agent
who asks for an abort or resolve of that contract.

The AIF model has here several limitations: since resilient channels cannot be
modeled directly, it models the interaction between users and servers as atomic
transitions. The assumption of the real protocol is a bit weaker: an intruder
cannot entirely block a request or the response, but he may be able to delay it,
for instance observe a request and send a different request that arrives earlier at
the server. Also the messages exchanged are not modeled, but only the effects on
the users and servers database. We have thus here checked type-flaw resistance
both for the restricted model that comes with AIF and for an extended model
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that includes all necessary steps and possible interleavings.

The server’s database is actually modeled as a family of sets scondb(A,B,Status)
for each agent A, B and where Status is either valid or aborted. However, instead
of the contract, it stores only the nonce NA. This is due to AIF’s limitations to
sets of constants. It is sufficient to make a working model of ASW, since NA is
sufficient to identify the concrete exchange.

In fact, satisfaction of the type-flaw resistance is easy to see, since every function
symbol except sign is applied in all messages to terms of the same types and the
message being signed is never directly a variable. Similar, for the sets, the con-
tents have all type nonce, and the set terms have the form family(A,B,Status)
where A and B are agents and Status ranges over a set of possible status mes-
sages.

4.6 Connections to Other Formalisms

We have introduced the formalism of transaction strands to have a simple and
mathematically pure formalism as a protocol model for our result without the
disturbance of the many technical details of various protocol models. We want
to illustrate now that our result can nonetheless be used in various protocol
models, but we only sketch the main ideas and discuss also limitations of our
typing results.

Note that the core of our result is proved on symbolic constraints (intruder
strands) of a symbolic transition system. Connecting another formalism with
our typing result requires only two aspects. First, one needs to define the seman-
tics for the formalism in terms of a symbolic transition system with constraints
(including set operations, equalities, and inequalities). Second, one needs to
transfer the notion of type-flaw resistance, so that a type-flaw resistant speci-
fication in the formalism will only produce type-flaw resistant constraints. We
have done this for transaction strands with detailed proofs. Due to the variety
of other formalisms and their technical details, we only sketch in the following
the ideas for the most common constructions.

4.6.1 AIF-ω and Rewriting

Our transaction strands are in some sense a purified version of AIF-ω. In a
nutshell, it describes protocols by a set of rewrite rules for a state transition
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system, where each state is a set of facts like ik(m) to denote that the intruder
knows message m. It is thus also similar to other rewriting based languages like
Maude-NPA or the AVANTSSAR ASLan.

One can translate each AIF-ω rule into transaction strands as follows. Every
intruder knowledge fact ik(m) on the left hand side of a rule corresponds to
receiving a message m, and on the right hand side to sending a message m. If
the expression t in s occurs on the left-hand side, then the transaction strand
must contain t ∈̇ s; if the same expression does not occur on the right-hand side,
then the transaction must include delete(t, s). If the expression t notin s occurs
on the left-hand side, then the transaction must contain ∀x̄. t 6 ∈̇ s where x̄ are
the variables that on the left-hand side only occur in notin expressions. Finally,
if t in s occurs on the right-hand side but not on the left, then the transaction
must include insert(t, s). All other facts of AIF-ω are persistent (i.e., once true,
they remain true in all successor states), therefore we can model them as events
in transaction strands, using event(e) for the left-hand side facts and assert(e) for
right-hand side facts. Note that the order of all these actions in the transaction
matters: first we should have all receiving messages, checking for events and set
memberships, then modifying sets and sending the outgoing messages. Still one
may wonder what happens in the following AIF-ω rule: x in s.y in s⇒ x in s. If
x = y then this rule is contradictory, and the semantics of AIF-ω excludes such
substitutions. For that reason, we also have to include the inequality x 6= y to
the transaction to exactly follow the AIF-ω semantics. In all remaining cases the
inner order of the actions is actually irrelevant, but these subtle points were one
of the motivations to introduce transaction strands. Finally, note that the rules
from AIF-ω may have variables that represent any value from a countable set of
constants, as well as the creation of fresh values. Since transaction strands do
not have a mechanism for creating fresh values and free variables are not allowed,
one must instantiate these variables appropriately, producing a countable set of
transaction strands from finitely many rules.

With this translation from AIF-ω rules to transaction strands, we also directly
obtain a semantics using symbolic constraints and actually immediately transfer
the notion of type-flaw resistance from transaction strands with the obvious
adaptations. However, type-flaw resistance will not be directly satisfied for
typical AIF-ω specifications immediately, because they would contain rules for
the intruder that contain untyped variables. While for honest agents, it is not a
restriction to declare the intended type for each variable, the intruder deduction
rules should be applicable to messages of any type. Thus, we have to make
the reservation that the intruder deduction of an AIF-ω specification must be
within the bounds of the intruder model we have used here, namely composition
with public functions and decomposition according to an Ana theory. This is
indeed possible for all the standard operators like symmetric and asymmetric
encryption, signatures, hashes, and transparent functions like pair; operators
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that require algebraic equations like xor are however not supported. We come
back to this when discussing process calculi and reduction rules below.

Finally, note that other rewriting based formalisms like [CDL05, EMM07] (or
the closely related linear logic rules) are not based on sets, but usually multi-sets
of facts, and they are not persistent, i.e., facts can be removed by transitions,
which cannot directly be modeled by our notion of events in transaction strands.
There is however a way to encode this using sets: for each fact where we want
to encode non-persistent behavior, we introduce a corresponding event with one
more argument. For this argument we use a fresh constant whenever a fact is
introduced by a transition and the argument becomes member of a special set
active. Whenever the fact shall be removed, we simply remove the corresponding
constant from the set active. This allows for modeling both the multi-set aspect
as well as the non-persistent aspect.

4.6.2 Set-π and Process Calculi

Process calculi are a very popular way of specifying protocols. While they
can immediately describe stateful systems (due to Turing completeness), this is
usually not at a level that directly works well with existing verification methods.
Therefore several extensions have been proposed, namely Set-π for set operations
similar to AIF-ω, and SAPIC for adding a notion of maps. One gap to the
rewriting formalisms above is that process calculi do not have the notion of an
atomic transaction. Therefore both Set-π and SAPIC rely on the use of locks,
i.e., in order to read and write on a set or (an element of) a map, one has to
first lock it, and no other process can get a lock on the same item before it is
unlocked. It is possible to give a translation to transaction strands, modeling
explicitly the locks by an additional set that stores which of the other sets
are locked. However, it is a bit more convenient to directly give a semantics
as a symbolic transition system, i.e., producing symbolic constraints in each
execution.

However, before we can do that, there is another obstacle to overcome: it is
standard to model in process calculi decryption and checking of messages ex-
plicitly by a let construct and reduction rules. For instance if the public func-
tion crypt represents asymmetric encryption and inv the private function that
maps from public to private keys, for decryption one would introduce a new
operator dcrypt and have the reduction rule dcrypt(crypt(x, y), inv(x)) → y.
Then receiving and decrypting a message for instance would be in(u).let v =
dcrypt(u, inv(k)) in P else Q. Thus process P is executed if the received message
u is indeed encrypted with k (and binding v to the content of that message),
otherwise Q is executed. Note that the destructor dcrypt does not occur as part
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of “normal” messages.

Our typing result can only support such destructors if we can express such
decryption operations using an Ana theory. In the example we would have
Ana(crypt(x, y)) = ({inv(x)}, {y}) and we would translate the above example
process into in(u). if (crypt(k, ?v)

.
= u) then P else Q. Note that here we have

actually made an extension of Set-π, namely adding the concept of equalities
from transaction strands to the if construct, including that newly introduced
variables on the left-hand side are binding, here v, and we mark this by a
question mark as is standard. This is formally defined by the symbolic semantics
below.

Besides destructors, process calculi also commonly use reduction rules for checks
on messages, e.g., verify(sign(inv(x), y), x) → true that can be used to verify a
signature, for instance: in(u). let true = verify(u, k) in P else Q. For this, we
do not need to have a corresponding line in Ana, rather we can model this
directly by an equality: in(u). if sign(inv(k), ?z)

.
= u then P else Q. With this,

all the standard operators can be supported, except those that require algebraic
equations like xor.

If we now assume Set-π without let but instead with equations in if, we can
define its semantics as a symbolic transition system as in Figure 4.2 (using
notation and labels similar to the original ground semantics) where α(P ) is a
fresh renaming of all variables in P that are bound by an in statement, and the
translation ctr(b) of a condition b is defined as follows. Recall that we had used
the notion of binding occurrences also in equations (and logically this can also
be done in set membership checks) and marked the respective occurrence by a
question mark, like ?x = .... Let in the following x̄ be the set of variables of a
condition that are marked with the question mark:

ctr(s
.
= t) = s

.
= t ctr(s 6 .= t) = ∀x̄. s 6 .= t

ctr(t ∈̇ s) = t ∈̇ s ctr(t 6 ∈̇ s) = ∀x̄. t 6 ∈̇ s

Note that the locking is not checked upon set operations, as this is done statically
in Set-π. Since in general sets can have terms with variables, we have formulated
the check as inequalities in the LCK rule.

In order to check type-flaw resistance, one now needs to consider the translation
from let-statements into equations (which can be done transparent to the user)
and then the type-flaw resistance property is almost as before, only we need to
consider each condition positively as well as its negation (unless the else case is
empty).
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NIL : P ] {(0, ∅)},A → P,A
COM1 : P ] {(in(x).P1, L1)},A → P ] {(P1, L1)},A.send(x)
COM2 : P ] {(out(N).P2, L2)},A → P ] {(P2, L2)},A.receive(N)
PAR : P ] {(P1 |P2, ∅)},A → P ] {(P1, ∅), (P2, ∅)},A
REPL : P ] {(!P, ∅)},A → P ] {(α(P ) |!P, ∅)},A
NEW : P ] {(new x.P, L)},A → P ] {(P [x 7→ c], L)},A

for some fresh name c
IF1 : P ] {(if b thenP1 else P2, L)},A → P ] {(P1, L)},A.ctr(b)
IF2 : P ] {(if b thenP1 else P2, L)},A → P ] {(P2, L)},A.ctr(¬b)
SET+ : P ] {(insert(t, s).P, L)},A → P ] {(P,L)},A.insert(t, s)
SET− : P ] {(delete(t, s).P, L)},A → P ] {(P,L)},A.delete(t, s)
LCK : P ] {(lock(l).P, L)},A → P ] {(P, {l} ∪ L)},A.l 6 .= l1. · · · .l 6

.
= ln

where {l1, . . . , ln} = L ∪
⋃

(P ′,L′)∈P L
′

ULCK : P ] {(unlock(l).P, {l} ] L)},A → P ] {(P,L)},A

Figure 4.2: A symbolic transition system for Set-π.

4.6.3 SAPIC

Finally, let us consider the SAPIC tool that is also a process calculus, but instead
of sets has a global map, i.e., one can insert key-value pairs into the map (where
inserting multiple times with the same key is overwriting), delete pairs, and
query what value is associated to a key.

For a restricted setting, we can indeed express this map with sets, namely if we
can split the map into finitely many partitions where each key and value are
of some atomic type. For instance, in the PKCS examples, the value type are
actually tuples, but the second part ranges over finitely many values and thus
one could represent this maps as a finite collection of maps with atomic value
type.

The idea is of course to model map m = [k1 7→ v1, . . . , kn 7→ vn] by a family
of sets m(·) such that v1 ∈ m(k1), . . . , vn ∈ m(kn). Initially, all maps should
contain one distinguished symbol ⊥ to represent that for that key no value is
in the map. Then to insert the tuple (k, v) translates to the set operations
x ∈̇ m(k).delete(x,m(k)).insert(v,m(k)). To delete key k from the map is then
like inserting (k,⊥). Querying for key k is checking x ∈̇ m(k) and x 6 .= ⊥.
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4.7 Proofs

This section contains the pen-and-paper proofs of our technical results. Note
that many of the theorems and lemmas are more general versions of the ones
stated earlier in this chapter.

4.7.1 Constraint Semantics

Lemma 4.3. Given a ground set of terms M , a ground database mapping D, a
ground set E of asserted events, an interpretation I, and symbolic constraints
A and A′, the following holds:

JM,D;A.A′Ks I if and only if
JM,D;AKs I and JM ∪ ik(I(A)), db(insert(D).I(A));A′Ks I

Proof. Each direction of the biconditional follows easily by an induction on
the leftmost constraint A. �

Lemma 4.4 Given a ground state (P;M,D), a transaction strand S ∈ P (con-
dition C1), and a ground substitution σ with domain fv(S) (condition C2), then
the conditions C3 to C7 hold if and only if JM,D; dual(S)Ks σ.

Proof. Let S = receive(T ).S.send(T ′) where S does not contain send and
receive steps and observe that dual(S) = send(T ).dual(S).receive(T ′). Condition
C3 then corresponds to JM,D; send(T )Ks σ, condition C4 to C7 to JM,D; dual(S)Ks σ,
and the remaining part receive(T ′) is irrelevant as it is satisfied for any M , D,
E, and σ. Thus C3 to C7 hold if and only if JM,D; dual(S)Ks σ. �

4.7.2 Transition Systems

Lemma 4.8 (Well-formedness of reachable symbolic constraints). If
P0 is a well-formed protocol and (P0; 0)

w
=⇒•∗ (P;A) then A is a well-formed

symbolic constraint and P is a well-formed protocol.

Proof. By induction on reachability. The base case (i.e., the symmetric case)

is trivial. For the inductive case assume that (P0; 0)
w′

=⇒•∗ (P;A)
S

=⇒• (P \
{S};A.A′) where A and P are well-formed by the induction hypothesis. Let
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S = receive(T ).S.send(T ′), where S does not contain further receive and send
steps, then A′ = dual(S) = send(T ).S.receive(T ′) by definition. Since P \{S} ⊆
P and P is well-formed we have that P \ {S} must also be well-formed. Since
all strands in P0 are variable-disjoint we also have that fv(A) ∩ fv(A′) = ∅.
Hence A.A′ is well-formed if A is well-formed and A′ is well-formed. The prefix
A is well-formed by the induction hypothesis, and since S ∈ P we know that
dual(S) = A′ is well-formed as well. Thus we can conclude the case. �

Theorem 4.9 (Equivalence of transition systems). Let P0 be a protocol
and let {S1, . . . ,Sk} ⊆ P0. Then:

1. If (P0; ∅, ∅) w
=⇒∗ (P;M,D) where w = (σ1,S1), . . . , (σk,Sk) then

(a) (P0; 0)
w′

=⇒•∗ (P; dual(S1). · · · .dual(Sk)) where w′ = S1, . . . ,Sk,
(b) σ1 · . . . · σk |=s dual(S1). · · · .dual(Sk),
(c) M = ik((σ1 · . . . · σk)(dual(S1). · · · .dual(Sk))), and
(d) D = db((σ1 · . . . · σk)(dual(S1). · · · .dual(Sk))).

2. If (P0; 0)
w

=⇒•∗ (P;A) and I |=s A where w = S1, . . . ,Sk, dom(I) =
fv(A), and I is ground, then there exists substitutions σ1, . . . , σk such
that

(a) (P0; ∅, ∅) w′

=⇒∗ (P; ik(I(A)), db(I(A)))
where w′ = (σ1,S1), . . . , (σk,Sk),

(b) A = dual(S1). · · · .dual(Sk),
(c) dom(σi) = fv(Si) for all i ∈ {1, . . . , k}, and
(d) I = σ1 · . . . · σk

Proof.

1. We prove the first implication by an induction on reachability.
The base case (i.e., the symmetric case) follows easily from the assump-
tions.
So, in the inductive case, assume that

(P0; ∅, ∅) w
=⇒∗ (P;M,D)
wk+1
=⇒ (P \ {Sk+1};M ∪ σk+1(T ′), db(insert(D).σk+1(S))

where Sk+1 = receive(T ).S.send(T ′) ∈ P and w = (σ1,S1), . . . , (σk,Sk)
and wk+1 = (σk+1,Sk+1). We furthermore assume the induction hypoth-
esis:
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(H1) (P0; 0)
w′

=⇒•∗ (P; dual(S1). · · · .dual(Sk)) where w′ = S1, . . . ,Sk,
(H2) σ1 · . . . · σk |=s dual(S1). · · · .dual(Sk),
(H3) M = ik((σ1 · . . . · σk)(dual(S1). · · · .dual(Sk))), and
(H4) D = db((σ1 · . . . · σk)(dual(S1). · · · .dual(Sk))).

In the remaining proof for this case we will use the abbreviations I =
σ1 · . . . · σk+1 and A = dual(S1). · · · .dual(Sk+1). We will now prove each
of the five parts of the thesis for this case:

• From (H1) and Sk+1 ∈ P we can apply
Sk+1
=⇒• and immediately con-

clude part (a) of the thesis, namely:

(P0; 0)
w′,Sk+1

=⇒•∗ (P \ {Sk+1};A)

• From the assumption and Lemma 4.4 we know that

JM,D; dual(Sk+1)Ks σk+1

and since all strands of a protocol must be pairwise variable-disjoint
we furthermore know that (σ1 · . . . · σk)(dual(Sk+1)) = dual(Sk+1).
Hence JM,D; dual(Sk+1)Ks I because dom(σi) ∩ dom(σj) = ∅ for
all i, j ∈ {1, . . . , k + 1} where i 6= j since dom(σi) = fv(Si) for all
i ∈ {1, . . . , k+1}. Likewise, we get I |=s dual(S1). · · · .dual(Sk) from
(H2). All together we can then conclude part (b), namely I |=s A.

• Note that dual(receive(T ).S.send(T ′)) = send(T ).dual(S).receive(T ′)
and so ik(dual(Sk+1)) = T ′. Together with the variable disjointness
of the strands and (H3) we have:

M ∪ σk+1(T ′)
= ik((σ1 · . . . · σk)(dual(S1). · · · .dual(Sk))) ∪ σk+1(T ′)
= ik(I(dual(S1). · · · .dual(Sk))) ∪ I(T ′)
= ik(I(dual(S1). · · · .dual(Sk))) ∪ ik(I(dual(Sk+1)))
= ik(I(dual(S1). · · · .dual(Sk).dual(Sk+1)))

which proves the third part of the case.
• Note that dual(S) = S, since S does not contain message trans-

mission steps, and therefore db(σk+1(S)) = db(σk+1(dual(Sk+1))).
Together with the variable disjointness and (H4) we then have:

db(insert(D).σk+1(S))
= db(insert(D).I(dual(Sk+1)))
= db(insert(db(I(dual(S1). · · · .dual(Sk)))).I(dual(Sk+1)))
= db(I(dual(S1). · · · .dual(Sk).dual(Sk+1)))

which proves the fourth part of the case.
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Thus we have proven all parts of the thesis for the inductive case.

2. We also prove the second implication by an induction on reachability.
Again, the base case is trivial.

For the inductive case we assume that

(P0; 0)
w

=⇒•∗ (P;A)
Sk+1
=⇒• (P \ {Sk+1};A.dual(Sk+1))

and I |=s A.dual(Sk+1) where w = S1, . . . ,Sk, dom(I) = fv(A.dual(Sk+1)),
and I is ground. Now obtain the unique σk+1 and I ′ such that dom(σk+1) =
fv(dual(Sk+1)), dom(I ′) = fv(A), and I = I ′ · σk+1. This is always pos-
sible since the domain of I is exactly the free variables of A.dual(Sk+1)
and I is ground and since all strands of P0 are pairwise-variable disjoint.
Hence we have that

I ′ |=s A and Jik(I ′(A)), db(I ′(A)); dual(Sk+1)Ks σk+1,

the former of which is the premise to the induction hypotheses for this
case, and we can therefore apply the induction hypotheses to get

(H1) (P0; ∅, ∅) w′

=⇒∗ (P; ik(I ′(A)), db(I ′(A)))
where w′ = (σ1,S1), . . . , (σk,Sk),

(H2) A = dual(S1). · · · .dual(Sk),

(H3) dom(σi) = fv(Si) for all i ∈ {1, . . . , k}, and
(H4) I ′ = σ1 · . . . · σk

This basically lets us immediately prove the second, third, and fourth part
of the thesis for this case, namely

• A.dual(Sk+1) = dual(S1). · · · .dual(Sk).dual(Sk+1),

• dom(σi) = fv(Si) for all i ∈ {1, . . . , k + 1}, and
• I = σ1 · . . . · σk · σk+1

All that remains to be proven is

(P0; ∅, ∅) w′′

=⇒∗ (P \ {Sk+1}; ik(I(A.dual(Sk+1))), db(I(A.dual(Sk+1)))

where w′′ = w′, (σk+1,Sk+1).

From the first induction hypothesis (H1), Lemma 4.4, and

Jik(I ′(A)), db(I ′(A)); dual(Sk+1)Ks σk+1
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we can apply
(σk+1,Sk+1)

=⇒ to get

(P0; ∅, ∅) w′′

=⇒∗ (P \ {Sk+1}; ik(I ′(A)) ∪ σk+1(T ′),
db(insert(db(I ′(A))).σk+1(S)))

where Sk+1 = receive(T ).S.send(T ′). Hence we only need to prove that

• ik(I ′(A)) ∪ σk+1(T ′) = ik(I(A.dual(Sk+1))) and

• db(insert(db(I ′(A))).σk+1(S)) = db(I(A.dual(Sk+1)))

and this is proven similarly to how we proved the third and fourth parts
of the previous case. Thus we have proven all four conjuncts—(a), (b),
(c), and (d)—of the conclusion for this inductive case.

�

4.7.3 Constraint Reduction

We prove Theorem 4.11 in two steps. First we prove that the translation pre-
serves well-formedness. Secondly we prove the semantic equivalence.

Theorem 4.11(2) (Well-formedness of translation). Let X be a set of
variables and D be a database mapping such that fv(D) ⊆ X. If A is well-
formed w.r.t. the variables X and A′ ∈ trD(A) then A′ is well-formed w.r.t.
X.

Proof. We prove the statement by an induction on trD(A):

• Case trD(0): Trivially true by definition of well-formedness.

• Cases trD(send(t).A), trD(receive(t).A), trD(t
.
= t′.A), and

trD((∀x̄. t 6 .= t′).A): Follows easily from the induction hypotheses.

• Case trD(insert(t, s).A): From the premises we have that fv(t)∪ fv(s) ⊆ X
because insert(t, s).A is well-formed w.r.t. X. Hence A is well-formed
w.r.t. X and fv(D ∪ {(t, s)}) = fv(D) ⊆ X as well. Thus we can apply
the induction hypothesis to A′ ∈ trD∪{(t,s)}(A) and conclude the case.

• Case trD(delete(t, s).A): Note that fv(D \ {d1, . . . , di})) ⊆ fv(D) ⊆ X.
Hence equalities of the form (t, s)

.
= d for d ∈ D are always well-formed
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w.r.t. X. Note also that trD translates delete(t, s) into equalities and in-
equalities of the form (t, s)

.
= d and (t, s) 6 .= d for d ∈ D. Since inequalities

do not have any well-formedness requirements we can now conclude the
case using the induction hypothesis.

• Case trD(t ∈̇ s.A): By the premises we have that A is well-formed w.r.t.
X ∪ fv(t) ∪ fv(s). From the induction hypothesis we then have that A′ ∈
trD(A) is also well-formed w.r.t. X ∪ fv(t) ∪ fv(s). Thus (t, s)

.
= d.A′ is

well-formed w.r.t. X.

• Case trD((∀ȳ. t 6 ∈̇ s).A): The constraints ∀ȳ. t 6 ∈̇ s and (∀ȳ. (t, s) 6 .=
d1). · · · .(∀ȳ. (t, s) 6 .= dn) have the same well-formedness requirement. Thus
the case follows straightforwardly from the induction hypothesis.

�

Theorem 4.11(1) (Semantic equivalence of constraints and their trans-
lation). Assume fv(D) to be disjoint from the bound variables of A. Then:

JM, I(D);AKs I iff there exists A′ ∈ trD(A) such that JM ;A′K I.

Proof. Consider the following two statements which together are equivalent
to the original biconditional:

1. If JM, I(D);AKs I then ∃A′ ∈ trD(A). JM ;A′K I.

2. If A′ ∈ trD(A) and JM ;A′K I then JM, I(D);AKs I.

We prove the first of these implications by an induction on A:

• Case 0: Trivially true.

• Cases send(t).A, receive(t).A, t .
= t′.A, and (∀x̄. t 6 .= t′).A: Follows

straightforwardly from the induction hypotheses.

• Case insert(t, s).A: So JM, I(D)∪{I((t, s))};AKs I. Since I(D)∪{I((t, s))} =
I(D ∪ {(t, s)}) we can apply the induction hypothesis to obtain A′ where
A′ ∈ trD∪{(t,s)}(A) and JM ;A′K I. Thus we can conclude that A′ ∈
trD(insert(t, s).A) and JM ;A′K I.
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• Case delete(t, s).A: Hence JM, I(D) \ {I((t, s))};AKs I. Now partition D
into the sets {d1, . . . , di} and {di+1, . . . , dn} for some 0 ≤ i ≤ n such that
I({(t, s)}) = I({d1, . . . , di}) and I((t, s)) /∈ I({di+1, . . . , dn}). Then

I(D) \ I({(t, s)})
= I(D) \ I({d1, . . . , di})
= I({di+1, . . . , dn})
= I(D \ {d1, . . . , di})

We can then apply the induction hypothesis to obtain an ordinary con-
straint A′ ∈ trD\{d1,...,di}(A) such that JM ;A′K I. Now let B = (t, s)

.
=

d1. · · · .(t, s)
.
= di.(t, s) 6

.
= di+1. · · · .(t, s) 6

.
= dn. Then we have that B.A′ ∈

trD(A) and JM ;B.A′K I which concludes the case.

• Case t ∈̇ s.A: Hence, by the premises of this case, JM, I(D);AKs I where
I((t, s)) ∈ I(D). So by the induction hypothesis we can obtain A′ such
that A′ ∈ trD(A) and JM ;A′K I. Because I((t, s)) ∈ I(D) it must be
the case that there exists some d ∈ D such that I((t, s)) = I(d). Thus
we can conclude (t, s)

.
= d.A′ ∈ trD(t ∈̇ s.A) for such a d ∈ D and

JM ; (t, s)
.
= d.A′K I.

• Case (∀x̄. t 6 ∈̇ s).A: Hence I(δ((t, s))) /∈ I(D) for all ground substitutions
δ with domain x̄. Hence I(δ((t, s))) 6= I(d) for all d ∈ D and all δ
with domain x̄. Since x̄ ∩ fv(D) = ∅ we have that δ(D) = D. Hence
I(δ((t, s))) 6= I(δ(d)) for all d ∈ D and all δ with domain x̄. Therefore
JM ; (∀x̄. (t, s) 6 .= d1). · · · .(∀x̄. (t, s) 6 .= dn)K I, where D = {d1, . . . , dn},
by definition of the constraint semantics. Thus the case follows by the
induction hypothesis.

• The cases assert(t).A, event(t).A, and (∀x̄. ¬event(t)).A are proven simi-
larly to the cases insert(t, s).A, t ∈̇ s.A, and (∀x̄. t 6 ∈̇ s).A respectively.

The other implication is also proven by an induction on A:

• Case 0: Trivially true.

• Cases send(t).A, receive(t).A, t .
= t′.A, and (∀x̄. t 6 .= t′).A: Follows

straightforwardly from the induction hypotheses.

• Case insert(t, s).A: Hence A′ ∈ trD∪{(t,s)}(A). Since we already have
that JM, ∅;A′Ks I from the premises we can now apply the induction
hypothesis to get that JM, I(D ∪ {(t, s)});AKs I. Since we also have that
I(D ∪ {(t, s)}) = I(D) ∪ {I((t, s))} we can conclude the following:

JM, I(D); insert(t, s).AKs I
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• Case delete(t, s).A: Hence A′ = B.A′′ for some d1, . . . , dn, i, n, B, and A′′
where

– 0 ≤ i ≤ n,
– D = {d1, . . . , di . . . , dn},
– B = (t, s)

.
= d1. · · · .(t, s)

.
= di.(t, s) 6

.
= di+1. · · · .(t, s) 6

.
= dn, and

– A′′ ∈ trD\{d1,...,di}(A).

We also have that JM ;A′′K I and JM ;BK I because JM ;A′K I. Note that
I(D\{d1, . . . , di}) = I(D)\{I((t, s))} because I((s, t)) /∈ I({di+1, . . . , dn})
and {I((t, s))} = I({d1, . . . , di}). Thus, we can apply the induction hy-
pothesis and conclude the following:

JM, I(D); delete(t, s).AKs I

• Case t ∈̇ s.A: Hence A′ = (t, s)
.
= d.A′′ for some d ∈ D and A′′ ∈ trD(A),

and together with the premises we then have that I((t, s)) = I(d) and
JM, I(D);A′′Ks I. We can now apply the induction hypothesis to get
JM, I(D);AKs I. Since d ∈ D and I((t, s)) = I(d) we also have that
I((t, s)) is in I(D). Thus we can conclude the following

JM, I(D); t ∈̇ s.AKs I

• Case (∀x̄. t 6 ∈̇ s).A: Hence A′ = (∀x̄. (t, s) 6 .= d1). · · · .(∀x̄. (t, s) 6 .= dn).A′′
for some A′′ ∈ trD(A) and D = {d1, . . . , dn}. Hence, using the premises,
we know that I(δ((t, s))) 6= I(δ(di)) for all i ∈ {1, . . . , n} and all ground
δ with domain x̄. Hence I(δ((t, s))) /∈ I(D) for all ground δ with domain
x̄ because x̄ and the free variables of D are disjoint. Since we also have
JM ;A′′K I from the premises we can apply the induction hypothesis to
get JM, I(D);AKs I, and thus we can conclude the following:

JM, I(D); (∀x̄. t 6 ∈̇ s).AKs I

�

4.7.4 The Typing Result

The remaining section contains the proof of our typing results and related lem-
mas.

Lemma 4.13 (Type-flaw resistance preservation).
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1. If A is type-flaw resistant, well-formed, and A′ ∈ tr(A), then A′ is type-
flaw resistant.

2. If P0 is a type-flaw resistant protocol and (P0; 0)
w

=⇒•∗ (P;A) then both
P and A are type-flaw resistant.

Proof.

1. We first prove that trms(A′) ∪ setops(A′) is type-flaw resistant. Note
that trms(A′) \ trms(A) ⊆ setops(A), and that setops(A′) = ∅. Hence
trms(A′)∪ setops(A′) ⊆ trms(A)∪ setops(A). Since trms(A)∪ setops(A)
is by assumption type-flaw resistant it follows that any subset is also type-
flaw resistant. Thus trms(A′) ∪ setops(A′) is type-flaw resistant.

The reduced constraint A′ does not contain set operations, and the re-
maining constraint steps of A′ either originate from A or are constructed
during the translation tr(A). Thus it is sufficient in the remaining proof to
only consider those steps which are created during the translation tr(A),
and we do so by a case analysis:

• During translation of a set operation of the form t ∈̇ s the translation
adds one step of the form (t, s)

.
= (t′, s′) where insert(t′, s′) occurred

somewhere in A. Since both (t, s) and (t′, s′) occur in setops(A),
which is a subset of SMP(A) \ V, they must have the same type if
they are unifiable. Thus type-flaw resistance is satisfied in this case.

• During translation of a set operation of the form delete(t, s) or ∀x̄. t 6 ∈̇
s the translation adds new steps of the form (t, s)

.
= (t′, s′) and

∀x̄. (t, s) 6 .= (t′, s′) where insert(t′, s′) occurred somewhere in A. As
we argued earlier, if (t, s) and (t′, s′) are unifiable then they have the
same type. Hence all the new equality steps (t, s)

.
= (t′, s′) are type-

flaw resistant. Also, from type-flaw resistance and well-formedness
of A we have that
(a) the variables of (t′, s′) are disjoint from the bound variables x̄

(because of well-formedness), and
(b) there is no composed term of the form f(x1, . . . , xn), where n > 0

and x1, . . . , xn ∈ x̄, occurring in (t, s).
Hence the resulting inequality steps ∀x̄. (t, s) 6 .= (t′, s′) are type-flaw
resistant.

Thus A′ is type-flaw resistant.

2. This follows from the fact thatA = dual(S1). · · · .dual(Sk) for some S1, . . . ,
Sk ∈ P0, and since each Si are type-flaw resistant (so each dual(Si) is type-
flaw resistant), trms(P0)∪setops(P0) is type-flaw resistant and trms(A)∪
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setops(A) ⊆ trms(P0) ∪ setops(P0) (so trms(A) ∪ setops(A) is type-flaw
resistant), we can conclude that A is type-flaw resistant. �

Theorem 4.14 (Typing result on symbolic constraints). If A is well-
formed, I |=s A, and A is type-flaw resistant, then there exists a well-typed
interpretation Iτ such that Iτ |=s A.

Proof. From Theorem 4.11, Lemma 4.13(1), and the assumptions we can
obtain a type-flaw resistant ordinary constraint A′ such that A′ ∈ tr(A) and
I |= A′. Hence, we can obtain a well-typed interpretation Iτ such that Iτ |= A′
by Corollary 3.28, and by then applying Theorem 4.11 again we can conclude
the proof. �

Theorem 4.15 (Typing result for stateful protocols). If P0 is a type-flaw
resistant protocol, and

(P0; ∅, ∅) w
=⇒∗ (P;M,D) where w = (σ1,S1), . . . , (σk,Sk)

then there exists a state (P;M ′, D′) such that

(P0; ∅, ∅) w′

=⇒∗ (P;M ′, D′) where w′ = (σ′1,S1), . . . , (σ′k,Sk)

for some well-typed ground substitutions σ′1, . . . , σ′k.

Proof. By first applying Theorem 4.9(1) and Lemma 4.13(2), then Theo-
rem 4.14, and finally Theorem 4.9(2) we obtain the desired result. (Note that
we in this proof need to use the general version of Theorem 4.9 given on page 96.)
�

4.8 Isabelle/HOL Formalization

We give in this section an overview of the Isabelle-formalized stateful typing
result and point out where it differs from the theory presented in this chapter.
The formalization closely follows the pen-and-paper proofs, and so we will not
go into detail with the actual Isabelle-formalized proofs but rather focus on how
the main definitions and theorems are modeled in Isabelle.
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4.8.1 Locale Assumptions

As in Chapter 3 the typed model is parameterized over a typing function Γ that
must satisfy certain requirements. In Isabelle we again model this with a locale.
For the stateful typing result we need a distinguished binary symbol pair that
is used in the constraint translation, and so we extend the typed model locale
of Chapter 3 accordingly:

locale stateful-typed-model = typed-model arity public Ana Γ
for arity :: Σ⇒ nat
and public :: Σ⇒ bool
and Ana :: (Σ,V) term⇒ ((Σ,V) term set× (Σ,V) term set)

and Γ :: (Σ,V) term set⇒ (Σ,Ta) term-type
+

fixes pair :: Σ
assumes arity pair = 2
and

∧
f T δ K M. Ana (Fun f T ) = (K,M) =⇒

Ana (δ(Fun f T )) = (δ(K), δ(M))

The second assumption here formalizes the rule Ana′4 which was explained in
Section 4.1.

4.8.2 Strand Definitions

Stateful strands and constraints are defined as lists of steps similarly to the
“stateless” strands of Chapter 3 but here with new constructors for set updates
(Insert and Delete) and membership checks (InSet and NotInSet):

datatype (Σ,V) stateful-strand-step =
Send ((Σ,V) term)

| Receive ((Σ,V) term)
| Equality ((Σ,V) term) ((Σ,V) term)
| Inequality (V list) ((Σ,V) term) ((Σ,V) term)
| Insert ((Σ,V) term) ((Σ,V) term)
| Delete ((Σ,V) term) ((Σ,V) term)
| InSet ((Σ,V) term) ((Σ,V) term)
| NotInSet (V list) ((Σ,V) term) ((Σ,V) term)

type-synonym (Σ,V) stateful-strand = (Σ,V) stateful-strand-step list

For convenience we just use the notation defined in Section 4.3 for strands of type
stateful-strand. Note that this will introduce some ambiguity in the following
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fun J_;_;_Ks where
JM ;D; []Ks = λI. True

| JM ;D; send(t).AKs = λI. M ` I(t) ∧ JM ;D;AKs I
| JM ;D; receive(t).AKs = λI. Jinsert I(t) M ;D;AKs I
| JM ;D; t

.
= t′.AKs = λI. I(t) = I(t′) ∧ JM ;D;AKs I

| JM ;D; (∀X. t 6 .= t′).AKs = λI.
(∀δ. subst-domain δ = set X ∧ ground (subst-range δ)

−→ I(δ(t)) 6= I(δ(t′)))
∧ JM ;D;AKs I

| JM ;D; insert(t, s).AKs = λI. JM ; insert I((t, s)) D;AKs I
| JM ;D; delete(t, s).AKs = λI. JM ;D \ {I((t, s))};AKs I
| JM ;D; t ∈̇ s.AKs = λI. I((t, s)) ∈ D ∧ JM ;D;AKs I
| JM ;D; (∀X. t 6 ∈̇ s).AKs = λI.

(∀δ. subst-domain δ = set X ∧ ground (subst-range δ)
−→ I(δ((t, s))) /∈ D)

∧ JM ;D;AKs I

abbreviation I |=s A ≡ J∅; ∅;AKs I

Figure 4.3: The constraint semantics formalized in Isabelle/HOL.

definitions, because the constructors of the stateless and the stateful strand
datatypes overlap, but it should be obvious from the context which datatype is
meant. This is of course only an ambiguity in this presentation, not the actual
Isabelle-formalization.

Constraint well-formedness and semantics are defined similarly to Definition 4.6
respectively Definition 4.2, but we use a slightly different notation in the Isabelle-
formalization. For well-formedness of constraints A we split the definition into
two (see Figure 4.4): The function wf ′sst V A corresponds to wf V (A), and
wf sst A that corresponds to the full well-formedness criteria, i.e., that wf ∅(A)
and that the free variables fv(A) and bound variables bvars(A) are disjoint.
The Isabelle-formalized constraint semantics is listed in Figure 4.3 and closely
follows Definition 4.2.

4.8.3 Constraint Reduction

The translation trD(A) is defined as a function tr A D in Isabelle where A
is a constraint and D is a database mapping. The definition can be found in
Figure 4.5.
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fun wf ′sst where
wf ′sst V [] = True

| wf ′sst V (receive(t).A) = (fv(t) ⊆ V ∧ wf ′sst V A)
| wf ′sst V (send(t).A) = wf ′sst (V ∪ fv(t)) A
| wf ′sst V (t

.
= t′.A) = (fv(t′) ⊆ V ∧ wf ′sst (V ∪ fv(t)) A)

| wf ′sst V ((∀X. t 6 .= t′).A) = wf ′sst V A
| wf ′sst V (insert(t, s).A) = (fv(t) ⊆ V ∧ fv(s) ⊆ V ∧ wf ′sst V A)
| wf ′sst V (delete(t, s).A) = wf ′sst V A
| wf ′sst V (t ∈̇ s.A) = wf ′sst (V ∪ fv(t) ∪ fv(s)) A
| wf ′sst V ((∀X. t 6 ∈̇ s).A) = wf ′sst V A

abbreviation wf sst A ≡ wf ′sst ∅ A ∧ fv(A) ∩ bvars(A) = ∅

Figure 4.4: The constraint well-formedness requirements formalized in Is-
abelle/HOL.

fun tr where
tr [] D = [[]]
| tr (send(t).A) D = map (λB. send(t).B) (tr A D)
| tr (receive(t).A) D = map (λB. receive(t).B) (tr A D)
| tr (t

.
= t′.A) D = map (λB. t

.
= t′.B) (tr A D)

| tr ((∀X. t 6 .= t′).A) D = map (λB. (∀X. t 6 .= t′).B) (tr A D)
| tr (insert(t, s).A) D = tr A (List .insert (t, s) D)
| tr (delete(t, s).A) D = (

concat (map (λDi. map (λB. (map (λd. to-pair (t, s)
.
= to-pair d) Di).

(map (λd. to-pair (t, s) 6 .= to-pair d)
(filter (λd. d /∈ set Di) D)).B)

(tr A (filter (λd. d /∈ set Di) D)))
(subseqs D)))

| tr (t ∈̇ s.A) D =
concat (map (λB. map (λd. to-pair (t, s)

.
= to-pair d.B) D) (tr A D))

| tr ((∀X. t 6 ∈̇ s).A) D =
map (λB. (map (λd. (∀X. to-pair (t, s) 6 .= to-pair d)) D).B) (tr A D)

Figure 4.5: The constraint translation formalized in Isabelle/HOL.
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There are some differences between the pen-and-paper version tr and the Isabelle
version tr : We model the database mapping D and the result of the translation
as lists instead of sets. This is for technical reasons more convenient: The
list datatype in Isabelle/HOL is inductively defined and so all lists are finite.
This ensures that D is always finite (tr is not defined for infinite D). The
list representation moreover provides an ordering of the elements (namely their
positions in D) and so we can easily iterate over the elements using the usual
map and filter functions. For instance, in the translation of ∀x̄. t 6 ∈̇ s we need
to construct a finite list of inequalities containing one inequality constraint for
each element of D during translation, and we can do so with map.

As another consequence of the list representation we use subsequences instead
of subsets. These subsequences are constructed using a function subseqs. We
also use a function List .insert to insert new elements into lists. More precisely,
List .insert d D appends d to the list D if d does not occur in D and subseqs D
constructs all subsequences of D. We also use the abbreviation to-pair (t, t′)
to denote the term Fun pair [t, t′]. The remaining functions filter , map, and
concat are defined as usual.

The first equation of tr as defined in Figure 4.5 simply constructs the singleton
list containing the empty constraint []: [[]]. This corresponds to the first equation
of Definition 4.10 that returns a singleton set containing the empty constraint,
i.e., {0} in the pen-and-paper notation.

4.8.4 Type-Flaw Resistance

The Isabelle function setopssst corresponds to setops(·) while trmssst corre-
sponds to trms(·). Substitution well-typedness is denoted by wtsubst in Isabelle.
We define type-flaw resistance of stateful constraints in three steps. First, we
formalize in Isabelle Definition 4.12(1) as follows:

definition tfrset M ≡
(∀s ∈ (SMP M) \ V. ∀t ∈ (SMP M) \ V. (∃δ. δ(s) = δ(t)) −→ Γ(s) = Γ(t))

where SMP M denotes the sub-message patterns of the set of terms M .

Secondly, to formalize Definition 4.12(2) we first define a predicate on the
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datatype stateful-strand-step:

fun tfrsstp where
tfrsstp (t

.
= t′) = ((∃δ. δ(t) = δ(t′)) −→ Γ(t) = Γ(t′))

| tfrsstp (∀X. t 6 .= t′) = (
(∀x ∈ (fv(t) ∪ fv(t′)) \X. ∃a. Γ(Var x) = TAtom a) ∨
(∀f T. Fun f T ∈ subterms t ∪ subterms t′

−→ T = [] ∨ (∃s ∈ T. s /∈ Var 8 X)
)

| tfrsstp (∀X. t 6 ∈̇ t′) = (
(∀f T. Fun f T ∈ subterms (to-pair (t, t′))

−→ T = [] ∨ (∃s ∈ T. s /∈ Var 8 X)
)

| tfrsstp _ = True

Finally, we say that a stateful constraint A is type-flaw resistant if the set of
terms trmssst A ∪ setopssst A satisfy tfrset and if all steps of A satisfy tfrsstp :

definition tfrsst A ≡ tfrset (trmssst A ∪ setopssst A) ∧ list-all tfrsstp A

where here list-all P L is true if and only if all elements of the list L satisfy the
predicate P .

4.8.5 Lemmas and Theorems

The Isabelle-formalized proofs closely follows the pen-and-paper proofs and so
we will not explain the proofs in this subsection.

Lemma 4.3 is formalized in Isabelle as follows. Here ik sst A denotes the intruder
knowledge of A while dbupd sst A I D corresponds to db(insert(D).I(A)):

lemma strand-sem-append-stateful :
JM ;D;A.BKs I ←→ JM ;D;AKs I ∧ JM ∪ I(ik sst A); dbupd sst A I D;BKs I

The semantic equivalence theorem—Theorem 4.11—is as follows. The semantics
for the ordinary constraints is here denoted by |= while the semantics for the
stateful constraints is denoted by |=s:

lemma tr-wf :
assumes A′ ∈ tr A [] and wf sst A and wf trms (trmssst A)
shows wf st ∅ A′ and wf trms (trmsst A

′) and fv(A′) ∩ bvars(A′) = ∅

lemma tr-sem-equiv :
assumes fv(A) ∩ bvars(A) = ∅ and interpretationsubst I
shows I |=s A←→ (∃A′ ∈ tr A []. I |= A′)
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Lemma 4.13 concerns type-flaw resistance. On the constraint-level the statement
in Isabelle/HOL is as follows:

lemma tr-tfr :
assumes A′ ∈ tr A [] and tfrsst A and fv(A) ∩ bvars(A) = ∅
shows tfrst A

′

Finally we have the typing result on the constraint level, namely Theorem 4.14:

theorem stateful-typing-result :
assumes wf sst A and tfrsst A and wf trms (trmssst A)
and interpretationsubst I and I |=s A

obtains Iτ where interpretationsubst Iτ
and Iτ |=s A and wtsubst Iτ and wf trms (subst-range Iτ )

4.9 Summary and Related Work

A relevant trend in protocol security is the support for stateful protocols, i.e.,
protocols in which participants can manipulate a global state that is shared
among an unbounded number of sessions. This is for instance relevant to model
security devices like key tokens or servers that maintain a database. There is
only one typing result so far that supports stateful protocols, namely [Möd12].
We point out several mistakes of this paper in Section 4.4.3, showing that their
results do not hold in this generality. A particular problem are variables of
composed types in negative conditions, which illustrates that typing results for
stateful systems are far more subtle than intuition suggests and rigorous proofs
are necessary. Our main contribution of this chapter is to establish the first pre-
cise typing result for a class of stateful protocols—fixing also [Möd12]. Despite
a meticulous formalization it is conceptually still quite simple, as it is based
on a reduction to the existing typing results, in particular the formalization of
Chapter 3.

Our typing result for stateful protocols conservatively extends existing ones, i.e.,
for stateless protocols we do not require any further restrictions. The restrictions
on set operations are similar to those on messages and message checks. In fact,
the condition of our typing result is satisfied by most examples distributed with
the AIF-ω tool [MB16], and in the remaining cases a simple disambiguation of
messages is sufficient.

Another closely related area are compositionality results that can often benefit
from typing results. For instance, typing results can be used as a stepping stone
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for compositional reasoning, e.g., [AMMV15] prove that two protocols that are
secure in isolation can also run securely on the same communication medium in
parallel, if their messages do not interfere with each other, a requirement closely
related to the typing result. Establishing compositionality for stateful protocols
is the main objective of the next chapter.

Besides the trend towards the verification of more complex stateful protocols
that this typing result focuses on, there are other crucial trends like the verifi-
cation of privacy-type goals using equivalence properties, and typing results in
this direction have been established [CCD14]. A question for future research is
thus whether a typing result can be established for equivalence properties also
in the presence of stateful protocols.
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Chapter 5

Stateful Protocol
Composition

In this chapter we prove a parallel compositionality result for stateful protocols,
extending the Isabelle-formalization of the previous chapters. For protocols sat-
isfying certain compositionality conditions our result shows that verifying the
component protocols in isolation is sufficient to prove security of their compo-
sition. Our main contribution is an extension of the compositionality paradigm
to stateful protocols where participants maintain shared databases. Because of
the generality of our result we also cover many forms of sequential composition
as a special case of stateful parallel composition. Moreover, we support declas-
sification of shared secrets. Finally, we prove our result on the constraint-level
in Isabelle/HOL providing a strong correctness guarantee of our proofs.

The proof of the main result is by a reduction to a problem of finding solutions
for intruder constraints: given a satisfiable constraint representing an attack
on the composition, we show that the projections of the constraints to the
individual protocols are satisfiable. This particular tricky part of the proof has
been formalized in the interactive theorem prover Isabelle/HOL. Last but not
least, the formulation of the problem over intruder constraints allows us to apply
our result with a variety of protocol formalisms such as applied-π calculus and
multi-set rewriting.
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The chapter is organized as follows:

• In Section 5.1 we define the stateful protocols we consider in this chapter.

• Afterwards we define protocol composition and introduce a keyserver pro-
tocol example in Section 5.2.

• We define our compositionality conditions and prove our main result in
Section 5.3. In Subsection 5.3.6 we explain how sequential composition is
a special case of stateful parallel composition.

• Finally, we give the proofs of our results in Section 5.4.

5.1 Stateful Protocols

We now introduce another strand-based protocol formalism for stateful protocols
adapted from Chapter 4. This formalism is compact and reduced to the key
concepts needed here, while more complex formalisms like process calculi can
easily be fitted similarly. The semantics is defined by a symbolic transition
system where constraints are built up during transitions. The models of the
constraints then constitute the concrete protocol runs. We later use the typing
result proven in Chapter 4 that shows that for a large class of protocols, it is
without loss of attacks to restrict the constraints to well-typed models.

Example 5.1 In the present chapter we use the following Ana theory to model
asymmetric encryption and signatures:

Ana(crypt(k,m)) = ({inv(k)}, {m})
Ana(sign(k,m)) = (∅, {m})

We will also later use some transparent functions:

Ana(pair(t, t′)) = (∅, {t, t′})
Ana(update(s, t, u, v)) = (∅, {s, t, u, v})

For all other terms t: Ana(t) = (∅, ∅).

The constraints of this chapter are in fact identical to the constraints of Chap-
ter 4. Hence all notions defined for constraints in Chapter 4 carry over to the
present chapter. Also, since constraint well-formedness is such a crucial require-
ment we will only work with well-formed constraints throughout the chapter.
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5.1.1 Protocol Syntax and Semantics

Let us now take the chance to define a slightly more detailed protocol model,
based on the protocol model of Chapter 4. Protocols are defined as sets P =
{R1, . . .} of transaction rules of the form:

Ri = ∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S

where S is a transaction strand, i.e., of the form

receive(t1). · · · .receive(tk).φ1 · · · .φk′ .send(t′1). · · · .send(t′k′′)

where

φ : := t
.
= t′ | ∀x̄. t 6 .= t′ | t ∈̇ t′ | ∀x̄. t 6 ∈̇ t′ | insert(t, t′) | delete(t, t′)

The prefix ∀x1 ∈ T1, . . . , xn ∈ Tn denotes that the transaction strand S is ap-
plicable for instantiations σ of the xi variables where σ(xi) ∈ Ti. The construct
new y, . . . , ym represents that the occurrences of the variables yi in the trans-
action strand S will be instantiated with fresh terms. We extend trms(·) and
setops(·) to transactions strands, rules, and protocols as expected.

We define a transition relation ⇒•P for protocol P where states are constraints
and the initial state is the empty constraint 0. First we define the dual of a trans-
action strand S, written dual(S), as “swapping” the direction of the sent and re-
ceived messages of S: dual(send(t).S) = receive(t).dual(S), dual(receive(t).S) =
send(t).dual(S), and otherwise dual(s.S) = s.dual(S). The transition A ⇒•P
A.dual(α(σ(S))) is then applicable if the following conditions are met:

1. (∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S) ∈ P,

2. dom(σ) = {x1, . . . , xn, y1, . . . , ym},

3. σ(xi) ∈ Ti for all i ∈ {1, . . . , n},

4. σ(yi) is a fresh ground term of type Γ(yi) for all i ∈ {1, . . . ,m}, and

5. α is a variable-renaming of the variables of σ(S) where α is well-typed and
the variables in ran(α) do not occur in σ(S).

Hence transaction rules are processed atomically, and converted into constraints,
during transitions. Note that each transaction rule can be executed arbitrarily
often and so we support an unbounded number of “sessions”. For instance,
the transaction rule ∀A ∈ Hon. new PK . insert(PK , ring(A)) models that each
honest agent a ∈ Hon can insert one fresh key into its keyring ring(a) during



116 Stateful Protocol Composition

each application of the transaction rule. This rule can be executed any number
of times with any agent a ∈ Hon and a fresh value for PK each time.

We say that a constraint A is reachable in protocol P if 0 ⇒•?P A where ⇒•?P
denotes the transitive reflexive closure of ⇒•P . We need to ensure that these
constraints are well-formed and we will therefore always assume the following
sufficient requirement on the protocols P that we work with: for any transaction
strand S occurring in any rule ∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S of P the
constraint dual(S) is well-formed w.r.t. the variables {x1, . . . , xn, y1, . . . , ym}.
In other words, the variables of S must first occur in either a receive step, a
positive check ( .=, ∈̇), or be part of {x1, . . . , xn, y1, . . . , ym}.

To model goal violations of a protocol P we first fix a special constant unique to
P, e.g., attackP . Secondly, we add the rule receive(attackP) to P that we use as
a signal for when an attack has occurred. The protocol then has a (well-typed)
attack if there exists a (well-typed) satisfiable reachable constraint of the form
A.send(attackP). A protocol with no attacks is secure.

5.1.2 Protocol Goals in the Geometric Fragment

Recall that we can model events with sets, e.g., emitting an event e amounts
to inserting e into a distinguished set of events while checking whether e has
previously occurred (or not) corresponds to a positive (respectively negative)
set-membership check. We therefore support essentially all security properties
expressible in the geometric fragment [AMMV15, Gut14]. This covers many
standard reachability goals such as authentication, and it seems that any sig-
nificantly richer fragment of first-order logic would be incompatible with our
result. Goals in the geometric fragment are not suited for expressing privacy-
type properties, i.e., where goal violations occur if the observable behavior of
protocols can be distinguished, and so we currently do not support such goals.

Goal formulae in the geometric fragment of first-order logic are formulas of the
form ∀x̄. φ −→ ψ where φ and ψ may contain ∧, ∨, ∃, and events and checks
(e.g., ∈̇, .

=, and event), but not ¬, −→, and ∀. It is also possible to express
intruder derivation constraints in the antecedent φ as shown in [AMMV15].

A violation of a goal formula then occurs if the negation of a goal (i.e., a formula
of the form ∃x̄. φ ∧ ¬ψ) is satisfied in some execution of the protocol. Note
that a formula of the form ∃x̄. φ ∧ ¬ψ can be transformed into a logically
equivalent formula of the form ∃x̄. φ′1 ∨ · · · ∨ φ′n where the φ′i are of the form
φ′′1 ∧ · · · ∧ φ′′m and the φ′′j do not contain disjunction, conjunction, or existential
quantification. In our setting we can treat each φ′i as a transaction rule, namely
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the rule φ′′1 . · · · .φ′′m.send(attack) where we “emit” the attack event to express a
goal violation.

There are some issues, however: In a negated goal formula there might occur
subformulae of the form ∀x̄.

∨n
i=1 ti 6 ∈̇ si∨

∨m
j=1 t

′
j 6
.
= s′j and we currently cannot

directly express such formulae as a constraint for the case where n > 1. The
two cases where n 6= m and n,m ∈ {0, 1} are obviously supported. The case
where n = 0 and m > 1 is also supported: Since we are working in the free
algebra—i.e., terms are equal if they are syntactically equal—the unification
problem

∧m
i=1 ti

.
= si is equivalent to f(t1, . . . , tm)

.
= f(s1, . . . , sm) for some

f ∈ Σm that does not occur anywhere else. Hence, the problem ∀x̄.
∨m
i=1 ti 6

.
= si

has exactly the same solutions as ∀x̄. f(t1, . . . , tm) 6 .= f(s1, . . . , sm), which we
can express as a symbolic constraint.

The case where n > 1 is more problematic, because here we have to translate
negative set-membership checks into inequalities for our stateful typing result
(see the translation tr in Definition 4.10). For instance, consider a goal formula
∀x̄. φ −→ ψ where ψ contains a subformula of the form ∃ȳ.

∧n
i=1 ti ∈̇ si where

n > 1. The negation of this goal formula contains the subformula ∀ȳ.
∨n
i=1 ti 6 ∈̇

si. For a given database mapping D = {d1, . . . , dk} each membership check
ti 6 ∈̇ si is semantically equivalent to

∧
d∈D(ti, si) 6

.
= d, which we can express

as the constraint (ti, si) 6
.
= d1. · · · .(ti, si) 6

.
= dk. Hence, for a given database

mapping D, we can transform ∀ȳ.
∨n
i=1 ti 6 ∈̇ si into ∀ȳ.

∨n
i=1

∧
d∈D(ti, si) 6

.
= d.

During translation tr one can then transform the inner formula into conjunctive
normal form and push the quantifier ∀x̄ inwards, resulting in a formula of the
form

∧
i ∀ȳ.

∨
j ui,j 6

.
= vi,j which we can express as a constraint. This would solve

the problem, but at the cost of a much more complex translation from stateful
to stateless constraints. A better approach would be to extend our constraint
language (and all related definitions and proofs) to support negative checks of
the form ∀x̄. φ where φ : := φ1 ∨ φ2 | t 6

.
= s | t 6 ∈̇ s.

5.2 Composition and a Running Example

The core definition of this chapter is rather simple: We define the parallel com-
position P1 ‖ P2 of two protocols P1 and P2 as their union: P1 ‖ P2 ≡ P1 ∪P2.
Protocols P1 and P2 are also referred to as the component protocols of the
composition P1 ‖ P2. To express composition of more than two protocols we
parameterize our theory over a set L of indices. The only requirement on the
set L is that it has at least two elements and we usually use natural numbers to
denote the elements of L. The parallel composition of all protocols indexed by
L is then denoted by ‖i∈L Pi. If L = {1, . . . , N} for some N (i.e., if L is finite)
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then we may also use the notation P1 ‖ · · · ‖ PN .

For composed protocols ‖i∈L Pi the reachable constraints will in general contain
steps originating from multiple component protocols. To keep track of where
a step in a constraint originated we assign to each step a label `. The steps
that are exclusive to the i-th component are marked with i. For that reason
we also refer to the indices L as the protocol-specific labels. In addition to the
protocol-specific labels L we also have a special label ? that we explain later.
Labels ` then range over L ∪ {?} unless otherwise specified.

Let A be a constraint with labels and ` be a label, we define A|` to be the
projection of A to the steps labeled ` or ? (so the ?-steps are kept in every pro-
jection). We extend projections to transaction rules and protocols as expected.
We may also write P? instead of P|?.

5.2.1 A Keyserver Example

As a running example, Figure 5.1 and Figure 5.2 define two keyserver protocols
that share the same databases of valid public keys registered at the keyserver.
In a nutshell, the first protocol Pks,1 = {R1

1, . . . , R
10
1 } allows users to register

public keys out of band and to update an existing key with a new one (revoking
the old key in the process), while the second protocol Pks,2 = {R1

2, . . . , R
10
2 }

uses a different mechanism to register new public keys. We write t 6 ∈̇ f(_) for
f ∈ Σn in this example as an abbreviation of ∀x1, . . . , xn. t 6 ∈̇ f(x1, . . . , xn).

We use here three atomic types: the type of agents Agent, public keys PubKey,
and the type Attack of the attacki constants. We partition type Agent into the
honest users Hon, the dishonest users Dis, and the keyservers Ser. There are sets
for authentication goals begin1, end1, begin2, and end2, and all protocol steps
related to these sets are highlighted in gray; let us first ignore these.

Protocol Pks,1 In the first protocol, rule R5
1 models that an honest user regis-

ters a new public key PK out of band (e.g., by physically visiting a registration
site); this is achieved by inserting PK (in the same transaction) both into a
keyring ring(A) for user A and into a shared database valid(A,S) of the user’s
currently valid keys. There is also a corresponding rule for dishonest users:
R9

1. Dishonest users may register in their name any key they know (hence the
receive(PK ) step), so the key is not necessarily freshly created; also we do not
model a keyring for them. (Rule R4

i gives the intruder access to arbitrarily many
fresh key pairs.)
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1 ≡ 1: receive(sign(inv(PK ), pair(A,NPK ))). ? : PK ∈̇ valid(A,S).
? : NPK 6 ∈̇ valid(_). 1: NPK 6 ∈̇ revoked(_)

R1
1
∀A ∈ Hon, S ∈ Ser.

1: receive(inv(PK )). ? : PK ∈̇ valid(A,S). 1: send(attack1)

R2
1
∀A ∈ Hon, S ∈ Ser.

1 . ? : NPK 6 ∈̇ begin1(A,S). 1: send(attack1)

R3
1

∀A ∈ Hon, S ∈ Ser.
1 . ? : NPK ∈̇ begin1(A,S). ? : NPK ∈̇ end1(A,S).

1: send(attack1)

R4
1
∀A ∈ Dis. new PK .
? : send(PK ). ? : send(inv(PK ))

R5
1

∀A ∈ Hon, S ∈ Ser. new PK .
1: insert(PK , ring(A)). ? : insert(PK , valid(A,S)).
? : insert(PK , begin1(A,S)). ? : insert(PK , end1(A,S)).
? : send(PK )

R6
1

∀A ∈ Hon, S ∈ Ser. new NPK .
1: PK ∈̇ ring(A). 1: delete(PK , ring(A)).
1: insert(NPK , ring(A)). ? : insert(NPK , begin1(A,S)).
? : send(NPK ). 1: send(sign(inv(PK ), pair(A,NPK )))

R7
1

∀A ∈ Hon, S ∈ Ser.
1 . ? : NPK ∈̇ begin1(A,S). ? : NPK 6 ∈̇ end1(A,S).

? : delete(PK , valid(A,S)). ? : insert(NPK , valid(A,S)).
1: insert(PK , revoked(A,S)). ? : insert(NPK , end1(A,S)).
? : send(inv(PK ))

R8
1

∀A ∈ Dis, S ∈ Ser.
1 . ? : delete(PK , valid(A,S)). ? : insert(NPK , valid(A,S)).

1: insert(PK , revoked(A,S))

R9
1
∀A ∈ Dis, S ∈ Ser.

1: receive(PK ). ? : PK 6 ∈̇ valid(_). ? : insert(PK , valid(A,S))
R10

1 1: receive(attack1)

Figure 5.1: The transaction rules of the first keyserver protocol Pks,1.

Secondly, we model a key update with revocation of old keys. To request an
update of key PK with a newly generated key NPK at server S, an honest
user sends NPK signed with PK as in R6

1. (For this rule there is no equivalent
for the dishonest agents, since they may produce an arbitrary update request
message.)

The rule R7
1 shows how S receives the update message from an honest agent:

it checks ( 1 ) that the key PK is currently valid, and that NPK is neither
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2 ≡ 2: receive(crypt(PK , update(A,S,NPK , pw(A,S)))).
2: PK ∈̇ pubkeys(S). 2: NPK 6 ∈̇ pubkeys(_). 2: NPK 6 ∈̇ seen(_)

R1
2
∀A ∈ Hon, S ∈ Ser.

2: receive(inv(PK )). ? : PK ∈̇ valid(A,S). 2: send(attack2)

R2
2
∀A ∈ Hon, S ∈ Ser.

2 . ? : NPK 6 ∈̇ begin2(A,S). 2: send(attack2)

R3
2

∀A ∈ Hon, S ∈ Ser.
2 . ? : NPK ∈̇ begin2(A,S). ? : NPK ∈̇ end2(A,S).

2: send(attack2)

R4
2
∀A ∈ Dis. new PK .
? : send(PK ). ? : send(inv(PK ))

R5
2

∀A ∈ Hon, S ∈ Ser. new NPK .
2: PK ∈̇ pubkeys(S). ? : insert(NPK , begin2(A,S)).
? : send(NPK ). 2: send(crypt(PK , update(A,S,NPK , pw(A,S))))

R6
2

∀A ∈ Hon, S ∈ Ser.
2 . ? : NPK ∈̇ begin2(A,S). ? : NPK 6 ∈̇ end2(A,S).

? : insert(NPK , valid(A,S)). ? : insert(NPK , end2(A,S)).
2: insert(NPK , seen(A))

R7
2
∀A ∈ Dis, S ∈ Ser.

2: send(pw(A,S))

R8
2
∀A ∈ Dis, S ∈ Ser.

2 . ? : insert(PK , valid(A,S)). 2: insert(PK , seen(A))

R9
2
∀S ∈ Ser. new PK .

2: insert(PK , pubkeys(S)). ? : send(PK )
R10

2 2: receive(attack2)

Figure 5.2: The transaction rules of the second keyserver protocol Pks,2.

registered as valid or revoked. If so, it updates its databases accordingly: it
moves the old key from valid(A,S) to revoked(A,S) and registers the new key
NPK by inserting it into valid(A,S). Also, we reveal here inv(PK ), in order to
specify that the protocol must even be secure when old private keys are leaked.
This is an example of declassification of a secret shared between two protocols:
after intentionally revealing inv(PK ) it should no longer count as a secret. The
rule R8

1 is the pendant for dishonest agents. The last rule R10
1 acts as a signal

for when an attack has occurred in Pks,1.

Protocol Pks,2 The second protocol has another mechanism to register new
keys: every user has a password pw(A,S) with the server (the dishonest agents
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reveal their password to the intruder with rule R7
2). Instead of using a (possibly

weak) password for an encryption, the registration message is encrypted with
the public key of the server (rule R5

2). For uniformity, we model the server’s
public keys in a set pubkeys(S) that is initialized with rule R9

2 (in fact, the server
may thus have multiple public keys). Rule R6

2 models how the server receives
a registration request (in case of honest users): to protect against replay, the
server uses a set seen of seen keys (this may in a real implementation be a
buffer-timestamp mechanism). Rule R8

2 is the pendant for the dishonest users.
Finally, the rule R10

2 acts as a signal for when an attack has occurred in Pks,2.

Authentication Besides the secrecy goal R1
i that no valid private key of an

honest agent may ever be known by the intruder, the crucial authentication
goal is that all insertions into valid(A,S) for honest A are authenticated. The
classical injective agreement is modeled by the steps highlighted in gray: when
an honest agent generates a fresh key for a server, it inserts it into a special set
begin, and whenever a server accepts a key that appears to come from an honest
agent A, then it inserts it into a special set end. (Note that these sets exist only
in our model to specify the goals.) It is a violation of non-injective agreement if
the server accepts a key that is not in begin (rule R2

i ), and of injective agreement
if the server accepts a key that is already in end (rule R3

i ).

Such a specification is more declarative when one separates the protocol rules
from the attack rules, but that has one drawback: if the protocol indeed had an
attack, then one would allow the server to actually insert an unauthenticated
key into its database and then in the next step the attack rule fires. For the
composition result, however, we want that each protocol can rely on the other
protocols to never insert unauthenticated keys into the database. This is why we
integrate in rules R6

i of each protocol the checks that we are in an authenticated
case (otherwise, the rules R2

i or R3
i fire). This is similar to a “lookahead” where

we prevent the execution of a transition if it leads to an attack, and directly
trigger an attack. This computation of the lookahead version of goals may of
course be lifted from the user by verification tools.

5.3 The Compositionality Results

With stateful protocols and parallel composition defined we can now formally
define the concepts underlying our results and state our compositionality theo-
rems. We first provide a result on the level of constraints and afterwards show
our main theorems for stateful protocols.



122 Stateful Protocol Composition

5.3.1 Protocol Abstraction

Note that all steps containing the valid set family in our keyserver example have
been labeled with ?. Labeling operations on the shared sets with ? is actually
an important part of our compositionality result and we now explain why.

Essentially, compositionality results aim to prevent that attacks can arise from
the composition itself, i.e., attacks that do not similarly work on the components
in isolation. Thus we want to show that attacks on the composed system can be
sufficiently decomposed into attacks on the components. This however cannot
directly work if the components have shared sets like valid in the example: if one
protocol inserts something to a set and the other protocol reads from the set,
then this trace in general does not have a counter-part in the second protocol
alone. We thus need a kind of interface to how the two protocols can influence
their shared sets. In the keyserver example, both protocols can insert public keys
into the shared set valid, the first protocol can even remove them. The idea is
now that we develop from each protocol an abstract version that subsumes all the
modifications that the concrete protocol can perform on the shared sets. This
can be regarded as a “contract” for the composition: each protocol guarantees
that it will not make any modifications that are not covered by its abstract
protocol, and it will assume that the other protocol only makes modifications
covered by the other protocol’s abstraction. We will still have to verify that
each individual protocol is also secure when running together with the other
abstract protocol, but this is in general much simpler than the composition of
the two concrete protocols. (In the special case that the protocols share no sets,
i.e., like in all previous parallel composition results, the abstractions are empty,
i.e., we have to verify only the individual components.)

In general, the abstraction of a component protocol P is defined by restriction to
those steps that are labeled ?, i.e., P?. We require that at least the modification
of shared sets are labeled ?. In the keyserver example we have also labeled the
operations on the authentication-related sets with a ? (everything highlighted
in gray): we need to ensure that we insert into the set of valid keys of an honest
agent only those keys that really have been created by that agent and that have
not been previously inserted. So the contract between the two protocols is that
they only insert keys that are properly authenticated, but the abstraction ignores
how each protocol achieves the authentication (e.g., signatures vs. passwords
and seen-set). There are also some outgoing messages labeled with ? which we
discuss a little below.1

1We require also well-formedness of the ?-projected protocols. This is violated, for instance,
if a protocol contains a rule where only outgoing messages are labeled ? and these messages
contain variables. However, given that the concrete protocol is already well-formed, this is
easy to fix automatically, transparent to the user.
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Example 5.2 Consider the abstractions of rules R5
2 and R6

2:

∀A ∈ Hon, S ∈ Ser. new NPK .
? : insert(NPK , begin2(A,S)).
? : send(NPK )

∀A ∈ Hon, S ∈ Ser.
? : NPK ∈̇ begin2(A,S).
? : NPK 6 ∈̇ end2(A,S).
? : insert(NPK , valid(A,S)).
? : insert(NPK , end2(A,S))

Notice that the gray steps prevent unauthenticated key registration because keys
can only be registered if inserted into begin2 by an honest agent. If we did not
ensure such authenticated key-registration then the intruder would be able to
register arbitrary keys in P?ks,2. This would lead to an attack on secrecy in the
protocol Pks,1 ‖ P?ks,2.

One may wonder why there is no similar specification for secrecy, i.e., that
inv(NPK ) is secret for every key NPK that is being inserted into valid. In
fact, below we will declare all private keys to be secret by default. Thus, unless
explicitly declassified, they are (implicitly) required to be secret.

5.3.2 Shared Terms

Before giving the compositionality conditions we first formally define what terms
can be shared: Every term t that occurs in multiple component protocols must
be either a basic public term (meaning that the intruder can derive t without
prior knowledge, i.e., ∅ ` t) or a shared secret. If the intruder learns a shared
secret (that has not been explicitly declassified) then it is considered a violation
of secrecy in all component protocols. For instance, agent names are usually
basic public terms whereas private keys are secrets. In fact, we will have that
all shared terms (except basic public terms) are by default secrets—even public
keys—before they are declassified.

Let Sec be a set of ground terms, representing the shared terms of the protocols
that are initially all secret. Note that the set of shared secrets Sec is not a fixed
predefined set of terms, but rather just another parameter to our composition-
ality conditions. To make matters smooth, we require that Sec ∪ {t | ∅ ` t} is
closed under subterms (which is trivially the case for the basic public terms).
We require that all shared terms of the protocols are either in Sec or basic
public terms. To precisely define this requirement, we first define the ground
sub-message patterns (GSMP) of a set of terms M as follows:

GSMP(M) ≡ {t ∈ SMP(M) | fv(t) = ∅}

This definition is extended to constraints A as the following set:

GSMP(A) ≡ GSMP(trms(A) ∪ setops(A))
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It is similarly extended to protocols.

Example 5.3 We will typically study the ground subterms of each individual
protocol in parallel with the abstraction of the other. For the example, the set
GSMP(Pks,1 ‖ P?ks,2) is the closure under subterms of the following set:

{attack1, (pk , ring(a)), (pk , valid(a, s)), (pk , revoked(a, s)), (pk , begini(a, s)),
(pk , endi(a, s)), sign(inv(pk), pair(a,npk)) | i ∈ {1, 2}, pk ,npk , a, s ∈ C,
Γ(pk) = PubKey,Γ(npk) = PubKey,Γ(a) = Agent,Γ(s) = Agent}

and GSMP(P?ks,1 ‖ Pks,2) is the closure under subterms of the following set:

{attack2, (pk , valid(a, s)), (pk , seen(a, s)), (pk , begini(a, s)), (pk , endi(a, s)),
(pk , pubkeys(s)), inv(pk), crypt(pk , update(a, s,npk , pw(a, s))) | i ∈ {1, 2},
pk ,npk , a, s ∈ C,Γ({pk ,npk}) = {PubKey},Γ({a, s}) = {Agent}}

For composition we will require that two protocols are disjoint in their ground
sub-message patterns except for basic public terms and shared secrets:

Definition 5.1 (GSMP disjointness) Given two sets of termsM1 and
M2, and a ground set of terms Sec (the shared secrets), we say that M1 and M2

are Sec-GSMP disjoint iff

GSMP(M1) ∩GSMP(M2) ⊆ Sec ∪ {t | ∅ ` t}

Furthermore, given two constraints A1 and A2 we say that they are Sec-GMSP
disjoint iff the sets trms(A1) ∪ setops(A1) and trms(A2) ∪ setops(A2) are Sec-
GSMP disjoint. This is similarly extended to protocols as expected.

5.3.3 Declassification and Leaking

Up until now the set of shared secrets has been static. We now remove this re-
striction by introducing a notion of declassification that will allow shared secrets
to become public during protocol execution. For instance, in protocol Pks,1 we
give revoked private keys of the form inv(PK ) to the intruder by transmitting
them over the network: send(inv(PK )). The transmitted key inv(PK ) should
no longer be secret after transmission and so we call such steps declassification.
Since declassification involves shared secrets we require that they are declassified
for all component protocols together. Thus we label them with ?.

For any constraint A with model I we can now formally define the set of secrets
that has been declassified in A under I:
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Definition 5.2 (Declassification) Let A be a labeled constraint and
I a model of A. Then

declassified(A, I) ≡ I({t | ? : receive(t) occurs in A})

is the set of declassified secrets of A under I.

Given a protocol P, a reachable constraint A (i.e., 0⇒•?P A), and a model I of
A, then I(A) represents a concrete protocol run and the set declassified(A, I)
represents the messages that have been declassified by honest agents during the
protocol run. Note that in this definition we have reversed the direction of the
declassification transmission, because the send and receive steps of reachable
constraints are duals of the transaction rules they originated from.

Declassification also allows us to share terms that have shared secrets as sub-
terms but which are not themselves meant to be secret. For instance, public
key certificates have as subterm the private key of the signing authority, and
such certificates can be shared between protocols by modeling them as shared
secrets that are declassified when first published.

Finally, if the intruder learns a secret that has not been declassified then it counts
as an attack. We say that protocol P leaks a secret s if there is a reachable
satisfiable constraint A where the intruder learns s before it is declassified:

Definition 5.3 (Leakage) Let Sec be a set of secrets and I be a model
of the labeled constraint A. A leaks a secret from Sec under I iff there exists
s ∈ Sec \ declassified(A, I) and a protocol-specific label ` ∈ L such that I |=s

A|`.send(s).

Our notion of leakage requires that one of the components in isolation leaks a
secret. This may seem like an undue restriction (that it counts only as a leakage
if one protocol alone can leak), but we will make this as one of the prerequisites of
composition, i.e., a quite weak requirement that can be checked for each protocol
in isolation. Then the compositionality result ensures that the composition
does not leak the shared secrets. Note also that the set declassified(A, I) is
unchanged during projection of A, and so it suffices to pick the leaked s from
the set Sec \ declassified(A, I) instead of Sec \ declassified(A|i, I).

Example 5.4 The terms occurring in the GSMP intersection of the two key-
server protocols are (a) public keys pk, (b) private keys of the form inv(pk), (c)
agent names, and (d) operations on the shared set families valid, begini, and
endi. Agent names are basic public terms in our example, i.e., ∅ ` a for all con-
stants a of type Agent. The public keys are initially secret, but we immediately
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Definition 5.4 (Parallel composability, for constraints)
Let A be a constraint and let Sec be a ground set of terms. Define the set of
labeled set operations of A as follows:

labeledsetops(A) ≡ {` : (t, s) | ` : insert(t, s) or ` : delete(t, s)
or ` : t ∈̇ s or ` : (∀x̄. t 6 ∈̇ s) occurs in A}

(This definition is extended to protocols as expected.)
Then (A,Sec) is parallel composable iff

1. if ` 6= `′ then A|` and A|`′ are Sec-GSMP disjoint, for all protocol-specific
labels `, `′ ∈ L,

2. for all terms t the step ? : send(t) does not occur in A,

3. for all s ∈ Sec with s′ v s, it holds that either ∅ ` s′ or s′ ∈ Sec,

4. for all ` : (t, s), `′ : (t′, s′) ∈ labeledsetops(A), if (t, s) and (t′, s′) are unifi-
able then ` = `′,

5. A is type-flaw resistant and A and A|` are well-formed, for every label
` ∈ L ∪ {?}.

Figure 5.3: The composability requirements for constraints.

declassify them whenever they are generated. To satisfy GSMP disjointness of
Pks,1 ‖ P?ks,2 and P?ks,1 ‖ Pks,2 it thus suffices to choose the following set as
the set of shared secrets (where the secf are special secret constants used in the
encoding of the private function symbol f):

Sec = {pk , inv(pk), (pk , f(a, s)), f(a, s), secinv, secf | Γ({a, s}) = {Agent},
Γ(pk) = PubKey, f ∈ {valid, begin1, end1, begin2, end2}, pk , a, s ∈ C}

Note that we want the set symbols like valid to be private. This is because terms
like (pk, valid(a, s)) occurs as a GSMP term in both component protocols and
so we have to prevent the intruder from constructing such terms even after
declassification of keys pk. Hence we model the set expressions like valid(a, s)
as secrets to prevent the intruder from constructing (pk, valid(a, s)) when the
intruder knows the constants pk, a, and s.

5.3.4 Parallel Compositionality for Constraints

With these concepts defined we can list the requirements on constraints that
are necessary to apply our result on the constraint level—see Definition 5.4.
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The first requirement is at the core of our compositionality result and states that
the protocols can only share basic public terms and shared secrets. The second
requirement ensures that ? steps are only used for declassification, checks, and
stateful steps. The third condition is the requirement on the shared terms; it
ensures that the set Sec ∪ {t | ∅ ` t} is closed under subterms. The fourth
condition is our requirement on stateful protocols; it implies that shared sets
must be labeled with a ?. Finally, the last condition is needed to apply the typing
result and it is orthogonal to the other conditions; it is indeed only necessary
so that we can apply Theorem 4.14 and restrict ourselves to well-typed attacks.
Typing results with different requirements could potentially be used instead.

Note that we require well-formedness of all projections of A, including the
?-projection. This is because we usually consider constraints reachable in com-
posed and augmented protocols (i.e., protocols composed with abstracted pro-
tocols), and we need well-formedness to apply the typing result to these con-
straints.

With the composability requirements defined we can state our main result on
the constraint-level:

Theorem 5.5 If (A,Sec) is parallel composable and I |=s A then there exists
a well-typed interpretation Iτ such that either Iτ |=s A|` for all protocol-specific
labels ` ∈ L or some prefix A′ of A leaks a secret from Sec under Iτ .

That is, we can obtain a well-typed model of all projections A|`, ` ∈ L, for satis-
fiable parallel composable constraints A—or one of the projections has leaked a
secret. In other words, if we can verify that a parallel composable constraint A
does not have any well-typed model of all protocol-specific projections, and no
prefix of A leaks a secret under any well-typed model, then it is unsatisfiable,
i.e., there is no “attack”.

5.3.5 Parallel Compositionality for Protocols

Until now our parallel compositionality result has been stated on the level of
constraints. As a final step we now explain how we can use Theorem 5.5 to
prove a parallel compositionality result for protocols.

First, we define the traces of a protocol P as the set of reachable constraints:

traces(P) ≡ {A | 0⇒•?P A}

We then define a compositionality requirement on protocols that ensures that
all traces are parallel composable: Definition 5.6. Similar to the conditions
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Definition 5.6 (Parallel composability, for protocols) Let
‖i∈L Pi be a composed protocol and let Sec be a ground set of terms. Then
(‖i∈L Pi,Sec) is parallel composable iff

1. for all protocol-specific labels `, `′ ∈ L, if ` 6= `′ then ‖i∈L Pi|` and ‖i∈L
Pi|`′ are Sec-GSMP disjoint,

2. for all terms t the step ? : receive(t) does not occur in ‖i∈L Pi,

3. for all s ∈ Sec with s′ v s, it holds that either ∅ ` s′ or s′ ∈ Sec,

4. for all ` : (t, s), `′ : (t′, s′) ∈ labeledsetops(‖i∈L Pi), if (t, s) and (t′, s′) are
unifiable then ` = `′,

5. ‖i∈L Pi is type-flaw resistant and P` and P?` are well-formed, for every
protocol-specific label ` ∈ L.

Figure 5.4: The composability requirements for protocols.

for constraints we require that each pair of different component protocols that
are parallel composed with the abstraction of the others (i.e., ‖i∈L Pi|` is the
component protocol ` composed with the abstraction of the other protocols) are
Sec-GSMP disjoint. We also require type-flaw resistance and well-formedness.

Note that, for a protocol P, the terms occurring in P? is a subset of the terms
occurring in P. So for composed protocols ‖i∈L Pi and any protocol-specific
label ` ∈ L the terms occurring in the projected protocol ‖i∈L Pi|` is equal to
the terms occurring in the protocol P` ‖ P?1 ‖ · · · ‖ P?`−1 ‖ P?`+1 ‖ P?`+2 ‖ · · · .
When L = {1, 2} the first condition of Definition 5.6 becomes the requirement
that P1 ‖ P?2 and P?1 ‖ P2 are Sec-GSMP disjoint.

For protocols we also need to require that their composition is type-flaw resis-
tant. It is not sufficient to simply require it for the component protocols in
isolation; unifiable messages from different protocols might break type-flaw re-
sistance otherwise. Note also that type-flaw resistance of a protocol P implies
that the traces of P are type-flaw resistant, because SMP(A) ⊆ SMP(P) for
any A ∈ traces(P) and because the traces consists of the duals of the trans-
action strands occurring in the protocol; likewise for GSMP disjointness. Thus
if (‖i∈L Pi,Sec) is parallel composable then (A,Sec) is parallel composable for
any A ∈ traces(‖i∈L Pi).

Example 5.5 Continuing Example 5.4 we now show that Pks,1 ‖ Pks,2 is
parallel composable, i.e., that it satisfies the conditions of Definition 5.6. We
have previously shown type-flaw resistance and well-formedness for a similar key-
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server protocol (see Chapter 4) and so we focus on the remaining four conditions
here. GSMP disjointness of the composed keyserver protocols was explained in
Example 5.4. Hence the first condition of Definition 5.6 is satisfied. Conditions
two and three are satisfied since Pks,1 ‖ Pks,2 does not contain any steps of the
form ? : receive(t) and since any subterm of a term from Sec (as defined in the
previous example) is either in Sec or an agent name (a basic public term). Note
that labeledsetops(Pks,1 ‖ Pks,2) consists of instances of labeled terms from the
following set:

{1: (PK 0, ring(A0)), 1: (PK 1, revoked(A1, S1)),
2: (PK 2, seen(A2, S2)), ? : (PK 3, valid(A3, S3)),

? : (PK i
4, begini(A

i
4, S

i
4)), ? : (PK i

5, endi(A
i
5, S

i
5)) | i ∈ {1, 2}}

For all pairs ` : (t, s), `′ : (t′, s′) in this set we have that ` = `′ if (t, s) and (t′, s′)
are unifiable. Hence condition 4 is satisfied.

As a consequence of Theorem 5.5 we have that any protocol P1 can be safely
composed with another protocol P2 provided that P1 ‖ P?2 is secure and that
P?1 ‖ P2 does not leak a secret:

Theorem 5.7 2 If (P1 ‖ P2,Sec) is parallel composable, P1 ‖ P?2 is well-typed
secure in isolation, and P?1 ‖ P2 does not leak a secret under any well-typed
model, then all goals of P1 hold in P1 ‖ P2 (even in the untyped model).

Note that the only requirement on protocol P2 is that it does not leak any secrets
(before declassifying), but we do not require that P2 is completely secure. This
means, if we have a secure protocol P1, that the goals of P1 continue to hold
in any composition with another protocol P2 that satisfies the composability
conditions and does not leak secrets, even if P2 has some attacks. This is in
particular interesting if we run a protocol P1 in composition with a large number
of other protocols that are too complex to verify in all detail.

Finally, the composition of parallel composable and secure protocols is secure:

Corollary 5.8 3 If (P1 ‖ P2,Sec) is parallel composable and P1 ‖ P?2 and
P?1 ‖ P2 are both secure in isolation then the composition P1 ‖ P2 is also secure
(even in the untyped model).

2Proven in Isabelle for stateless protocols. Not proven in Isabelle for stateful protocols.
3Proven in Isabelle for stateless protocols. Not proven in Isabelle for stateful protocols.
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5.3.6 Sequential Composition

Until now we have focused entirely on parallel composition where protocols are
run “side-by-side”. Another type of protocol composition is sequential composi-
tion where protocols are run in sequence, e.g., most recently [CCW17] for PKIs.
Thanks to the generality of our result, we can cover such sequential composi-
tions as a parallel composition with sets dedicated to the hand-over between the
protocols. Let us take a key-exchange protocols like TLS as an example, where
the handshake protocol establishes a pair of shared keys between a client A and
a server S, and then subsequently, the transport protocol uses these keys to
encrypt communication between A and S. We illustrate how the last transition
of the handshake and the first transition of the transport protocol look for A
where t1 and t2 are terms representing the two shared keys established in the
handshake (and there are similar rules for S):

∀A ∈ Hon, S ∈ Ser.
1: · · ·
? : insert((t1, t2), keys(A,S))

∀A ∈ Hon, S ∈ Ser.
? : (K1,K2) ∈̇ keys(A,S).
? : delete((K1,K2), keys(A,S)).
2: · · ·

Note that, like in the keyserver example, the set keys(A,S) does not represent a
means of communication between two participants, but rather a buffer or glue
between two protocols: one protocol is producing keys, the other protocol is
consuming them. Of course, one needs to require here that the first protocol
only inserts authenticated and secret keys into the set, which is similar to the
assume-guarantee reasoning we have illustrated for our keyserver example.

In fact, our result allows for a generalization of existing sequential composition
results: while all results like [CCW17] and the similar vertical result [GM11]
are specialized to a particular set of data to be transferred from one protocol
to another, our result does not prescribe a particular setup, but allows for any
exchange of data through shared sets. This only requires one to specify sufficient
assumptions on the shared-set operations for the assume-guarantee reasoning,
but one does no longer need to establish a new composition theorem for each
new form of sequential composition. In fact, the composition does not even
need to be strictly sequential, e.g., if the first protocol establishes keys for the
second protocol, one may well have that additionally the second protocol can
also establish new keys for subsequent sessions.
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5.4 Proving the Compositionality Theorem

The idea is to first prove Theorem 5.5 on the level of ordinary (or stateless) con-
straints. Using a variant of the reduction technique tr from Chapter 4 we then
lift the theorem to stateful constraints. Finally, we apply Theorem 5.5 to prove
our main results on the protocol-level, namely Theorem 5.7 and Corollary 5.8.

5.4.1 Proving the Result for Stateless Constraints

For Theorem 5.5 we need to show that for satisfiable parallel composable con-
straints A with shared secrets Sec we can obtain a well-typed model of projec-
tions A|` for all labels ` ∈ L or A has leaked a secret under some projection. In a
nutshell we show that any term t occurring in a ` : send(t) step of A need only to
be constructed from terms of protocol `, unless leakage has occurred previously.
For that we first need a notion of terms belonging to a specific protocol:

Definition 5.9 Let A be a constraint and Sec be a set of shared secrets.

• A term t is i-specific (w.r.t. A and Sec) iff t ∈ GSMP(A|i) \ (Sec ∪ {t |
∅ ` t}) for a label i.

• A term t is heterogeneous (w.r.t. A and Sec) iff there exists protocol-
specific labels `1, `2 ∈ L and subterms t1 and t2 of t such that `1 6= `2 and
each ti is `i-specific w.r.t. A and Sec.

• A term t is homogeneous (w.r.t. A and Sec) if it is not heterogeneous w.r.t.
A and Sec.

Then all ground sub-message patterns of parallel composable constraints are
homogeneous:

Lemma 5.10 If (A,Sec) is parallel composable and t ∈ GSMP(A) then t is
homogeneous.

Proof. We can first of all obtain some protocol-specific label i ∈ L such
that t ∈ GSMP(A|i). Note also that the terms in Sec ∪ {t | ∅ ` t} are by
definition homogeneous since Sec ∪ {t | ∅ ` t} is closed under subterms and
so they cannot be protocol specific. Hence we simply need to show that if
t ∈ GSMP(A|i) \ (Sec ∪ {t | ∅ ` t}) then t is homogeneous and we do so with
a contradiction proof: Suppose that t is heterogeneous. Then we can obtain
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Definition 5.11 (Homogeneous Intruder Deduction)

M `A,Sechom t

(Axiomhom),
t ∈M

M `A,Sechom t1 · · · M `A,Sechom tn

M `A,Sechom f (t1, . . . , tn)

(Composehom), f ∈ Σn,
f public, f(t1, . . . , tn) homogeneous,

f(t1, . . . , tn) ∈ GSMP(A)

M `A,Sechom t M `A,Sechom k1 · · · M `A,Sechom kn

M `A,Sechom ti

(Decomposehom),
Ana t = (K,T ), ti ∈ T,

K = {k1, . . . , kn}

Figure 5.5: The homogeneous intruder deduction relation.

a subterm s of t and a label j where j 6= i such that s is j-specific. Hence
s ∈ GSMP(A|j). Since GSMP is closed under subterms we also have that
s ∈ GSMP(A|i). Since (A,Sec) is parallel composable the sets GSMP(A|i) and
GSMP(A|j) must be GSMP disjoint and so s ∈ Sec ∪ {t | ∅ ` t} because it is in
the intersection of the two aforementioned GSMP sets. However, s is j-specific
and therefore cannot be a member of the set Sec ∪ {t | ∅ ` t}, a contradiction.
�

Given a constraint A and a set of shared secrets Sec we now define a useful
variant `A,Sechom of the intruder deduction relation ` as the restriction to homo-
geneous GSMP terms only—see Definition 5.11. This relation satisfies a useful
property:

Lemma 5.12 Let (A,Sec) be parallel composable and t ∈ GSMP(A). Then
ik(A) ` t iff ik(A) `A,Sechom t.

Proof. The idea is that deriving a term f(t1, . . . , tn) that “falls outside of” the
homogeneous GSMP terms is only possible by composition; if all the immediate
subterms ti are homogeneous GSMP terms then deriving f(t1, . . . , tn) must
have happened by an application of the (Compose) rule. Usually, such proofs
proceed by inspecting the derivation tree of the derivation of f(t1, . . . , tn), and,
in the case where f(t1, . . . , tn) has been derived from decomposition, either
transforming the tree to remove unnecessary decomposition steps or regress to
the first decomposition step. Such arguments are cumbersome to formalize in



5.4 Proving the Compositionality Theorem 133

Isabelle/HOL since one would need a deep embedding of the derivation tree. For
our purposes, however, it is sufficient to only encode the height of the derivation
tree and so we equip the relation ` with such a number: M `k t iff k is the
maximum number of applications of the (Compose) and (Decompose) rules in
any path of the derivation tree for M ` t. Essentially, we prove that no matter
how many steps occur in the derivation tree of f(t1, . . . , tn) the first time the
term is derived (it might have been derived later on through decomposition) is
always a composition step. �

This is useful because we can prove that all homogeneous GSMP terms can
be derived purely through derivation of other homogeneous GSMP terms. In
other words, for homogeneous GSMP terms such as those in parallel composable
constraints we can reduce the intruder derivation problem to `A,Sechom .

Lemma 5.13 Let (A,Sec) be parallel composable, I be a well-typed model of
A. Assume that no secret is homogeneously derivable in any of the projections
of the constraint, i.e.,

∀i ∈ L. ∀s ∈ Sec \ declassified(A, I). ¬
(

ik(I(A|i)) `A,Sechom s
)

(*)

If ik(I(A)) `A,Sechom t then

• t /∈ Sec \ declassified(A, I), and

• for all i ∈ L, if t ∈ GSMP(A|i) then ik(I(A|i)) `A,Sechom t.

Proof. The lemma follows rather straightforwardly by induction on the homo-
geneous intruder deduction relation `A,Sechom and using the fact that GSMP sets
are closed under subterms and analysis. �

With Lemma 5.12 and Lemma 5.10 we can prove a useful consequence of
Lemma 5.13:

Lemma 5.14 Let (A,Sec) be parallel composable, I be a well-typed model of
A, i ∈ L be a protocol-specific label, and t a term such that t ∈ GSMP(A|i). If
ik(I(A)) ` t then either ik(I(A|i)) ` t or A leaks a secret from Sec.

Proof. Proven by induction on the relation `A,Sechom . The only difficult case is
(Decomposehom) where we need to apply the aforementioned lemmata. �
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Now we can use Lemma 5.14 to show that the models I of parallel composable
constraints A are also models of the projections A|i, or some secret is leaked.
The proof is by structural induction on the constraint A. The only non-trivial
case is where a step of the form send(t) occurs inA, i.e., when a prefix of the form
A′.send(t) exists for A. By the constraint semantics such a prefix corresponds
to a derivation constraint ik(I(A′)) ` I(t), and here we can apply Lemma 5.14.
Thus:

Lemma 5.15 Let (A,Sec) be parallel composable and let A be an ordinary
constraint with a well-typed model Iτ . Then either Iτ |= A|i for all i ∈ L or
some prefix A′ of A leaks a secret from Sec under Iτ .

Finally, we can use the typing result Theorem 4.14 and Lemma 5.15 to relax the
well-typedness assumption and prove our main result on the level of ordinary
constraints:

Lemma 5.16 Let (A,Sec) be parallel composable and let A be an ordinary
constraint with model I. Then there exists a well-typed interpretation Iτ of A
such that either Iτ |= A|i for all i ∈ L or some prefix A′ of A leaks a secret
from Sec under Iτ .

5.4.2 Proving the Result for Stateful Constraints

For stateful constraints the proof idea is to use a variant of the reduction tech-
nique introduced in Chapter 4 to reduce the compositionality problem for state-
ful constraints to the compositionality problem for ordinary constraints. We
first make some definitions:

Definition 5.17 (Projections) Given a finite set D where

D = {`1 : (t1, s1), . . . , `n : (tn, sn)}

and where each ti and si, are terms and `i ∈ L ∪ {?} are labels, we define the
projection of D to `, written |D|`, as follows:

|D|` = {`′ : d ∈ D | ` = `′}

The constraint reduction trpc is now defined as follows:

Definition 5.18 (Translation of symbolic constraints) Given
a labeled constraintA its translation into labeled ordinary constraints is denoted
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by trpc(A) = trpc
∅ (A) where:

trpc
D (0) = {0}

trpc
D (` : insert(t, s).A) = trpc

D∪{` : (t,s)}(A)

trpc
D (` : delete(t, s).A) = {
` : (t, s)

.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .` : (t, s) 6 .= dn.A′ |

|D|` = {` : d1, . . . , ` : di, . . . , ` : dn}, 0 ≤ i ≤ n,A′ ∈ trpc
D\{` : d1,...,` : di}(A)}

trpc
D (` : t ∈̇ s.A) = {` : (t, s)

.
= d.A′ | ` : d ∈ |D|`,A′ ∈ trpc

D (A)}
trpc
D (` : (∀x̄. t 6 ∈̇ s).A) = {` : (∀x̄. (t, s) 6 .= d1). · · · .` : (∀x̄. (t, s) 6 .= dn).A′ |
|D|` = {` : d1, . . . , ` : dn}, 0 ≤ n,A′ ∈ trpc

D (A)}
trpc
D (` : a.A) = {` : a.A′ | A′ ∈ trpc

D (A)} otherwise

Note that we apply projections |D|` when translating set operations labeled
with `. Hence we never “mix” two set operations with different labels in the
reduction. A crucial point here is that parallel compositionality makes such
mixing unnecessary, and this enables us to prove a strong relationship between
translated constraints and projections:

Lemma 5.19 Let i ∈ L be a protocol-specific label, A and B be two con-
straints, and let D = {`1 : (t1, s1), . . . , `n : (tn, sn)}. If B ∈ trpc

D (A) then B|i ∈
trpc
|D|i∪|D|?(A|i).

Proof. The lemma follows from an induction over the structure of A. We only
show the t ∈̇ s and delete(t, s) cases. All remaining cases are similarly proven.

• Case A = (` : t ∈̇ s).A′: In this case we know that B must be of the
form (` : (t, s)

.
= d).B′ for some ` : d ∈ |D|` and B′ ∈ trpc

D (A′). From the
induction hypothesis we can now conclude that

B′|i ∈ trpc
|D|i∪|D|?(A′|i) (IH)

We now show that B|i ∈ trpc
|D|i∪|D|?(A|i) by a case analysis on `:

– ` = ? or ` = i:
In these cases we have thatA|i = (` : t∈̇s).(A′|i) and B|i = (` : (t, s)

.
=

d).(B′|i). We also have that ` : d ∈ |D|i ∪ |D|?. Thus the case follows
from (IH) and the definition of trpc .

– ` ∈ L \ {i}:
In this case we have that A|i = A′|i and B|i = B′|i. Thus the case
follows immediately from (IH).
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• Case A = (` : delete(t, s)).A′: In this case we know that B must be of the
form ` : (t, s)

.
= d1. · · · .` : (t, s)

.
= dj .` : (t, s) 6 .= dj+1. · · · .` : (t, s) 6 .= dn.B′

for some B′ ∈ trpc
D′(A′) and 0 ≤ j ≤ n where

|D|` = {` : d1, . . . , ` : dj , . . . , ` : dn} and D′ = D \ {` : d1, . . . , ` : dj}

From the induction hypothesis we can now conclude that

B′|i ∈ trpc
|D′|i∪|D′|?(A′|i) (IH)

We now show that B|i ∈ trpc
|D|i∪|D|?(A|i) by a case analysis on `:

– ` = ? or ` = i:
In these cases we have that |D′|i∪|D′|? = (|D|i∪|D|?)\{` : d1, . . . , ` : dj}
and B|i = (` : (t, s)

.
= d1. · · · .` : (t, s)

.
= dj .` : (t, s) 6 .= dj+1. · · · .` : (t, s) 6 .=

dn).(B′|i) and A|i = (` : delete(t, s)).(A|i). Thus the case follows from
(IH) and the definition of trpc .

– ` ∈ L \ {i}:
In this case we have that A|i = A′|i, B|i = B′|i, |D′|i = |D|i, and
|D′|? = |D|?. Thus the case follows immediately from (IH).

�

Now the core idea is to reduce the compositionality problem for stateful con-
straints to ordinary constraints using the translation trpc . For that reason we
need to show that the translation is correct, i.e., that the set of models of the
input constraint is exactly the set of models of the translation:

Lemma 5.20 (Semantic equivalence of reduction) Let A be a con-
straint and D = {`1 : (t1, s1), . . . , `n : (tn, sn)}. Assume that

• all unifiable set operations occurring in A and D carry the same label, i.e.,
if ` : (t, s), `′ : (t′, s′) ∈ labeledsetops(A) ∪ D and ∃δ. δ((t, s)) = δ((t′, s′))
then ` = `′, and

• the variables occurring in D do not occur in the bound variables of A.

Then the models of A are the same as the models of trpc(A), i.e., JM, I(D);AKs I
iff there exists B ∈ trpc

D (A) such that JM ;BK I.
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Proof. This statement is very similar to Theorem 4.11. Note also that the
first assumption of Lemma 5.20 is similar to Definition 5.4(4).

For this proof let us first define yet another variant of tr where we in the delete,
∈̇, and 6 ∈̇ cases do not project D to the current label ` (in contrast to trpc):

tr
pc
D (0) = {0}

tr
pc
D (` : insert(t, s).A) = tr

pc
D∪{` : (t,s)}(A)

tr
pc
D (` : delete(t, s).A) = {
`1 : (t, s)

.
= d1. · · · .`i : (t, s)

.
= di.`i+1 : (t, s) 6 .= di+1. · · · .`n : (t, s) 6 .= dn.A′ |

D = {`1 : d1, . . . , `i : di, . . . , `n : dn}, 0 ≤ i ≤ n,A′ ∈ tr
pc
D\{`1 : d1,...,`i : di}(A)}

tr
pc
D (` : t ∈̇ s.A) = {`′ : (t, s)

.
= d.A′ | `′ : d ∈ D,A′ ∈ tr

pc
D (A)}

tr
pc
D (` : (∀x̄. t 6 ∈̇ s).A) = {`1 : (∀x̄. (t, s) 6 .= d1). · · · .`n : (∀x̄. (t, s) 6 .= dn).A′ |
D = {`1 : d1, . . . , `n : dn}, 0 ≤ n,A′ ∈ tr

pc
D (A)}

tr
pc
D (` : a.A) = {` : a.A′ | A′ ∈ tr

pc
D (A)} otherwise

The theorem follows from the following two statements (the assumptions of this
lemma still apply to D and A):

JM, I(D);AKs I iff (∃B′ ∈ tr
pc
D (A). JM ;B′K I) (1)

(∃B ∈ trpc
D (A). JM ;BK I) iff (∃B′ ∈ tr

pc
D (A). JM ;B′K I) (2)

Statement (1) is actually a simple adaption of Theorem 4.11. The rest of this
proof is to show statement (2) and we prove it by proving each direction of the
bi-implication. Both proofs are by induction over the structure of A and we give
the proof only for the most difficult case: delete. All remaining cases are similar.
Note that the assumptions of this lemma still apply, but we skip showing the
proofs of the antecedents of any induction hypothesis we use since those proofs
are trivial.

1. To show:

If B ∈ trpc
D (A) and JM ;BK I then JM ;B′K I for some B′ ∈ tr

pc
D (A).

Case A = (` : delete(t, s)).A0:
In this case we know that B must be of the form:

B = ` : (t, s)
.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .` : (t, s) 6 .= dn.B0

for some B0 ∈ trpc
D\{` : d1,...,` : di}(A0) where |D|` = {` : d1, . . . , ` : dn} and

0 ≤ i ≤ n. We also know that JM ;BK I and therefore JM ;B0K I.
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From the induction hypothesis we can obtain B′0 ∈ tr
pc
D\{` : d1,...,` : di}(A0)

such that JM ;B′0K I. Now obtain `k1 , dk1 , . . . , `km , dkm such that D \
|D|` = {`k1 : dk1 , . . . , `km : dkm}. Hence ` 6= `kj for all j ∈ {1, . . . ,m}
(because |D|` contains exactly the elements of D with label `) and so
JM ; `k1 : (t, s) 6 .= dk1 · · · .`km : (t, s) 6 .= dkmK I because of the unifiability
assumption on the set operations of A and D. Let B′ = φ.B′0 where

φ = ` : (t, s)
.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .

` : (t, s) 6 .= dn.`k1 : (t, s) 6 .= dk1 . · · · .`km : (t, s) 6 .= dkm

We can then conclude that B′ ∈ tr
pc
D (A) and JM ;B′K I.

2. To show:

If B′ ∈ tr
pc
D (A) and JM ;B′K I then JM ;BK I for some B ∈ trpc

D (A).

Case A = (` : delete(t, s)).A0:
In this case we know that B′ must be of the form:

B′ = `1 : (t, s)
.
= d1. · · · .`i : (t, s)

.
= di.

`i+1 : (t, s) 6 .= di+1. · · · .`n : (t, s) 6 .= dn.B′0

for some B′0 ∈ tr
pc
D\{`1 : d1,...,`i : di}(A0) where D = {`1 : d1, . . . , `n : dn} and

0 ≤ i ≤ n. We also know that JM ;B′K I and therefore JM ;B′0K I. Since
(t, s) and d′ are unifiable only if ` = `′, for all `′ : d′ ∈ D, it must be the
case that ` = `j for all j ∈ {1, . . . , i}. We can thus apply the induction
hypothesis to obtain B0 ∈ trpc

D\{` : d1,...,` : di}(A0) where JM ;B0K I. Now
pick the largest subset {k1, . . . , km} of {i + 1, . . . , n} such that `kj = `
for all 0 ≤ j ≤ m. Then |D|` = {` : d1, . . . ` : di, ` : dk1 , . . . , ` : dkm}. Let
B = ` : (t, s)

.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= dk1 . · · · .` : (t, s) 6 .= dkm .B0.

Thus B ∈ trpc
D (A) and JM ;BK I which concludes the case.

�

By a straightforward induction proof over the structure of constraints we can
prove that trpc preserves the properties we need for our compositionality result:

Lemma 5.21 If A is well-formed and parallel composable, and if B ∈ trpc(A),
then B is well-formed and parallel composable.

For proving Theorem 5.5 we now only need to lift Lemma 5.16 to stateful con-
straints. That is, given I |=s A we obtain B ∈ trpc(A) such that I |= B. For
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B we can apply Lemma 5.16; either Iτ |= B|i for all i ∈ L or B leaks, for some
well-typed interpretation Iτ . Finally, with Lemma 5.20 and Lemma 5.19 we can
show that either Iτ |=s A|i for all i ∈ L or A leaks. Thus:

Theorem 5.5. If (A,Sec) is parallel composable and I |=s A then there exists
a well-typed interpretation Iτ such that either Iτ |=s A|` for all protocol-specific
labels ` ∈ L or some prefix A′ of A leaks a secret from Sec under Iτ .
Proof. From the assumptions, Lemma 5.21, and Lemma 5.20 we can obtain a
parallel composable B such that

B ∈ trpc(A) and I |= B (*)

From Lemma 5.16 we can then obtain a well-typed interpretation Iτ such that
either

1. Iτ |= B|` for all ` ∈ L, or

2. some prefix B′ of B leaks a secret from Sec under Iτ .

In the former case it follows from Lemma 5.19, Lemma 5.20, and (*) that
Iτ |=s A|` for all ` ∈ L (note that the assumption of Lemma 5.20 follows
from the fact that B is parallel composable and that the assumption is also
preserved during projections). In the latter case we can obtain a secret s ∈
Sec \ declassified(B′, Iτ ) and a protocol-specific label `s ∈ L such that Iτ |=
B′|`s .send(s). We need to prove that some prefix of A leaks the secret s and
we will do so using the semantic equivalence of trpc . However, there is not
necessarily a corresponding prefix of A with B′ as a translation, and we need
such a prefix to apply Lemma 5.20. Therefore we consider the longest prefix
B′′ of B′ that ends in a receive step (which must exist if s is not derivable from
the empty intruder knowledge). For B′′ we can prove that there exists some
prefix A′′ of A such that B′′ ∈ trpc(A′′). We also know that Iτ |= B′′|`s .send(s)
because B′ and B′′ have the same intruder knowledges (also after projections).
Moreover, declassified(B′′, Iτ ) = declassified(A′′, Iτ ) and ik(B′′) = ik(A′′) (also
after projections). Thus we have that A′′ leaks a secret from Sec under Iτ and
we can therefore conclude the proof. �

5.4.3 Proving the Result for Protocols

Now that we have proven the result on the constraint level we can now prove
Theorem 5.7 for stateful protocols.
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The results in this section have so far only been proven in Isabelle for stateless
protocols, but the pen-and-paper proofs are all for stateful protocols. In fact,
the proofs for stateless and stateful protocols are very similar, and we intend to
formalize it in Isabelle in the near future.

First we define the following abbreviations for arbitrary protocols P1 and P2:

1. P•1 ≡ P1 ‖ P?2

2. P•2 ≡ P?1 ‖ P2

3. P• ≡ {A | A|1 ∈ traces(P•1 ),A|2 ∈ traces(P•2 )}

The main idea is now to prove the compositionality result for P• (Lemma 5.24)
from which the theorem follows. For that reason we first need to show that
the traces of the composed protocol P1 ‖ P2 occur in P• (Lemma 5.22) and
that (P1 ‖ P2,Sec) is parallel composable iff (P•,Sec) is parallel composable
(Lemma 5.23):

Lemma 5.22 traces(P1 ‖ P2) ⊆ P•

Proof. A constraint A ∈ traces(P1 ‖ P2) consists of an interleaving of two
reachable constraints A1 ∈ traces(P1) and A2 ∈ traces(P2). Consider A|1. We
need to prove that this constraint is in traces(P•1 ). We have that A|1 consists
of an interleaving of A1|1 and A2|1, and that A1|1 = A1 ∈ traces(P1) and
A2|1 = A2|? ∈ traces(P?2 ). Thus A|1 ∈ traces(P•1 ) because P•1 = P1 ∪ P?2 . By a
similar argument we can prove that A|2 ∈ traces(P•2 ). �

Lemma 5.23 (P1 ‖ P2,Sec) is parallel composable if and only if (P•,Sec) is
parallel composable.

Proof. Note that all constraint steps that occur in traces(P1 ‖ P2) also occur
in P•, and vice versa. Since all but our well-formedness requirements univer-
sally quantifies over the terms and steps occurring in the protocols we have that
these requirements are satisfied for (P1 ‖ P2,Sec) if and only if they are satisfied
for (P•,Sec). For the well-formedness requirements note that we require all the
reachable constraints plus all of the projections to be well-formed. Since P•

really only differs from traces(P1 ‖ P2) by including ?-projections of (and inter-
leavings of) constraints from traces(P1 ‖ P2) we have that the well-formedness
requirements for traces(P1 ‖ P2) are satisfied if and only if they are satisfied for
P•. �
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Lemma 5.24 If (P•,Sec) is parallel composable, and P•1 is well-typed secure
in isolation (i.e., there does not exist a constraint in traces(P•1 ) of the form
A.(1 : send(attack1)) such that either A.(1 : send(attack1)) is well-typed satisfi-
able or some prefix A′ of A|1 leaks a shared secret under a well-typed model),
then for any attack A.(1 : send(attack1)) ∈ P• on P1, there exists some prefix
A′ ∈ traces(P•2 ) of A|2 that leaks a secret under a well-typed model.

Proof. We first prove that any A.(1 : send(attack1)) ∈ P• is parallel com-
posable. Then we can apply Theorem 5.5 since the constraint is satisfiable
(otherwise it would not be an attack), and since P•1 is secure it must be the case
that some prefix of A′ ∈ traces(P•2 ) of A|2 leaks a secret under a well-typed
model. �

From Lemma 5.22, Lemma 5.23, and Lemma 5.24 follows our main theorem:

Theorem 5.7. If (P1 ‖ P2,Sec) is parallel composable, P1 ‖ P?2 is well-typed
secure in isolation, and P?1 ‖ P2 does not leak a secret under any well-typed
model, then all goals of P1 hold in P1 ‖ P2 (even in the untyped model).

As a consequence of Theorem 5.7 we have the following corollary:

Corollary 5.8. If (P1 ‖ P2,Sec) is parallel composable and P1 ‖ P?2 and
P?1 ‖ P2 are both secure in isolation then the composition P1 ‖ P2 is also secure
(even in the untyped model).
Proof. Apply Theorem 5.7 twice: once to P•1 and once to P•2 .

5.5 Summary and Related Work

Building on the Isabelle-formalized stateful typing result we established in this
chapter a compositionality result for stateful protocols. Our composition theo-
rem for parallel composition is the newest in a sequence of parallel composition
results that are each pushing the boundaries of the class of protocols that can
be composed [HT94, GT00, ACG+08, Gut09, CD09, cCC10, CDKR13, ACD15,
AMMV15]. The first results simply require completely disjoint encryptions; sub-
sequent results allowed the sharing of long-term keys, provided that wherever
the common keys are used, the content messages of the different protocols are
distinguished, for instance by tagging. Other aspects are which primitives are
supported as well as what forms of negative conditions.
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Our result lifts the common requirement that the component protocols only
share a fixed set of long-term public and private constants. More interestingly,
our result also allows for stateful protocols that maintain databases (such as
a keyserver) and the databases may even be shared between these protocols.
This includes the possibility to declassify long-term secrets, e.g., to verify that a
protocol is even secure if the intruder learns all old private keys. Both databases,
shared databases, and declassification are considerable generalizations over the
existing results.

Like [AMMV15] our compositionality result links the parallel compositional-
ity result with a typing result such as the result of Chapter 4, i.e., essentially
requiring that all messages of different meaning have a distinguishable form.
Under this requirement it is sound to restrict the intruder model to using only
well-typed messages which greatly simplifies many related problems. While one
may argue that such a typing result is not strictly necessary for composition,
we believe it is good practice and also fits well with disjointness requirements
of parallel composition. Moreover, many existing protocols already satisfy our
typing requirement, since, unlike tagging schemes, this does not require a mod-
ification of a protocol as long as there is some way to distinguish messages of
different meaning.

There are other types of compositionality results for sequential and vertical com-
position, where the protocols under composition do build upon each other, e.g.,
one protocol establishes a key that is then subsequently used by another proto-
col [ACG+08, EMMS10, cCC10, CCW17, MV09, GM11]. This requires that one
protocol satisfies certain properties (e.g., that the key exchange is authenticated
and secret) for the other protocol to rely on. Our composition result allows for
such sequential composition through shared databases: a key exchange protocol
may enter keys into a shared set, and the other protocol consumes these keys.
Thus our concept of sharing sets generalizes the interactions between otherwise
independent protocols, and one only needs to think about the interface (e.g.,
only authenticated, fresh, secret keys can be entered into the database; they can
only be used once). Moreover, we believe that sets are also a nice way to talk
about this interaction.

Related to vertical composition is Sprenger and Basin’s protocol refinement [SB18].
Protocol refinement is a method for iteratively designing protocols, starting with
abstract security properties, and constructing increasingly more concrete pro-
tocols by replacing abstract concepts with concrete implementations while pre-
serving the initial security properties. One of the abstraction levels assumes ab-
stract secure channels over which communication happens, and the subsequent
refinement implements those channels, resulting in concrete cryptographic pro-
tocols. Such a refinement has similarities to vertical composition (e.g., [GM11])
in which an abstract channel protocol establishes a secure channel over which
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an application protocol runs.

There are several interesting aspects of compositionality that our result does
not cover, for instance, [CDKR13] discusses the requirements for composing
password-based protocols, and [ACD15] investigates conditions under which pri-
vacy properties can be preserved under protocol composition.

Related to protocol compositionality with privacy properties is Gutmann’s cut-
blur principle [GR15] for information flow which establishes a result for safe
information disclosure that is limited to within so-called blur operators. The
cut principle is a method that can be used to effectively reduce verification
of a larger system to a subset of the system under consideration, and it has a
related compositionality principle for privacy-like properties. It is an interesting
question whether one can adapt their results to our setting.

So far, compositionality results for security protocols are solely “paper-and-
pencil” proofs. The proof arguments are often quite subtle, e.g., given an attack
where the intruder learned a nonce from one protocol and uses it in another pro-
tocol, one has to prove that the attack does not rely on this, but would similarly
work for distinct nonces. It is not uncommon that parts of such proofs are a bit
sketchy with the danger of overlooking some subtle problems. For this reason,
we have formalized the compositionality result—on the level of constraints—
in the proof assistant Isabelle/HOL [NPW02], extending the formalization of
Chapters 3 and 4, giving the extremely high correctness guarantee of machine-
checked proofs. To our knowledge, this work is the first such formalization of
a compositionality result in a proof assistant, with the notable exception of a
study in Isabelle/HOL of compositional reasoning on concrete protocols [But12].

Finally, all the works on compositionality discussed so far are based on a black-
box model of cryptography. There are several cryptographic frameworks for
composition, most notably universal composability [Can01, KT11] and reactive
simulatability [BPW07]. Considering the real cryptography makes composi-
tional reasoning several orders of magnitude harder than abstract cryptography
models. It is an intriguing question whether stateful protocol composition can
be lifted to the full cryptographic level.
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Chapter 6

Conclusion

In this thesis we established two kinds of relative soundness results for state-
ful security protocols, namely typing results and compositionality results. We
moreover formalized them in the proof assistant Isabelle/HOL. We first for-
malized an existing typing result [AMMV15] in Isabelle/HOL and then built
upon it to establish a typing result for stateful protocols where participants can
maintain a global mutable state that span multiple sessions. Afterwards, we
established a parallel compositionality result for stateful protocols, extending
the compositionality paradigm to protocols that may share databases. Because
of the generality of our compositionality result we are even able to show that
sequential protocol composition is a special case of stateful parallel composition.

The main contributions of this work is a considerable extension of the composi-
tionality paradigm to stateful protocols, and the formalization in Isabelle/HOL
that provides us with strong correctness guarantees. In fact, we found mistakes
in other works on relative soundness results during our Isabelle-formalization
effort [Möd12, AMMV15]

To demonstrate the practical feasibility of our result we have shown that the TLS
1.2 handshake protocol satisfies the requirements of our typing result. Moreover,
we have defined two stateful keyserver protocols and shown that they satisfy
the conditions of our compositionality result. We have also illustrated how to
connect other protocol formalisms with our symbolic constraints.
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6.1 Future Work

There are several interesting directions for future research that are worthy of
exploration. The most interesting of those can roughly be divided into two
classes: strengthening the result by generalizing to larger classes of protocols
and security properties, and making the results practically usable by integrating
protocol verification methods.

Supporting the Full Geometric Fragment for Security Goals As ex-
plained in Subsection 5.1.2 our constraint language is not quite expressive enough
to support all security goals expressible in the geometric fragment. The rea-
son being is that we currently cannot express negative checks of the form
∀x̄. t1 6 ∈̇ s1 ∨ · · · ∨ tn 6 ∈̇ sn. The most promising solution seems to be to simply
extend our constraint language to support such constraints. This will require
updates throughout our Isabelle formalization, but besides time it is unlikely
that there are any major obstacles in the way.

Algebraic Properties Our term model is currently based on a free algebra
in which terms are equal if they are syntactically equal. An interesting question
for future research is thus if it is possible to support algebraic properties such as
the properties of exponentiation needed to model Diffie-Hellman-based proto-
cols. As already explain in Subsection 2.3.1 the ProVerif tool supports algebraic
properties to some extent by a transformation into Horn clauses (which are in
the free algebra). A similar transformation may also be possible in our setting.
Another possibility would be to work directly with quotient algebras in Isabelle
as in the work of [LS17]. Some of the challenges we face, however, is how to
integrate unification modulo equational theories (since computing most-general
unifiers is such an integral part of our constraint-based approach) and how to
extend our typed model [Möd11].

Equivalence Properties As of now our result has focused entirely on reach-
ability properties which includes confidentiality and authentication goals. There
are other interesting properties like privacy-type goals using equivalence prop-
erties, and results in this direction have been established [CCD14]. Support-
ing such properties may be challenging as they are inherently different from
reachability properties and the constraint-based approach that is used in this
work. Another possibility could be to integrate our approach with α-β pri-
vacy [MGV13]. A question for future research is thus if statefulness and equiv-
alence proofs can be combined.
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Vertical Composition We demonstrated in Subsection 5.3.6 how sequential
composition can be reduced to a stateful parallel composition problem. The
idea is to use dedicated shared databases as a means to hand over information
from one protocol to another. It is possible that vertical composition can also be
recast as stateful parallel composition using a similar approach. For instance,
consider a channel protocol that establishes a secure channel and an abstract
application protocol which depends on a secure channel. The messages from the
application protocol that need to be securely transmitted can be handed over to
the channel protocol using shared sets. The challenge is then to find reasonable
conditions for the channel and application protocols so that the reduction to the
stateful parallel compositionality problem satisfies our composability conditions.

Verifier Integration The work presented in this thesis has focused on estab-
lishing compositionality results and formalizing them in Isabelle. As of now, to
apply our results, one would need to manually model and prove protocols cor-
rect in Isabelle/HOL. Manually verifying protocols correct in Isabelle/HOL can
be cumbersome and extremely time-consuming. Integrating protocol verification
with our results is thus crucial to make them practically available. One approach
would be to use existing Isabelle-frameworks for modeling and proving protocols
manually, e.g., the work of Paulson and Bella [Pau98, Pau99, BMP06, Bel07],
and link those to our typing and compositionality results. A more promising
approach is to have automated tools generate proofs that Isabelle can check,
e.g., by building on existing work in this direction [BM09, MCB13].
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