118 research outputs found

    Caching, crashing & concurrency - verification under adverse conditions

    Get PDF
    The formal development of large-scale software systems is a complex and time-consuming effort. Generally, its main goal is to prove the functional correctness of the resulting system. This goal becomes significantly harder to reach when the verification must be performed under adverse conditions. When aiming for a realistic system, the implementation must be compatible with the “real world”: it must work with existing system interfaces, cope with uncontrollable events such as power cuts, and offer competitive performance by using mechanisms like caching or concurrency. The Flashix project is an example of such a development, in which a fully verified file system for flash memory has been developed. The project is a long-term team effort and resulted in a sequential, functionally correct and crash-safe implementation after its first project phase. This thesis continues the work by performing modular extensions to the file system with performance-oriented mechanisms that mainly involve caching and concurrency, always considering crash-safety. As a first contribution, this thesis presents a modular verification methodology for destructive heap algorithms. The approach simplifies the verification by separating reasoning about specifics of heap implementations, like pointer aliasing, from the reasoning about conceptual correctness arguments. The second contribution of this thesis is a novel correctness criterion for crash-safe, cached, and concurrent file systems. A natural criterion for crash-safety is defined in terms of system histories, matching the behavior of fine-grained caches using complex synchronization mechanisms that reorder operations. The third contribution comprises methods for verifying functional correctness and crash-safety of caching mechanisms and concurrency in file systems. A reference implementation for crash-safe caches of high-level data structures is given, and a strategy for proving crash-safety is demonstrated and applied. A compatible concurrent implementation of the top layer of file systems is presented, using a mechanism for the efficient management of fine-grained file locking, and a concurrent version of garbage collection is realized. Both concurrency extensions are proven to be correct by applying atomicity refinement, a methodology for proving linearizability. Finally, this thesis contributes a new iteration of executable code for the Flashix file system. With the efficiency extensions introduced with this thesis, Flashix covers all performance-oriented concepts of realistic file system implementations and achieves competitiveness with state-of-the-art flash file systems

    Systematic correct construction of self-stabilizing systems: A case study

    Get PDF
    Design and implementation of distributed algorithms often involve many subtleties due to their complex structure, non-determinism, and low atomicity as well as occurrence of unanticipated physical events such as faults. Thus, constructing correct distributed systems has always been a challenge and often subject to serious errors. We present a methodology for component-based modeling, verification, and performance evaluation of self-stabilizing systems based on the BIP framework. In BIP, a system is modeled as the composition of a set of atomic components by using two types of operators: interactions describing synchronization constraints between components, and priorities to specify scheduling constraints. The methodology involves three steps illustrated using the distributed reset algorithm due to Arora and Gouda. First, a high-level model of the algorithm is built in BIP from the set of its processes by using powerful primitives for multi-party interactions and scheduling. Then, we use this model for verification of properties of a self-stabilizing algorithm. Finally, a distributed model which is observationally equivalent to the high-level model is generated. © 2010 Springer-Verlag

    A Machine-Checked, Type-Safe Model of Java Concurrency : Language, Virtual Machine, Memory Model, and Verified Compiler

    Get PDF
    The Java programming language provides safety and security guarantees such as type safety and its security architecture. They distinguish it from other mainstream programming languages like C and C++. In this work, we develop a machine-checked model of concurrent Java and the Java memory model and investigate the impact of concurrency on these guarantees. From the formal model, we automatically obtain an executable verified compiler to bytecode and a validated virtual machine

    IST Austria Thesis

    Get PDF
    Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks. In a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning. In a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. Our approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step

    Lessons from Formally Verified Deployed Software Systems (Extended version)

    Full text link
    The technology of formal software verification has made spectacular advances, but how much does it actually benefit the development of practical software? Considerable disagreement remains about the practicality of building systems with mechanically-checked proofs of correctness. Is this prospect confined to a few expensive, life-critical projects, or can the idea be applied to a wide segment of the software industry? To help answer this question, the present survey examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use. It considers the technologies used, the form of verification applied, the results obtained, and the lessons that can be drawn for the software industry at large and its ability to benefit from formal verification techniques and tools. Note: a short version of this paper is also available, covering in detail only a subset of the considered systems. The present version is intended for full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author

    Extending Event-B with discrete timing properties

    No full text
    Event-B is a formal language for systems modelling, based on set theory and predicate logic. It has the advantage of mechanized proof, and it is possible to model a system in several levels of abstraction by using refinement. Discrete timing properties are important in many critical systems. However, modelling of timing properties is not directly supported in Event-B. In this work, we identify three main categories of discrete timing properties for trigger response patterns, deadline, delay and expiry. We introduce language constructs for each of these timing properties that augment the Event-B language. We describe how these constructs have been given a semantics in terms of the standard Event-B constructs. To ease the process of using timing properties in a refinement-based development, we introduce patterns for refining the timing constructs that allow timing properties on abstract models to be replaced by timing properties on refined models. The language constructs and refinement patterns are illustrated through some generic examples.We have developed a tool to support our approach. Our tool is a plug-in to the Rodin tool-set for Event-B and automates the translation of timing properties to Event-B as well as the generation of gluing invariants, required to verify the consistency of timing properties refinement. In the end, we demonstrate the practicality of our approach, by going through the modelling and verifying process of two real-time case studies. The main focus will be the usefulness of the timing refinement patterns in a step-wise modelling and verification process of a real-time system

    SAVCBS 2004 Specification and Verification of Component-Based Systems: Workshop Proceedings

    Get PDF
    This is the proceedings of the 2004 SAVCBS workshop. The workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to establish a suitable foundation for the specification and verification of component-based systems. Component-based systems are a growing concern for the software engineering community. Specification and reasoning techniques are urgently needed to permit composition of systems from components. Component-based specification and verification is also vital for scaling advanced verification techniques such as extended static analysis and model checking to the size of real systems. The workshop considers formalization of both functional and non-functional behavior, such as performance or reliability
    • 

    corecore