
Systematic Correct Construction of

Self-stabilizing Systems: A Case Study⋆

Ananda Basu2, Borzoo Bonakdarpour1, Marius Bozga2, and Joseph Sifakis2

1 Department of Electrical and Computer Engineering
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada, N2L 3G1

2 VERIMAG
2 Avenue de Vignate
38610, Gières, France

Abstract. Design and implementation of distributed algorithms often
involve many subtleties due to their complex structure, non-determinism,
and low atomicity as well as occurrence of unanticipated physical events
such as faults. Thus, constructing correct distributed systems has al-
ways been a challenge and often subject to serious errors. We present
a methodology for component-based modeling, verification, and perfor-
mance evaluation of self-stabilizing systems based on the BIP frame-
work. In BIP, a system is modeled as the composition of a set of atomic
components by using two types of operators: interactions describing syn-
chronization constraints between components, and priorities to specify
scheduling constraints. The methodology involves three steps illustrated
using the distributed reset algorithm due to Arora and Gouda. First, a
high-level model of the algorithm is built in BIP from the set of its
processes by using powerful primitives for multi-party interactions and
scheduling. Then, we use this model for verification of properties of a
self-stabilizing algorithm including closure, deadlock-freedom, and finite
reachability of the set of legitimate states. Finally, a distributed model
which is observationally equivalent to the high-level model is generated.
This model is used for performance analysis taking into account the de-
gree of parallelism and convergence times for failure-free behavior as well
as in the presence of faults.

Keywords: Component-based modeling, Verification, Self-

stabilization, Distributed algorithms, Reset algorithms.

1 Introduction

Distributed systems are constructed from a set of relatively independent com-
ponents that form a unified, but geographically and functionally diverse entity.

⋆ This is an extended version of the paper presented at SSS’10. This work is sponsored
by the COMBEST European project. For all correspondence, please contact Borzoo
Bonakdarpour at borzoo@ecemail.uwaterloo.ca.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147994318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

They remain difficult to design, build, and maintain, because of their inherently
concurrent, non-deterministic, and non-atomic structure as well as the occur-
rence of unanticipated physical events such as faults.

We currently lack disciplined methods for rigorous design and correct imple-
mentation of distributed systems. These systems are still being constructed in
an ad-hoc fashion in practice, mainly for two reasons: (1) formal methods are
not easy to use by engineers; and (2) there is a wide gap between modeling for-
malisms and automated verification tools on one side, and practical development
and deployment tools on the other side. In fact, it is not clear how existing re-
sults can be consistently integrated in design and implementation methodologies.
Formalisms such as process algebras [1], I/O automata [17, 23], and Unity [10]
have been used for modeling and reasoning about the correctness of distributed
systems. These methods are either too formal to be used by engineers, or, they
require the designer to specify low-level elements of a distributed system such
as channels and schedulers [23]. Numerous techniques and algorithms have also
been introduced for adding reliability and fault-tolerance to distributed sys-
tems. Moreover, an interest has recently emerged in verification of distributed
algorithms. While these approaches play an important role in formalizing and
achieving correctness of distributed algorithms, we believe that a more practical
systematic approach for modeling, verification, and as importantly deployment
of distributed systems is still required.

In this paper, we apply a methodology which consistently integrates mod-
eling, verification, and deployment techniques, based on the BIP (Behavior,
Interaction, Priority) framework [3, 4]. BIP is based on a semantic model en-
compassing composition of heterogeneous components. In contrast to all other
formalisms using a single type interaction (e.g., rendezvous, asynchronous mes-
sage passing), BIP uses two families of composition operators for expressing
coordination between components: interactions and priorities. Interactions are
expressed by combining two protocols: rendezvous and broadcast, which makes
BIP more expressive than any formalism based on a single type of interaction [6].
Supporting tools of BIP’s theory include techniques for model verification [20]
as well as for generating from a high-level model an observationally equivalent
multi-threaded or distributed implementation [3, 7, 8].

To illustrate our methodology, we focus on self-stabilizing systems. Pioneered
by Dijkstra [11], a self-stabilizing distributed algorithm guarantees that starting
from an arbitrary state, it converges to a legitimate state (from where it satis-
fies its specification) and remains thereafter. As Dijkstra points out in a belated
proof of correctness of his token ring algorithm [12], designing and deploying
correct self-stabilizing algorithms is not a trivial task at all, although it initially
seems straightforward. We describe our methodology to overcome these diffi-
culties using the distributed reset self-stabilizing algorithm [2]. We demonstrate
how refinement of a simple algorithm to a less high-level model involves many
subtleties that may dramatically affect the correctness of the refined model. We
also show how BIP facilitates rigorous modeling, verification, and performance
analysis of the distributed reset algorithm. Our methodology involves three steps:

– The starting point is a high-level BIP model of a distributed system ob-
tained as the composition of a set of components. This model represents
a system with a global state and atomic transitions. Interactions may lead
the system from one global state to another. Modeling a distributed system
in such a high-level model confers numerous advantages such as modularity
by using abstract behavioral components and faithfulness as coordination is
directly expressed by using abstract multi-party interactions instead of low-
level primitives. We also show how different functions of a self-stabilizing
system (e.g., normal as well as recovery) can be elegantly modeled in BIP in
an incremental manner.

– We use this compact high-level model for verification of safety and liveness
properties that any self-stabilizing algorithm must satisfy. These properties
include closure, deadlock-freedom, and finite reachability of the set of legit-
imate states. We verify these properties on our BIP model for distributed

reset by using model checking techniques.
– Finally, a multi-threaded or distributed executable C++ code is automati-

cally generated from the high-level model for simulations and experiments
[3, 7, 8]. This C++ code faithfully represents an actual multi-threaded or
distributed implementation of the high-level model. It is obtained by ap-
plying two transformations preserving observational equivalence [3,7,8]: (1)
multi-party interactions are substituted by protocols based on asynchronous
message passing; (2) the state of a component is undefined (due to con-
currency) when it performs some internal computation. In this paper, we
use a multi-threaded implementation in order to conduct guided simulations
for estimating performance of distributed reset. This includes analysis taking
into account the degree of parallelism and convergence times for failure-free
behavior as well as in the presence of faults.

Organization of the paper. In Section 2, we review the distributed reset

algorithm and basic concepts of the BIP framework. In Section 3, we formally
model distributed reset in BIP. Section 4 is dedicated to verification of distributed

reset. We describe our experiments and analyze the performance of distributed

reset in Section 5. Finally, we conclude in Section 6.

2 Background

2.1 Distributed Reset

Intuitively, distributed reset [2] augments functionality of a distributed system
with a subsystem where each process can initiate a global reset to a predefined
global state. Each process is associated with a set of adjacent processes with
which it can communicate. At any time instant, an alive process may crash
which results in change of the list of adjacent processes. The reset subsystem
consists of the following three layers (see Figure 1-a):

– In the tree layer, adjacent processes communicate in order to construct and
maintain a rooted spanning tree throughout the alive processes. Thus, any

Process 1

APPLICATION

WAVE

TREE

Process 2

APPLICATION

WAVE

TREE

1

2 2

3

4 4

(a) Two adjacent processes in
distributed reset.

p, v

U : v := Max(v1, v2, v3)
G : true

D1 : v1 := v

p1, v1 p3, v3p2, v2

D3 : v3 := v

D2 : v2 := v

i1 i2 i3
f1() f2() f3()

B1 B2 B3

p1 p2 p3

(b) A simple BIP model.

Fig. 1. Preliminary concepts.

changes in the adjacency relationship of processes eventually result in cor-
responding changes in the structure of the spanning tree. The tree layer

is self-stabilizing in that starting from any arbitrary topology and initial
structure, construction of a rooted spanning tree within a finite number of
steps is guaranteed. Thus, faults such as process failures and local variable
corruptions do not result in permanent destruction of the spanning tree.
Communication among these processes establish Channel 1 in Figure 1-a.

– The application layer may locally choose to initiate a global reset. In this
case, the corresponding local component sends a request to the local wave

layer described next (see Channel 4 in Figure 1-a).

– The wave layer may receive a reset request from the application layer in order
to start a global reset. In this case, the local wave component of a process
forwards the request to its parent in the current spanning tree until the re-
quest reaches the root. Once the root receives a reset request, it initiates
a diffusing computation as follows. First, the root resets its own state and
then initiates a reset wave. The reset wave travels towards the leaves of the
spanning tree and causes the wave component of each encountered process
to reset its state. When the reset wave reaches a leaf process, it bounces as a
completion wave that travels towards the root process. A process propagates
the completion wave to its parent if all its offsprings are complete (see Chan-
nel 3 in Figure 1-a). When the completion wave reaches the root, the global
reset is complete. Each wave component maintains a session number in or-
der to ensure that concurrent resets do not interfere. The wave layer is also
self-stabilizing in the sense that starting from any arbitrary configuration
of the wave components, the algorithm guarantees an eventual global reset
within a finite number of steps. The wave layer always assumes the existence

of a sound rooted spanning tree. Thus, the only piece of information that a
tree component shares with the corresponding local wave component is the
identity of the parent process in the spanning tree (see Channel 2 in Figure
1-a).

2.2 The BIP Framework

In the BIP language [4, 5, 22], an architecture is characterized as a hierarchi-
cally structured set of components obtained by composition from a set of atomic
components. Composition is parameterized by sets of interactions between the
composed components. The BIP toolset has a compilation chain allowing the
generation of different types of C++ code (e.g., monolithic, real-time, multi-
threaded, distributed, etc) from BIP models. The generated code is modular
and can be executed on a dedicated middleware consisting of one or more En-
gines that orchestrate the computation of atomic components by executing their
interactions. Hierarchical description allows incremental reasoning and progres-
sive design of complex systems. Priorities among interactions allow specifying
scheduling policies in BIP.

A BIP component is characterized by its interface and its behavior. An in-
terface consists of a set of external ports used to specify interactions. Each port
p is associated with a set vp of variables which are visible when an interaction
involving p is executed. It is assumed that the ports and associated variables
of atomic components are disjoint. The behavior of atomic components is de-
scribed as a finite state automaton extended with data and functions given in
C++. A transition of the automaton is labeled by (1) a port p through which an
interaction is sought, (2) a function f describing a local computation, and (3)
a guard g on local data. For a given control state, a transition can be executed
if its guard g is true and an interaction involving p is possible (we precisely
define the notion of interactions later in this section). Execution of transitions
is atomic: it is initiated by the interaction and followed by the execution of f .
A component may have internal ports as well. Transitions labeled by internal
ports are executed independently and do not require initiation of an interaction.

Graphical notation. An atomic component (i.e., its behavior and interface)
is placed in a box (see Figure 1-b). Each external port and its corresponding
variables are placed in a rectangle inside its containing component. Behavior of
a component is described by the classic notation of an automaton. We use a
solid (respectively, dotted) arrow to denote a transition labeled by an external
(respectively, internal) port.

Composition consists of applying a set of connectors to a set of components.
A connector is defined by:

1. its support set of ports {p1, . . . , pn} of the composed components;
2. optionally an exported port p by the connector and the associated variables;
3. its set of interactions, that are, subsets of the set {p1, . . . , pn}. Each inter-

action α = {pi1 . . . pik
} is annotated by

(a) a guard G, Boolean expression involving variables associated with the
ports pij

involved in the interaction α;
(b) an upstream transfer function U specifying flow of data from variables

associated with the support set of ports towards the associated variables
of the exported port;

(c) and downstream transfer functions Di1 , . . . ,Dik
specifying flow of data

from the variables associated with the exported port towards variables
associated with the support set of ports.

When it is clear from the context, we simply denote a connector by only its
support set of ports (i.e., 〈p1 . . . pn〉). The set of interactions associated with a
connector is defined using a typing mechanism of ports in its support set of ports.
We distinguish two types of ports: synchron and trigger. Any set of support ports
that is either maximal or it contains a trigger denotes a valid interaction. Intu-
itively, a synchron is a passive port, and needs synchronization with other ports.
In other words, such a port cannot initiate an interaction without synchronizing
with other ports. However, a special case (such as the one in Figure 1-b) is a
connector that only involves synchrons. Such a connector denotes a rendezvous
and requires all ports to participate. On the other hand, a trigger is an active
port, and can initiate an interaction without synchronizing with other ports. The
global behavior resulting from the application of a connector to a set of compo-
nents is defined as follows. An interaction α = {pi1 . . . pik

} of the connector is
enabled only if for each one of its ports pij

, there exists an enabled transition in
some component labeled by pij

. Execution of the interaction involves two steps:

1. a temporary variable v is assigned the value U(vpi1
, . . . , vpik

);
2. the variables vij

associated with the ports pij
are assigned values Dij

(v).

The execution of an interaction is followed by the execution of the local com-
putations of the synchronized transitions. A composite component is recursively
obtained from a set of atomic or sub-components by successive (i.e., acyclic)
application of connectors. The support set of any connector contains ports ex-
ported either by sub-components or other existing connectors.

Graphical notation. A connector is represented as a solid line connecting
all ports in its support set. The exported port by a connector is placed over
the connector. A solid circle attached to an external port denotes a synchron
and a triangle denotes a trigger (see Figure 2-b). A composite component is
also respresented as a box containting its sub-components and their respective
connector hierarchy.

In Figure 1-b, we provide a simple composite component. It is composed of
three atomic components B1, B2, and B3. Each atomic component Bk holds
an integer variable vk, exported through an external port pk. Additionally, the
component has an internal port ik which triggers the execution of an internal
computation defined by the function fk. The ternary connector defines the inter-
action {p1, p2, p3} which is a rendezvous among external ports p1, p2, and p3. As

a result of this interaction, following the definition of upstream an downstream
transfer functions, each component receives the maximum of the exported val-
ues. Notice that the exported port of the connector belongs to the interface of
the composite component, that is, it can be used for further interactions.

3 Modeling Distributed Reset in BIP

We model distributed reset according to the BIP system construction methodol-
ogy: (1) designing the behavior of each atomic component (i.e., an automaton
extended by variables and ports), (2) applying synchronization mechanisms for
ensuring coordination of distributed components through interactions, and (3)
specifying scheduling constraints by using priorities. We apply this methodology
to model the wave layer and the tree layer in a modular manner in Subsections 3.1
and 3.2, respectively. Then, we add cross-layer connectors in Subsection 3.3. We
also systematically model normal, recovery, and faulty behaviors of distributed re-

set using independent interactions. From the wave and tree components designed
in this section, one can incrementally build a distributed system equipped with
the distributed reset functionality according to a topology of interest.

3.1 The Wave Layer

The wave layer of distributed reset assumes that a sound rooted spanning tree
exists throughout the distributed system. Thus, the wave layer is only con-
cerned with achieving a self-stabilizing diffusing computation to accomplish a
distributed reset. Each process in the distributed system contains a wave atomic
component.

Normal Operation We start with modeling the normal operation of the wave

layer, where each component works correctly in the absence of faults.

Interface and Behavior

– (Exported Ports) A wave component has the following four ports: (1)
pRequest for propagating a reset request from a child to its parent, (2) pReset
for enforcing a child to reset its state by the parent, (3) pComplete for in-
forming a node that its subtree has completed diffusing computation, and
(4) pPc for identifying adjacent processes that are neither a child nor a par-
ent. As can be seen in Figure 2-a, each port is associated with a subset of
variables of the component.

– (Variables) Each component maintains the following variables: (1) an in-
teger index to represent the unique index of the component, (2) an integer
f to keep the index of the parent process in the spanning tree, and (3) an
integer sn for the session number of the current ongoing reset.

NORMAL

INIT

RESET
pReset

pReset

pRequest

pComplete

pRequest

pComplete

pResetpComplete

myRequest

pReset, index, f, sn pRequest, index, f

pComplete, index, fpPc, index, f

myReset

G: f = index

(a) Behavior and interface

pResetpRequest

pComplete

pReset

pRequest

pReset

pRequest

pComplete pCompletepPc pPc

pPc

pX1 pX2

pY1 pY2

G
:
w
2 .f =

 w
.in
d
ex

G
:
w
1
.f
 =
 w
.i
n
d
ex

G
:

w
2 .f ≠

 w
.in
d
ex

G
:

w
1
.f
 ≠

 w
.i
n
d
ex

W

W1 W2

G
:(
w
2 .f

=
w
.in
d
ex)

 (
w

.sn
=

 w
2 .sn
 +

 1
)

D
: w

2 .sn
:=

 w
2 .sn

+
1
;

G
:

 (
w
1
.f
 =
 w
.i
n
d
ex
)

 (
w

.s
n

=
 w
1
.s
n
 +
 1
)

D
:
w
1
.s
n
:=
 w
1
.s
n
+
1
;

(b) Interactions

Fig. 2. Normal operation of the wave layer.

– (Automaton) A wave component has three control states: NORMAL, INIT , and
RESET (see Figure 2-a). Initially, all components are in the NORMAL control
state. A wave component may move to INIT by either enabling the myRequest
internal port (e.g., from the application layer of the same process) or when a
reset request is received via the pRequest port. This move occurs during the
request wave. Next, the component moves from INIT to RESET and resets its
state when the port pReset is enabled during the reset wave. A component
may also move from INIT to RESET on port pReset , if it was not involved
in the request wave. Finally, a wave component moves back to NORMAL on
port pComplete, when its subtree has completed the completion wave. A
completed wave component is either in NORMAL control state or in INIT if
another reset has already been initiated in its subtree. The pComplete self-
loop at this control state is added for this reason.

Interactions

Interactions among wave components are specified in terms of a set of
connectors between them. Notice that each process is associated with a set of
adjacent processes according to a topology. In order to make our design as flex-
ible as possible, the static design of connectors should provide the potential of
communication between any two adjacent processes depending upon the topol-
ogy. Nonetheless, the actual communication in the wave layer should occur only
between processes that are allowed to do so by the parent-child relationship de-
termined by the tree layer. This is similar to designing a circuit of electronic
components with a set of switches, where depending upon the state of switches
only a subset of wires between components work. Let w be a wave component
whose adjacent neighbors are w1 · · ·wn. We categorize the interactions based
on the three waves of the wave layer. These connectors construct Channel 3 of
Figure 1-a:

– (Request Wave) The first set of connectors is {〈(w.pRequest)(wi.pRequest)〉 |
1 ≤ i ≤ n}. These connectors allow the component w at NORMAL to synchro-
nize with a component wi, that is already in control state INIT : wi synchro-
nizes with w by taking the pRequest self-loop at control state INIT . Figure
2-b presents an example, where w has two adjacent processes w1 and w2.
The connectors between pRequest ports are associated with a guard to en-
sure correct parent-child relationship and bottom-up flow of requests (e.g.,
w.index = w1.f). Hence, if two processes are adjacent due to the topology,
but not in any parent-child relationship, they do not interact to send or re-
ceive reset requests. This guard is present in almost all of the connectors in
the wave layer. Symmetric conditions in adjacent processes (e.g., w1 is parent
of w) are omitted from the figure for simplicity. Recall that since BIP allows
us to associate ports with variables, evaluation of the above guard does not
require explicit use of shared memory.

– (Reset wave) The second set of connectors is {〈(w.pReset)(wi.pReset)〉 | 1 ≤
i ≤ n}. Once the root (of the spanning tree) wave component moves to
INIT , it goes to RESET without synchronizing on port pReset . This is man-
aged through specifying an internal transition from INIT to RESET with guard
(w.f = w.index). Once a process is in RESET , its children can go to RESET

from either NORMAL or INIT by synchronizing on port pReset . In other words,
a child whose parent is in RESET can reset its state regardless of its past desire
to initiate a global reset. A parent synchronizes with its resetting children
through the pReset self-loop at control state RESET . Similar to the connector
between pRequest ports, we ensure that only a parent can propagate the
reset wave to its children by specifying a guard on the connector between
pReset ports. This guard also ensures that the session number of a child is
one less than the session number of its parent. Finally, when the reset con-
nector gets enabled, it increments sn of the child component to mark the
session number of the current reset wave.

– (Completion wave) A process declares completion only if all its children are
complete (which essentially means its entire subtree is complete). The com-
pletion mechanism inherently requires a multi-party rendezvous. However,
our design should be flexible in that it allows bypassing adjacent processes
that are neither a parent nor a child. To this end, we construct a hierarchi-
cal connector as follows. First, we include a connector between pPc ports
of w and wi, where 1 ≤ i ≤ n, which gets enabled when w and wi are not
in a parent-child relationship. This connector exports the trigger port pX i,
which gets enabled when the completion of wi is irrelevant to w. Now, the
pair of pX i and wi.pComplete constructs another connector, which exports
the port pY i. This port is present in the rendezvous that covers all wi compo-
nents. The full interaction can be characterized by the following rendezvous:
〈(w.pComplete)pY 1pY 2 · · · pY n〉, where pY i = 〈(pX i) + (wi.pComplete)〉
and pX i = 〈(w.pPc)(wi.pPc)〉. The ‘+’ operator denotes a choice between
two enabled ports.

NORMAL

INIT

RESET
f

f

fSn

fSn

fSn

sn=(sn + rand())%K

sn=(sn + rand())%K

sn=(sn + rand())%K

d ≥ kd ≥ k d ≥ kd ≥ kG: (rand()%100)<prob

(a) Faulty behavior

NORMAL

INIT

RESET

pRec12

pRec12

pRec11

pRec11

pRec13

pRec13

pRec11, index, f, sn

pRec12, index, f, sn pRec13, index, f, sn

(b) Recovery type 1

NORMAL

INIT

RESET

pRec22

pRec22

pRec22

pRec21

pRec22, index, f, sn

pRec21, index, f, sn

(c) Recovery type 2

Fig. 3. Self-stabilization of the wave layer.

Notice that starting from an initial state and operating normally, the global
state of the set of all components in the wave layer arranged on a rooted spanning
tree should remain in the following set of legitimate states, for any two wave
components w1 and w2:

Sw ≡ ∀w1, w2 :: ((w1.f = w2.index ∧ ¬ w2.RESET) ⇒
(¬w1.RESET ∧ w1.sn = w2.sn)) ∧

((w1.f = w2.index ∧ w2.RESET) ⇒
((¬w1.RESET ∧ w2.sn = w1.sn + 1) ∨ w2.sn = w1.sn)).

Faulty Behavior In distributed reset, faults can lead a process to reach any
arbitrary state in ¬Sw (See Figure 3-a). The transitions labeled by internal port
f cause a process to go to RESET from either INIT or NORMAL without synchronizing
with its parent. Faults labeled by fSn are self-loops that corrupt the session
number of a process by executing the C++ instruction sn = (sn + rand())

% K, where K is the maximum number of processes. To make the occurrence
of faults a random event, we associate the guard of fault transitions with a
probability prob. Notice that the union of transitions in Figures 2-a and 3-a may
lead a wave component to reach any arbitrary state. Finally, fault transitions are
labeled by internal ports making their occurrence independent of synchronization
constraints.

Self-stabilization

Interface and Behavior. We model self-stabilization of the wave layer based
on violation of either conjuncts of Sw. Essentially, the recovery mechanism should
ensure that starting from any state in ¬Sw, the entire distributed system can
reach a state in Sw within a finite number of steps. For the first conjunct (see
Figure 3-b), first, we consider the case where a parent process is not in RESET , but
one of its children is. To resolve this case, it suffices for the child to (1) move to

the control state where its parent is (i.e., either NORMAL through synchronization
on port pRec11 or INIT through port pRec12), and (2) copy the session number
from the parent to ensure consistency. Then, to resolve the case where a parent
and its child are in the same control state but their session numbers differ, the
processes synchronize on port pRec13 and the child copies the parent’s session
number.

For the second conjunct (see Figure 3-c), if a process and one of its children
are in RESET , but their session numbers differ, then they synchronize on port
pRec21 and the child copies the session number. Finally, if a process is in RESET ,
but one of its children is not in RESET and the child’s session number is not one
less than its parent’s, then they synchronize on port pRec22 and the child copies
the session number.

Interactions. Recovery connectors define interactions on corresponding ports
between adjacent components. Thus, the set of connectors is
{〈(w.pRecjk)(wi.pRecjk)〉 | (i = 1..n) ∧ (j = 1..2) ∧ (k = 1..3)}, where wi is
adjacent to w. Similar to the normal operation, we associate guards with recov-
ery connectors to ensure the correct parent-child relationship among the adjacent
processes. Moreover, we incorporate data transfer as explained in Subsection 2.2
in interactions for copying session numbers.

3.2 The Tree Layer

The tree layer is concerned with a self-stabilizing algorithm for constructing a
rooted spanning tree (see Figures 4-a and 4-b)

Interface and Behavior

– (Exported Ports) Adjacent processes in the tree layer communicate via
three ports: (1) pForest when two adjacent processes identify two different
roots, (2) pNeighbor when two a parent and a child identify an inconsistency
between them (i.e., existence of multiple roots, incorrect shortest distance to
the root, or a root process that is not self-parent), and (3) pPc when a parent
process crashes. Port pCycle is used for cross-layer interactions described in
Subsection 3.3.

– (Variables) Each tree component maintains the following variables: (1) an
integer index to represent the unique index of the component, (2) an integer
f to keep the index of the parent process in the spanning tree, (3) an integer
root that contains the index of the root process, and an integer d whose
value is the distance of the process to the root. The value of index is equal
to that of the corresponding wave component and is specified statically. The
value of f , however, is determined at runtime across the tree layer. Thus, the
tree and wave components of a process need to communicate to maintain
consistency. We address this issue in Subsection 3.3. Each component also
maintains an array N , which contains the index of all adjacent processes.

DOWN

fCrash

fCorrupt

pRepair

pCycle

pForest

pNeighbor

pLocal

G: (root < index)

 (f = index

 (root ≠ index d ≠ 0))

D: root := index;

f := index;

d := 0;

pCycle, index, fpForest, index, f, root, d

pNeighbor, index, f, root, d

pPc

pPc, index, f

pPcUP

G: d ≥ K

D: root := index;

 f := index;

d:=0;

(a) Tree component

pCycle

pNeighbor

t2

w2

pNewParent

process2

G: (t1.f = t2.index) ((t1.root ≠ t2.root) (t1.d ≠ t2.d+1))

D: t1.root := t2.root; t1.d := t2.d+1;

D
: w

2 .f :=
 t2 .f;D

:
w
1
.f

 :
=

 t
1
.f

 ;

pForest

G: (t1.root < t2.root) ((t1.root = t2.root) t1.d ≠ t2.d+1))

D: t1.root := t2.root; t1.f := t2.f ; t1.d := t2.d+1;

D: w2.f := t2.f;

pCycle

pNeighbor

t1

w1

pNewParent

process1

pForest

D: w1.f := t1.f;

pPc pPc

G:

t1.f = t2.index

D:

t1.f := t1.index;

t1.root := t1.index;

(b) The tree layer and cross-layer inter-
actions

Fig. 4. The tree layer.

– (Automaton) Initially, all processes are alive and in the UP control state.
Faults can alter the value of variables f , root , and d arbitrarily through the
internal port fCorrupt . Also, each process may crash and go to the control
state DOWN through the internal port fCrash. A crashed process may get
repaired and return to the UP control state through internal port pRepair .
Thus, faults can potentially break a rooted tree into forests, create cycles,
and cause (local or global) inconsistencies. A tree component participates in
resolving the above issues when it is in control state UP. A local inconsistency
is detected in a tree component through the internal port pLocal associated
with a guard which indicates a discrepancy in the value of either root or d.
A cycle can also be detected locally, if the distance of a process to the root is
greater than the maximum number of processes K. A tree component fixes
a local inconsistency and breaks a cycle by setting root = f = index and
d = 0.

Interactions

Similar to the wave layer, interactions among tree components are specified in
terms of a set of connectors between them according to a topology. Let t be a
tree component whose adjacent processes are t1..tn. The interactions between
tree components resolve the following issues to construct a rooted spanning tree.
Recall that interactions between tree components construct Channel 1 of Figure
1-a:

– (Process crashes) The set {〈(t.pPc)(ti.pPc)〉 | 1 ≤ i ≤ n} of connectors
are used to inform a process that its parent has crashed. As can be seen
in Figure 4, this connector is enabled when one participating component
is in UP and the other process is in DOWN control state. The guard of the
connector enforces the parent-child relationship. Execution of this interaction
invalidates the variables of the child process whose parent is crashed.

– (Parental inconsistencies) A connector in the set
{〈(t.pNeighbor)(ti.pNeighbor)〉 | 1 ≤ i ≤ n} is enabled when a child and
its parent either do not agree on the same root, or, the child is not located
one step farther of its parent from the root. In either case, the child simply
fixes the root index and its distance according to the parent through the data
transfer mechanism of the connector (see the guard G and transfer function
D of the connector in Figure 4-b).

– (Rooted forests) A connector in the set {〈(t.pForest)(ti.pForest)〉 | 1 ≤
i ≤ n} is enabled when multiple roots are detected by a tree component.
This situation occurs when there exists an adjacent process whose root has
a higher index or the process offers a shorter distance to the root. In this
case, the process updates its root , f , and d variables via the data transfer
mechanism (see the guard G and function D of the connector in Figure 4-b).

Finally, we define the set of legitimate states of the tree layer, where a rooted
tree that spans over all alive processes exists, as follows:

St ≡ (k = max{t.index | t.UP}) ∧
(∀t1 | t1.UP:: (t1.index = k ⇒

(t1.index = t1.root ∧ t1.index = t1.f ∧ t1.d = 0)) ∧
(t1.index 6= k ⇒

(∃t2 ∈ t1.N :: (t1.f = t2.index ∧ t1.d = t2.d + 1 ∧
∀t3 ∈ t1.N :: t2.d ≤ t3.d)))).

3.3 Building Distributed Reset

Given the tree layer and wave layer components, one can easily compose them
and incrementally build a distributed reset system. To this end, we add cross
layer interactions as follows. When a cycle or multiple forests are detected in the
tree layer, a tree component may choose a new parent from its neighbors. In this
case, the wave component of the same process has to update its parent as well,
so the subsequent resets complete maturely (see Channel 2 in Figure 1-a). Thus,
we augment each wave component with a pNewParent port, which synchronizes
with pCycle or an exported port by the pForest connectors to update its parent
(see Figure 4-b).

4 Model Checking Distributed Reset

In this section, we describe our technique to verify the correctness of distributed

reset using classic model-checking. For a finite instantiation of the algorithm by
a grid topology, we start by constructing a finite representation of its overall
behavior as a flat labeled transition systems (Lts) using BIP state-space ex-
plorer [4]. States correspond to configurations reached by the algorithm, and
transitions taken to move from one configuration to another are labeled by the
interactions introduced in Section 3. On the Lts model, we have evaluated a set

of temporal logic formulas encoding the key properties of distributed reset, using
the Evaluator tool of CADP [14,18].

We express the properties using a generic characterization of interactions
(i.e., labels). We note that given the set of legitimate states, such labeling can
be easily automated in the context of verification of self-stabilizing algorithms:

– We add a self-loop labeled steady to each legitimate state. For the wave layer

(respectively, tree layer), all these self-loops participate in a global rendezvous
interaction whose guard satisfies expression Sw (respectively, St) introduced
in Section 3.

– We label each internal fault transition introduced in Section 3 by fault. This
labeling makes the occurrence of a fault an observable event.

– We label the remaining interactions by prog. This includes recovery as well
as interactions that participate in constructing a spanning tree at the tree

layer and interactions that contribute in achieving a global reset at the wave

layer.

We provide the exact definition of properties in regular alternation-free µ-
calculus which is the temporal logic formalism handled by the Evaluator tool.
This logic is an extension of the alternation-free µ-calculus [16] with action
formulas as in ACTL [19] and regular expressions over action sequences as in
PDL [13]. The full syntax and semantics can be found in [18]. We consider the
following properties that any self-stabilizing system must satisfy:

– (closure) legitimate states are preserved by taking non-fault actions (only
faults may reach an illegitimate state from a legitimate state):
φ1 : [any∗] (〈steady〉T ⇒ [prog]〈steady〉T)3

– (deadlock-freedom) from any reachable state, there exists an outgoing pro-
gram transition:
φ2 : [any∗]〈prog〉T

– (reachability) starting from any state, a legitimate state can be reached by
taking only program actions (there always exist a path from any state to a
legitimate state):
φ3 : [any∗]〈prog∗〉〈steady〉T

– (convergence) starting from any state, a legitimate state is eventually reached
by taking only program actions (the algorithm never reaches a cycle outside
legitimate states):
φ4 : [any∗]¬νX. (¬〈steady〉T ∧ 〈prog〉X)

In order to reduce the complexity of verification of distributed reset, we utilize
a compositional approach. Specifically, we infer the correctness of the composite

3 We recall that q |= 〈a〉ϕ iff ∃q
a
−→ q′ : q′ |= ϕ, where q and q′ are two states,

a
−→ is a

transition labeled by a, and ϕ is a formula. Also, q |= [a]ϕ iff ∀q
a
−→ q′ : q′ |= ϕ. The

label any denotes any transition label, i.e., {steady , prog , fault}, T denotes logical
true, and ∗ denotes a sequence. Finally, ν and µ respectively denote the largest and
smallest fixpoints in the µ-calculus.

n states transitions generation time φ1 φ2 φ3 φ4

4 56 649 < 1 < 1 < 1 < 1 < 1
tree 6 7022 81390 29 1 1 2 3

9 2456936 59409357 4000 10 23 19 145

4 996 5840 < 1 < 1 < 1 < 1 < 1
wave 6 27590 189523 36 2 2 3 5

9 1539001 7077649 2500 5 7 6 93

Table 1. Verifying distributed reset using classic model checking.

distributed reset algorithm by verifying the correctness of the tree layer and wave

layer individually. However, such compositional verification needs demonstration
of interference-freedom between components. Let C1 and C2 be two components.
We say that C1 and C2 do not interfere with each other if whenever C1 satisfies
some property ϕ and C2 satisfies some property ϕ′, then their “composition”
(e.g., using BIP interactions) satisfies ϕ ∧ ϕ′.

Theorem 1. The composition of the tree layer and wave layer in the distributed

reset algorithm is interference-free for properties φ1...φ4.

Proof. Notice that the only interaction between the tree layer and wave layer

occurs when a change of parent is decided by the tree layer. This interaction
only involves a unilateral change of parent at the wave layer by the tree layer.
Thus, the wave layer does not interfere with the tree layer in any way. Moreover,
when the wave layer is silent, a change of parent does not change the state of
the wave layer. Thus, the only possible pitfall of the aforementioned interaction
is where an ongoing reset at the wave layer coincides with a change of parent at
the tree layer. Since there exist only a finite number of actions at the tree layer

to construct a spanning tree, the wave layer eventually complete its execution on
the current spanning tree as well. The only consequence of a change of parent is
that the ongoing reset completes immaturely, which is a known and permitted
phenomenon in the original algorithm as well. �

The immediate consequence of Theorem 1 is that we can verify the correct-
ness of the layers of distributed reset independently. In order to generate Lts

models of manageable size for a reasonably large number of processes in the
algorithm we manually applied the following model checking heuristics on the
BIP model:

– We apply abstraction by reducing the domain of values of each variable to
the minimal possible set. For instance, when a fault alters the value of the
root variable in a process, the exact new value does not matter and, hence,
the corresponding illegitimate state can be encoded by a single corrupted
value for the root variable.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
)

Number of nodes

Dynamic Parallelism Policy
Lazy Parallelism Policy

 0
 20
 40
 60
 80

 0 20 40 60 80
N

um
be

r
of

 e
xe

cu
tin

g
 c

om
po

ne
nt

s
Number of nodes

(a) Degree of
parallelism in
tree layer

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
)

Number of nodes

Crash fault
Distance fault

(b) Crash
fault vs.
variable cor-
ruption in
tree layer

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
)

Crash fault factor (%)

(4.6) (6.8)
(10.3)

(14.7)

(11.6)

(12.3)

(17.9)

(14.8)

(24.0)

(c) Effect of
fault factor in
tree layer.

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40 45

C
on

ve
rg

en
ce

 ti
m

e
(s

ec
)

Number of nodes

Non-prioritized execution
Prioritized execution

(d) Effect
of priorities
tree layer and
wave layer.

Fig. 5. Performance analysis.

– We perform a live analysis [9] in every component and based on it, we re-
initialize each variable as soon as it becomes dead on a computation path.

– Finally, we simplify the sequence of occurrence of faults by allowing multiple
types of faults occurring at the same time.

Table 1 summarizes the results about the size of the models in terms of
number of processes in the grid. The Lts generation time as well as the time
needed to verify the properties considered are all in seconds. All verification
tasks are run on a PC with a 3.2GHz Intel Xeon processor and 4GB RAM.

5 Performance Evaluation

The BIP toolset provides us with means for generating C++ multi-threaded [3]
as well as distributed [7] code from high-level BIP models. This feature enables
us to evaluate the performance of distributed algorithms described by high-level
models. This allows in particular, to evaluate the impact of changes to the high-
level model without getting involved with its actual C++ implementation. We
emphasize that the logical properties and dynamics of the C++ model conform
with the high-level model and an actual C++ implementation. Below, we present
the result of some of our experiments and lessons learned in evaluating the per-
formance of distributed reset. We use the multi-threaded C++ code in order to
conduct guided simulations. All experiments in this section are run on a PC with
a Pentium IV 3GHz processor and 1GB memory under Debian Linux. All plots
on each graph is the average value of 10 runs for the corresponding experiment.
The reason for this number of experiments is due to the fact that our models do
not exhibit a high level non-determinism. In fact, we observed that the result of
experiments do not fluctuate significantly.

Degree of Parallelism. The BIP Engine uses different parallelism policies
to execute distributed models. In a lazy policy, the Engine executes only one

interaction at a time. In other words, it waits for all atomic components to com-
plete their internal computation before initiating a new interaction. Conversely,
in a dynamic policy, the Engine allows multiple interactions to be executed in
parallel as long as the overall execution conforms with the sequential semantics
(i.e., their executions are observationally equivalent). Figure 5-a compares the
convergence time of the tree layer under these policies in the absence of faults.
As can be seen, the graph shows that under the dynamic policy convergence is
much faster, as the Engine allows multiple tree components to work simultane-
ously. This makes performance evaluation of distributed algorithms very close
to reality.

Severity of Faults. Figure 5-b compares the effect of d-variable corruption
and crash faults on convergence time of the tree layer. The graphs clearly show
that crash faults’ damage to the spanning tree is more severe than the case
where a process has wrong coordinates of the root. This result is expected, as
crashing a node requires reconstructing the spanning tree, which can be costly.
For instance, if a crashed process is the root, the entire spanning tree has to
be reconstructed. On the other hand, a d-variable corruption can be fixed by a
single interaction with one of the adjacent processes.

Figure 5-c shows the behavior of the tree layer in the presence of crash faults,
where the probability of occurrence of such faults decreases by a fault factor ff ,
where ff < 1. That is, if the current probability of a crash is p for a process, after
the process is repaired, the probability of the subsequent crash for this process
is ff ∗p. As can be seen, the convergence time increases as the fault factor grows
to 60%. However, when the fault factor grows beyond 60%, the tree layer con-
verges faster. This is because there are so many crashed processes that are not
repaired and, hence, not participating in forming a spanning tree. Thus, a high
fault factor reduces the size of actual distributed system (the average number of
process crashes for some plots are available in Figure 5-c).

Effect of specifying priorities. Figure 5-d shows the effect of granting prior-
ity to execution of tree layer over the wave layer. The idea is when the spanning
is broken, the algorithm should focus on reconstructing a new tree rather than
letting the wave layer work. In fact, simultaneous operation of both layers may
result in completing immature resets. In BIP, one can easily specify priorities
among interactions. In particular, we specify a local priority for the tree layer in-
teractions of adjacent processes and Figure 5-d shows slightly faster convergence
for the prioritized tree layer.

6 Conclusion

The paper illustrates the application of a methodology consistently integrating
high-level modeling and verification of functional properties with performance
analysis of a distributed implementation in the BIP framework. BIP allows a
natural high-level description of the coordination between atomic components

by using structured connectors and multiparty interactions. Consistency is en-
sured by results guaranteeing preservation of properties of the initial high-level
model by its implementation. We demonstrated how one can build-up the self-
stabilizing distributed reset algorithm [2] by developing a set of independent
atomic components and then wiring them by using connectors by considering
functional and recovery tasks independently. We also identified a set of safety
and liveness properties that any self-stabilizing algorithm has to satisfy: closure,
deadlock-freedom, and finite reachability of the set of legitimate states starting
from any arbitrary state. We successfully verified these properties for each layer
of distributed reset for a grid topology. For performance evaluation, we used an
automatically generated multi-threaded code observationally equivalent to the
high-level BIP model. The obtained benchmarks show the effect of scheduling
policies and of different types of faults on convergence times and the degree of
parallelism. Here again incremental description by adding or removing architec-
tural features has been very useful for modifying the model.

As illustrated in the paper, our approach advantageously combines an ex-
pressive and rigorous high-level component-based formalism and its associated
distributed implementation. This is extremely beneficial for design and imple-
mentation of complex concurrency control algorithms. In this context, we are
currently working on a generic component-based framework for modeling and
analyzing transactional memory [15,21] algorithms using BIP. We are also work-
ing on a wide range of transformations from high-level BIP models into low-level
actual implementations such as the Message Passing Interface (MPI), multi-core,
and fully distributed platforms. Another interesting research direction is to au-
tomate the procedure presented in this paper by transforming algorithms in
(shared memory) guarded commands into BIP models.

References

1. M. Alexander and W. Gardner. Process Algebra for Parallel and Distributed Pro-
cessing. Chapman & Hall/CRC, 2008.

2. A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers,
43:316–331, 1994.

3. A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed semantics and im-
plementation for systems with interaction and priority. In Formal Techniques for
Networked and Distributed Systems (FORTE), pages 116–133, 2008.

4. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In Software Engineering and Formal Methods (SEFM), pages 3–12, 2006.

5. S. Bliudze and J. Sifakis. Causal semantics for the algebra of connectors. In Formal
Methods for Components and Objects (FMCO), pages 179–199, 2007.

6. S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based
systems. In Concurrency Theory (CONCUR), pages 508–522, 2008.

7. B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. Automated
conflict-free distributed implementation of component-based models. In IEEE
Symposium on Industrial Embedded Systems (SIES), 2010. To appear.

8. B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. From high-level
component-based models to distributed implementations. In ACM International
Conference on Embedded Software (EMSOFT), 2010. To appear.

9. M. Bozga, J.-C. Fernandez, and L. Ghirvu. State-space reduction based on live
variable analysis. Journal of Science of Computer Programming, 47(2-3):203–220,
2003.

10. K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988.

11. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

12. E. W. Dijkstra. A belated proof of self-stabilization. Distributed Computing, 1(1):5–
6, 1986.

13. M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.
Journal of Computer and System Sciences, 18:194–211, 1979.

14. H. Garavel, F. Lang, R. Mateescu, and W. Serve. CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In W. Damm and H. Her-
manns, editors, Computer Aided Verification (CAV), pages 158–163, 2007.

15. M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In ISCA, pages 289–300, 1993.

16. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

17. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo, CA,
1996.

18. R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular
Alternation-Free Mu-Calculus. Science of Computer Programming, 46(3):255–281,
2003.

19. R. D. Nicola and F. Vaandrager. Action versus State Based Logics for Transition
Systems. In Semantics of Systems of Concurrent Processes (La Roche Posay,
France), pages 407–419, 1990.

20. T. N. S. Bensalem, M. Bozga and J. Sifakis. D-finder: A tool for compositional
deadlock detection and verification. In Computer Aided Verification (CAV), pages
614–619, 2009.

21. N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

22. J. Sifakis. A framework for component-based construction extended abstract. In
Software Engineering and Formal Methods (SEFM), pages 293–300, 2005.

23. J. A. Tauber, N. A. Lynch, and M. J. Tsai. Compiling IOA without global synchro-
nization. In Symposium on Network Computing and Applications (NCA), pages
121–130, 2004.

