45,442 research outputs found

    Verified Self-Explaining Computation

    Get PDF
    Common programming tools, like compilers, debuggers, and IDEs, crucially rely on the ability to analyse program code to reason about its behaviour and properties. There has been a great deal of work on verifying compilers and static analyses, but far less on verifying dynamic analyses such as program slicing. Recently, a new mathematical framework for slicing was introduced in which forward and backward slicing are dual in the sense that they constitute a Galois connection. This paper formalises forward and backward dynamic slicing algorithms for a simple imperative programming language, and formally verifies their duality using the Coq proof assistant

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432
    corecore