1,931 research outputs found

    Verification of Java Bytecode using Analysis and Transformation of Logic Programs

    Full text link
    State of the art analyzers in the Logic Programming (LP) paradigm are nowadays mature and sophisticated. They allow inferring a wide variety of global properties including termination, bounds on resource consumption, etc. The aim of this work is to automatically transfer the power of such analysis tools for LP to the analysis and verification of Java bytecode (JVML). In order to achieve our goal, we rely on well-known techniques for meta-programming and program specialization. More precisely, we propose to partially evaluate a JVML interpreter implemented in LP together with (an LP representation of) a JVML program and then analyze the residual program. Interestingly, at least for the examples we have studied, our approach produces very simple LP representations of the original JVML programs. This can be seen as a decompilation from JVML to high-level LP source. By reasoning about such residual programs, we can automatically prove in the CiaoPP system some non-trivial properties of JVML programs such as termination, run-time error freeness and infer bounds on its resource consumption. We are not aware of any other system which is able to verify such advanced properties of Java bytecode

    Lightweight verification of control flow policies on Java bytecode

    Get PDF
    This paper presents the enforcement of control flow policies for Java bytecode devoted to open and constrained devices. On-device enforcement of security policies mostly relies on run-time monitoring or inline checking code, which is not appropriate for strongly constrained devices such as mobile phones and smart-cards. We present a proof-carrying code approach with on-device lightweight verification of control flow policies statically at loading- time. Our approach is suitable for evolving, open and constrained Java-based systems as it is compositional, to avoid re-verification of already verified bytecode upon loading of new bytecode, and it is regressive, to cleanly support bytecode unloading.Ce rapport présente l'application de politiques de flot de contrôle sur du bytecode Java pour les petits systèmes ouverts. La plupart du temps, l'application de ce type de politiques de sécurité est réalisée par l'observation du système ou l'insertion de code pour assuré en assurer le respect, ce qui n'est pas approprié pour les petits systèmes fortement contraints tels que les téléphones mobiles ou les cartes à puce. Nous présentons une méthode basée sur le proof-carrying code pour faire appliquer ce type de politiques avec une vérification embarquée réalisée au chargement. Notre approche est bien adaptée aux petits systèmes ouverts évolutifs car elle est compositionnelle, pour éviter la revérification du code déjà chargé, et régressive, afin de traiter proprement le déchargement de code déjà installé et vérifié

    A flexible model for dynamic linking in Java and C#

    Get PDF
    Dynamic linking supports flexible code deployment, allowing partially linked code to link further code on the fly, as needed. Thus, end-users enjoy the advantage of automatically receiving any updates, without any need for any explicit actions on their side, such as re-compilation, or re-linking. On the down side, two executions of a program may link in different versions of code, which in some cases causes subtle errors, and may mystify end-users. Dynamic linking in Java and C# are similar: the same linking phases are involved, soundness is based on similar ideas, and executions which do not throw linking errors give the same result. They are, however, not identical: the linking phases are combined differently, and take place in different order. Consequently, linking errors may be detected at different times by Java and C# runtime systems. We develop a non-deterministic model, which describes the behaviour of both Java and C# program executions. The nondeterminism allows us to describe the design space, to distill the similarities between the two languages, and to use one proof of soundness for both. We also prove that all execution strategies are equivalent with respect to terminating executions that do not throw link errors: they give the same results

    Symbolic and analytic techniques for resource analysis of Java bytecode

    Get PDF
    Recent work in resource analysis has translated the idea of amortised resource analysis to imperative languages using a program logic that allows mixing of assertions about heap shapes, in the tradition of separation logic, and assertions about consumable resources. Separately, polyhedral methods have been used to calculate bounds on numbers of iterations in loop-based programs. We are attempting to combine these ideas to deal with Java programs involving both data structures and loops, focusing on the bytecode level rather than on source code

    Integrated Java Bytecode Verification

    Get PDF
    AbstractExisting Java verifiers perform an iterative data-flow analysis to discover the unambiguous type of values stored on the stack or in registers. Our novel verification algorithm uses abstract interpretation to obtain definition/use information for each register and stack location in the program, which in turn is used to transform the program into Static Single Assignment form. In SSA, verification is reduced to simple type compatibility checking between the definition type of each SSA variable and the type of each of its uses. Inter-adjacent transitions of a value through stack and registers are no longer verified explicitly. This integrated approach is more efficient than traditional bytecode verification but still as safe as strict verification, as overall program correctness can be induced once the data flow from each definition to all associated uses is known to be type-safe
    corecore