
HAL Id: inria-00580923
https://hal.inria.fr/inria-00580923

Submitted on 7 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lightweight verification of control flow policies on Java
bytecode

Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

To cite this version:
Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl. Lightweight verification of control flow policies
on Java bytecode. [Research Report] RR-7584, INRIA. 2011, pp.22. �inria-00580923�

https://hal.inria.fr/inria-00580923
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0
2
4
9
-6

3
9
9

IS
R

N
IN

R
IA

/R
R

--
7
5
8
4
--

F
R

+
E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Lightweight verification of control flow policies on

Java bytecode

Arnaud Fontaine — Samuel Hym — Isabelle Simplot-Ryl

N° 7584

avril 2011

Centre de recherche INRIA Lille – Nord Europe
Parc Scientifique de la Haute Borne

40, avenue Halley, 59650 Villeneuve d’Ascq
Téléphone : +33 3 59 57 78 00 — Télécopie : +33 3 59 57 78 50

Lightweight verification of control flow policies on Java

bytecode

Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

Theme :
Équipe-Projet POPS

Rapport de recherche n° 7584 — avril 2011 — 22 pages

Abstract: This paper presents the enforcement of control flow policies for Java bytecode
devoted to open and constrained devices. On-device enforcement of security policies mostly
relies on run-time monitoring or inline checking code, which is not appropriate for strongly
constrained devices such as mobile phones and smart-cards. We present a proof-carrying code
approach with on-device lightweight verification of control flow policies statically at loading-
time. Our approach is suitable for evolving, open and constrained Java-based systems as it
is compositional, to avoid re-verification of already verified bytecode upon loading of new
bytecode, and it is regressive, to cleanly support bytecode unloading.

Key-words: control flow, static analysis, Java, embedded systems, security

Vérification de politiques de flot de contrôle sur du bytecode

Java

Résumé : Ce rapport présente l’application de politiques de flot de contrôle sur du bytecode
Java pour les petits systèmes ouverts. La plupart du temps, l’application de ce type de
politiques de sécurité est réalisée par l’observation du système ou l’insertion de code pour
assuré en assurer le respect, ce qui n’est pas approprié pour les petits systèmes fortement
contraints tels que les téléphones mobiles ou les cartes à puce. Nous présentons une méthode
basée sur le proof-carrying code pour faire appliquer ce type de politiques avec une vérification
embarquée réalisée au chargement. Notre approche est bien adaptée aux petits systèmes
ouverts évolutifs car elle est compositionnelle, pour éviter la revérification du code déjà chargé,
et régressive, afin de traiter proprement le déchargement de code déjà installé et vérifié.

Mots-clés : flot de controle, analyse statique, Java, systèmes embarqués, sécurité

Lightweight verification of control flow policies on Java bytecode 3

1 Introduction

Ubiquitous devices such as mobile phones and smart-cards are multi-application capable and
support post–issuance installation of applications. Applications are also evolving to take
advantage of this new trend: they have shifted from standalone designs to a collaborative
model where they provide and/or use services of other applications. In this context, operating
systems of ubiquitous devices provide few mechanisms to protect themselves, and end-users,
against misuses.

In Android for instance, an application can request some permissions at installation such
as the ability to read the address book stored in the phone (READ_CONTACTS), or to open
network sockets (INTERNET). The end-user can accept or refuse to grant these permissions
to an application, but there is no way to control how the application is going to use them:
is it going to send my contacts to a third party? If I refuse to grant a permission P to an
application, can it collude with some other application that has been granted P?

Code-signing was the first technique introduced to protect ubiquitous devices against code
originated from untrusted entities, but it does not guarantee any security property on the be-
havior of the loaded code. Code-signing is now also used to ensure integrity of the code
bounded together with some metadata describing its security-related behavior. This is for
instance the case in model-carrying code (MCC) [27] and security-by-contract (S×C) [5,18]
models. The embedded metadata are checked at loading time by the device to determine they
are compliant with its security policy. However, adequacy between the code and the meta-
data describing its behavior is enforced at run-time by execution monitoring, which is not
appropriate for constrained devices such as smart-cards or mobile phones as it produces vari-
able run-time overheads according to the complexity of the security policy to be enforced. A
common approach for the enforcement of security policies using execution monitoring consists
in relying on security automata [4,10,26,11,29,7,13]. While security automata provide a very
expressive mean to describe security policies, execution monitoring of the security automaton
states implies to react before the policy is violated when some misuse is about to occur: exe-
cution can be halted [1,26] or control flow can be dynamically altered [16,17,6,28,11] in order
to make it compliant with the security policy, but both actions strongly impact applications
functionality.

McDaniel et al [23] described a context-sensitive security framework for Android to mon-
itor and to restrict applications behavior. It is for example possible to restrict applications
to be granted both READ_CONTACTS and INTERNET permissions, but also for an application
to refuse interactions with some application according to its permissions. However, this
framework cannot avoid collusion between applications, for instance between one with the
READ_CONTACT permission, and the another one with the INTERNET permission. This approach
lacks refinement as it can block the installation of “honest” applications (such as a reliable
text messenger application in the previous example) without detecting possibly dangerous
misuses. Information flow techniques such as [21] can solve this problem, but they are prac-
tically not used because they require an ad hoc run-time environment and developers with a
strong understanding of the underlying model to smartly annotate their code. To cope with
these problems, McDaniel et al recently proposed another framework [9] for Android with
run-time enforcement of secure information flow. This approach is obviously not portable to
devices more constrained than modern phones, i.e., J2ME or Java Card devices.

Static analysis offers a good alternative to execution monitoring as it does not produce
computation overheads at run-time and does not alter code’s behavior dynamically. However,

RR n° 7584

4 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

static analysis requires high computational and memory resources not available in constrained
devices. The Proof-carrying code (PCC) model [22] permits to simplify on-device analysis.
A proof of the code’s behavior with respect to a given property is pre-computed off-device
so that the code’s receiver only needs to verify that the proof is correct for the given code.
Verifying this proof is actually far more easier and consumes less resources than doing the
complete analysis on-device while it offers the same security guarantees, moreover without
the need of a trusted entity for signing the code. Proof-carrying code approaches have already
been successfully applied in constrained devices, in particular by Rose [25] on Java bytecode.
Existing approaches mainly focus on type safety [20,15,25], space/time guarantees [3], safety
properties [2,30,32], access control and control flow policies [14,8,24]. All aforementioned
works are not purely static analysis. For instance, Jensen et al [14] proposed to enforce a
global control flow policy through local run-time checks present in the code. Their approach
consists in verifying that these local checks are sufficient to enforce a global control flow policy.
This approach is closely related to [8] where similar in-line checks are generated just-in-time.

In this paper, we propose a technique in-between security automata [26], Jensen et al
work on the verification of control flow policies [14] and compositional verification of control
flow policies described in [12,19]. Our main contribution is to propose a purely static and
compositional proof-carrying code approach to enforce global control flow policies specified
by an automaton devoted to constrained Java-based devices such as mobile phones or smart
cards. This paper is structured as follows. Section 2 introduces the formal notations used in
the rest of the paper. Section 3 describes the theoretical foundations of our approach: the
definition of a global control flow policy of a system, and the definition of a method’s footprint,
that is its relevant contribution to a global policy. Section 4 details the static analysis of Java
bytecode needed to compute method footprints off-device, and how method footprints are
efficiently encoded. Section 5 details how proof obligations that are method footprints can
be efficiently and incrementally verified on-device upon (un)loading of bytecode. Section 6
draws conclusions and presents future work.

2 Notations

2.1 Object-oriented notations

In this paper, we consider multi-application Java systems. As in any Java system, an ap-
plication is implemented by a set of classes. However, the notion of application does not
correspond to something concrete on most Java sytems. We voluntary use a generic meaning
for applications in order to match any Java environment: for traditional Java, an applica-
tion can simply be a fully qualified package name, while it can correspond to a CAP file on
Java Card systems.

We will write M the set of all method names that are fully qualified names, namely
elements of the form A.C.m to denote the method m that is available in objects of class
C of application A. Note that the method A.C.m might be defined and implemented in a
super-class of A.C – which might itself be in some other application – and simply inherited.

We use the following notations for inheritance. The set of classes is equipped with an
inheritance relation ≤; C1 ≤ C2 means that the class C1 inherits from C2 or is C2 (< for a
strict sub-class). The set M is also equipped with an inheritance relation, also written ≤.
When a class C1 of application A1 inherits from some class C2 in application A2 and redefines
a methodm, we write A1.C1.m < A2.C2.m. We use ≤ whenever the method is either inherited

INRIA

Lightweight verification of control flow policies on Java bytecode 5

or redefined. The method definition def(A.C.m) of A.C.m is A.C.m if the methodm is defined
or redefined in A.C, otherwise def(A.C.m) = A′.C ′.m such that A.C < A′.C ′ and for each
A′′.C ′′ such that A.C < A′′.C ′′ < A′.C ′, m is neither defined nor redefined in A′′.C ′′.

2.2 Graphs of the programs

We consider finite directed graphs with edges labeled by elements of a set LE and unlabeled
vertices (as we consider only cases where the labeling function of vertices would have been a
bijection). A graph G is given by a pair (V,E) where V is its set of vertices, E ⊆ V ×V ×LE ,
and its set of labeled edges.

In the graph G = (V,E), the edge from the vertex u to v, labeled by l is denoted by (u, v, l).
Graphs may also have unlabeled edges, which are edges for which labeling is irrelevant and
can be ignored, edges of such graphs are written as pairs of vertices (u, v).

For a graph G = (V,E), V ′ ⊆ V and V ′′ ⊆ V :

paths(G, V ′, V ′′) = {v0v1 . . . vn ∈ V ∗ | v0 ∈ V ′, vn ∈ V ′′, ∀0 < i ≤ n, (vi−1, vi) ∈ E}.

A strongly connected component of a graph G = (V,E) is a subgraph G′ = (V ′, E′) with
V ′ ⊆ V and E′ ⊆ E, where V ′ is a maximal subset of V such that for each pair v1, v2 of
vertices of V ′, there exists a word v1vi0 . . . vinv2 in paths(G, V ′, V ′) and each vik ∈ V ′ (and
symmetrically from v2 to v1).

For a method m, Pm is its instruction list. We assume this list to be indexed from 0 to
|Pm| − 1, where |Pm| is its size. Hence, we denote by Pm[i] the i+ 1-th bytecode instruction
of the method m.

Let us first define the call graph of a set of methods.

Definition 1 (Call graph for a set of methods). Let M be a set of methods. A call graph
for M is a finite graph CG = (M,E), E ⊆ M × M × N, such that: for each m1 ∈ M , for
each instruction Pm1

[i] = invoke 1m2, for all m′
2 ≤ m2 that might be called at run-time by

this instruction (m1,m
′
2, i) ∈ E. 2

Definition 2 (Intraprocedural control flow graph). The intraprocedural control flow
graph of a method m is an unlabeled graph CFm = (Pm, E) such that (i, i′) belongs to E if
either (1) i′ = i + 1 and Pm[i] is different from a return bytecode and from goto a, or (2)
i′ = a and Pm[i] is equal to goto a or to a comparison (or similar cases) bytecode ifcmp a.
Hence, there is no edge going out of the vertex i if PC.m[i] is a return bytecode. An exit-point
in a control flow graph is a vertex without successor.

To deal with control flow properties, we have to be able to compute for a given method,
the set of methods it invokes directly of indirectly. The set is statically computed and thus
collects methods that are invoked on static types.

Definition 3 (Invoked methods). Let m be a method. Then the set of methods that m
invokes is the smallest set of methods such that I(m) = Idirect(m) ∪ Iindirect(m) with

– Idirect(m) = {m′ | ∃0 ≤ i < |Pm|, Pm[i] = invoke m′′,m′ ≤ m′′} is the set of methods
invoked in the bytecode of m,

2
invoke stands for any invocation bytecode like invokevirtual, invokestatic, etc.

RR n° 7584

6 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

– Iindirect(m) =
⋃

m′∈Idirect(m) I(m
′), i.e., the set of methods (directly and indirectly) in-

voked by methods directly invoked by m.

It is fairly easy to see that I(m) is exactly the set of all the methods that are reachable
(by 1 or more transitions) from m in the call graph of the system (Definition 1).

2.3 Formal languages notations

In this section we give additional notations that are used in this paper for finite automata
and languages.

Definition 4 (Finite automaton). A finite automaton is a tuple A = (Σ,S, s0, ζ, SF)
where Σ is the input alphabet, S is the set of states, s0 ∈ S is the initial state, ζ : S×Σ −→ S

is the transition function, and SF ⊆ S is the set of final states.

Definition 5 (Trimmed automaton). An automaton A = (Σ,S, s0, ζ, SF) is trimmed if
for all state s ∈ S, there exist two words u and v such that ζ(s0, u) = s and ζ(s, v) ∈ SF .

Definition 6 (Language). Let A = (Σ,S, s0, ζ, SF) be a finite automaton. The language
of A, denoted by L(A) is defined by:

L(A) = {a0 . . . an ∈ Σ∗ | ∃(si0 , a0, si1)(si1 , a1, si2) . . . (sin , an, sin+1
)

∀0 ≤ k ≤ n, (sik , ak, sik+1
) ∈ ζ, si0 = s0, sin+1

∈ SF }.

Note that ε denotes the empty word. We now define the factors of a language.

Definition 7 (Factors). Let L be a language of Σ∗. Then, the left factors, (regular) factors,
and right factors of L are respectively defined by:

lf (L) = {u ∈ Σ∗ | ∃w ∈ Σ∗, uw ∈ L},

fact(L) = {u ∈ Σ∗ | ∃v, w ∈ Σ∗, vuw ∈ L},

rf (L) = {u ∈ Σ∗ | ∃v ∈ Σ∗, vu ∈ L}.

Definition 8 (Projection). Let Σ and Ξ be two alphabets. Let L ⊆ Σ∗ be a language. The
projection onto Ξ is the alphabetical morphism ΠΞ from Σ to Ξ such that for each x of Σ,
ΠΞ(x) = x if x ∈ Ξ and ΠΞ(x) = ε otherwise.

3 Global control flow policy of a system

In this work, we study the control flow policies in terms of access to methods. We introduce
the notion of global policy of a system that defines the control applied on applications by the
system. The global policy of a system defines the sequences of method calls that are forbidden.
This type of policy can be used for example to restrict applications access to the system api.

3.1 Definition of the global policy of a system

At the verification level, the forbidden sequences of calls are described by a finite automa-
ton. This automaton is really simple compared to security automata [26] as it has no vertex
labelling to describe a particular state of the system, and an edge label can only describe
a method call. Actually, we show along the rest of the paper that these simplifications are
useful to achieve a complete static verification technique especially in open and constrained
environments.

INRIA

Lightweight verification of control flow policies on Java bytecode 7

Definition 9 (Global policy). Let the global policy of a system G be a finite trimmed
automaton G = (Σ,S, s0, ζ, {sF }) with Σ ⊆ M and such that:

– there is no (s, a) ∈ S ×Σ with ζ(s, a) = s0,
– there is no (s, a) ∈ S ×Σ with ζ(sF , a) = s.

Definition 10 (Conformity to a policy). We say that a system conforms to the policy G
if for each execution trace t ∈ M∗, conform(t,G) holds with:

conform(t,G) ⇔ (∀v such that ΠΣ(t) = uvu′, v 6∈ L(G)).

Note that we prohibit any transition incoming into the initial state and outgoing of the
final state in our global policies. Since a trace is not conforming as soon as it contains a
word of the language of the global policy, transitions starting in a final state or leading to
the initial state are useless to detect non-conforming traces: on the one hand, the trace was
already recognized as invalid the first time sF was reached and on the other hand we can
simply chop off the prefix corresponding to the loop from s0 to s0 while keeping an invalid
trace.

Also note that, only one final state is needed since this state has no outgoing transition: if
there were various final states they would be equivalent and could be merged. Consequently,
we write in the rest of this document G = (Σ,S, s0, ζ, sF).

3.2 Global policy footprint of a method

In this work, we consider open systems that support dynamic application loading. Thus, we
aim at a compositional model in which methods can be verified one by one and systems can
be extended with new methods without re-verification of already loaded code. In this system,
a method m can be valid for a global policy but still contain a part of an invalid trace. If this
method is invoked by another one that produces the beginning of a forbidden trace, invokes
m, and produces the end of a forbidden trace, then m might participate in the construction
of an invalid trace even if all the traces of m are allowed. To track this kind of behaviors, we
define in this section the contribution of a method to the current execution with respect to
the global policy of a system; we call that contribution the footprint of the method.

Definition 11 (Interprocedural control flow graph). The interprocedural control flow
graph of a set of methods M is the graph ICFGM = (V,E), built from the intraprocedural
control flow graphs CFm of the methods m ∈ M , with def(M) = M ∪ {def(m) | m ∈ M},
such that:

– V = {m.i | i ∈ Vm,m ∈ def(M), CFm = (Vm, Em)},
– E = {(m.i,m.i′) | m ∈ def(M) ∧ CFm = (Vm, Em) ∧ (i, i′) ∈ Em

∧Pm[i] 6= invoke m′ with m′ ∈ def(M)}
∪ {(m.i,m′′.0) | Pm[i] = invoke m′ ∧m′ ∈ def(M)

∧m′′ ≤ def(m′) ∧m′′ = def(m′′)}
∪ {(m.i,m′.i′) | Pm[i] = return ∧ Pm′ [i′ − 1] = invoke m′′ ∧m ≤ def(m′′)}

Let m be a method. Let us remind that Im is the set of methods called by a method
m, directly or indirectly. Then the interprocedural control flow graph of m is ICFGm =
ICFG{m}∪Im .

RR n° 7584

8 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

In general, it is not possible to compute statically the exact set of traces of a system
or a subsystem, so we compute an over-approximation of that set. In particular, we put in
the interprocedural control flow graph the edges between an invoke instruction and all the
methods that could be actually invoked, due to method overloading.

As we only consider method calls in the policy, we define a morphism for V ∗ to the set
L(M) of languages defined on M that allows us to restrict the traces to method calls, taking
care of method definitions to avoid an attacker to bypass the control by overloading a class:

calls : V −→ L(M)

m.i 7−→

{

{m′′ | m′ ≤ m′′ ∧ def(m′′) = def(m′)} if Pm[i] = invoke m′

∅ otherwise

We now define the set of traces of a method m, that is an over-approximation of its set of
execution traces as:

traces(m) = m.calls(paths(ICFGm, {m.0}, {m.i | Pm[i] = return})).

We can now define the G-footprint of a method m for a policy G that describes the factors
(left, regular and right) of the traces of the policy language that may result from the execution
of this method.

Definition 12 (G-footprint of a method). The G-footprint of a method m for a policy
G = (Σ,S, s0, ζ, sF) is footG(traces(m)) with

footG(L) =

z if fact(L) ∩ L(G) 6= ∅

(lf (ΠΣ(L)) ∩ rf (L(G)),

ΠΣ(L) ∩ fact(L(G)),

rf (ΠΣ(L)) ∩ lf (L(G)))

otherwise

We denote by FG the set of footprints for a policy G.

This definition allows us to keep information about the contribution of a method m to
creation of forbidden sequences as factors. That contribution is written z whenever the
method contains an execution trace that is prohibited. Otherwise, it is described as a tuple:
the first element of the tuple contains the possible ends of forbidden traces (left factors of
complete execution traces of the method); the second element contains the full execution
traces of the method that are middle elements of forbidden traces, and the last element of
the tuple contains the possible beginnings of forbidden traces. All these factors will be later
aggregated with the beginnings and ends of traces of a method that invokes m in order to
produce the footprint of this calling method.

3.3 Properties of the operations on footprints

In this section, we present the main operations on footprints and their properties, that will
be useful to obtain compositionality.

INRIA

Lightweight verification of control flow policies on Java bytecode 9

Definition 13 (Union of G-footprints). Let G = (Σ,S, s0, ζ, sF) be a global policy and f1
and f2 be two G-footprints. Then the union of f1 and f2 is defined depending on their forms:

z ∪z = z

z ∪ (LF2, F2, RF2) = z

(LF1, F1, RF1) ∪z = z

(LF1, F1, RF1) ∪ (LF2, F2, RF2) = (LF1 ∪ LF2, F1 ∪ F2, RF1 ∪RF2)

Lemma 1 (footG distributes over union). Let L1 and L2 be two languages, then we have
footG(L1 ∪ L2) = footG(L1) ∪ footG(L2).

Proof. If one of the languages contains a word with a prohibited factor, its footprint will be
z, as will be the union of the footprints and the footprint of the union.
Otherwise, the result follows from the fact that the set of factors (resp. left or right) of a
language is the set containing all the factors (resp. left or right) of its words. ⊓⊔

Definition 14 (Concatenation of G-footprints). Let G = (Σ,S, s0, ζ, sF) be a global pol-
icy. We define the concatenation of two G-footprints depending on their forms.

z.z = z

(LF1, F1, RF1).z = z

z.(LF2, F2, RF2) = z

(LF1, F1, RF1).(LF2, F2, RF2) =

z if RF1.LF2 ∩ L(G) 6= ∅

(LF1 ∪ (F1.LF2 ∩ rf (L(G))),

F1.F2 ∩ fact(L(G)),

RF2 ∪ (RF1.F2 ∩ lf (L(G))))

otherwise

Clearly, the concatenation is not commutative, but it has the following property:

Lemma 2. The concatenation of footprints is associative.

Proof. Let us consider three footprints. If one of them is z, the result is immediate.
Otherwise, we want to show that

((L1, F1, R1).(L2, F2, R2)).(L3, F3, R3) = (L1, F1, R1).((L2, F2, R2).(L3, F3, R3)).

Let us give names to the two sides:

Res1 = ((L1, F1, R1).(L2, F2, R2)).(L3, F3, R3)

Res2 = (L1, F1, R1).((L2, F2, R2).(L3, F3, R3))

We have (L1, F1, R1).(L2, F2, R2) = z only when R1.L2 ∩ L(G) 6= ∅. On the other side, if
(L2, F2, R2).(L3, F3, R3) = z, the results will obviously coincide. Otherwise, the left factor
of (L2, F2, R2).(L3, F3, R3) will contain L2 so (L1, F1, R1).((L2, F2, R2).(L3, F3, R3)) will be
forced to be z too. The converse is similar.
Let us develop further if (L1, F1, R1).(L2, F2, R2) 6= z and (L2, F2, R2).(L3, F3, R3) 6= z.

Res1 = (L1 ∪ (F1.L2 ∩ rf (L(G))), F1.F2 ∩ fact(L(G)), R2 ∪ (R1.F2 ∩ lf (L(G))).(L3, F3, R3)

Res2 = (L1, F1, R1).(L2 ∪ (F2.L3 ∩ rf (L(G))), F2.F3 ∩ fact(L(G)), R3 ∪ (R2.F3 ∩ lf (L(G))))

RR n° 7584

10 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

If Res1 = z then (R2 ∪ R1.F2).L3 ∩ L(G) 6= ∅. Since (L2, F2, R2).(L3, F3, R3) 6= z, that
would mean R1.F2.L3 ∩ L(G) 6= ∅. This would mean that R1.(F2.L3 ∩ rf (L(G))) ∩ L(G) 6= ∅
so Res2 = z. The converse is similar.

Assuming that Res1 6= z and Res2 6= z, we finish developing the two terms.

Res1 = ((L1 ∪ (F1.L2 ∩ rf (L(G)))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G))),

(F1.F2 ∩ fact(L(G))).F3 ∩ fact(L(G)),

A)

Res2 = (L1 ∪ (F1.(L2 ∪ (F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))),

F1.(F2.F3 ∩ fact(L(G))) ∩ fact(L(G)),

B)

We first consider factors (second component) of Res1 and Res2: (F1.F2 ∩ fact(L(G))).F3 ∩
fact(L(G)) and F1.(F2.F3 ∩ fact(L(G))) ∩ fact(L(G)). In both cases, if u is a word of the
language, u is a word of fact(L(G)) that is composed of three factors: u = u1.u2.u3 with
ui ∈ Fi, as fact(L(G)) is closed by fact , we get the equality.

We now consider the left factors (first component) of Res1 and Res2:

(L1 ∪ (F1.L2 ∩ rf (L(G)))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G)))

= L1 ∪ (F1.L2 ∩ rf (L(G))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G)))

and

L1 ∪ (F1.(L2 ∪ (F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))).

So we have to show that

(F1.L2 ∩ rf (L(G))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G)))

= ((F1.L2) ∪ ((F1.F2 ∩ fact(L(G))).L3)) ∩ rf (L(G))

and

F1.(L2 ∪ (F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))

= (F1.L2 ∪ F1.(F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))

are equal. That can be reduced to show that ((F1.F2 ∩ fact(L(G))).L3) ∩ rf (L(G)) and
(F1.(F2.L3 ∩ rf (L(G)))) ∩ rf (L(G)) are equal. In both cases if u is a word of the language, it
is composed of three factors: u = u1.u2.u3 with u1 ∈ F1, u2 ∈ F2, and u3 ∈ L3. As u belongs
to rf (L(G)), obviously u2.u3 ∈ rf (L(G)), and u1u2 ∈ fact(L(G)).

⊓⊔

We now show that footG is an endomorphism, i.e., it somehow “distributes” over concate-
nation.

Lemma 3 (Footprint is a morphism). Let L1 and L2 be two languages, then we have
footG(L1.L2) = footG(L1).footG(L2).

INRIA

Lightweight verification of control flow policies on Java bytecode 11

Proof. If footG(L1) = z or footG(L2) = z, then footG(L1.L2) = z because fact(Li) ⊆
fact(L1.L2).
Otherwise, let footG(L1) = (LF1, F1, RF1) and footG(L2) = (LF2, F2, RF2). If we have
footG(L1.L2) = z, we know that there is a factor of L1.L2 in L(G). That factor must be
of the form u1.u2, with u1 ∈ rf (ΠΣ(L1)), u2 ∈ lf (ΠΣ(L2)). Obviously, u1 ∈ lf (L(G)) and
u2 ∈ rf (L(G)). So u1 ∈ RF1 and u2 ∈ LF2 which implies that RF1.LF2 ∩ L(G) = ∅ so
footG(L1).footG(L2) = z.
If footG(L1.L2) 6= z, we have:

footG(L1.L2) = (lf (ΠΣ(L1.L2)) ∩ rf (L(G)),

ΠΣ(L1.L2) ∩ fact(L(G)),

rf (ΠΣ(L1.L2)) ∩ lf (L(G)))

Let us first consider the factors :

ΠΣ(L1.L2) ∩ fact(L(G))

= (ΠΣ(L1).ΠΣ(L2)) ∩ fact(L(G))

= ((ΠΣ(L1) ∩ fact(L(G))).(ΠΣ(L2) ∩ fact(L(G)))) ∩ fact(L(G))

For left factors we have:

lf (ΠΣ(L1.L2)) ∩ rf (L(G))

= lf (ΠΣ(L1).ΠΣ(L2)) ∩ rf (L(G))

= (lf (ΠΣ(L1)) ∪ΠΣ(L1).lf (ΠΣ(L2))) ∩ rf (L(G))

= (lf (ΠΣ(L1)) ∩ rf (L(G))) ∪ (ΠΣ(L1).lf (ΠΣ(L2)) ∩ rf (L(G)))

= LF1 ∪ (ΠΣ(L1).lf (ΠΣ(L2)) ∩ rf (L(G)))

As all the words of rf (L(G))) are concatenations of factors of L(G))

= LF1 ∪ ((ΠΣ(L1) ∩ fact(L(G))).lf (ΠΣ(L2)) ∩ rf (L(G)))

= LF1 ∪ (F1.lf (ΠΣ(L2)) ∩ rf (L(G)))

Obviously, we have:

= LF1 ∪ (F1.(lf (ΠΣ(L2)) ∩ rf (L(G))) ∩ rf (L(G)))

= LF1 ∪ (F1.LF2 ∩ rf (L(G)))

and we can obtain the right factors in the same way. ⊓⊔

From Lemma 1 and Lemma 3, we get the following proposition:

Proposition 1. For a language L ⊆ M∗ and a global policy of the system G = (Σ,S, s0, ζ, sF),
we have

footG(L) =
⋃

m0m1 . . .mn ∈ L |
∀0 ≤ i ≤ n,mi ∈ M

footG({m0}).footG({m1}) . . . footG({mn}).

RR n° 7584

12 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

3.4 Compositionality of the footprint computation

The G-footprints of methods can be computed in a compositional way except in the presence of
mutual recursive methods that have to be analyzed together. For a methodm, we compute the
strongly connected components of the graph CGm. Starting from m, we have a partial order
of components as the transitive closure of the relation saying that a component c1 is lower
than a component c2 if there exists an edge from c1 to c2. Then, the methods of each strongly
connected component have to be analyzed together, when all the greater components have
been analyzed (i.e., when their footprints are available). The proof of the next proposition is
straightforward from Proposition 1.

Proposition 2 (Compositionality). Let us consider a method m and a global policy of the
system G = (Σ,S, s0, ζ, sF), and M the set of methods of the strongly connected component
of CGm that contains m. Then,

footG(traces(m)) = composeG,M (calls(paths(ICFGM ,m.0, {m.i | Pm[i] = return})))

with the morphism

composeG,M : M −→ FG

m′ 7−→

{

footG({m
′}) if m′ ∈ M

footG(traces(m
′)) otherwise

4 Implementation of the footprint computation

Since we target small systems, we need to provide a compact representation of footprints that
uses as little memory as possible and that is easy to manipulate. For this purpose, we use
sets of pairs of automaton states to represent footprints. Using this representation, we only
need one set to describe one footprint since left factors obviously end at sF and right factors
obviously start at s0.

Definition 15 (G-footprint implementation). Let G be a global policy of the system. The
G-footprint implementation is given by the function:

Φ : FG −→ ℘(S × S)
z 7−→ {(si, sj) | ∀si, sj ∈ S}

(LF, F,RF) 7−→ {(si, sj) | ∃u ∈ F, ζ(si, u) = sj}
∪ {(s0, si) | ∃u ∈ RF, ζ(s0, u) = si}
∪ {(si, sF) | ∃u ∈ LF, ζ(si, u) = sF }

We write Fm for the implementation of the G-footprint of a method m, namely Fm =
Φ(footG(traces(m))).

We now define the composition of footprint implementations.

Definition 16 (Composition). The composition over ℘(S×S) is defined as, for S1 and S2:

S1 ⊕ S2 = {(si, sF) | (si, sF) ∈ S1}
∪ {(s0, si) | (s0, si) ∈ S2}
∪ {(si, sj) | ∃k, (si, sk) ∈ S1, (sk, sj) ∈ S2

or ∃k, (s0, sk) ∈ S1, (sk, sF) ∈ S2

or (s0, sF) ∈ S1 ∪ S2}

INRIA

Lightweight verification of control flow policies on Java bytecode 13

Note that the definition forces the composition to be the full set S×S as soon as it contains
(s0, sF). It is easy to see that {(si, sj) | ∀si, sj ∈ S} is absorbing for ⊕: this corresponds to
the element z for normal footprints. So we will also write z for the full set S × S.

Lemma 4. Let S1, S2, S3 and S4 be elements of ℘(S × S). The composition is monotonic:
if S1 ⊆ S2 and S3 ⊆ S4 then S1 ⊕ S3 ⊆ S2 ⊕ S4.

Lemma 5. Φ is a morphism, i.e., Φ(f1.f2) = Φ(f1)⊕ Φ(f2).

Proof. If fi = z, then f1.f2 = z and Φ(fi) = Φ(f1.f2) = z which will absorb Φ(f3−i).
Let us then assume that f1 6= z and f2 6= z. We write f1 = (LF1, F1, RF1) and f2 =
(LF2, F2, RF2).
Let us first prove that Φ(f1.f2) ⊆ Φ(f1) ⊕ Φ(f2). If f1.f2 = z, this means that RF1.LF2 ∩
L(G) 6= ∅. So we have some u = u1.u2 such that u1 ∈ RF1 and u2 ∈ LF2 and u ∈ L(G), which
means that ζ(s0, u) = ζ(ζ(s0, u1), u2) = sF . From this, we conclude that (s0, ζ(s0, u1)) ∈ Φ(f1)
and (ζ(s0, u1), sF) ∈ Φ(f2) and so that Φ(f1)⊕ Φ(f2) = z since it contains (s0, sF).
Let us now assume that f1.f2 6= z and write f1.f2 = (LF, F,RF).
We consider each of the three sub-sets composing Φ(fi) separately.
We have F = F1.F2 ∩ fact(L(G)). Let us consider some u ∈ F . We know that there exist
u1 and u2 such that u = u1.u2, with u1 ∈ F1 and u2 ∈ F2. If we consider a pair of states
(si, sj) such that ζ(si, u) = sj , we know that ζ(si, u1) is some state sk and that (si, sk) must
be in Φ(f1) and that (sk, sj) must be in Φ(f2) since ζ(sk, u2) = sj , by definition of Φ. So
(si, sj) ∈ Φ(f1)⊕ Φ(f2).
We have LF = LF1 ∪ (F1.LF2 ∩ rf (L(G))). Let us consider some u ∈ LF and (si, sF) a pair
of states such that ζ(si, u) = sF . If u ∈ LF1, then (si, sF) must be in Φ(f1) by definition of Φ;
and so it is preserved by ⊕. Otherwise, we must have u ∈ F1.LF2 so u = u1.u2 with u1 ∈ F1

and u2 ∈ LF2. So ζ(si, u1) must be some state sj with ζ(sj , u2) = sF . By definition of Φ, we
have (si, sj) ∈ Φ(f1) and (sj , sF) ∈ Φ(f2) which entails that (si, sF) is in Φ(f1)⊕ Φ(f2).
By a similar argument we prove that the image of RF is also included in Φ(f1)⊕ Φ(f2).
Conversely, let us prove that Φ(f1) ⊕ Φ(f2) ⊆ Φ(f1.f2). Let us consider for this (si, sj) in
Φ(f1)⊕ Φ(f2). We reason over the three definition cases of ⊕.

1. sj = sF and (si, sF) ∈ Φ(f1); then there exists some u such that ζ(si, u) = sF by definition
of Φ and so u must be in RF1 ∪ F1 ∪ LF1. In all three sub-cases, since it is a right factor
of L(G) (because it can end in sF) it must also be in LF1. This entails that it is in LF

by definition of concatenation so (si, sF) is in Φ(f1.f2).
2. si = s0 and (s0, sj) ∈ Φ(f2). This case is similar to the previous one.
3. We have again three sub-cases.

– There exists some sk such that (si, sk) ∈ Φ(f1) and (sk, sj) ∈ Φ(f2). So we can find
u1 ∈ RF1 ∪ F1 ∪ LF1 such that ζ(si, u1) = sk and u2 ∈ RF2 ∪ F2 ∪ LF2 such that
ζ(sk, u2) = sj .
• If u1 ∈ LF1, then sj = sk = sF and u2 must be ε since there is no transition out
of sF . Then u = u1 is in LF and (si, sF) is in Φ(f1.f2).

• If u2 ∈ RF2, then si = sk = s0 and u1 must be ε since there is no transition to s0.
Then u = u2 is in RF and (s0, sj) is in Φ(f1.f2).

• If u1 ∈ F1 and u2 ∈ LF2, then sj = sF and we just need to show that u1.u2 is
in rf (L(G)) to prove that u1.u2 is in LF . Since G is trimmed, there must exist
some word v such that ζ(s0, v) = si so u1.u2 is indeed a right factor of L(G), which
proves that (si, sF) is in Φ(f1.f2).

RR n° 7584

14 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

• If u1 ∈ F1 and u2 ∈ F2, since the automaton is trimmed, u1.u2 is a factor of L(G)
and is in the factors of f1.f2 so (si, sj) is in Φ(f1.f2).

• If u1 ∈ RF1 and u2 ∈ LF2 then u1.u2 ∈ L(G) so RF1.LF2 ∩L(G) 6= ∅ so f1.f2 = z

in which case (si, sj) ∈ Φ(f1.f2) = z.
• If u1 ∈ RF1 and u2 ∈ F2, then si = s0 and there must exist some word v such that
ζ(ζ(s0, u1.u2), v) = sF since G is trimmed. So u = u1.u2 is a left factor of L(G), so
u must be in the right factors of f1.f2 which entails that (s0, sj) ∈ Φ(f1.f2).

– If (si, sj) is present because there is some k such that (s0, sk) ∈ Φ(f1) and (sk, sF) ∈
Φ(f2) this means that there is some word u1 such that ζ(s0, u1) = sk with u1 in the
right factors of f1 (because the factors of f1 that are in lf (L(G)) are also in the right
factors; and if u1 is in the left factors, then sk = sF so it is also in the right factors)
and some u2 such that ζ(sk, u2) = sF with u2 in the left factors of f2, so f1.f2 = z

and (si, sj) ∈ Φ(f1.f2).

– Lastly, if (s0, sF) is in Φ(f1), then we must have f1 = z by definition of footprints,
since it means that a factor of the underlying language of traces is prohibited. Then
f1.f2 = z and Φ(f1.f2) = z so (si, sj) ∈ Φ(f1.f2).

⊓⊔

Φ also distributes over ∪.

Lemma 6. For any f1 and f2 two footprints, Φ(f1 ∪ f2) = Φ(f1) ∪ Φ(f2).

Proof. Let us consider f1 and f2 two footprints. If f1 = z, Φ(f1∪f2) = Φ(z) = z = z∪Φ(f2).
The result is identical if f2 = z. If neither of them is z, we write f1 = (LF1, F1, RF1) and
f2 = (LF2, F2, RF2). f1∪ f2 = (LF1 ∪LF2, F1∪F2, RF1 ∪RF2) and the definition of Φ allows
us to conclude. ⊓⊔

In the rest of this section, we define a system of equations that allows us to compute the
footprint implementation of a method that corresponds to the G-footprint of a method m.

For each methodm we considerM the set of methods of the strongly connected component
of CGm that contains m. We define the system of equations (SM) where the rules instr are
given on Figure 1:

Sm′′.i =
⋃

(m′.j,m′′.i)∈ICFGM

instrPm′ [j](Sm′.j)

with the initial state

Sm.0 ⊇

{

{(si, si) | si ∈ S} ∪ {(si, sj) | si, sj ∈ S if s0 = sF } when m 6∈ Σ

{(si, sj) | si, sj ∈ S, ζ(si,m) = sj or ζ(s0,m) = sF }} when m ∈ Σ

Note that the last rule of Figure 1 takes the union of the footprint implementations of all
the actual methods that could be invoked by the instruction.

Proposition 3. The system of equations (SM) admits a least solution.

Proof. The set (℘(S×S),⊆,∪,∩) is a finite lattice. Lemma 4 implies that the transfer functions
instr b are monotonic with respect to ⊆. Thus we can apply Knaster-Tarski theorem. ⊓⊔

INRIA

Lightweight verification of control flow policies on Java bytecode 15

b 6= invoke

instrb(S) = S

b = invoke m′ and m′ ∈ Σ and m′ ∈ M

instrb(S) = S ⊕ Φ(footG({m
′}))

b = invoke m′ and m′ 6∈ Σ and m′ ∈ M

instrb(S) = S

b = invoke m′ and m′ 6∈ M

instrb(S) = S ⊕
⋃

m′′≤m′ Fm′′

Fig. 1. Transfer function instrb(S).

Finally we prove that this least fix-point construction implements footprints.

Proposition 4. Letm be a method, M the set of methods of the strongly connected component
of CGm that contains m. Then

Fm =
⋃

i|Pm[i]=return

Si

with Si the least solutions of the equations of (SM).

Note that this property justifies the last rule of Figure 1: the computation of the solution
of (SM) can be based on the footprint implementations of all the methods that are not in the
same strongly connected component of the call graph since that will result in the same value.
And this proves that the system of equations indeed provides a way to compute the footprint
implementations.

Proof. Let us write

U =
⋃

i|Pm[i]=return

Si

and let us first prove that Fm ⊆ U .

Fm = Φ(footG(traces(m)))

= Φ(
⋃

t∈traces(m)

footG({t}))

= Φ(
⋃

m1...mn∈traces(m)

footG({m1}) . . . footG({mn}))

=
⋃

m1...mn∈traces(m)

Φ(footG({m1}))⊕ · · · ⊕ Φ(footG({mn}))

Let us consider any pair in Fm and some trace t of m so that the pair is in Φ(footG({t})).
Since traces come from actual execution paths, we consider a path p in CGm such that it
produces t. Let us sum up the constraints on (SM) we obtain by looking at that path p. p can
be written as (mj0 .ij0) . . . (mjq .ijq) where at each step jk the instruction ijk of method mjk is
executed.

Let us reason on the length of p to show that, if we consider a prefix path p′ of p of any length,
the set Sm′.i′ must contain Φ(footG(t

′)) where t′ is the part of t corresponding to p′.

If m ∈ Σ, every trace of m begins with m. In that case we also know that Φ(footG({m})) ⊆
Sm.0 by definition of the initial state of the system (SM). Otherwise, Sm.0 initially contains
simply Φ(footG({ε})).

RR n° 7584

16 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

Let us add one instruction to p′. For all instruction Pmjk
[ijk] along p that is not an invoke,

we simply learn that Smjk
.ijk

⊇ Smjk−1.ijk−1
by the rules of Figure 1. Correspondingly, t′ is

not extended by a non-invoke instruction.
If the added instruction is Pmjk

[ijk] = invoke m′, we have to consider the various possibilities
for m′:

– if m′ 6∈ Σ and m′ ∈ M , t′ is left unmodified and Smjk
.ijk

⊇ Smjk−1.ijk−1
ensures the result;

– if m′ ∈ Σ and m′ ∈ M , m′ is appended to t′ and we know that we have

Smjk
.ijk

⊇ Smjk−1.ijk−1
⊕ Φ(footG({m

′}));

by Lemma 4,
Φ(footG({t

′})) ⊆ Smjk−1.ijk−1

entails that
Φ(footG({t

′}))⊕ Φ(footG({m
′})) ⊆ Smjk

.ijk
,

– if m′ 6∈ M , the fragment t′′ of the trace that corresponds to the call of m′ is such that

Φ(footG({t
′′})) ⊆

⋃

m′′≤m′

Fm′′

since t′′ is a trace of one such method m′′; so, by Lemma 4 we get

Φ(footG({t
′}))⊕ Φ(footG({t

′′})) ⊆ Smjk−1.ijk−1
⊕

⋃

m′′≤m′

Fm′′ ⊆ Smjk
.ijk

.

We thus easily conclude that Φ(footG({t})) ⊆ U and consequently that Fm ⊆ U .
Let us prove the converse, U ⊆ Fm, by considering the set of definitions (RM):

Rm′.i =
⋃

p∈paths(ICFGM ,{m.0},{m′.i})

Φ(footG({m.calls(p)}))

with the fact that
Fm =

⋃

i|Pm[i]=return

Rm.i.

We can show that, for any edge (m′.j′,m′′.j′′) in ICFGM , Rm′′.j′′ ⊇ instrPm′ [j′](Rm′.j′) by
cases over the definition of instr b in a similar way to previously shown. Since U is the least
solution of (SM), we directly get that Sm′.i′ ⊆ Rm′.i′ for all m

′.i′ ∈ ICFGM . Therefore

U =
⋃

i|Pm[i]=return

Sm.i ⊆
⋃

i|Pm[i]=return

Rm.i = Fm,

which concludes the proof. ⊓⊔

This proof uses some property of interest to embed the verification. As we noticed just
above, as soon as we have a set of Rm′.i′ such that, for any edge (m′.j′,m′′.j′′) in ICFGM ,
Rm′′.j′′ ⊇ instrPm′ [j′](Rm′.j′), then the union of footprints at all return instructions must
contain Fm, since it is the least such set. This means that checking for those inclusions will
provide a low-complexity technique to ensure that a declared footprint for a method m is safe,
i.e., it is an over-approximation of Fm. This also means that the footprint implementation
against which some method bytecode will be verified can be any such over-approximation: to
handle method overloading we will only use the union of all the footprints of methods in one
class and its subclasses.

INRIA

Lightweight verification of control flow policies on Java bytecode 17

5 On-device verification

The computation of footprints uses a fix-point computation, it is thus too heavy for the
computation capabilities of target devices such as mobile phones or smart-card. For this
reason, we use a proof-carrying code approach [22] analog to Rose [25] developed for Java
bytecode type verification.

5.1 Encoding of the embedded proof

Each class file is analyzed off-board, either alone or with the methods of its strongly con-
nected component when needed. Then, metadata have to be shipped with the code. For
traditional Java environments, they are added to the class file in the form of class file at-
tributes. Java Card platforms (2.x and 3.x Classic) do not accept class files directly but rely
on the CAP file structure that is a specific class files bundle. This structure admits “Cus-
tom Components” where footprints can be stored and retrieved during the loading process.
Whatever the target platform, we need:

– for each method m of the class:

• the over-approximated footprint Fm of m, so that every method m′ such that m′ ≤ m

has a footprint included in Fm,

• “proof annotations” that is the list of intermediate footprints computed externally for
all i such that Pm[i] is the target of a jump, proof annotations are encoded in the array
proof [i] in Algorithm 5.1,

– for each method m that is invoked by methods m0, . . . ,mn of the class :

• “believed footprint” that is the footprint Fm of m that has been used in composition
to compute the footprints of the methods m0, . . . ,mn.

Let us consider a system with a global policy G = (Σ,S, s0, ζ, sF). Footprints are encoded
in a binary form, if S contains n elements, s0 is the initial state, sF is denoted sn−1, and then
we need n× (n− 1) bits for a footprint and the bit 0 ≤ i < n× (n− 1) encodes the presence
of (si/n, si mod n) in the footprint of m. For readability of the rest of this section, we use the
array notation and denotes by Fm[i] the (i+ 1)-th bit of Fm.

The empty footprint is encoded by ⊥ (all bits set to zero), and the fully saturated footprint
denoted z in the formal model is encoded by the footprint value ⊤ (all bits are set to one).

5.2 On-device metadata

To manage methods footprints on-device, we use two repositories: R which maps the verified
methods to their footprints, and Rtmp the temporary repository which maps methods that
are not loaded to their believed footprints.

The global policy G = (Σ,S, s0, ζ, sF) is an automaton on a subset of the methods, thus
we need to record it on the embedded system and especially Σ and ζ. The global policy G is
encoded by an array of footprints G such that:

G[A.C.m] =

⊥ if m 6= Σ

{(si, sj) | ζ(si, A.C.m) = sj∨
(ζ(si, A

′.C ′.m′) = sj ∧A.C.m ≤ A′.C ′.m′)} otherwise

RR n° 7584

18 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

The system starts with no application installed, no method has a verified footprint so
each method is assigned the encoded empty footprint ⊥. On the contrary, each method is
assigned in the temporary repository the fully saturated footprint: this default value denotes
the “worst” possible footprint of method; this assumption is mandatory to be able to reject
a method during its verification if it invokes another method for which no footprint is known
in R or in Rtmp . Thus, repositories are initialized such that:

– the repository R of verified methods footprints is empty: R[m] = ⊥ for all methods m;
– the temporary repositoryRtmp of methods footprints is set to the maximum value: Rtmp [m] =

⊤ for all methods m, since we will restrict it step by step using intersection.

5.3 Verification algorithm

The verification algorithm is given by the Algorithm 5.1. For a policy of n states, a footprint
is a vector of n× (n− 1) bits. Then the basic operations are encoded in the following way:

– nonvalid(Fm) is (Fm&mask == mask) with mask the vector that encodes {(s0, sn−1)},
i.e., all bits equal to 0 except the bit n− 1,

– F1 ⊆ F2 is F1 | F2 == F2.

1: for all believed footprint FA′.C′.m′ in the class file do

2: if R[A′.C′.m′] 6⊆ FA′.C′.m′ then return FAIL
3: Rtmp [A

′.C′.m′] = Rtmp [A
′.C′.m′]&FA′.C′.m′

4: for all footprint FA.C.m in the class file do

5: if nonvalid(FA.C.m) or FA.C.m 6⊆ Rtmp [A.C.m] then return FAIL
6: if A.C.m ≤ A′.C′.m′ and FA.C.m 6⊆ FA′.C′.m then return FAIL
7: read proof annotations in array proof
8: for all method A.C.m defined in class C do

9: Ftmp = G[A.C.m]
10: for all bytecode i from 0 to end do

11: if ∃proof [i] then
12: if Ftmp 6⊆ proof [i] then return FAIL
13: Ftmp = proof [i]
14: if PA.C.m[i] = invoke A′.C′.m′ then

15: if R[A′.C′.m′] 6= ⊥ then

16: Ftmp = compose(Ftmp , R[A′.C′.m′])
17: else

18: Ftmp = compose(Ftmp , Rtmp [A
′.C′.m′])

19: else if PA.C.m[i] = return and Ftmp 6⊆ FA.C.m then

20: return FAIL
21: else if PA.C.m[i] ∈ branching bytecodes to address a then

22: if ∄proof [a] or Ftmp 6⊆ proof [a] then return FAIL
23: if PA.C.m[i] ∈ branches systematically to a 6= i+ 1 then Ftmp = ⊥
24: if nonvalid(Ftmp) then return FAIL
25: drop proof and add all FA.C.m to R

26: drop all Rtmp [A.C.m]
27: return SUCCESS

Algorithm 5.1: Loading of a class C of application A.

From lines 2 to 3, we check the believed footprints: if a verified footprint for the same
method already exists on the device, the shipped one must conform to it, then the believed

INRIA

Lightweight verification of control flow policies on Java bytecode 19

footprint in Rtmp forA
′.C ′.m′ (⊤ by default) is restricted to its common parts with the believed

footprint FA′.C′.m′ coming with the currently verified application; since this restriction can
only remove factors contributing to invalid traces, it cannot cause methods already loaded
and successfully verified with the previous footprint to be rejected if they were re-verified with
the restricted footprint. Then, for each believed footprint, we check line 5 if it is valid, if it
conforms to the believed ones of the applications already loaded on the system, and if it is
compliant with the class hierarchy line 6.

Then, the last part of the algorithm verifies the proof of the footprint of the method
without any fix-point computation. For each branching bytecode, we just have to verify that
the computed footprint is lower than the proof annotation. To avoid cycles in the verification
algorithm, for each bytecode that has a proof annotation, we use it as current state instead
of the computed one as seen line 13, after verification that the current state is included in
the proof annotation line 12. Only invocation bytecodes have an impact on the footprint: we
compose (see Algorithm 5.2) the current footprint with the footprint of the invoked method if
it is already verified line 16, with the believed ones otherwise line 18. For the return bytecode,
we only have to verify that the current state is compliant with the footprint announced for
the method line 19.

Lastly, for branching bytecodes, we have to check that the target bytecode has been
annotated and that the current state is included in the proof annotation of the target line 22,
and if the bytecode always branches (goto, return, etc.), we have to reset the current state
line 23, before analyzing the next bytecode.

Algorithm 5.2 implements the composition in a different way from the formal definition.
The composition of F1 and F2 computed here is only the union of:

– {(si, sj) | ∃k, (si, sk) ∈ F1, (sk, sj) ∈ F2}, implemented by lines 2 to 5,

– {(s0, si) ∈ F2}, line 7,

– {(si, sF) ∈ F1}, line 8.

Instead of saturating the composition as soon as (s0, sF) is found in it, since the actual
implementation must directly reject the code, we simply test after this computation whether
(s0, sF) was added and fail if this is the case.

1: Let Fres be initialized to 0
2: for all 0 ≤ i < n− 1 do

3: for all 0 ≤ j < n such that F1[i× n+ j] == 1 do

4: for all 0 ≤ k < n such that F2[j × n+ k] == 1 do

5: Fres[i× n+ k] = 1
6: for all 0 ≤ i < n do

7: Fres[i] = Fres[i]|F2[i]
8: Fres[i× n+ n− 1] = Fres[i× n+ n− 1]|F1[i× n+ n− 1]

Algorithm 5.2: Composition of footprint: compose (F1, F2).

5.4 Extension of the verification to removal of applications

We have proposed a model that allows an issuer to define a global policy of a system, and an
incremental verification designed to avoid re-verification of already loaded bytecode. In order

RR n° 7584

20 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

to keep this last property while dealing with applications removal, we have to keep additional
metadata on-device.

When an application A is successfully verified and installed, all the believed footprints of
A’s methods are removed from the temporary repository Rtmp , and the verified footprints of
A’s methods are stored in R. Moreover, ifA invokes some shared methods of other applications
not yet installed, then the believed footprints of these methods have been updated to intersect
with the believed footprints brought by A. In order to remove A, we have to be able to restore
the temporary repository. To achieve this reset, it is mandatory to keep all the individual
believed footprints of shared methods, and not only an aggregation of these footprints, brought
by applications until there are uninstalled.

Concretely, a new repository Frestore is defined to gather the collection of believed foot-
prints coming with each application. We choose to still maintain Rtmp in a incremental way
(line 3 of Algorithm 5.1) to avoid multiple comparisons (line 5 of Algorithm 5.1) with all
believed footprints now stored in Frestore . However, Rtmp can be removed to reduce memory
requirements if necessary, which will conversely increase the number of required comparisons.
Indeed, in case Rtmp is removed, each expression of the form FA.C.m 6⊆ Rtmp [A.C.m] has
to be replaced by its equivalent: there exist an installed application A′ such that FA.C.m 6⊆
Frestore [A.C.m][A′]. Composition is not done with verified footprints anymore but with the
believed ones brought on by the application itself. Thus, we apply the following modifications
in Algorithm 5.1:

lines 15 – 18: −→ Ftmp = compose(Ftmp , FA′.C′.m′)
line 26: −→ store each FA′.C′.m′ in Frestore [A

′.C ′.m′][A]

Upon removal of an application A, the believed footprints of the external methods invoked
by A must be restored. This last operation requires to recompute the believed footprints ac-
cording to the collection of believed footprints of all external methods brought by applications
remaining installed, as depicted in Algorithm 5.3. Finally, the removal of an application A

must reset the verified footprint of each method of A to its default value ⊥ in R (line 5 of
Algorithm 5.3).

1: for all Frestore [A.C.m] do
2: Rtmp [A.C.m] = ⊤
3: for all A′ ∈ A do

4: Rtmp [A.C.m] = Rtmp [A.C.m]&Frestore [A.C.m][A′]
5: for all A.C.m do

6: R[A.C.m] = ⊥

Algorithm 5.3: Rollback after the removal of an application.

6 Conclusion

In this paper we have proposed a powerful technique to enforce control flow policies on Java
bytecode in open and constrained systems. Our approach is purely static so it does not
require any execution monitoring, which is a better approach for strongly constrained devices
such as smart cards. Moreover, the incremental and compositional verification scheme of
our approach permits to efficiently deal with post-issuance (un)installation of applications
without the need to re-verify already loaded code. As we use a proof-carrying code approach,
no code-signing mechanism is required for the device to be protected against code originating

INRIA

Lightweight verification of control flow policies on Java bytecode 21

from an untrusted origin or transmitted through an unsecure communication channel, which
is crucial for open devices. The main issue we still have to face is the monolithic security
policy stored on-device that impacts security policy updates. Further works will focus on an
efficient way to update the security policy on-device.

References

1. Alpern, B., and Schneider, F. B. Recognizing safety and liveness. Distributed Computing 2, 3 (1987),
117–126.

2. Alpern, B., and Schneider, F. B. Verifying temporal properties without temporal logic. ACM
Transactions on Programming Languages and Systems (TOPLAS) 11, 1 (January 1989), 147–167.

3. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., and Stark, I. Mobile resource guarantees
for smart devices. In Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, Inter-
national Workshop (CASSIS’04) (Marseille, France, March 2005), G. Barthe, L. Burdy, M. Huisman, J.-L.
Lanet, and T. Muntean, Eds., vol. 3362 of Lecture Notes in Computer Science, Springer, pp. 1–26.

4. Bauer, L., Ligatti, J., and Walker, D. Composing security policies with Polymer. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’05) (Chicago, IL, USA, June
2005), V. Sarkar and M. W. Hall, Eds., ACM, pp. 305–314.

5. Bielova, N., Dragoni, N., Massacci, F., Naliuka, K., and Siahaan, I. Matching in security-by-
contract for mobile code. Journal of Logic and Algebraic Programming 78, 5 (May–June 2009), 340–358.

6. Bielova, N., and Massacci, F. Do you really mean what you actually enforced? In 5th International
Workshop on Formal Aspects in Security and Trust (FAST’08) (Malaga, Spain, October 2008), P. Degano,
J. D. Guttman, and F. Martinelli, Eds., vol. 5491 of Lecture Notes in Computer Science, Springer, pp. 287–
301.

7. Brown, A., and Ryan, M. Synthesising monitors from high-level policies for the safe execution of
untrusted software. In 4th International Conference on Information Security Practice and Experience
(ISPEC’08) (Sydney, Australia, April 2008), L. Chen, Y. Mu, and W. Susilo, Eds., vol. 4991 of Lecture
Notes in Computer Science, Springer, pp. 233–247.

8. Colcombet, T., and Fradet, P. Enforcing trace properties by program transformation. In Wegman
and Reps [31], pp. 54–66.

9. Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., and McDaniel, P. D. TaintDroid: An
information-flow tracking system for realtime privacy monitoring on smartphones. In 9th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI’10) (Vancouver, BC, Canada, October
2010), USENIX Association.

10. Erlingsson, Ú., and Schneider, F. B. IRM enforcement of Java stack inspection. In IEEE Sympo-
sium on Security and Privacy (S&P’00) (Oakland, California, USA, May 2000), IEEE Computer Society,
pp. 246–255.

11. Fong, P. W. L. Access control by tracking shallow execution history. In IEEE Symposium on Security
and Privacy (S&P’04) (Berkeley, California, USA, May 2004), IEEE Computer Society, pp. 43–55.

12. Gurov, D., Huisman, M., and Sprenger, C. Compositional verification of sequential programs with
procedures. Information and Computation 206, 7 (2008), 840–868.

13. Huisman, M., and Tamalet, A. A formal connection between security automata and JML annotations.
In 12th International Conference on Fundamental Approaches to Software Engineering (FASE’09) (York,
UK, March 2009), M. Chechik and M. Wirsing, Eds., vol. 5503 of Lecture Notes in Computer Science,
Springer, pp. 340–354.

14. Jensen, T. P., Le Métayer, D., and Thorn, T. Verification of control flow based security properties.
In IEEE Symposium on Security and Privacy (S&P’99) (Oakland, California, USA, May 1999), IEEE
Computer Society, pp. 89–103.

15. Klein, G., and Nipkow, T. Verified lightweight bytecode verification. Concurrency and Computation:
Practice and Experience 13, 13 (2001), 1133–1151.

16. Ligatti, J., Bauer, L., and Walker, D. Edit automata: enforcement mechanisms for run-time security
policies. International Journal of Information Security 4, 1–2 (February 2005), 2–16.

17. Ligatti, J., Bauer, L., and Walker, D. Enforcing non-safety security policies with program monitors.
In 10th European Symposium on Research in Computer Security (ESORICS’05) (Milan, Italy, September
2005), S. De Capitani di Vimercati, P. F. Syverson, and D. Gollmann, Eds., vol. 3679 of Lecture Notes in
Computer Science, Springer, pp. 355–373.

RR n° 7584

22 Arnaud Fontaine, Samuel Hym, Isabelle Simplot-Ryl

18. Massacci, F., and Siahaan, I. Simulating midlet’s security claims with automata modulo theory. In
Workshop on Programming Languages and Analysis for Security (PLAS’08) (Tucson, AZ, USA, June
2008), Ú. Erlingsson and M. Pistoia, Eds., ACM, pp. 1–9.

19. Mizuno, M., and Schmidt, D. A. A security flow control algorithm and its denotational semantics
correctness proof. Formal Aspects of Computing 4, 6A (November 1992), 727–754.

20. Morrisett, G., Walker, D., Crary, K., and Glew, N. From system F to typed assembly language.
ACM Transactions on Programming Languages and Systems (TOPLAS) 21, 3 (May 1999), 527–568.

21. Myers, A. C. JFlow: Practical mostly-static information flow control. In 27th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’99) (San Antonio, Texas, USA,
January 1999), A. Appel and A. Aiken, Eds., ACM, pp. 228–241.

22. Necula, G. C. Proof-carrying code. In 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’97) (Paris, France, January 1997), P. Lee, F. Henglein, and N. D. Jones,
Eds., ACM, pp. 106–119.

23. Ongtang, M., McLaughlin, S. E., Enck, W., and McDaniel, P. D. Semantically rich application-
centric security in Android. In 25th Annual Computer Security Applications Conference (ACSAC’09)
(Honolulu, Hawaii, December 2009), IEEE Computer Society, pp. 340–349.

24. Pottier, F., Skalka, C., and Smith, S. F. A systematic approach to static access control. ACM
Transactions on Programming Languages and Systems (TOPLAS) 27, 2 (March 2005), 344–382.

25. Rose, E. Lightweight bytecode verification. Journal of Automated Reasoning 31, 3–4 (January 2003),
303–334.

26. Schneider, F. B. Enforceable security policies. ACM Transactions on Information and System Security
(TISSEC) 3, 1 (February 2000), 30–50.

27. Sekar, R., Venkatakrishnan, V. N., Basu, S., Bhatkar, S., and DuVarney, D. C. Model-carrying
code: a practical approach for safe execution of untrusted applications. In 19th ACM Symposium on
Operating Systems Principles (SOSP’03) (Bolton Landing, NY, USA, October 2003), M. L. Scott and
L. L. Peterson, Eds., ACM, pp. 15–28.

28. Talhi, C., Tawbi, N., and Debbabi, M. Execution monitoring enforcement for limited-memory systems.
In International Conference on Privacy, Security and Trust: Bridge the Gap Between PST Technologies
and Business Services (PST’06) (Markham, Ontario, Canada, October 2006), G. Sprague, B. Schell, and
W. Fond, Eds., vol. 380, ACM, pp. 38:1–38:12.

29. Vanoverberghe, D., and Piessens, F. Supporting security monitor-aware development. In 3rd
International Workshop on Software Engineering for Secure Systems (SESS ’07) (2007), IEEE Computer
Society, pp. 2–6.

30. Walker, D. A type system for expressive security policies. In Wegman and Reps [31], pp. 254–267.
31. Wegman, M., and Reps, T., Eds. 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL’00) (Boston, MA, USA, January 2000), ACM.
32. Winwood, S., Klein, G., and Chakravarty, M. M. T. On the automated synthesis of proof-carrying

temporal reference monitors. In 16th International Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR’06) (Venice, Italy, July 2006), G. Puebla, Ed., vol. 4407 of Lecture Notes in
Computer Science, Springer, pp. 111–126.

INRIA

Centre de recherche INRIA Lille – Nord Europe
Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

