399 research outputs found

    A Holistic Approach in Embedded System Development

    Full text link
    We present pState, a tool for developing "complex" embedded systems by integrating validation into the design process. The goal is to reduce validation time. To this end, qualitative and quantitative properties are specified in system models expressed as pCharts, an extended version of hierarchical state machines. These properties are specified in an intuitive way such that they can be written by engineers who are domain experts, without needing to be familiar with temporal logic. From the system model, executable code that preserves the verified properties is generated. The design is documented on the model and the documentation is passed as comments into the generated code. On the series of examples we illustrate how models and properties are specified using pState.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    Formal Verification of a Gain Scheduling Control Scheme

    Get PDF
    Gain scheduling is a commonly used closed-loop control approach for safety critical non-linear systems, such as commercial gas turbine engines. It is preferred over more advanced control strategies due to a known route to certification. Nonetheless, the stability of the system is hard to prove analytically, and consequently, safety and airworthiness is achieved by burdensome extensive testing. Model checking can aid in bringing down development costs of such a control system and simultaneously improve safety by providing guarantees on properties of embedded control systems. Due to model-checking exhaustive verification capabilities, it has long been recognised that coverage and error-detection rate can be increased compared to traditional testing methods. However, the statespace explosion is still a major computational limitation when applying model-checking to verify dynamic system behaviour. A practical methodology to incrementally design and formally verify control system requirements for a gain scheduling scheme is demonstrated in this paper, overcoming the computational constraints traditionally imposed by model checking. In this manner, the gain-scheduled controller can be efficiently and safely generated with the aid of the model checker

    Foundations for Safety-Critical on-Demand Medical Systems

    Get PDF
    In current medical practice, therapy is delivered in critical care environments (e.g., the ICU) by clinicians who manually coordinate sets of medical devices: The clinicians will monitor patient vital signs and then reconfigure devices (e.g., infusion pumps) as is needed. Unfortunately, the current state of practice is both burdensome on clinicians and error prone. Recently, clinicians have been speculating whether medical devices supporting ``plug & play interoperability\u27\u27 would make it easier to automate current medical workflows and thereby reduce medical errors, reduce costs, and reduce the burden on overworked clinicians. This type of plug & play interoperability would allow clinicians to attach devices to a local network and then run software applications to create a new medical system ``on-demand\u27\u27 which automates clinical workflows by automatically coordinating those devices via the network. Plug & play devices would let the clinicians build new medical systems compositionally. Unfortunately, safety is not considered a compositional property in general. For example, two independently ``safe\u27\u27 devices may interact in unsafe ways. Indeed, even the definition of ``safe\u27\u27 may differ between two device types. In this dissertation we propose a framework and define some conditions that permit reasoning about the safety of plug & play medical systems. The framework includes a logical formalism that permits formal reasoning about the safety of many device combinations at once, as well as a platform that actively prevents unintended timing interactions between devices or applications via a shared resource such as a network or CPU. We describe the various pieces of the framework, report some experimental results, and show how the pieces work together to enable the safety assessment of plug & play medical systems via a two case-studies

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    Combining SysML and AADL for the design, validation and implementation of critical systems

    Get PDF
    The realization of critical systems goes through multiple phases of specification, design, integration, validation, and testing. It starts from high-level sketches down to the final product. Model-Based Design has been acknowledged as a good conveyor to capture these steps. Yet, there is no universal solution to represent all activities. Two candidates are the OMG-based SysML to perform high-level modeling tasks, and the SAE AADL to perform lower-level ones, down to the implementation. The paper shares an experience on the seamless use of SysML and the AADL to model, validate/verify and implement a flight management system

    Modeling and verifying the FlexRay physical layer protocol with reachability checking of timed automata

    Get PDF
    In this thesis, I report on the verification of the resilience of the FlexRay automotive bus protocol's physical layer protocol against glitches during message transmission and drifting clocks. This entailed modeling a significant part of this industrially used communictation protocol and the underlying hardware as well as the possible error scenarios in fine detail. Verifying such a complex model with model-checking led me to the development of data-structures and algorithms able to handle the associated complexity using only reasonable resources. This thesis presents such data-structures and algorithms for reachability checking of timed automata. It also present modeling principles enabling the construction of timed automata models that can be efficiently checked, as well as the models arrived at. Finally, it reports on the verified resilience of FlexRay's physical layer protocol against specific patterns of glitches under varying assumptions about the underlying hardware, like clock drift.In dieser Dissertation berichte ich über den Nachweis der Resilienz des Bitübertragungsprotokolls für die physikalische Schicht des FlexRay-Fahrzeugbusprotokolls gegenüber Übertragungsfehlern und Uhrenverschiebung. Dafür wurde es notwendig, einen signifikanten Teil dieses industriell genutzten Kommunikationsprotokolls mit seiner Hardwareumgebung und die möglichen Fehlerszenarien detailliert zu modellieren. Ein so komplexes Modell mittels Modellprüfung zu überprüfen führte mich zur Entwicklung von Datenstrukturen und Algorithmen, die die damit verbundene Komplexität mit vernünftigen Ressourcenanforderungen bewältigen können. Diese Dissertation stellt solche Datenstrukturen und Algorithmen zur Erreichbarkeitsprüfung gezeiteter Automaten vor. Sie stellt auch Modellierungsprinzipien vor, die es ermöglichen, Modelle in Form gezeiteter Automaten zu konstruieren, die effizient überprüft werden können, sowie die erstellten Modelle. Schließlich berichtet sie über die überprüfte Resilienz des FlexRay-Bitübertragungsprotokolls gegenüber spezifischen Übertragungsfehlermustern unter verschiedenen Annahmen über die Hardwareumgebung, wie etwa die Uhrenverschiebung.DFG: SFB/TRR 14 "AVACS - Automatische Verifikation und Analyse komplexer Systeme

    Modeling and formal verification of probabilistic reconfigurable systems

    Get PDF
    In this thesis, we propose a new approach for formal modeling and verification of adaptive probabilistic systems. Dynamic reconfigurable systems are the trend of all future technological systems, such as flight control systems, vehicle electronic systems, and manufacturing systems. In order to meet user and environmental requirements, such a dynamic reconfigurable system has to actively adjust its configuration at run-time by modifying its components and connections, while changes are detected in the internal/external execution environment. On the other hand, these changes may violate the memory usage, the required energy and the concerned real-time constraints since the behavior of the system is unpredictable. It might also make the system's functions unavailable for some time and make potential harm to human life or large financial investments. Thus, updating a system with any new configuration requires that the post reconfigurable system fully satisfies the related constraints. We introduce GR-TNCES formalism for the optimal functional and temporal specification of probabilistic reconfigurable systems under resource constraints. It enables the optimal specification of a probabilistic, energetic and memory constraints of such a system. To formally verify the correctness and the safety of such a probabilistic system specification, and the non-violation of its properties, an automatic transformation from GR-TNCES models into PRISM models is introduced. Moreover, a new approach XCTL is also proposed to formally verify reconfigurable systems. It enables the formal certification of uncompleted and reconfigurable systems. A new version of the software ZIZO is also proposed to model, simulate and verify such GR-TNCES model. To prove its relevance, the latter was applied to case studies; it was used to model and simulate the behavior of an IPV4 protocol to prevent the energy and memory resources violation. It was also used to optimize energy consumption of an automotive skid conveyor.In dieser Arbeit wird ein neuer Ansatz zur formalen Modellierung und Verifikation dynamisch rekonfigurierbarer Systeme vorgestellt. Dynamische rekonfigurierbare Systeme sind in vielen aktuellen und zukünftigen Anwendungen, wie beispielsweise Flugsteuerungssystemen, Fahrzeugelektronik und Fertigungssysteme zu finden. Diese Systeme weisen ein probabilistisches, adaptives Verhalten auf. Um die Benutzer- und Umgebungsbedingungen kontinuierlich zu erfüllen, muss ein solches System seine Konfiguration zur Laufzeit aktiv anpassen, indem es seine Komponenten, Verbindungen zwischen Komponenten und seine Daten modifiziert (adaptiv), sobald Änderungen in der internen oder externen Ausführungsumgebung erkannt werden (probabilistisch). Diese Anpassungen dürfen Beschränkungen bei der Speichernutzung, der erforderlichen Energie und bestehende Echtzeitbedingungen nicht verletzen. Eine nicht geprüfte Rekonfiguration könnte dazu führen, dass die Funktionen des Systems für einige Zeit nicht verfügbar wären und potenziell menschliches Leben gefährdet würde oder großer finanzieller Schaden entstünde. Somit erfordert das Aktualisieren eines Systems mit einer neuen Konfiguration, dass das rekonfigurierte System die zugehörigen Beschränkungen vollständig einhält. Um dies zu überprüfen, wird in dieser Arbeit der GR-TNCES-Formalismus, eine Erweiterung von Petrinetzen, für die optimale funktionale und zeitliche Spezifikation probabilistischer rekonfigurierbarer Systeme unter Ressourcenbeschränkungen vorgeschlagen. Die entstehenden Modelle sollen über probabilistische model checking verifiziert werden. Dazu eignet sich die etablierte Software PRISM. Um die Verifikation zu ermöglichen wird in dieser Arbeit ein Verfahren zur Transformation von GR-TNCES-Modellen in PRISM-Modelle beschrieben. Eine neu eingeführte Logik (XCTL) erlaubt zudem die einfache Beschreibung der zu prüfenden Eigenschaften. Die genannten Schritte wurden in einer Softwareumgebung für den automatisierten Entwurf, die Simulation und die formale Verifikation (durch eine automatische Transformation nach PRISM) umgesetzt. Eine Fallstudie zeigt die Anwendung des Verfahren
    corecore