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Abstract—Gain scheduling is a commonly used closed-loop
control approach for safety critical non-linear systems, such
as commercial gas turbine engines. It is preferred over more
advanced control strategies due to a known route to certification.
Nonetheless, the stability of the system is hard to prove analyti-
cally, and consequently, safety and airworthiness is achieved by
burdensome extensive testing. Model checking can aid in bringing
down development costs of such a control system and simulta-
neously improve safety by providing guarantees on properties
of embedded control systems. Due to model-checking exhaustive
verification capabilities, it has long been recognised that coverage
and error-detection rate can be increased compared to traditional
testing methods. However, the state-space explosion is still a
major computational limitation when applying model-checking
to verify dynamic system behaviour. A practical methodology
to incrementally design and formally verify control system
requirements for a gain scheduling scheme is demonstrated in this
paper, overcoming the computational constraints traditionally
imposed by model checking. In this manner, the gain-scheduled
controller can be efficiently and safely generated with the aid of
the model checker.

I. INTRODUCTION

Gain scheduling is a commonly used control scheme for

non-linear processes. It is appealing due to its simplicity com-

pared to more advanced non-linear control methodologies. In

safety-critical systems it is extensively used (e.g. commercial

jet engines) and it is implemented in the form of embedded

software [16, 13]. For safety reasons the software undergoes

extensive verification and validation practices. Airworthiness

certification requires evidence to show the correct behaviour

of the system prior to operation, which can be done with

gain scheduling but not with an adaptive system scheme [3].

However, current development and certification practices are

prone to human error and requirements ambiguities [4, 9].

Demonstrating safety conformity for a gain scheduling con-

troller is challenging from both design and implementation

points of view. In this paper, for the first time, a gain schedul-

ing scheme is formally designed and verified using model

checking. The formal verification of control requirements is

enabled by the proposed modelling methodology. The gain

schedule is incrementally constructed using the model checker.

The end result consists of a gain schedule with the minimum

number of controller tunings to satisfy requirements.

The usual approach to embedded control is to design

analogue controllers and digitize them for implementation in

a computer-based system (Fig. 1). To guarantee safety and

conformity with requirements extensive testing is performed.

It is estimated that current testing activities amount to approx-

imately 30% to 50% of the total cost of a software project [1].

It is therefore desirable to find a new approach to verification

and validation.

Fig. 1: Hybrid control system example. Continuous process regulated
by a computer-based controller.

The development and certification processes of safety crit-

ical control systems can be improved by the incorporation

of formal methods (e.g. model checking). Benefits include

an increase in testing coverage, early error-detection, and

requirements clarification [2, 7, 15]. However, their usage in

industry (e.g. automotive, aerospace) is not a common practice

[15] and has not yet been applied to gain scheduling control.

Formal methods are also used to synthesize controllers using

requirements as a formal input, known as correct-by-design

approach. The synthesized controller is one of symbolic nature

- e.g. a state machine [5, 17]. However, so far the correct-

by-design approach does not contemplate common controller

structures (e.g. PID). It is highly desirable to enable common

modelling practices for control systems in a model checking

environment thus allowing control engineers to exploit the

benefits of model checking.

To design and validate a controller the most common

requirements are [12]:

1) Settling time.

2) Overshoot.



3) Rise time.

4) Steady State error.

Current model checking tools are not aimed to address such

type of requirements despite these being the most common in

control design. It is desirable to increase the range of require-

ments that can be formally verified [15]. Potential benefits

of doing so include automatic test case generation, correct-

by-design approach for software generation, and the early

detection of requirements collision. However, challenges need

to be addressed to make this a reality. Floating-point arithmetic

is not fully supported in model checking which creates a

challenge when modelling feedback controllers [18, 10].

In this paper a novel methodology is proposed to system-

atically generate a control schedule using model checking.

An abstraction and modelling framework is proposed so that

common control requirements can be verified using model

checking. The framework is then used to solve a gain schedul-

ing design problem. Starting from one controller tuning for

an arbitrary operating region, the schedule is incrementally

constructed using the model checker to verify the requirements

compliance in all the operating space. In this manner control

system requirements can be formally verified with a push-

button approach.

The rest of this paper is structured as follows. Section II

presents the problem formulation and the abstraction method-

ology. Section III presents the required elements to implement

the abstraction in a model checker environment. Section IV

presents a case study to show the applicability of the method-

ology. Finally, Section V presents conclusions.

II. PROBLEM FORMULATION

The problem to address can be stated as follows: to guaran-

tee that a non-linear process controlled by an embedded gain

scheduling controller is safe and meets design requirements.

Usually the design methodology to address this problem is

[8, 14]:

1) Partition the operating space.

2) Obtain linear models of the partitions.

3) Tune a controller for each partition.

4) Extensive testing to verify and validate requirements.

For verification and validation activities, current software

engineering practices include unit testing, integration testing,

and acceptance testing [11]. Model checking is an exhaustive

verification technique and by using it during design and

verification phases benefits can be obtained (e.g. test case

generation, and coverage increase).

When modelling a system such as Fig. 1 the continuous part

is usually represented using Ordinary Differential Equations

(ODE). From a programming point of view it is easier to work

with the discrete version of the system because no integration

routine is needed which is computationally expensive. Also,

the controller is implemented in a discrete manner using

difference equations. A discrete representation of the system

is thus convenient for both modelling and implementation

purposes.

For the purpose of this paper Single-Input Single-Output

(SISO) Linear Time Invariant (LTI) models are selected for

modelling the system. A similar case can be made using

Multiple-Input Multiple-Output (MIMO) models. An abstrac-

tion technique is proposed so the gain scheduling problem can

be addressed using SISO LTI models within a model checker

environment.

A. Discrete SISO LTI Models

In order to model the system and the controller in the gain

scheduling problem formulated in Section II, discrete SISO

LTI models have been selected. Discrete SISO LTI models are

described by an auto-regressive with exogenous input (ARX)

model:

Y (z−1)

U(z−1)
=

b1z
−1−n + b2z

−2−n + ...+ bnb
z−nb−n

1 + a1z
−1 + a2z

−2 + ...+ ana
z−na

(1)

where the output of the system is Y, the input is U and the

system response delay to the input is n. The order of the

system is determined by the number of coefficients a (na) and

b (nb). The output calculation is therefore the weighted sum

of previous input and output values:

Y (k) =

na∑

i=1

aiY (k − i) +

nb∑

i=1

biU(k − i− n) (2)

Inputs, outputs, and coefficients are real numbers which are

best represented by floating point variables. The use of floating

point data-type is currently very limited for model check-

ing and rounding does not provide good results due to the

fractional part containing dynamics information. To overcome

this limitation a scaling approach which uses integer-type

computations only to simulate discrete SISO LTI models is

proposed.

B. Abstraction

Floating point arithmetic is not supported by most tools

or has limited use (e.g. clock variables with set and reset

operations). To overcome this limitation and to be able to

recover the system’s dynamics using integer only data a scaling

approach in combination with a fixed-point representation is

proposed [6]. There are two main components:

1) Coefficients a and b representation.

2) Input-Output representation.

To address item 1, coefficients are scaled and rounded up by

a fixed gain value which allows to recover 4 decimal places.

The weighted sum (2) is performed in this scaled manner and

in the end the scaling effect is removed by dividing the result

by the same gain value.

To address item 2 a fixed point approach is followed. A

representation is constructed over the 5 digits available in a 16-

bit signed integer. If the input-output relationship is normalized

then a 1 digit with 4 decimal places representation is generated

(Fig. 2). In this manner the input-output values are scaled-up.

The selected gain to do so depends on the needed resolution.

The abstraction methodology allows to recover the system’s

dynamics in a scaled-up fashion. The resolution will depend on



Fig. 2: Mapping between original floating point values and fixed point
integer representation.

the selected gains to do the scaling and numeric representation.

Due to scaling and rounding operations there is error during

the calculations. To measure the inaccuracy of the abstraction,

a comparison with the original system (no data type restriction)

needs to be performed.

As an example, Fig. 3 shows the comparison of the open

loop response of % generated thrust for two operating points

in a jet engine model (further details in Section IV). Each

operating point has a particular dynamic for which a linear

model is generated. Afterwards the abstraction is generated

and the same input is fed into it.

Fig. 3: Open loop response for two operating points. Original model
vs abstractions.

To quantify the amount of error in the abstraction, overshoot

is compared in both operating points (Table I). The abstraction

consisted of a 4 decimal digits mapping criteria, a 4 digits

fixed-point arithmetic. Differences are less than 0.1% and as

shown in Fig. 3 the abstraction allows to recover the sys-

tem’s dynamics. A comparison must be performed to measure

differences and compensate when using the abstraction for

design and verification purposes. Once the abstraction has been

generated it needs to be implemented in a model checking

environment so the system can be formally verified. The

following section covers how to implement the abstraction in

a model checking environment.

III. MODELLING WITHIN A MODEL CHECKER

ENVIRONMENT

To simulate the generic system in Fig. 1 and verify control

requirements in a gain scheduling control scheme (Section I)

within a model checker environment, a set of automata are

proposed (Fig. 4). Using the abstraction technique presented

in Section II-B scaled-discrete SISO LTI models are then

implemented in the model checker.

The automata design is driven by both the gain scheduling

problem and the control requirements to be verified (1-4 from

Section I). In this manner the requirements verification will be

performed using the model checker formulae query language

using a push-button approach.

A. Model Checking Automata

Model checking tools can be classified by their modelling

language (Java, C, PROMELA, LOTUS, etc.), properties lan-

guage (LTL, CTL, PCTL, assertions, etc.), and the nature of

the system they are intended to verify (probabilistic, plain,

hybrid, real-time, timed, etc.). Within real-time systems, the

model checker UPPAAL is designed to model systems as

networks of timed-automata with integer variables, structured

data types, clocks, and channel synchronization. UPPAAL

offers a modelling environment which gives the user freedom

to program tailor-made functionalities for the timed-automata.

For this reason it was selected to implement the abstraction

and perform the formal verification.

To verify if the system complies with requirements the

model checker uses properties. There are 3 types of properties

available in UPPAAL:

1) Reachability: It is possible to reach a system state.

2) Safety: Something can never happen.

3) Liveness: Something will eventually happen.

System modelling is strongly driven by the type of avail-

able properties and requirements to be verified. Therefore a

design for verifiability approach is taken. In order to verify

requirements 1-4 from Section I the automata have to be

designed so that a control requirement can be translated into

a property. The following automata are proposed to achieve

this translation. The Plant automata generates the process

output and monitors it. Because requirements are related to

the process output it is in this automata where requirements

are portrayed so they can be verified. The Controller automata

is in charge of generating the control action. The Observer

automata synchronizes the correct execution of events between

the Controller and Plant automata. In more detail:

• Observer: Automata in charge of synchronising the con-

troller and plant execution. This automata monitors con-

troller and plant outputs to determine transitions. It is

in charge of deciding which controller configuration to

select, when to trigger an event, and when to stop the

verification process.

• Plant: Automata in charge of simulating the process

under control. When the plant is required to generate a

new output a transition is triggered from the Settled to the

Transient state. Both Rise Time and Overshoot states are

included to perform the verification of such requirements.

• Controller: Automata in charge of simulating the gain

scheduled PID-type controller. When the controller is



TABLE I: Original System vs Abstraction Differences.

Operating Point Overshoot % - Original Overshoot % - Abstraction Error %

1 16.3163 16.3996 0.0833

2 4.5508 4.5426 0.0081

required to generate a new output a transition is triggered

from the Settled state to the Processing state. Once the

control signal has reached an equilibrium with the plant

the Settled state is reached.

Fig. 4: Proposed automata to simulate the generic control system,
Fig. 1.

By using properties to verify requirements the model

checker can return a witness or a counter example trace. A

witness trace contains the actions that lead to a requirement

being fulfilled and a counter example trace contains the actions

that lead to a requirement not being fulfilled. In this manner

the designer can obtain information about the system from

the model checker. To verify control requirements (Section I)

a reachability property will be used so that a witness trace can

be obtained as feedback.

B. Gain Schedule Verification Methodology

Once the control system is implemented in the model

checker environment using the abstraction methodology (Sec-

tion II-B) and timed automata (Section III-A), control system

requirements can be formally verified. The following algo-

rithm shows the steps to formally design and verify a gain

schedule control scheme.

The objective of this design process is to generate a control

schedule with the minimum necessary control tunings in order

Algorithm 1: Control Schedule Design and Verification

Procedure.

Input : Non-linear model, Performance Requirements.

Output: Control Schedule.

1 Partition the operating space into M regions;

2 Obtain a linear model for each of the M operating

regions (2);

3 Use classical control methods and design a controller for

operating region 1;

4 Use the abstract methodology (Section II-B) and

implement the abstraction in the model checker;

5 Use the model checker to verify requirements for all M

operating regions using the available control tunings;

6 If requirements are met for all regions, cross-check in the

original model;

7 If not met, design a controller for the operating region

which does not meet requirements;

8 Update model abstraction with the new designed

controller tuning;

9 Go back to step 5, repeat;

to meet requirements for all operating regions. The schedule

design is incremental. After the operating space has been split,

an operating region is arbitrarily selected and the controller is

tuned to meet requirements in that region. The model checker

is then used to verify if requirements are met for all the other

regions as well. If not, another region where requirements are

not met is selected and the process is repeated. The number

of available tunings increases and this also allows the model

checker to use those tunings as options in order to meet

requirements. The outcome after applying Algorithm 1 will

be a control schedule which meets design requirements and

has been formally verified.

IV. CASE STUDY

A. Thrust Control System

Consider a commercial jet-engine, thrust is regulated using

a PID controller with a gain scheduling scheme. The process

dynamics will vary depending on the operating point: fac-

tors such as altitude and temperature generate a non-linear

behaviour [16].

Fig. 5 shows the behaviour of the control system. There

are five operating regions (M = 5). The objective is to

design a control schedule to meet a given set of performance

requirements for all operating regions.

B. Requirements

The system must comply with certain performance re-

quirements. The following illustrative requirements will be



Fig. 5: Thrust control consisting of 5 operating regions. Each region
has a particular dynamic behaviour.

verified. These requirements are specifically chosen so that

the methodology in Section III-B is demonstrated. They apply

for all operating regions:

1) Overshoot % (OS) ≤ 10%.

2) Settling Time (ST) ≤ 40 seconds.

3) Rise Time (RT) ≤ 15 seconds.

4) Steady state error % (SSE) ≤ 1%.

The requirements verification is thus performed using a

push-button approach by querying the model checker using

a reachability property - E<>:

E <> Observer.End and Plant.OS ≤ 10% and

Plant.ST ≤ 40 (seconds) and Plant.RT ≤ 15

(seconds) and Plant.SSE ≤ 1% (3)

Equation (3) shows the verification of requirements 1-4 for

a single operating region using the proposed automata (Fig.

4). The query can be read as: there exists a path where the

observer has reached a final state, overshoot is less than or

equal to the specification, settling time is less than or equal

to the specification, rise time is less than or equal to the

specification, and steady state error is less than or equal to

the specification.

C. Verification Results and Discussion

Algorithm 1 is applied to the problem formulated in Section

IV-A. Initially the operating space is split into 5 regions.

After verifying requirements for all regions with the controller

designed for region 1 it is found that region 4 does not

meet requirements. The overshoot verification fails because the

overshoot state is visited when in that region. The overshoot

value is 19.9% which was confirmed using the original model.

A second controller tuning is designed around region 4. The

verification is run again and after two iterations the model

checker returns a schedule where all requirements are met

across all regions, i.e. only two controller tunings are needed

to meet requirements across all regions. A controller tuning is

selected for each region:

• Region 1: Tuning 1 - Initial tuning.

Fig. 6: Results after the first iteration. Region 4 fails to meet overshoot
requirement.

• Region 2: Tuning 1.

• Region 3: Tuning 1.

• Region 4: Tuning 2 - Designed after 1 iteration.

• Region 5: Tuning 1.

Fig. 7 shows the comparison between the initial controller

tuning applied in all regions and the final schedule consisting

of 2 controller tunings. As expected, because the only region

where tunings differ is region 4, it can be observed that tuning

1 has a higher overshoot in region 4, where it originally failed

to meet requirements.

Fig. 7: Final schedule consisting of 2 controller tunings versus initial
tuning from iteration 1. The final schedule consists of 2 different
tunings for 5 operating regions.

Current software design practices rely on a trial and error

approach. Verification and validation use requirement-driven

testing and complement it with corner cases (e.g. worst case

scenarios). The use of model checking enables a push-button

approach to verify several requirements at the same time. Rea-

soning about the control system in an automated manner saves

time compared to trial and error which allows to explore more

cases during verification. The formality of model checking

makes the design more robust against human errors.

Modelling in the model checker is driven by problem formu-

lation. The design has to consider the type of requirements to



be verified, generating an ad hoc solution. In this manner more

benefits can be exploited from the model checker. Nonetheless

results in the model checker have to be cross-verified in the

original model. Results show that the methodology is accurate

to reason about the original system using the abstraction. The

use of both tools in combination to solve the problem shows

the benefits of the methodology.

V. CONCLUSIONS

For the first time a methodology to formally verify a

gain scheduling control system is proposed. The type of

requirements which were formally verified include overshoot,

settling time, rise time, and steady-state error. The method-

ology enables the use of model checking to aid during the

design and verification phases of a gain scheduling control

system. A model abstraction is generated by the means of

a scaling fixed-point approach which uses integer data-type

only to overcome the data-type limitation in model checking.

The abstraction allows to recover system dynamics and model

feedback control systems without using floating-point data.

The methodology also enables the use of a typical control

system model such as discrete SISO LTI in a model checker.

This makes the transition to a model checking environment

more understandable for the designer.
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