22 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationAbstraction plays an important role in digital design, analysis, and verification, as it allows for the refinement of functions through different levels of conceptualization. This dissertation introduces a new method to compute a symbolic, canonical, word-level abstraction of the function implemented by a combinational logic circuit. This abstraction provides a representation of the function as a polynomial Z = F(A) over the Galois field F2k , expressed over the k-bit input to the circuit, A. This representation is easily utilized for formal verification (equivalence checking) of combinational circuits. The approach to abstraction is based upon concepts from commutative algebra and algebraic geometry, notably the Grobner basis theory. It is shown that the polynomial F(A) can be derived by computing a Grobner basis of the polynomials corresponding to the circuit, using a specific elimination term order based on the circuits topology. However, computing Grobner bases using elimination term orders is infeasible for large circuits. To overcome these limitations, this work introduces an efficient symbolic computation to derive the word-level polynomial. The presented algorithms exploit i) the structure of the circuit, ii) the properties of Grobner bases, iii) characteristics of Galois fields F2k , and iv) modern algorithms from symbolic computation. A custom abstraction tool is designed to efficiently implement the abstraction procedure. While the concept is applicable to any arbitrary combinational logic circuit, it is particularly powerful in verification and equivalence checking of hierarchical, custom designed and structurally dissimilar Galois field arithmetic circuits. In most applications, the field size and the datapath size k in the circuits is very large, up to 1024 bits. The proposed abstraction procedure can exploit the hierarchy of the given Galois field arithmetic circuits. Our experiments show that, using this approach, our tool can abstract and verify Galois field arithmetic circuits up to 1024 bits in size. Contemporary techniques fail to verify these types of circuits beyond 163 bits and cannot abstract a canonical representation beyond 32 bits

    Doctor of Philosophy

    Get PDF
    dissertationFormal verification of hardware designs has become an essential component of the overall system design flow. The designs are generally modeled as finite state machines, on which property and equivalence checking problems are solved for verification. Reachability analysis forms the core of these techniques. However, increasing size and complexity of the circuits causes the state explosion problem. Abstraction is the key to tackling the scalability challenges. This dissertation presents new techniques for word-level abstraction with applications in sequential design verification. By bundling together k bit-level state-variables into one word-level constraint expression, the state-space is construed as solutions (variety) to a set of polynomial constraints (ideal), modeled over the finite (Galois) field of 2^k elements. Subsequently, techniques from algebraic geometry -- notably, Groebner basis theory and technology -- are researched to perform reachability analysis and verification of sequential circuits. This approach adds a "word-level dimension" to state-space abstraction and verification to make the process more efficient. While algebraic geometry provides powerful abstraction and reasoning capabilities, the algorithms exhibit high computational complexity. In the dissertation, we show that by analyzing the constraints, it is possible to obtain more insights about the polynomial ideals, which can be exploited to overcome the complexity. Using our algorithm design and implementations, we demonstrate how to perform reachability analysis of finite-state machines purely at the word level. Using this concept, we perform scalable verification of sequential arithmetic circuits. As contemporary approaches make use of resolution proofs and unsatisfiable cores for state-space abstraction, we introduce the algebraic geometry analog of unsatisfiable cores, and present algorithms to extract and refine unsatisfiable cores of polynomial ideals. Experiments are performed to demonstrate the efficacy of our approaches

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Software Model Checking with Uninterpreted Functions

    Full text link
    Software model checkers attempt to algorithmically synthesize an inductive proof that a piece of software is safe. Such proofs are composed of complex logical assertions about program variables and control structures, and are computationally expensive to produce. Our unifying motivation is to increase the efficiency of verifying software control behavior despite its dependency on data. Control properties include important topics such as mutual exclusion, safe privilege elevation, and proper usage of networking and other APIs. These concerns motivate our techniques and evaluations. Our approach integrates an efficient abstraction procedure based on the logic of equality with uninterpreted functions (EUF) into the core of a modern model checker. Our checker, called euforia, targets control properties by treating a program's data operations and relations as uninterpreted functions and predicates, respectively. This reduces the cost of building inductive proofs, especially for verifying control relationships in the presence of complex but irrelevant data processing. We show that our method is sound and terminates. We provide a ground-up implementation and evaluate the abstraction on a variety of software verification benchmarks. We show how to extend this abstraction to memory-manipulating programs. By judicious abstraction of array operations to EUF, we show that we can directly reason about array reads and adaptively learn lemmas about array writes leading to significant performance improvements over existing approaches. We show that our abstraction of array operations completely eliminates much of the array theory reasoning otherwise required. We report on experiments with and without abstraction and compare our checker to the state of the art. Programs with procedures pose unique difficulties and opportunities. We show how to retrofit a model checker not supporting procedures so that it supports modular analysis of programs with non-recursive procedures. This technique applies to euforia as well as other logic-based algorithms. We show that this technique enables logical assertions about procedure bodies to be reused at different call sites. We report on experiments on software benchmarks compared to the alternative of inlining all procedures.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168092/1/dlbueno_1.pd

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems
    corecore