
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

March 2020

ANALYSIS AND VERIFICATION OF ARITHMETIC CIRCUITS USING ANALYSIS AND VERIFICATION OF ARITHMETIC CIRCUITS USING

COMPUTER ALGEBRA APPROACH COMPUTER ALGEBRA APPROACH

TIANKAI SU

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

Recommended Citation Recommended Citation
SU, TIANKAI, "ANALYSIS AND VERIFICATION OF ARITHMETIC CIRCUITS USING COMPUTER ALGEBRA
APPROACH" (2020). Doctoral Dissertations. 1868.
https://scholarworks.umass.edu/dissertations_2/1868

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/288433333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1868&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1868&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/1868?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1868&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ANALYSIS AND VERIFICATION OF ARITHMETIC
CIRCUITS USING COMPUTER ALGEBRA APPROACH

A Dissertation Presented

by

TIANKAI SU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2020

Electrical and Computer Engineering

c© Copyright by Tiankai Su 2020

All Rights Reserved

ANALYSIS AND VERIFICATION OF ARITHMETIC
CIRCUITS USING COMPUTER ALGEBRA APPROACH

A Dissertation Presented

by

TIANKAI SU

Approved as to style and content by:

Maciej Ciesielski, Chair

George S. Avrunin, Member

Daniel Holcomb, Member

Weibo Gong, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

ABSTRACT

ANALYSIS AND VERIFICATION OF ARITHMETIC
CIRCUITS USING COMPUTER ALGEBRA APPROACH

FEBRUARY 2020

TIANKAI SU

B.Sc., NORTHEAST DIANLI UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Maciej Ciesielski

Despite a considerable progress in verification of random and control logic, ad-

vances in formal verification of arithmetic designs have been lagging. This can be

attributed mostly to the difficulty of efficient modeling of arithmetic circuits and

data paths without resorting to computationally expensive Boolean methods, such

as Binary Decision Diagrams (BDDs) and Boolean Satisfiability (SAT) that require

“bit blasting”, i.e., flattening the design to a bit-level netlist. Similarly, approaches

that rely on computer algebra and Satisfiability Modulo Theories (SMT) methods are

either too abstract to handle the bit-level complexity of arithmetic designs or require

solving computationally expensive decision or satisfiability problems. On the other

hand, theorem provers, popular solvers used in industry, require a significant human

interaction and intimate knowledge of the design to guide the proof process.

The work proposed in this thesis aims at overcoming the limitations of verifying

arithmetic circuits, especially at the post-synthesis, implementation phase. It ad-

iv

dresses the verification problem at an algebraic level, treating an arithmetic circuit

and its specification as an algebraic system. Specifically, verification approach em-

ployed in this work is based on the algebraic rewriting method of [86]. In this method,

the circuit is modeled in the algebraic domain, where both the circuit specification

and its gate-level implementation are represented as polynomials. This work formally

analyzes the algebraic approach and compares it with the established computer al-

gebra methods based on Gröbner basis reduction. It shows that algebraic rewriting

is more effective than the Gröbner basis reduction from the computational point of

view.

This thesis addresses two classes of arithmetic circuits that could not directly ben-

efit from this type of functional verification, since performing algebraic rewriting of

such circuits encounters a serious memory issue. The circuits that fall in the first cat-

egory are approximate arithmetic circuits, such as truncated integer multipliers. Dif-

ferent truncation schemes are considered, including bit deletion, bit truncation, and

rounding. The proposed verification method is based on reconstructing the truncated

multiplier to a complete, exact multiplier; it is then followed by algebraic rewriting to

prove that it indeed implements multiplication over the required range of bits. The

reconstruction of the multiplier helps avoid the memory overload issue as it creates a

”clean” multiplier with a well defined specification polynomial.

The other class of circuits that suffer from memory overload during algebraic

rewriting are circuits subjected to some arithmetic constraints. An example of such

circuits is a divider, where the divisor value cannot be zero. The other example can

be found in the basic blocks of the constant divider, where the value of carry into each

block must be less than the divisor value. In general, such constraints will be modeled

using the concept of vanishing monomials. A case-splitting method is proposed along

with the modified algebraic rewriting to resolve the memory issue. The proposed

v

verification method not only can prove that the circuit performs a correct function

under the desired (valid) conditions, but also will test all the undesired (invalid) cases.

This work also addresses logic debugging of combinational arithmetic circuits over

field F2k , including Galois field multipliers. Galois Field (GF) arithmetic has numer-

ous applications in digital communication, cryptography and security engineering,

and formal verification of such circuits is of prime importance. In addition to func-

tional verification of GF multipliers, this work proposes a novel and effective method

for identifying and correcting bugs in such circuits, commonly referred to as debug-

ging. In this work we propose a novel approach to debugging of GF arithmetic circuits

based on forward rewriting, which enables functional verification and debugging at

the same time. This technique can handle multiple bugs, does not suffer from the

polynomial size explosion encountered by other methods, and allows one to identify

and automatically correct bugs in GF circuits.

The techniques and algorithms proposed in this dissertation have been imple-

mented in several computer programs, some stand-alone, and some integrated with

a popular synthesis and verification tool, ABC [11]. The experimental results for

verification and debugging are compared with the state-of-the-art SAT, SMT, and

other computer algebraic solvers.

vi

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . x

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Hardware Design and Verification Flow . 2
1.2 Traditional Boolean Verification Methods . 4

1.2.1 Binary Decision Diagram (BDD) . 4
1.2.2 Boolean satisfiability problem (SAT) . 6
1.2.3 Satisfiability Modulo Theories (SMT) . 8
1.2.4 Theorem Proving . 9

1.3 Motivation . 10

2. BACKGROUND . 12

2.1 Fields, Polynomials, Ideals and Varieties . 12

2.1.1 Fields . 12
2.1.2 Polynomials . 13
2.1.3 Ideals and Varieties . 14

2.2 Ideal Membership Test . 15
2.3 Gröbner basis . 17
2.4 Related Work . 18

3. FORMAL VERIFICATION OF INTEGER ARITHMETIC
CIRCUITS USING COMPUTER ALGEBRA
APPROACH . 22

vii

3.1 Algebraic Model of Electronic Circuit . 22
3.2 Gröbner Basis Polynomial Reduction . 25
3.3 Algebraic Rewriting . 28
3.4 AIG Rewriting . 32
3.5 Comparison between GB Reduction and Rewriting 34
3.6 The Bit-flow Model . 37

4. VERIFICATION OF TRUNCATED ARITHMETIC
CIRCUITS . 46

4.1 Problem Statement . 46
4.2 Formal Truncation Schemes . 48
4.3 Verifying Different Truncation Schemes . 49

4.3.1 Deletion Scheme only . 50
4.3.2 D-truncation scheme only . 53
4.3.3 Deletion + D-truncation + Rounding . 56

4.4 Results . 58

5. VERIFICATION OF ARITHMETIC CIRCUITS SUBJECTED
TO ARITHMETIC CONSTRAINTS . 60

5.1 Problem Statement . 60
5.2 Constraint-free Circuit vs. Constrained Circuit . 61
5.3 Verifying Constrained Circuit by Case-splitting Analysis with

Vanishing Monomials . 65

5.3.1 Vanishing Monomials . 65
5.3.2 Case-splitting Verification Approach . 67
5.3.3 Generation of Vanishing Monomials . 70
5.3.4 Complexity Analysis . 73

5.4 Results and Conclusion . 74

6. VERIFICATION AND DEBUGGING OF GALOIS FIELD
MULTIPLIERS . 80

6.1 Background . 80

6.1.1 Galois Fields . 80
6.1.2 Computer Algebra Approach in GF . 81
6.1.3 GF Multiplier Principles . 82

6.2 Bug Identification . 84
6.3 Multiple Bugs Analysis . 89

viii

6.4 Results and Conclusions . 91

7. CONTRIBUTIONS, PUBLICATIONS . 94

BIBLIOGRAPHY . 97

ix

LIST OF TABLES

Table Page

3.1 CPU verification time (in seconds) of synthesized and technology
mapped multipliers using different libraries. #GT = Number of
gate types. FI≥5 = Number of gates with fanin≥5. 36

3.2 CPU verification time (in seconds) for multipliers prior to synthesis.
ES = Error State reported by Singular. 36

3.3 Flow values of cuts in the correct circuit. S5 = Sout = 2C + S;
S0 = Sin = a+ b+ c = Fspec . 41

3.4 Flow values in faulty circuit (gate AND of g replaced by OR);
S5 = Sout = 2C + S; S0 = Sin 6= Fspec . 45

4.1 The relationship between RLC and NTPP. RLC: Rank of Logic

Column, NTPP : Number of Total PPs . 51

4.2 Results and comparison with Function Extraction [22] using
truncated CSA multipliers. 58

4.3 Results and comparison with ABC, SMT, and SAT solvers using
truncated Baugh-Wooley multipliers. 59

5.1 Function table of a conditional 3-bit adder A+B (A ≥ 3). 63

5.2 Truth table for function F : A ≥ 201, where A is an 8-bit operand. 71

5.3 Truth table of F :A < 108, where A is an 8-bit operand. 73

5.4 Verification time of different approaches. 75

5.5 Verification time of a 64-bit multiplier (A×B) with different
constraints. 76

5.6 Verification results for the divide-by-constant divider circuit with a
32-bit dividend X using the proposed technique for Modular 1-bit
block. 78

x

6.1 Bug Analysis . 88

6.2 Results of Mastrovito multipliers with single bug per cone. 92

6.3 Results of Mastrovito multipliers with multiple bugs. 93

xi

LIST OF FIGURES

Figure Page

1.1 Typical industrial IC design flow. 2

1.2 Different representations of Boolean Function . 5

1.3 Equivalence checking using BDD. 6

1.4 Using miter to solve equivalent checking in SAT . 7

1.5 Using SMT method to solve world-level miter. 9

3.1 Gate-level arithmetic circuit (Full Adder) . 24

3.2 AIG rewriting of a full adder circuit from Figure 3.1. 33

3.3 Cut rewriting in a full-adder circuit. 39

4.1 Complete half adder. 47

4.2 Partial product array of a 8-bit multiplier. 48

4.3 Functional Merging and Re-synthesis. 54

4.4 Verification Flow dealing with all truncation schemes. 57

5.1 Division operation and the basic divider block. 61

5.2 conditional 3-bit adder Z = A+B, with A ≥ 3. 62

5.3 Different cases of entry selection. 66

5.4 3-bit adder Z = A+B, for A < 3. 67

5.5 Division operation and the basic divider block. 77

5.6 Exhaustive simulation run time for divisors D=257 and D=283 for

different implementations, as a function of the dividend bit-width. 78

xii

6.1 Multiplication in GF(24): Z mod P (x) = A ·B mod P (x), where
P (x)=x4+x3+1. 83

6.2 A two-bit Mastrovito GF multiplier. 86

6.3 Generating Remainder with Forward Rewriting of bug-free and
buggy logic cone of output bit z1. Remainder = 0 for bug-free
cone, and Remainder = c1 + c2 + r0 for a buggy cone. 87

6.4 Different cases for dependent bugs. 90

xiii

CHAPTER 1

INTRODUCTION

With the ever-increasing size and complexity of integrated circuits (IC) and sys-

tems on chip (SoC), hardware verification has become a dominating factor of the

overall design flow [32]. Particularly important and challenging is the verification of

datapaths and their arithmetic components. Importance of arithmetic verification

problem grows with an increased use of arithmetic modules in embedded systems to

perform computation-intensive tasks for multi-media, signal processing, and cryptog-

raphy applications.

Current formal verification techniques are ineffective when dealing with large

arithmetic designs as they rely on the established Boolean techniques that require

flattening the entire design into a bit-level netlist, informally referred to as ”bit-

blasting”. In this work, we address this issue by solving the verification problem in

algebraic domain instead of in strictly Boolean. The proposed technique is discussed

in Chapter 3, is efficient and scalable to verify large standard arithmetic circuits,

such as adders and multipliers. In Chapter 4 and Chapter 5, we further extend the

technique to make it be able to handle some non-standard classes of arithmetic cir-

cuits. The issue of verification and logic debugging of Galois Field circuits has been

addressed in Chapter 6 by a rewriting-based method.

In this chapter, we first review the hardware design flow and illustrate the im-

portance of hardware verification in the flow. Then, traditional Boolean verification

methods are briefly reviewed, along with their limitations. Those methods are not

sufficiently effective to verify the large and complex circuits, especially modern arith-

1

metic circuits [10][16][24][58]. This provides the motivation of this thesis, which aims

at overcoming the limitations of verifying large arithmetic circuits.

1.1 Hardware Design and Verification Flow

On May 26th, 1960, the first planar integrated circuit was produced [84]. This

event opened the door for Integrated Circuits (ICs) industry, and soon was followed

by the Electronic Design Automation (EDA) [1][30]. During the next several decades,

a large number of Computer Aided Design (CAD) tools have been developed to sup-

port design automation that would replace the handcrafted IC design process [54][33].

CAD software is widely used to increase the productivity of the semiconductor in-

dustry. Today, IC design and manufacturing gained maturity, owing to the Very

large-scale integration (VLSI) design flow automation [49][80]. Current EDA and

IC technology support designs with millions of logic gates and billions of individual

transistors. A general IC design flow [44] and its basic steps are shown in Fig.1.1.

Figure 1.1: Typical industrial IC design flow.

The starting process for the design is a system-level specification. It is usually

written in a software programming language (C, C++, etc.) or a behavioral Hardware

Description Language (such as Verilog, System Verilog, VHDL) [23], which describes

the behavior and functionality of the design. The specification is then compiled into

a register-transfer-level (RTL) description and translated into Boolean expressions

2

of individual logic blocks and the interconnection logic [77]. After that, the gener-

ated logic expressions are synthesized and mapped onto gate-level netlists. Different

optimization goals are used during logic synthesis, such as area, delay or power mini-

mization, depending on the intended application and the target technology, ASIC [71]

or FPGA [17][7]. Then, the layout design tools, commonly known as Place and Route

[67][64], are used to perform physical design. Before the circuit is fabricated and

taped out, it must be subjected to a thorough verification to guarantee its functional

correctness.

Hardware verification is crucial and must be conducted during each step of the

design process. Specifically, the goal of the verification is to check if the actual

hardware implementation meets the required specification, that is, to ensure that no

errors were introduced during any of the synthesis steps, either by the designer or by

the CAD tools. In practice, it is common for designers to make manual, last-minute

changes to a netlist, commonly known as Engineering Change Orders (ECOs) [2],

and those can potentially introduce errors. As soon as one step of the design contains

a bug, it has to be identified and corrected [48]. For this reason, the design has to be

thoroughly verified at each step.

There are several types of verification, such as Equivalence Checking (EC) [61],

Model Checking [79], Property checking [39], and Functional Verification [38]. Typ-

ically, equivalence checking is applied between different levels of abstraction of the

design to check their equivalence before and after each optimization or transformation

in the design flow. While simulation is one of the better understood and developed

traditional approaches to verify a circuit, exhaustive simulation is not applicable to

large modern designs, whose size continues to grow exponentially [89]. For this rea-

son, several formal techniques have been developed to handle large practical circuits,

including canonical decision diagrams (BDDs, BMDs, TEDs), Boolean Satisfiability

3

(SAT), Satisfiability Modulo Theories (SMT) and Theorem Proving. These tech-

niques are briefly described in the next section.

This thesis focuses on functional verification of a particular class of designs, namely

arithmetic circuits, which are harder to verify than logic circuits. In particular, we tar-

get gate-level implementation of combinational arithmetic circuits. The other kinds

of hardware verification, such as model and property checking, physical verification,

timing verification, clock domain crossing (CDC) verification, and other timing re-

lated verification are not the subject of this work.

1.2 Traditional Boolean Verification Methods

1.2.1 Binary Decision Diagram (BDD)

Binary Decision Diagrams (BDDs) [14] and their variants, such as BMDs [13],

TEDs [19] and FDDs [8], belong to the class of Canonical Diagrams. Of particular

importance is BDD, an efficient data structure to represent and manipulate Boolean

functions. BDDs are minimal, canonical and irreducible representation derived from

Shannon expansion [37].

BDD is a rooted, directed, acyclic graph, whose nodes represent binary decisions.

Each node represents a binary variable v and has two children: one (positive cofactor)

representing the function with variable taking value v = 1, the other one (positive

cofactor) with v = 0. There are also two terminal nodes, constant 1 and constant 0.

The Boolean function encoded in a BDD is obtained by enumerating all the paths

from the root to constant node 1. An example of a BDD is shown in Fig. 1.2(c) for

Boolean function f(x1, x2, x3) = x̄1x̄2x̄3 + x1x2 + x2x3. For comparison, its function

is also shown as a truth table Fig. 1.2(b).

The BDDs are typically ordered such that along any path from root to constant

node 1, the variables appear in the same order. By construction, a BDD is minimal

and irreducible, in the sense that there are no two nodes that correspond to the

4

a) Decision Tree b) Truth Table c) Binary Decision Diagram

Figure 1.2: Different representations of Boolean Function

same function. Such BDDs are called Reduced Ordered Binary Decision Diagrams

(ROBDDs) [70], referred to as BDDs for short. An important feature of the BDD is

that it is canonical. This feature makes it possible to check equivalence between two

functions. This is done by constructing their BDDs for the same order of variables

and checking if they are isomorphic.

The example of equivalence checking using BDD is shown in Figure1.3. The

Boolean function has been mapped into two different logic designs z and z′ as shown

in Figure1.3 (a) and Figure1.3 (b). Since BDD is canonical for a given variable order,

EC can be done by comparing the BDDs of these two designs with the same variable

ordering. In this example, the variable is orders in a→ b→ c. Since their BDDs are

identical (see Figure 1.3 (c)), these two designs are functionally equivalent.

However, the BDD-based equivalence checking has its limitations since the size

of the BDD grows dramatically for large designs, making it impractical for the ver-

ification of arithmetic circuits, especially the multipliers. For example, the BDD of

a 4-bit integer multiplication has 1, 022 nodes, and for a 6-bit multiplication, the

number of BDD nodes goes up to 8, 176. In general, for complex arithmetic circuits,

5

a) design 1 b) design 2 c) ROBDD of both designs

Figure 1.3: Equivalence checking using BDD.

the construction and composition of BDDs is computationally expensive, and the

exponentially increasing number of BDD nodes can cause memory problem [22][46].

1.2.2 Boolean satisfiability problem (SAT)

To mitigate the limitations of BDDs, other techniques have been developed to

reduce the complexity of equivalence checking and other verification tusks. One of

them that made a significant impact on the verification field is Boolean Satisfiability

(SAT). The goal of SAT is to find an assignment of variables for which a given Boolean

formula evaluates to 1. Typically the formula is given in a conjunctive normal form

(CNF) [81], a conjunction of one or more clauses, where a clause is a disjunction of

literals. For example, Boolean formula ϕ = (a+¬b)(¬a+¬b+ c) can be satisfied by

choosing { a = 1; b = 0; c = 0 }, which makes ϕ = 1. If the assignment of variables

that makes the Boolean formula ϕ = 1 does not exist, the problem is called unsatisfied

(unSAT).

Several SAT solvers have been developed to solve Boolean decision problems,

such as GRASP [47], Chaff [52], Lingeling [6] and MiniSAT [72]. All SAT solvers

are based on the basic Davis-Putnam- Logemann-Loveland (DPLL) [26] algorithm, a

backtracking-based search algorithm, introduced originally by Davis and Putnam in

6

1969 [83]. Many newer techniques, such as non-chronological backtracking, resolu-

tion, recursive learning, etc., have been developed to improve the efficiency of SAT

solver. Modern SAT solvers come in two flavors: ”conflict-driven” and ”look-ahead”.

Conflict-driven solvers, such as MiniSAT [72], augment the basic DPLL search algo-

rithm with efficient conflict analysis. The Conflict-Driven Clause Learning (CDCL)

provides ability to learn new clauses that prevents the space search from ending in an

unsatisfying assignment. Look-ahead solvers, such as march dl [18], have strength-

ened reductions and improved the heuristics.

SAT methods are widely used in formal verification. In particular, they are used to

check equivalence between two circuits by creating a so-called miter and proving that

its output is unSAT. An example of a miter configuration is shown in Fig. 1.4, where

two circuits F,G are connected by a cluster of XORs and an OR gate. Typically, one

circuit is considered to be the reference (golden) circuit, known to be correct, and the

other one is the implementation that one wants to verify.

Figure 1.4: Using miter to solve equivalent checking in SAT

If the two circuits are functionally equivalent, then, for any input assignment, the

same values should be observed at their outputs. In this case, none of the XORs would

produce output 1, and the output of the OR gate should be 0. On the other hand, if

different output values are computed by the two circuits for some input assignment,

the output of the OR gate will be 1. Using this argument, the equivalence checking

7

problem can be solved by checking if the output of the miter is unSAT (i.e., it never

evaluates to 1). The expression of the miter’s output is constructed from the circuits

components in their CNF form. If the output of the miter is unSAT for all possible

input assignment, the two circuits are equivalent. Otherwise, the problem is satisfiable

and the SAT solver returns a counterexample, an assignment of inputs for which the

two circuits produce different outputs.

The SAT-based method is particularly efficient at finding a satisfying solution.

However, most of the circuit verification problems rely on checking if the problem

is unSAT, as discussed above. Theoretically, in order to prove that the assignment

of variables that evaluates a given Boolean formula to 1 does not exist, one has to

evaluate all possible input assignment. Although there are many advanced algorithms

that help refine the search space, the SAT method has a low scalability for large

arithmetic circuits. For example, the state-of-the-art SAT solver, miniSAT blbd [18],

takes up to an hour to verify a 16-bit multiplier [74], and is ineffective in handling

32-bit and 64-bit wide multiplication in core datapaths.

1.2.3 Satisfiability Modulo Theories (SMT)

An extension of Boolean SAT is Satisfiability Modulo Theories (SMT) [59], which

builds on SAT by incorporating different supporting theories. It is intended to solve

more complex problem. Instead of treating the problem in a strictly Boolean domain,

the SMT solvers integrate different well-defined theories (Boolean logic, bit vectors,

integer and real arithmetic, linear inequalities, uninterpreted functions, arrays, lists,

etc.) into a DPLL-style SAT decision procedure. By doing so, SMT solvers can solve a

satisfiability problem of a word-level miter. For example, to check if the circuit shown

in Figure 1.5(a) implements a Half-adder (HA), a word-level miter z = a+b−(2c+s)

is generated. The CNF formula of the miter is shown in 1.5(b). The last equation

8

models the miter as bit-vector adding (a+ b) and −(2c+ s), where the constant ”10”

represents bit-vector of the integer constant 2.

a) Half adder with input a,
input b, output s as the sum
and output c as the carry. b) CNF formula of word-level miter.

Figure 1.5: Using SMT method to solve world-level miter.

Some of the modern commonly known SMT solvers include Boolector [55], Z3 [28]

and CVC [73]. However, SMT solvers still model the problem as a decision problem,

and are not efficient at verifying large arithmetic circuits as demonstrated in the

literature and confirmed in our experiments.

1.2.4 Theorem Proving

Another class of verification solvers, particularly popular in industry, are Theorem

Provers, which based on a deductive proof system. The proof system is usually

based on a strongly problem-specific database of axioms and inference rules, such as

simplification, rewriting, and induction. The most common theorem proving systems

are: HOL [36], PVS [56], Boyer-Moore/ACL2 [12], and Nqthm [41]. These systems

are characterized by high abstraction and powerful logic expressiveness. The use of

a general mathematical framework offers some advantages that can be significant, or

even essential, for some verification tasks.

However these systems are highly interactive, requiring user guidance and deep

understanding of the design and the system. In order to prove that an implementation

satisfies the specification, one has to describe their relation as theorems within the

9

context of a proof calculus. Building such a system from the scratch is difficult,

since modeling of the gate-level circuits in theorem proving is extremely complex.

Typically, using such systems is more difficult and time-consuming than using highly

automated, methods like SAT or model checking [85][45]. Furthermore, the success of

verification using theorem proving depends on the set of available axioms and rewrite

rules, and on the choice their order, so it cannot always guarantee a conclusive answer

[78][40]. With so many limitations, Theorem Proving is not a good choice for a general

circuit verification. In the next two chapters, a more effective method is proposed

based on computer algebra, which forms the foundation of this thesis.

1.3 Motivation

Traditional Boolean verification methods discussed in the previous section are

unsuitable for verifying large arithmetic circuits. As mentioned earlier, the need for

”bit blasting”, i.e., flattening the design into bit-level netlist, makes their computation

very expensive when the width of the data path is large. To address this issue, the

method proposed in this work models the verification problem in an algebraic domain,

rather than strictly Boolean. An efficient approach, called algebraic rewriting, based

on Symbolic Computer Algebra is introduced in Chapter 3. While the basic rewriting

approach has been proposed in our earlier work [86][21][22], in this thesis it is further

refined and formalized.

Algebraic rewriting provides impressive results in verifying standard arithmetic

circuit [86], such as adders and multipliers. However, when dealing with arithmetic

circuits derived from the standard class, it becomes prohibitive (in terms of memory

usage) as shown in the later experiments. Two classes for non-standard arithmetic

circuits are discussed in this thesis: 1) truncated circuits, in which some of the output

bits are truncated; 2) arithmetic circuits are subjected to some Boolean or arithmetic

constraints. Little attention to the verification of such circuits has been given in the

10

literature so far. In Chapter 4 and Chapter 5, these problems are formally analyzed

and efficient solutions are proposed.

The proposed computer algebra-based verification method can be applied not

only to check if the circuit is functionally correct, but also to identify and correct the

logic bugs. Bug identification and correction (debugging) are known hard problems.

In general, logic debugging methods are heuristic, and their performance, and even

success, strongly depends on the location of the bug in the circuit. In Chapter 6,

we propose a debugging technique for which this problem can be solved efficiently

on a class of arithmetic circuits, namely Galois Field multipliers. To the best of our

knowledge, it is the first debugging method whose performance is not significantly

affected by the bug location.

11

CHAPTER 2

BACKGROUND

This chapter provides mathematical background of computer algebra method used

in this thesis and reviews the related work in the literature. Specifically, in order to

build an algebraic model for an arithmetic circuit in the context of computer algebra,

the following concepts are needed: fields, polynomials, ideals, varieties and ideal

membership, and Gröbner basis.

2.1 Fields, Polynomials, Ideals and Varieties

2.1.1 Fields

In mathematics, a field is a set F , containing at least two elements, on which two

operations + and · (called addition and multiplication, respectively) are defined so

that for each pair of elements x, y in F there are unique elements x + y and x · y in

F . A field is thus a fundamental algebraic structure, which is widely used in algebra,

number theory, and many other areas of mathematics. To learn about fields, we start

with the commutative ring, since field is a special class of ring. A commutative ring

consists of a set R and two binary operations ”·” and ”+” defined on R, for which

the following conditions are satisfied:

(i) Associativity: (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) for all a, b, c,∈ R.

(ii) Commutativity: a+ b = b+ a and a · b = b · a for all a, b ∈ R.

(iii) Distributivity: a · (b+ c) = a · b+ a · c for all a, b, c ∈ R.

(iv) Identities: There are 0, 1 ∈ R such that a+ 0 = a and a · 1 = a for all a ∈ R.

(v) Additive inverses: Given a ∈ R, there is b ∈ R such that a+ b = 0.

12

Two examples of commutative rings are the integers Z and the polynomial ring

k[x1,...,xn], with coefficients in an arbitrary field k. A field F is a commutative

ring with unity, where every element in F, except 0, has a multiplicative inverse:

∀a ∈ (F− {0}),∃â ∈ F such that a · â = 1. The most commonly used fields are Q, R

and C. The set Z, which is of particular interest to us, is a ring but not a field, since

it does not have the attribution of multiplicative inverse.

2.1.2 Polynomials

A polynomial is an expression consisting of variables and coefficients, that involves

the operations of addition, multiplication, and non-negative integer exponents of vari-

ables. In general, a polynomial f in variables x1,...,xn is a finite linear combination

of monomials, with coefficients in some field k. A polynomial can always be written

in a sum-of-product form f =
∑
aix

αi
i , where each product xαi

i is called monomial

and ai is the coefficient. A monomial in variables x1,...,xn is a product of the form

xα1
1 · xα2

2 · · · xαn
n , where all of the exponents α1,...,αn are nonnegative integers. The

degree of this monomial is the sum α1 + · · · + αn. The total degree of polynomial

f , denoted deg(f), is the maximum degree among all the monomials. A term of f is

the product of a nonzero coefficient and its monomial. As an example, polynomial

f = 2x3y2z + 2
3
y3z3 − 3xyz + y2 has four terms and total degree six. Note that there

are two terms of maximal total degree, which is something that cannot happen for

polynomials in one variable.

There are several ways to order monomials (referred to as term order), such as

lexicographic order (LEX), Degree reverse lexicographic order (DEGREVLEX), and

others. For instance, in LEX order, 2x3y2z > 2
3
y3z3. The first, or greatest term of f

(in terms of the adapted term order), is called the leading term lt(f) of the polynomial

f . In the above example, the leading term is 2x3y2z.

13

Leading terms play an important role in the proposed verification method, where

logic gates of a circuit are described as polynomials. Specifically, the polynomial

terms are ordered such that the leading term represents a variable representing an

output of a gate. This ordering makes a profound impact on the efficiency of the

proposed verification technique. This issue will be discussed in detail in Chapter 3.

In this work, since all variables representing in the circuits are Boolean, we are

particularly interested in polynomials with variables of degree 1. Such a polynomial is

called Pseudo-Boolean polynomial. Formally, a Pseudo-Boolean function is a function

f : Bn → R, where B = {0, 1} is a Boolean domain and n is a nonnegative integer

called the arity of the function. It can be written as a multi-linear polynomial

f = a+
∑

aixi +
∑
i<j

aijxixj +
∑
i<j<k

aijkxixjxk + . . .

with constant coefficients a, ai, ... in the given field.

2.1.3 Ideals and Varieties

Given a polynomial ring R = k[x1,...,xn] with coefficients in some field k, a subset

I ⊂ R is an ideal if it satisfies:

(i) 0 ∈ I. (ii) If f, g ∈ I , then f + g ∈ I. (iii) If f ∈ I and h ∈ R, then hf ∈ I.

In general, if I ∈ k[x1,...,xn] consists of all the linear combinations of a set of

polynomials {f1, ..., fs} ∈ k[x1,...,xn], then I is an ideal of the set {f1, ..., fs}, and the

set of {fi} is called generator or basis.

J = 〈f1, ..., fs〉 = h1f1 + ...+ hsfs : hi ∈ R (2.1)

We call 〈f1, ..., fs〉 the ideal generated by the basis {f1, ..., fs}.
Given an ideal J = 〈f1, ..., fs〉 generated by f1, ..., fs,∈ k[x1, ..., xd], the set of all

solutions to: f1 = f2 = · · · = fs = 0 is called variety V (f1, ..., fs) of J . While

14

an ideal may have different bases, the variety depends only on the ideal and not on

the basis (generator). That is, different bases that produce the same ideal will have

exactly the same variety. In Section 2.3, we will introduce an especially useful basis

for our verification, called Gröbner basis.

Let {f1, ..., fs} and {g1, ..., gt} be the bases of the same ideal in k[x1,...,xn], i.e.

〈f1, ..., fs〉 = 〈g1, ..., gt〉; then V (f1, ..., fs) = V (g1, ..., gt). In the next section, we will

show how the concept of ideal and variety is applied to circuit verification.

2.2 Ideal Membership Test

The symbolic algebra theories about polynomial rings, ideals and varieties we use

in this work are all defined over a field, typically Q. However, as described next and

fully developed in the next section, the polynomials introduced in our work represent

logic gates and are defined over ring Z. However, these polynomials have a special

structure, namely their leading term lt(fi) that represents a variable associated with

a logic gate gi, has coefficient 1. Subsequently, the process of polynomial division,

which is an essential element of the verification process (to be described in detail

later), will never introduce any coefficient outside of Z. Consequently, this allows us

to treat the polynomials as if they were in Q.

Let B = {f1, ...fs}, with fi ∈ Z[X], be a set of polynomials representing the

circuit elements and let the ideal J = 〈f1, ..., fs〉 be generated by basis {f1, ..., fs}. In

our case, each generator is a polynomial model of a circuit module (logic gate), and

the set of generators can be viewed as the implementation of the circuit. Then, from

the circuit perspective, the variety V (J) of J , which is the set of all simultaneous

solutions to a system of equations f1(x1, ..., xn) = 0; ..., fs(x1, ..., xn) = 0, contains all

signal values of the circuit for all possible input valuations {xi}.

Similarly, functional specification of the circuit is also defined as a polynomial in

Z[X], where X is a set of inputs and outputs. For example, the specification of a

15

multiplier circuit, Z = A · B, can then be written as a polynomial F : Z − A · B.

Here, A,B, and Z are symbolic, word-level variables, each represented as a polynomial

in their respective bit-level variables, e.g., A =
∑n−1

i=0 2iai, and similarly for B and

R. In terms of computer algebra, the arithmetic circuit verification problem is then

formulated as follows [59][46][68][66]:

Given a circuit represented by a set of generators (implementation), B = {f1, ..., fs},

and the specification F , the goal of functional verification is to prove that the imple-

mentation (B) satisfies the specification (F). Here, B have the same notation as the

previous example, but it represents the set of gate polynomials.

This means that for a functionally correct circuit, the solution to F = 0 agrees

with V (J), or, equivalently, that F vanishes on V (J)1. Consequently, this problem

has been termed as an ideal membership test, which decides whether the specification

polynomial F is a member of the ideal J generated by B, i.e., if F ∈ J [35][59][46].

Given an ideal J = 〈f1, ..., fs〉, in order to test if F ∈ J , polynomial F is divided

consecutively by f1, ..., fs. The goal of each division is to cancel the leading term of F

(with respect to a chosen term order) using one of the leading terms of f1, ..., fs. Such

a reduction results in a polynomial remainder r = F − lt(F)
lt(fi)
· fi, in which the leading

term lt(F) has been canceled. If the remainder r reduces to zero, the implementation

satisfies the specification. However, if r 6= 0, such a conclusion cannot be drawn: r

can still be in J but it is not divisible by any of the polynomials in B = {f1, ..., fs}.

That is, the basis B = {f1, ..., fs} may not be sufficient to reduce F −→ 0, and yet

the circuit may be correct. To check if F is reducible to zero for the given ideal J ,

one must compute a canonical set of generators, G = {p1, ..., pt}, called the Gröbner

basis, with the same ideal 〈p1, ..., pt〉 = 〈f1, ..., fs〉. Let the set G = {p1, ..., pt} be the

Gröbner basis for ideal J , then F belongs to J if and only if the remainder of the

1Polynomial f is said to vanish on a set V if ∀a ∈ V f(a) = 0. Or, V (f) ⊆ V (J).

16

division of F by the elements of G is zero, denoted as ∀F ∈ J , F
G−→+ 0 [3]. The sign

+ means that the division/reduction is done consecutively by using the elements of

G one by one. In short, the Gröbner basis is necessary to unequivocally answer the

question whether F ∈ J .

2.3 Gröbner basis

A basis {p1, ..., pt} of an ideal J〈p1, ..., pt〉 is called a Gröbner basis (w.r.t. the

monomial order >) if the leading term of every nonzero element of J is a multiple

of (at least) one of the leading term lt(p1), ..., lt(pt). A known algorithmic proce-

dure for computing a Gröbner basis is called Buchberger’s algorithm [15]. Given

some basis B = {f1, ..., fs}, it produces another basis G = {p1, ..., pt}, such that the

ideals 〈p1, ..., pt〉 = 〈f1, ..., ft〉 and hence have the same variety V (〈G〉) = V (〈B〉).

Buchberger’s algorithm is computationally expensive, since it computes the so-called

S-polynomials (SPoly) by performing reduction operations on all pairs of polyno-

mials in B. The S-polynomial of polynomials p and g in a polynomial set P , is

the combination Spoly(p, g) = L
lt(p)

p − L
lt(g)

g, where L is the least common multiple

LCM(lm(p), lm(g)). Note that Spoly(p, g) cancels the leading terms of p and g, and

the remainder r obtained in Spoly(p, g) F
P−→+ r gives a new leading term.

The basic purpose of computing SPoly pairs is to compute polynomials with new

leading terms, which can be used in the reduction step of the ideal-membership test-

ing. These newly generated polynomials belong to the ideal G which completely

defines the system. To compute Gröbner basis G = {g1, ..., gl} for an ideal 〈p1, ..., pt〉,

Buchberger’s algorithm computes G in some finite number of steps by performing the

Spoly(p, g)
P−→+ r iteratively. The algorithm determines if Spoly(p, g)

P−→+ 0. In

this case, we also conclude that all polynomials are relatively prime to each other,

with a distinct leading term.

17

This establishes that the generating set (generator) whose polynomials are rela-

tively prime to each other is in fact a Gröbner basis. This important fact will be

used in developing the verification method in the upcoming sections. A number of

other algorithms have been developed for computing a Gröbner basis, such as F4 [34],

which in contrast to the basic Buchberger’s algorithm, compute multiple SPoly pairs

in each iteration. However, in general, the process of generating a Gröbner remains

computationally expensive.

2.4 Related Work

The work in arithmetic circuit verification was pioneered by Shekhar et al. [69]

and Wienand et al. [82], where some important concepts from computer algebra and

algebraic geometry were applied to model the core verification problem. In [82] an

arithmetic circuit is modeled as a network of arithmetic operators, such as half- and

full-adders, comparators, and product generators, extracted from the gate-level imple-

mentation. These operators are modeled using arithmetic bit-level (ABL) expressions,

B = {Bj}. The authors of [82] (and also of [46]) show that for an arbitrary combina-

tional circuit, if the terms of the gate equations B are ordered in reverse topological

order, {outputs} > {inputs}, then all leading monomials of the polynomials in B are

relatively prime. As a result, the corresponding set B already constitutes a Gröbner

basis (GB), obviating the computation of the complete canonical Gröbner basis. The

verification problem is solved by reducing the specification F modulo B to a normal

form and testing if it vanishes over Z2n . The restriction to binary variables is achieved

by imposing Boolean constraints, 〈x2−x〉 for all the variable x [59], and the problem

is solved over quotient ring Q = Z2n [X]/〈x2 − x〉 (for all variable x) using a popular

computer algebra system, Singular [29]. This approach, however, is limited to circuits

composed entirely of half adders and full adders, which must first be extracted from

the gate-level implementation. In practice, this is the most expensive part of the

18

process, and it is not always possible to perform such extraction, especially in highly

bit-optimized implementations.

In [46] the verification problem was similarly formulated as an ideal membership

test but applied to Galois Field (GF or F2q) arithmetic circuits. It has been shown

that in GF, when the specification F and the ideal J of the circuit implementation

are in F2q , the problem can be reduced to testing if F ∈ (J + J0), over a larger ideal

(J + J0) where J0 = 〈x2− x〉 is an ideal of the field polynomials. Adding J0 basically

restricts the variety V to solutions in F2, i.e. to V (J) ∩ V (J0) [25]. The polynomials

of J0 are referred to as field polynomials. Similarly to [82], the authors of [46] derive

the term order from the topological structure of the circuit, which renders the set

of polynomials B (circuit implementation) a Gröbner basis (GB), thus obviating the

need to perform the expensive GB computation. The method uses a customized,

F4-style polynomial reduction using a modified Gaussian elimination algorithm [34]

under this term order.

A different approach has been proposed in [86], whereby the expensive polyno-

mial reduction has been replaced by a computationally simpler algebraic rewriting

technique. The method introduces the concept of an input signature, a polynomial in

the primary inputs, and an output signature, a polynomial derived from the encoding

of the primary outputs. The verification is accomplished by rewriting the output

signature, using algebraic expressions of the internal gates, into an input signature.

This process de facto performs function extraction. Several ordering techniques have

been described to make this method applicable to large arithmetic circuits, but the

method still cannot handle the heavily optimized circuits.

A similar approach to arithmetic circuit verification, called backward construction,

was proposed in 1995 in [37]. It uses BMDs to reconstruct functional, high level

representation from the gate-level structure of arithmetic circuits such as adders and

multipliers. Experimental results show that time complexity of the tested circuits is

19

in the order of n4 for multipliers with n bit operands. There is no clear indication if

the BMD is an efficient data structure for this problem.

The basic approach of the ideal membership testing and Gröbner basis (GB)

reduction has also been used in the works of [68][66], where it was applied to integer

circuits. In [68] the following features have been added to make the reduction more

efficient: 1) Logic reduction with an AND-XOR vanishing rule, which analyzes the

structure of the circuit to identify and remove vanishing monomials that correspond to

the product of XOR, AND signals with shared input variables; 2) An XOR rewriting

scheme, which reduces the model of the circuit to consider only primary inputs,

outputs, and fan-out points/XOR gates; and 3) Common rewriting, which eliminates

the nodes with a single parent. These techniques simplify the task of GB reduction by

eliminating all the nodes which have exactly one parent, thus increasing the chance

for early term cancellation during the rewriting process.

Another work [66] revisits the techniques from [86] and [68] and provides the proof

of correctness for these approaches. It uses a column-wise technique to model and

verify basic multiplier structures by computing the Gröbner basis incrementally for

each column of the output bit, rather than for the entire circuit. The paper justifies

the use of the theory of ideal membership (in principle applicable to Q[X]) to prove

properties of integer arithmetic circuits in Z. It points out that, since the leading

coefficients of the gate polynomials forming the Gröbner basis are +1 or -1, polynomial

reduction never introduces fractional coefficients and their computation remains in

Z. This also explains why the dedicated implementations in [86] and [68] can rely on

computation in Z only, while remaining sound and complete [66]. A follow-up paper

[65] describes an enhancement to this column-wise technique by extracting half- and

full-adder constraints to further reduce the size of Gröbner basis to speed up the

reduction process.

20

In general, the problem of formally verifying complex integer arithmetic circuits

(not just multipliers) remains open, and new solutions are being proposed. In the

next chapter, an efficient and scalable approach, called algebraic rewriting, is formally

introduced to address this issue. This approach has already been proposed by our

group earlier, but it is further refined and formalized in this thesis. In addition, a bit-

flow model is proposed to support the proof of the correctness of algebraic rewriting,

and to offer a new insight into the problem of arithmetic circuit verification [20].

21

CHAPTER 3

FORMAL VERIFICATION OF INTEGER ARITHMETIC
CIRCUITS USING COMPUTER ALGEBRA APPROACH

This chapter introduces an algebraic model used in circuit verification, which is

the key to solve the verification problem in algebraic domain. Two flavors of computer

algebra techniques that use this model will be discussed in detail: 1) Gröbner basis

reduction techniques [59][68][66] and 2) algebraic rewriting [86]. Detailed algorithms

for the reduction and the rewriting are given. We analyze the relation between these

two computer algebra techniques and provide a comparison from the efficiency point

of view.

3.1 Algebraic Model of Electronic Circuit

The arithmetic circuits considered in this thesis are circuits whose computation

can be expressed as a polynomial in the input variables. These include adders, sub-

tractors, multipliers, fused add-multiply circuits, dividers, etc.. The circuit is modeled

as a network of interconnected bit-level components, each with a finite set of binary

inputs and one or more binary outputs. In this work we will focus on gate-level in-

teger arithmetic circuits with single-output logic gates. However, the model can be

extended to other, more complex and multiple-output circuit components.

Each gate is modeled by a pseudo-Boolean polynomial fi ∈ Z[X], with Boolean

variables X representing circuit signals associated with the gate. It is an algebraic

expression with usual multiplication and addition operators over Boolean variables.

Formally, a pseudo-Boolean polynomial is an integer-valued function f : {0, 1}n → Z.

22

The following expressions summarize the algebraic representation of basic Boolean

operators NOT, AND, OR and XOR.

¬a = 1− a

a ∧ b = a · b

a ∨ b = a+ b− a · b

a⊕ b = a+ b− 2a · b

(3.1)

By construction, each expression evaluates to a binary value {0,1} and hence correctly

models the Boolean function of a logic gate. Models for more complex AOI (And-Or-

Invert) gates, used in standard cell technology, are readily obtained from these basic

logic expressions. For example, the algebraic model for the logic gate g = a∨(b∧c) can

be derived as g = a+bc−abc, etc. Similarly, a 3-input OR gate can be represented as

z = a+b+c−ab−ac−bc+abc, a 3-input XOR gate as z = a+b+c−2ab−2ac−2bc+4abc,

etc.

Multiple output modules, such as single-bit adders, with binary inputs can be

expressed similarly. For example, a half-adder (HA) and a full-adder (FA), can be

expressed by the following expressions:

ha : 2C + S = a+ b

fa : 2C + S = a+ b+ cin

(3.2)

where a, b, cin are binary inputs and C, S are binary outputs.

The function computed by an arithmetic circuit is represented as a specification

polynomial in the primary input variables, denoted Fspec. For example, the specifica-

tion of an n-bit unsigned integer multiplier, Z = A ·B with inputs A = [a0, · · · , an−1]

and B = [b0, · · · , bn−1], is described by Fspec =
∑n−1

i=0

∑n−1
j=0 2i+jaibj. The result of

the computation, stored in the primary output bits, is also expressed as a polyno-

mial, called output signature, Sout. Typically, such a polynomial is linear, uniquely

23

determined by the m-bit encoding of the output, provided by the designer. For ex-

ample, for a signed 2’s complement arithmetic circuit with m output bits, Sout =

−2m−1zm−1 +
∑m−2

i=0 2izi. The circuit is implemented as a network of logic gates G,

each modeled as a polynomial gi derived from Eqn.(6.1). The polynomial representing

a given gate evaluates to zero for all the input and output combinations satisfied by

this gate. As an example, a non-standard gate-level implementation of a full adder,

is shown in Fig. 3.1.

Figure 3.1: Gate-level arithmetic circuit (Full Adder)

The set of polynomials G = {fi} in Eqn. 3.3 represents the gate-level implementa-

tion of the full adder circuit. We refer to this set as G to indicate that it is a Gröbner

basis (or GB for short). It has been shown that if the polynomials in G are ordered

such that the leading term is the output of the gate, and the leading term of all the

polynomials are relatively prime, the set G forms Gröbner basis [62].

The set G consists of two parts: Gate polynomials (f1, ..., f8) and Field polynomials

(f9, ..., f17). Each gate polynomial satisfies the relation fi = 0. The gate polynomials

have the form fi = vi − tail(fi), where the leading term lt(fi) = vi is the output of

gate fi, and tail(fi) is the logic specification of the gate in terms of its inputs. The

leading terms under such ordering are relatively prime, which renders G a Gröbner

basis [59][46][66]. This feature is essential for both the GB reduction and algebraic

rewriting, which will be discussed in the next sections.

24

f1 = p1 − (−ab+ a+ b)

f2 = g1 − (−ab+ 1)

f3 = S1 − p1g1

f4 = C1 − (−g1 + 1)

f5 = p2 − (S1c0 − S1 − c0 + 1)

f6 = g2 − S1c0

f7 = S − (p2g2 − p2 − g2 + +1)

f8 = C − (−C1g2 + C1 + g2)

f9 = (a2 − a)

f10 = (b2 − b)

· · · · · ·

f17 = (g22 − g2)

(3.3)

Each field polynomials, f9, ..., f17, has the form J0 =< x2− x >, where x is one of

the signals {a, b, c0, p1, g1, S1, C1, p2, g2}. They play an important role in polynomial

reduction to maintain the Boolean property of each variable. However, they are

handled differently in the GB reduction than in the algebraic rewriting approach, as

discussed in the next sections.

3.2 Gröbner Basis Polynomial Reduction

In this method the reduction of F modulo G is accomplished by successively

eliminating terms of F , one by one, by a leading term of some polynomial fi ∈ G, using

Gaussian elimination. The reduction is performed over a Gröbner basis derived from

G and the field polynomials J0. From the mathematical point of view, this means that

the computation will be performed in the quotient ring, Z[X]/〈x2−x〉 : x ∈ X, the set

of all variables (signals) of the circuit. The Gröbner basis (GB) reduction algorithm

is given in Algorithm 1. First, the polynomial base G={f1, ..., fm} is derived from

25

N using Equations (6.1), where m is the number of logic components in N . Each

polynomial in G has the form fi = v + tail(fi), where v is the the leading monomial

lm(fi). All the variables in the circuit are ordered in reverse-topological order, from

primary outputs to primary inputs, and for each gate polynomial from the gate output

to its inputs.

Furthermore, the output signals of the gates that depend on common variables

(fanins) should be ordered next to each other, as this will maximize the chance for a

potential term cancellation and minimize the size of intermediate polynomials. For

example, consider the reduction of a polynomial F = 2C + S + in a circuit

containing a half adder composed of an AND gate C = ab and an XOR gate S =

a+b−2ab. Since both C and S depend on common variables, a, b, reducing them one

immediately after the other will eliminate the product term ab from the polynomial,

resulting in F = a+ b+ This is beneficial from the complexity point of view, and

should be performed before the reduction of the remaining terms of the polynomial.

Considering these two basic ordering rules, one possible term order for the polyno-

mial ring of the circuit in Figure 3.1 is shown below, where variables in curly brackets

can assume any relative order.

{S,C} > {p2, g2} > {S1, C1} > {p1, g1} > {a, b, c0} (3.4)

The expression F to be reduced is initialized with the difference between the output

signature Sout and Fspec. In this case F = 2C+S− (a+ b+ c0). The goal is to reduce

F to 0 by G.

The main part of the GB reduction is given in lines 5-15. The algorithm searches

for a polynomial fi in G such that the leading term of fi divides the current leading

term lt(F) of F . If such a polynomial exists, it will be used to reduce F , as shown

in line 8. Otherwise, the lt(F) will be moved to the remainder Rem (lines 11− 12).

At any point, when new terms (containing new intermediate variables introduced by

26

Algorithm 1 Gröebner Basis Polynomial Reduction

Input: Specification polynomial Fspec;and Gate-level netlist N
Output: Remainder Rem

1: Create base G={f1,...,fm} of N using Eq.(6.1)
2: Generate Sout from N
3: Define ring and specify term order
4: Initialize F ← Sout − Fspec
5: while F 6= 0 do
6: if ∃fi ∈ G : lt(F)

lt(fi)
6= 0 then

7: /* there exists fi such that its leading term is divisible by lt(F) */

8: F ← F − lt(F)
lt(fi)
· fi // polynomial division

9: else
10: /* no leading term of fi divides F , move lt(F) to Rem */
11: F ← F − lt(F)
12: Rem← Rem+ lt(F)
13: end if
14: Maintain the term order imposed on the ring
15: end while
16: return Rem

division) are added to polynomial F (line 8), the procedure must maintain the term

order imposed on the ring. The reduction process terminates when F becomes empty,

either by being reduced or moved to Rem. The zero remainder is the evidence of a

correct implementation, as discussed in Chapter 2.2.

We illustrate the GB reduction process with the example in Fig. 3.1. The initial

polynomial for this circuit is:

F = 2C + S − (a+ b+ c0) (3.5)

Equation (3.6) gives the sequence of steps that reduces F with the gate polyno-

mials fi ∈ G for the circuit in Figure 3.1. At each step, F represents the polynomial

reduced by the previous reduction step. For brevity, the substitution is shown for a

pair of variables at once. For example, F/(C, S) means reducing variables C and S

with polynomial f8 followed by f7. The term order given in Eqn. (3.4), imposed on

the ring, is maintained throughout the entire reduction process.

27

F = 2C + S − (a + b + c0)

1) F/(S , C) = 2(−C1g2 + g2 + C1) + (p2g2 − p2 − g2 + 1)− (a + b + c0)

= p2g2 − p2 − 2g2C1 + g2 + 2C1 − (a + b + c0) + 1

2) F/(p2, g2) = (S1c0 − S1 − c0 + 1)S1c0 − (S1c0 − S1 − c0 + 1)− 2S1C1c0

+ S1c0 + 2C1 − (a + b + c0) + 1

= S2
1c

2
0 − S2

1c0 − S1c
2
0 + S1c0 − 2S1C1c0 + S1 + 2C1 − (a + b)

3) F/(S2
1 − S1) = −2S1C1c0 + S1 + 2C1 − (a + b)

4) F/(S1, C1) = −2(p1g1)(−g1 + 1)c0 + p1g1 + 2(−g1 + 1)− (a + b)

= −2(−p1g
2
1 + p1g1)c0 + p1g1 − 2g1 − (a + b) + 2

5) F/(g21 − g1) = p1g1 − 2g1 − (a + b) + 2

6) F/(p1, g1) = (−ab + a + b)(−ab + 1)− 2(−ab + 1)− (a + b) + 2

= a2b2 − a2b− ab2 + ab

7) F/(a2 − a) = 0

(3.6)

The effect of field polynomials J0 =< x2 − x >, responsible for keeping each

variable Boolean, can be observed during steps 2, 4, 6 and 7, shown in bold. The

reduction terminates in Rem = 0, indicating that the circuit implements the function

indicated by the specification, a full adder.

3.3 Algebraic Rewriting

Algebraic rewriting is the process of transforming the output signature Sout into

an input signature Sin using algebraic models of the internal components (logic gates)

of the circuit. The rewriting is done in reverse topological order: from the primary

outputs (PO) to the primary inputs (PI); for this reason it is also referred to as a

backward rewriting [86]. Intermediate expressions obtained during rewriting are also

represented as polynomials, referred to as signatures, over the variables representing

the internal signals of the circuit. By construction, each variable in a given signature

(starting with Sout) represents an output of some logic gate.

The rewriting transformation simply replaces each variable with the corresponding

algebraic expression of the logic gate. If the variable is part of a monomial involving

28

other variables, the expression is multiplied by the remaining terms and expanded to

a disjunctive normal form. This is followed by a standard polynomial simplification

by combining terms with same monomials.

Algorithm 2 Algebraic Rewriting

Input: Specification polynomial Fspec; and Gate-level netlist N
Output: (Sin == Fspec), or the computed signature Sin

1: Derive G={f1,...,fm} from N using Eqn.(6.1)
2: Sort G to maximize the cancellations // pre-processing
3: Generate Sout from N
4: Initialize Sig ← Sout
5: for fi in G do
6: v ← lm(fi) // leading monomial of fi is output of a gate
7: if v ∈ Sig then
8: /* replace v with tail(fi) in Sig */
9: Sig ← Sig(v ← tail(fi))

10: x← x2 // for all x in Sig
11: end if
12: end for
13: /* upon termination, Sig is composed of PIs only */
14: if Sig == Fspec return True
15: else return Sin = Sig

Algebraic Rewriting procedure is summarized in Algorithm 2. First, the polyno-

mial base G={f1,...,fm} is derived from N using Eq.(6.1), as in the GB reduction.

Then, the polynomials in G are sorted in reverse-topological order (lines 1-2). Among

several possible topological orders the one that maximizes the number of early can-

cellations during rewriting is sought. This has an effect of minimizing the size of

the intermediate polynomials during rewriting (the ”fat belly” effect) [86]. It is ac-

complished by keeping together the polynomials whose leading terms (gate outputs)

depend on common variables, as in the GB reduction. The expression to be rewritten,

Sig, is initialized with the given output signature Sout of N (lines 3-4).

The main part of the rewriting, lines 5-12, iterates over the polynomials fi ∈ G

and performs the required substitutions. Specifically, all occurrences of v = lt(fi)

in Sig are replaced by tail(fi), followed by possible expansion of the resulting term.

29

To maintain Boolean values of the variables during rewriting, the degree of each

variable in Sig is reduced to 1 (line 10). This step is equivalent to dividing Sig by

a field polynomial < x2 − x >, but it is achieved in a more efficient way. At the

end, the algorithm returns Sin as the derived signature of the circuit. If the terms of

polynomials in G are sorted in a reversed topological order, the returned polynomial

Sin contains only the primary input (PI) variables, so it can be compared with Fspec.

While the main goal of algebraic rewriting, as described by Algorithm 2, is to

determine the arithmetic function implemented by the circuit, it can also be used

to verify it against the known specification. This can be simply done by rewriting

F = Sout − Fspec and checking if it produces a zero. We will use this rewriting mode

in order to compare it against the GB reduction method in Chapter 3.2.

F = 2C + S − (a + b + c0)

1) F/(S, C) = 2(C1 + g2 − C1g2) + (1− (p2 + g2 − p2g2))− (a + b + c0)

= 2C1 + g2 − 2C1g2 − p2 + p2g2 + 1− (a + b + c0)

2) F/(p2, g2) = 2C1 + S1c0 − 2S1C1c0 − (1− (S1 + c0 − S1c0))

+ (1− (S1 + c0 − S1c0))S1c0 + 1− (a + b + c0)

= 2C1 − 2S1C1c0 + S1 + S1c0 − S2
1c0 − S1c

2
0 + S2

1c
2
0 − (a + b)

= 2C1 − 2S1C1 + S1 − (a + b)

3) F/(S1, C1) = 2(1− g1)− 2(1− g1)(p1g1)c0 + p1g1 − (a + b)

= 2− 2g1 − 2(p1g1 − p1g
2
1) + p1g1 − (a + b)

= 2− 2g1 + p1g1 − (a + b)

4) F/(p1, g1) = 2− 2(1− ab) + (a + b− ab)(1− ab)− (a + b)

= ab− a2b− ab2 + a2b2 = 0

(3.7)

We illustrate the rewriting process using the example of the gate-level full-adder

circuit in Figure 3.1. The output signature of the circuit is Sout = 2C+S, determined

by the binary encoding of the output. The specification for this circuit Fspec =

a+b+c0. Following the ordering rules described in [86], the best rewriting order which

minimizes the size of intermediate polynomials is {(S,C), (p2, g2), (S1, C1), (p1, g1)},

as in the GB reduction. The signals shown in brackets can be rewritten in any order

30

as they depend on common inputs. Equation (3.7) shows the rewriting steps for

the circuit. The terms shown in bold face indicate those that are reduced to zero

during polynomial simplification. For brevity, the substitution is shown for each pair

of variables applied at once. For example: F/(C, S) means rewriting of F using C

and S variables of polynomials f8, f7.

During the rewriting, two types of simplifications can be observed:

• Simplification of the terms with same monomials; for example, 2g2 − g2 = g2,

in Step 1. In the process, some polynomial terms are reduced to 0. This is a

common simplification applied in GB reduction as well.

• Lowering the term x2 to x, since the signal variables are binary. This can be

seen in Steps 2, 3, and 4, shown in bold face. For example, in step 2 we have:

S1c0 − S2
1c0 − S1c

2
0 + S2

1c
2
0 = S1c0 − S1c0 − S1c0 + S1c0 = 0. Similarly, in step

3: (p1g1 − p1g
2
1) = p1g1 − p1g1 = 0, etc. This simplification is simpler and

can be executed faster than dividing the polynomials by the respective field

polynomials (x2 − x), as it is done in computer algebra approach. This is one

of the main reasons for greater efficiency of the algebraic rewriting compared to

GB reduction.

Subsequently, the final result reduces F = Sout − Fspec to zero, indicating that the

circuit correctly implements a full adder.

It should be noted that in addition to the two basic simplification rules mentioned

above (rewriting the gates with common inputs, and the x2 → x reduction), more

sophisticated simplifications can be applied to the running polynomial Sig during

rewriting by analyzing the structure of the gate-level network. For example, recog-

nizing that some signal g is a product of XOR and AND signals with the same fanin

inputs will reduce signal g to zero. This simplification, called an XOR-AND vanishing

31

rule has been used by [68], but for clarity of the above illustration, it has not been

taken into account here.

3.4 AIG Rewriting

The algebraic rewriting technique described in the previous section can be further

improved by performing rewriting using the functional AIG (Add-Inverter Graph)

representation of the circuit instead of its gate level structure. This section provides

a brief overview how this is accomplished, with details provided in [88].

AIG (And-Inverter Graph) is a combinational Boolean network composed of two-

input AND gates and inverters [11]. Each internal node of the AIG represents a

two-input AND function; the graph edges are labeled to indicate a possible inversion

of the signal. We use the cut-enumeration approach of ABC [11] to detect XOR

and Majority (MAJ) functions with a common set of variables; they are essential

components of adder trees that are present in most arithmetic circuits in some form

[88]. After detecting the XOR and MAJ components of the adder’s AIG, rewriting

skips over the detected adders, significantly speeding up the rewriting process. Figure

3.2 illustrates the process for the full adder (FA) circuit from Figure 3.1. In Figure

3.2 the groups of nodes (6,7,8) and (9,11,12) correspond to half adders (HA). The

functions rooted at nodes 6 and 9 are majority (AND) functions, and those at nodes

12 and 8 are XORs. Subsequently, the functions at node 12 (S) and node 10 (C) are

identified as XOR3 and MAJ3, respectively, on the shared inputs, a, b, c0. The AIG

rewriting of Sout = 2C +S over the extracted XOR3 and MAJ3 nodes is trivial, with

the nonlinear monomials automatically cancelled, as shown in Eqn. 3.8.

2C + S = 2(ab+ ac0 + bc0 − 2abc0)

+ (a+ b+ co − 2ab− 2ac0 − 2bc0 + 4abc0)

= a+ b+ co

(3.8)

32

The resulting signature matches the specification, which clearly indicates that the

circuit is a full adder. As illustrated with this example, the AIG rewriting requires

considerably fewer terms than the standard algebraic rewriting.

Figure 3.2: AIG rewriting of a full adder circuit from Figure 3.1.

Data structure: AIG rewriting is implemented in ABC with the polynomial

data structure, type Pln Man t. Its main components include: 1) the AIG manager

(Gia Man) that represents the input design; and 2) two vector hash tables using type

Hsh VecMan t are used for storing the constants and monomials. The hash tables

of monomials include coefficient vectors and monomial vectors. When substitution

is applied to the leading term, new monomials will be created and the substituted

one will be removed. For example, when ab + c + bd is substituted by a = b + d,

the monomial ab is removed first, and b and bd are added to Pln Man t. During the

process of adding the new monomials, the program will first check if these monomials

already exist in Pln Man t; in this case only the coefficient of these monomials will

be changed accordingly. In this example, two new monomials are generated by the

33

substitution, namely b2, reduced to b, and bd. Since bd already exists in the expression,

the coefficient 1 of bd is replaced by 2, resulting in b+ c+ 2bd.

3.5 Comparison between GB Reduction and Rewriting

It should be clear from the above discussion that both methods, the GB reduction

and algebraic rewriting, are equivalent in the sense that they both perform polynomial

reduction. The GB reduction scheme achieves polynomial reduction by division,

in fact, performing Gaussian elimination. In contrast, algebraic rewriting does it

by substituting the gate output variable by the polynomial expression of the gate’s

function. While the goal of GB reduction scheme is to reduce F = Sout − Fspec

modulo the set of implementation polynomials G to 0, it can also be used to extract

the arithmetic function by reducing Sout modulo G, and interpret the result as the

functional specification of the circuit Fspec. In the algebraic rewriting scheme, the goal

is to rewrite the output signature Sout to Sin, the expression in the primary inputs,

and check if it matches the expected specification Fspec. If Sin = Fspec, the circuit is

correct; otherwise it is faulty. Alternatively, as illustrated above, algebraic rewriting

can be also applied to F = Sout − Fspec, as in the GB approach.

Variable substitution of algebraic rewriting (line 9 of Algorithm 2) seems simpler

than the main step of polynomial division of the GB reduction (line 8 of Algorithm 1).

On the other hand, it requires additional multiplication of the terms and expansion

into a sum of products. Hence, the complexity of these steps is comparable. Both

methods avoid explicit computation of Gröbner basis, but achieve it by different

means. In the GB reduction it is done by setting the variable order in the ring so that

all variables are in reverse topological order, which makes the implementation set G a

Gröbner basis. In the algebraic rewriting scheme on the other hand, the polynomials

fi ∈ G are sorted in reverse topological order to effect the rewriting. As a result,

34

both methods ensure that the polynomial base is a Gröbner basis. However, there

are some essential differences between the two methods that affect their efficiency.

• The GB reduction scheme requires the field polynomials J0 =< x2 − x > to be

added to the base G in order to keep the variables Boolean. This increases the

size of the Gröbner basis and results in a larger search space in each iteration.

Whereas in the rewriting scheme, the reduction by < x2 − x > is solved in a

simpler way, namely by lowering x2 to x via a simple data structure (line 10 in

Algorithm 2).

• In the algebraic rewriting scheme, the gate polynomials fi ∈ G are ordered in

reverse topological order (line 5 in Algorithm 2) so that each gate polynomial fi

is used exactly once. Furthermore, the selected polynomial is used to perform

the rewriting by a simple string substitution and is never needed again. In

contrast, in each iteration of the GB reduction one has to search for a polynomial

fi that divides the leading term of F under reduction. While in principle the

GB reduction can also work over an ordered list of gate polynomials, this does

not apply to the field polynomials < x2 − x >, needed for the reduction. Since

the appearance of intermediate signals in nonlinear terms xk is unpredictable,

it is impossible to pre-order the list of field polynomials in GB reduction.

Tables 3.1 and 3.2 show the verification results for multipliers mapped onto stan-

dard cells with three different libraries, including simple two-input gates and indus-

trial libraries of 14 nm and 7 nm nodes. The table also compares the results with

the open source tools of [66][65]. The first group of four designs in the table, labeled

*-nomap, are the circuits synthesized without technology mapping. The three circuits

in the second group, labeled *-map-simple, are synthesized and mapped onto a sim-

ple library of two-input gates. The last group of four circuits, labeled *-map-14nm,

contains designs that were synthesized and mapped onto a 14 nm industrial library.

35

For these circuits we executed several iterations of dch and strash commands before

applying ARTi to eliminate extra logic introduced for meeting timing constraints. As

can be seen from the tables, our algebraic rewriting is significantly more efficient than

those using computer algebra, GB-reduction based approach.

Table 3.1: CPU verification time (in seconds) of synthesized and technology mapped
multipliers using different libraries. #GT = Number of gate types. FI≥5 = Number
of gates with fanin≥5.

Designs ARTi #GT FI≥5 [66] [65]
btor64-resyn3-nomap 0.1 - - 711 4.2
abc64-resyn3-nomap 0.1 - - 801 4.0
btor128-resyn3-nomap 0.3 - - ES ES
abc128-resyn3-nomap 0.1 - - ES ES

btor64-resyn3-map-simple 0.3 7 0 1073 418
abc64-resyn3-map-simple 0.1 7 0 1071 415
abc128-resyn3-map-simple 1.8 7 0 ES ES

abc64-resyn3-map-14nm 29 15 17 TO TO
abc64-resyn3-map-7nm MO 24 9,791 TO TO
abc128-resyn3-map-14nm 400 15 1,008 ES ES
abc128-resyn3-map-7nm MO 23 26,600 ES ES

Table 3.2: CPU verification time (in seconds) for multipliers prior to synthesis.
ES = Error State reported by Singular.

Design ARTi [66] [65]
btor-16 0.01 0.5 0.01
btor-32 0.02 11.7 0.3
btor-64 0.1 725 4.0
btor-128 0.5 ES ES
sp-ar-rc16 0.01 1.1 0.01
sp-ar-rc32 0.1 35.5 0.3
sp-ar-rc64 0.4 1312 4.6
sp-ar-rc128 1.6 ES ES
abc-256 0.7 ES ES
abc-512 3.7 ES ES

36

3.6 The Bit-flow Model

This section offers a new insight into an arithmetic circuit verification problem, in

which the computation performed by the circuit is treated as the flow of digital data.

The goal here is not to introduce any new algorithms, but to suggest an interpretation

how the computation propagates in an arithmetic circuit. This interpretation will

then provide an argument for soundness and completeness of the algebraic rewriting

method, independently from the computer algebra arguments.

The circuit is modeled as an acyclic network of logic and/or arithmetic components

connected via electrical signals or wires. Mathematically, the signals are represented

as variables, denoted X; they include the internal signals, the primary inputs (PI),

and the primary outputs (PO). The terms signals and variables will be used inter-

changeably, depending on the context (structural vs. functional view of the circuit).

Each component of the circuit is described by its characteristic function, a pseudo-

Boolean polynomial function relating the component’s inputs to its outputs. The

characteristic functions of Boolean logic gates are provided by Equation 6.1. For ex-

ample, the characteristic function of an OR gate z = a∨ b is z = a+ b−ab. Similarly,

the characteristic function of a half adder (HA) is 2C + S = a+ b, etc.

The generic term flow is intuitively understood as a movement of some physical

entity (such as current or fluid) through the network. Here, it is a movement of

digital data (voltage potentials taking value 0 or 1) whose capacity is measured in

bits, where each bit contributes one unit of flow to its value. The flow starts at the

primary inputs and propagates towards the primary outputs, distributed internally

according to the characteristic functions of the circuit components. For example, a

full adder accepts an in-flow of three bits, a, b, c and ”distributes” this flow to the

outputs according to its characteristic function: a + b + c = 2C + S. The coefficient

associated with each variable represents its ”capacity”, the maximum value of the

flow that can pass through the corresponding signal. In a half-adder or a full-adder,

37

the weight of each input bit is 1, and the weight of the output bits C and S are 2

and 1, respectively. For a logic gate, the inputs and the output bits have a weight of

1 each.

The idea of using the flow conservation law to verify arithmetic circuits has already

been proposed in [21]. However, it is applicable there only to arithmetic circuits

composed of half- and full-adders, where the circuit elements and the specification

are modeled as linear expressions. Here, we extend this idea to an arbitrary integer

arithmetic circuit which computes an arithmetic function as a polynomial.

The value of the flow in the circuit is captured by the polynomials (signatures)

generated during the algebraic rewriting. Equations (3.6) and (3.7) are examples of

such polynomials. The value of the flow at the primary inputs is represented by the

specification polynomial Fspec, while the value of the flow at the primary outputs is

represented by the output signature Sout. The value of the flow at an arbitrary cut

of the circuit (defined below) is represented by a polynomial in terms of the variables

associated with the respective signals of the circuit. It can be computed from the

polynomial generated at each step of the algebraic rewriting. We shall show that the

value of the flow in an arithmetic circuit represented by such polynomials is invariant

throughout the circuit.

In principle, the circuit can be composed of arbitrary components, with single-

output logic gates as well as multiple-output arithmetic modules, such as half- and

full-adders; or any module for which the I/O relationship can be defined as a polyno-

mial. Here we limit our attention to gate-level arithmetic circuits with single-output

logic gates. In the remainder of this section, any reference to polynomials Si, Sin,

Sout or Fspec assumes that they are reduced over the field polynomials < x2 − x >,

which is implicitly achieved by replacing x2 with x during the algebraic rewriting

(refer to Section 3.3). It should be clear that the value of the flow is not affected by

38

this transformation or by any simplification which removes the terms that evaluate

to zero, since it does not change the value of the polynomial.

Consider a polynomial Pi generated at step i of the algebraic rewriting process.

It can be observed that the variables Xi that are in the support set of Pi correspond

to a cut in the circuit. Using network flow terminology, the cut is a set of signals that

partitions the circuit into two subsets: one containing the gates whose inputs are

transitively connected to the primary inputs PI, and the other containing the gates

whose outputs are transitively connected to the primary outputs PO. This separation

is an inherent property of backward rewriting: starting with the output signature

polynomial Pi = Sout, a variable xk ∈ Xi of Pi that represents an output of some

gate gk is replaced by the polynomial in its inputs. From the structural viewpoint,

this moves the cut from the gate output to its inputs. From this perspective, the

polynomial Pi can also be viewed as a signature of the cut Ci, denoted Si.

Polynomial expressions in Eqn. (3.6) and (3.7) are examples of cut signatures for

the full adder circuit of Figure 3.1. The input and output signatures, Sin and Sout

defined earlier, are the signatures of the boundary cuts, associated with the primary

inputs PI and primary outputs PO, respectively. The following example illustrates

the relationship between the polynomial and cut rewriting.

Figure 3.3: Cut rewriting in a full-adder circuit.

Example 1: Figure 3.3 shows a full adder circuit (FA) with a set of cuts. The

signatures {Sout, S4, S3, S2, S1, Sin}, associated with cuts {Cut5,, Cut0}, are given

in Eqn. 3.9. They are obtained by successively rewriting the output signature Sout =

39

2C + S of Cut5 through the circuit. Specifically, the signature Sout is transformed

into signature S4 of Cut4 by replacing variable C with the expression of the OR gate,

C = g + t − gt, resulting in the signature S4 = 2(g + t − gt) + S. This signature

is then transformed into S3 by rewriting across the AND gate, t = cp, etc., until

it reaches the primary inputs. The following signatures are obtained by successive

rewriting of the circuit, in the order consistent with the ordering rules discussed in

Section 3.3. Furthermore, the expression for S3 is reduced here by applying XOR-

AND simplification rule of [68], namely pg = 0.

Sout = 2C + S

S4 = 2(g + t− gt) + S

S3 = 2(cp+ g − cpg) + S

= 2(cp+ g) + S

S2 = c+ p+ 2g

S1 = c+ p+ 2ab

Sin = c+ a+ b

(3.9)

Note that, in contrast to the network flow model of [21], the signature Si of some cut

Ci is not a linear combination of its signals Xi, but in general a nonlinear polynomial

Si in variables X.

We now introduce the notion of the flow value, a measure of the capacity of the

bit-flow across a cut.

Definition 1: The value of a cut Ci with signature Si for a given assignment of

variables Xi is the value of its signature Si evaluated at Xi. It is denoted as V (Si)(Xi).

One should keep in mind that the values of variablesXi of a cut cannot be arbitrary

but can assume only those values that can be derived from the bit values of PI. To

this effect, we introduce the following definition.

40

Definition 2: The assignment of variables in Xi is called legal, denoted by [Xi], if it

is derived from an assignment of the primary inputs, XPI . In this case we say that

[Xi] is compatible with XPI .

With this we will use the notation V (Si)[Xi] to denote the value of the cut only

for legal assignment of Xi. We can then say that two assignments, [Xi], [Xj], are

compatible if they are both derived from the same values XPI .

The reason for introducing the concept of legality is that one can only reason

about the flow through the cuts for only those values of signals that are actually

generated by the circuit.

Example 2: Table 3.3 shows the flow values for the FA circuit in Figure 3.7 at each

cut for all possible PI assignments. These values are obtained by simply substituting

given values of [Xi] into the expression of Si.

Table 3.3: Flow values of cuts in the correct circuit. S5 = Sout = 2C + S; S0 = Sin =
a+ b+ c = Fspec

PIs Intermediate POs Flow value V (Si) at Cuti
c a b p g t C S S5 S4 S3 S2 S1 S0 Fspec
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 1 1 1 1 1 1 1

0 1 0 1 0 0 0 1 1 1 1 1 1 1 1

0 1 1 0 1 0 1 0 2 2 2 2 2 2 2

1 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 1 1 0 1 1 0 2 2 2 2 2 2 2

1 1 0 1 0 1 1 0 2 2 2 2 2 2 2

1 1 1 0 1 0 1 1 3 3 3 3 3 3 3

An important observation is that, for a given assignment of XPI , the values of all

cuts (and of their signatures) are invariant.

Definition 3: Two cuts, Ci, Cj, with signatures Si, Sj, are congruent, denoted Ci ∼=

Cj, if for every pair of compatible assignments, [Xi], [Xj], their values are the same,

i.e., V (Si)[Xi] = V (Sj)[Xj]. In this case, we also say that the corresponding signatures

are congruent, denoted Si ∼= Sj.

41

Theorem 1: Given a pair of cuts Ci, Cj, such that Ci is transformed into Cj or,

equivalently, Si rewritten into Sj by algebraic rewriting, the two cuts are congruent.

That is Si −→ Sj =⇒ Si ∼= Sj.

Proof. A cut Ci(Xi) can be transformed into another cut Cj(Xj) by a series of alge-

braic rewriting transformations over logic gates, each described by some polynomial

g = v − tail(g). During rewriting, every occurrence of variable v in the source cut

(initially Ci) is replaced by tail(g) in the target cut (finally Cj). Since polynomial

g satisfies the relation g = v − tail(g) = 0, provided by Eq. (1), then v = tail(g).

Consequently, V (Si) = V (Sj) for all values of variables v and those in tail(g) that

satisfy this relation. Hence, V (Si)[Xi] = V (Sj)[Xj] for all compatible assignments

[Xi], [Xj], and thus by Definition 6 they are congruent, Si ∼= Sj.

Example 3: Theorem 1 states an important property of bit-flow conservation across

the cuts in an arithmetic circuit. Table 3.3 gives the values of individual cuts for the

full-adder circuit in Figure 3.3. As we can see, the signature value of each cut in the

original (correct) circuit, including the inputs and output signatures are the same for

all primary input assignments.

Notice that two cuts may be congruent even if one cannot be obtained from the

other by rewriting. For example, in Figure 3.3, Cut3 = {S, c, p, g} and cut {p, c, t, g}

(crossing each other, not shown in the figure) cannot be derived from each other since

there are no gates that can transform one into another; yet, they are also congruent

since each can be derived by a rewriting of Sout, albeit through a different set of gates.

To that effect, we have the following Corollary:

Corollary 1: All cuts in the circuit are mutually congruent. In particular, Sout ∼= Sin.

Proof. By Theorem 1, any cut Ci in the circuit is congruent with the cut at the

primary outputs, PO, because it can be obtained by backward rewriting from PO.

Any other cut, Cj, is also congruent to PO. That is, by the definition of congruence,

42

V (Si)[Xi] = V (SPO)[XPO] and V (Sj)[Xj] = V (SPO)[XPO], and hence Si ∼= Sj, for

any cuts Ci, Cj, including Sin and Sout. As a result, all the cuts are congruent and

form an equivalence class.

Corollary 1 basically states that the value of the flow measured at any cut in the

circuit is constant throughout the circuit.

We now need to discuss how to distinguish a circuit that is functionally correct

from the circuit that is faulty. The circuit is said to be functionally correct if its

implementation satisfies the specification; or, equivalently, that the values computed

by the circuit are the same as those provided by the specification for all possible

input assignments. Using the terminology of algebraic rewriting we can formalize

this definition as follows:

Definition 4: The circuit is functionally correct if, for each primary input assign-

ment, XPI , the result encoded in the primary outputs XPO satisfies the condition

V (Sout)[XPO] = V (Fspec)[XPI].

The following theorem specifies the sufficient and necessary condition for the func-

tional correctness of a circuit.

Theorem 2: The circuit is functionally correct if and only if the input signature,

Sin, computed by algebraic rewriting of the output signature, Sout, is the same as the

functional specification, i.e., if Sin = Fspec.

Proof. The if part (soundness): let Sin = Fspec, which implies that V (Sin) = V (Fspec)

for all possible primary input assignments, XPI . Since, by Corollary 1, Sin ∼= Sout,

i.e., V (Sin) = V (Sout), we have V (Sout) = V (Fspec) for all possible values of XPI .

That is, the circuit is functionally correct.

The only if part (completeness): Let the circuit be functionally correct, i.e.,

V (Sout) = V (Fspec) for all values of XPI . Since Sout ∼= Sin, we have V (Sin) = V (Fspec)

for all the assignment of inputs XPI . This in turn implies that Sin = Fspec. Fur-

thermore, the rewriting procedure always terminates: the circuit as a DAG has no

43

loops and the number of rewriting steps is equal to the number of gates. Hence, the

method is also complete.

It should be emphasized that the above argument is only valid for pseudo-Boolean

polynomials, reduced over field polynomials J0. It is known that such polynomials

have unique polynomial representation, so that two polynomials will evaluate to the

same value only if they are the same.

Example 4: To illustrate the case of a faulty circuit, where Sin 6= Fspec, consider

again the full adder example in Figure 3.3 in which the AND gate g = ab has been

replaced with an OR gate, g = a + b − ab. This causes the signatures of the cuts to

change, as follows (note that in this circuit the AND-XOR simplification pg = 0 does

not apply):

Sout = 2C + S

S4 = 2(g + t− gt) + S

S3 = 2(cp+ g − cpg) + S

S2 = c+ p+ 2g − 2cpg

S1 = c+ p+ 2(a+ b− ab)− 2cp(a+ b− ab)

Sin = c+ 3(a+ b)− 4ab− 2c(a+ b− 2ab)

(3.10)

The input signature obtained by this rewriting is now: Sin = c + 3(a + b) − 4ab −

2c(a + b − 2ab), which does not match the circuit specification, Fspec = a + b + c.

The flow values for each cut, for each assignment XPI , are shown in Table 3.4. The

table confirms that all the cuts {S5, S4, S3, S2, S1, S0} are congruent; and the flow

value at any of the cuts, according to Theorem 1, is constant for any PI assignment.

However, the flow value for some assignments of XPI is different than in the correct

circuit (shown in column Fspec), proving that the circuit is faulty.

In summary, in the circuit that computes a polynomial, the value of the flow from

PI to PO is constant throughout the entire circuit. In the functionally correct circuit

the value of the flow equals that of Fspec; in a faulty circuit the flow value is different

44

Table 3.4: Flow values in faulty circuit (gate AND of g replaced by OR); S5 = Sout =
2C + S; S0 = Sin 6= Fspec

PIs Intermediate POs Flow value V (Si) at Cuti
c a b p g t C S S5 S4 S3 S2 S1 S0 Fspec

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1 3 3 3 3 3 3 1
0 1 0 1 1 0 1 1 3 3 3 3 3 3 1
0 1 1 0 1 0 1 0 2 2 2 2 2 2 2
1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 0 2 2 2 2 2 2 2
1 1 0 1 1 1 1 0 2 2 2 2 2 2 2
1 1 1 0 1 0 1 1 3 3 3 3 3 3 3

than that of Fspec, while all the cuts remain congruent. If the circuit is correct, Sin

will match the specification, Fspec; otherwise, the algorithm will report the circuit as

faulty and will return the computed signature Sin.

45

CHAPTER 4

VERIFICATION OF TRUNCATED ARITHMETIC
CIRCUITS

In this chapter, we present an approach for formal verification of truncated mul-

tipliers that perform approximate integer multiplication. This method is based on

extracting polynomial signature of the truncated multiplier using algebraic rewriting,

discussed in Chapter 3. To efficiently compute the polynomial signature, a multi-

plier reconstruction is proposed to construct the complete, precise multiplier from

the truncated one. This method has been tested on multipliers up to 256 bits with

three truncation schemes: Deletion, D-truncation, and Truncation with Rounding.

Experimental results are compared with the state-of-the-art SAT, SMT, and com-

puter algebraic solvers.

4.1 Problem Statement

The traditional verification methods discussed in Chapter 1.2 are not applicable

to large arithmetic circuits as they require ”bit-blasting”, causing memory overload.

Even more so, they also fail when dealing with large truncated arithmetic circuits.

Even the state-of-the-art SAT solvers cannot solve verification problem of a 16-bit

truncated multiplier.

The computer algebra approaches discussed in Chapter 3 can successfully ver-

ify large arithmetic circuits, such as 512-bit multipliers. However, when verifying

truncated arithmetic circuits, in particular truncated multipliers, these methods face

serious memory problem. Even for verifying a 8-bit truncated multiplier, the system

46

Figure 4.1: Complete half adder.

runs out of 16 GB memory with an inconclusive result. This is because truncation

prevents polynomial cancellations and simplifications that naturally occur during the

rewriting process [86]. For example, a complete half-adder (HA) in Figure 4.1 consists

of an XOR for the sum and an AND for the carry, while the truncation process makes

some of the HAs in the original circuit incomplete (with the XOR or the AND gate

removed). The algebraic models of XOR (a⊕ b = a+ b− 2ab) and AND (a · b = ab)

gates of the HA are nonlinear, but when they are added together with correct weights,

the resulting polynomial becomes linear: 2C+S = 2 ·(ab)+(a+b−2ab) = a+b. This

naturally occurs during HA rewriting in a ”complete” arithmetic circuits. Whereas

in the case of a truncated circuit, some of the output bits are truncated, and the cor-

responding gates (mainly XORs) computing those bits will be removed. The above

linear relationship is then broken, and the non-linear term ab remains and gets ex-

panded by further rewriting of variables a and b in the polynomial expression. This

causes an exponential increase in the size of intermediate polynomials, resulting in

memory explosion.

To address this issue, a multiplier reconstruction approach is used to construct a

complete, precise multiplier from the truncated one. The method consists of three

basic steps: 1) determine the weights (binary encoding) of the output bits; 2) re-

construct the truncated multiplier using functional merging and re-synthesis; and 3)

construct the polynomial signature of the resulting circuit. The details are discussed

in Section 4.3.

47

Figure 4.2: Partial product array of a 8-bit multiplier.

4.2 Formal Truncation Schemes

Three formal truncation schemes used to design truncated multipliers are: Dele-

tion, D-truncation and Rounding. An example of truncated multiplier is shown in

Fig. 4.2. Normally, a 2n-bit output is generated for a regular n×n multiplier, whereas

in this case only n most significant bits (MSBs) are computed. A multiplier that has

the same bit-width in their input and output is called a fixed-width multiplier, which

is mainly used in this chapter. In this example, the inputs a[n-1:0] and b[n-1:0] are

assumed to be two integer inputs. The partial products are divided into two subsets:

1. The most significant partial products (MSPPs), corresponding to n MSBs; and,

2. The least significant partial products (LSPPs), further subdivided into LSPP major

and LSPP minor, corresponding to the k most significant columns of LSPPs and

the remaining (nk) columns, respectively.

In Deletion scheme, the partial products in LSPP minor, which have a small impact

on the accuracy of the result, are discarded. The corresponding PPs are dropped to

prevent the carry chain from propagating further. This decreases the size of the carry

chain, which reduces the delay and power (the main reason for applying truncation).

Even though LSPP minor have a smaller contribution to the accuracy of the MSBs,

48

the error of discarding them can be high; in the worst case it is 7 · 28 for an 8-bit

fixed-width multiplier. To rectify this, a compensatory circuit is typically added after

deletion [60][75].

In D−truncation scheme, some output bits computed by LSPPs are truncated with-

out modifying the entire carry chain. In contrast to the Deletion scheme, which

improves performance and saves power, D-truncation does not change the function-

ality of the remaining circuit. Instead, it only removes these truncated bits and the

associated gates. The purpose of D-truncation is to manage the number of output

bits, i.e., maintaining the number of input and output bits to be the same. Although

D-truncation will not affect the accuracy of the MSBs, the error due to losing the

information in LSPPs is (28 − 1) in the worst case.

Rounding scheme is often introduced to achieve further accuracy and truncation

[31]. Instead of truncating all columns in LSPP major, some of the most signifi-

cant columns in LSPP major are kept for the rounding circuit. The value of those

columns in LSPP major is rounded into MSPPs.

4.3 Verifying Different Truncation Schemes

In this section, we describe two basic techniques, functional merging and re-

synthesis, used to verify truncated multipliers. We introduce a Partial Product

Detector (PPD) which assigns correct weights to the respective output bits. In or-

der to better understand how PPD works, we analyze in Section 4.3.1 a truncated

multiplier designed with only the Deletion scheme. In Section 4.3.2, we consider a

truncated multiplier designed with only the D-truncation scheme and describe the

details of functional merging and re-synthesis. Lastly, we propose a comprehensive

verification analysis where all truncation schemes are combined together. Fig. 4.4

shows the verification flowchart of our methodology applicable to a general truncated

multiplier. Two assumptions are made:

49

• The compensatory circuits for Deletion and Rounding can be extracted from

the high-level synthesis netlist, and represented as polynomials in the primary

inputs.

• The bit position of primary inputs (a[n-1 : 0], b[n-1 : 0]) is known, so that the

weights of the partial products are also known.

4.3.1 Deletion Scheme only

In the Deletion scheme, some of the partial products are removed to reduce the

circuit complexity at the expense of accuracy. For example, in Fig. 4.2, six of the

partial products in LSPP minor are removed, and the logic columns PO0, PO1 and

PO2 in the shaded area will disappear. As a result, there is no carry feed into the

PO3 column. Hence, the remaining adder tree still executes complete additions (the

remaining HA/FA blocks are complete). In this case, there is no polynomial size

explosion, since all additions preserve polynomial eliminations during the rewriting

process. This means that function extraction is sufficient to extract the input signa-

ture of the circuit.

In Fig. 4.2, when the logic cones associated with LSPP minor columns are re-

moved, PO3 corresponds to the current LSB. Hence, the weight of the current LSB

that was 23 in the exact multiplier is shifted to 20. The computed input signature

will never match the specification until all the output bits are assigned their original

weight. Moreover, additional polynomials representing those removed partial prod-

ucts must be added. In this case, PPD performs the following functions (Algorithm

3):

• Assign the correct/original weight to each current output bit.

• Detect the deleted elements in LSPP minor and generates additional polyno-

mials.

50

Algorithm 3 Weight Determination and Signature Generation
Input: Gate-level netlist of truncated multiplier
Output: Correct weight of each output bit
Output: Additional polynomials representing the removed partial products

1: PO={PO0, PO1, ..., POc}: current output bits of truncated multiplier
2: for i ← 0 to 2n− 1 do
3: Create listi corresponding to logic column i
4: for j ← 0 to i; k ← 0 to i; j + k ← 0 to i do
5: Search partial product ajbk in the netlist
6: if partial product ajbk exists then
7: Save product ajbk into listi
8: else Additional Polynomials ← Additional Polynomials + 2iajbk
9: end if
10: end for
11: Number of Total PPs ← Number of Total PPs + length(listi)
12: Rank of Logic Column ← i
13: Save Pairi(Rank of Logic Column, Number of Total PPs)
14: end for
15: for i ← 0 to c do
16: Search and count the number of PPs that current output bit POi depends on
17: Match the count with Number of Total PPs in Pairs
18: return Rank of Logic Column
19: Assign correct weight Wi ← 2Rank of Logic Column

20: end for
21: return Correct weights W={W0,W1, ...,Wc} and Additional Polynomials

In general, for an Na×Nb-bit multiplier, Algorithm 3 will search Na+Nb logic

columns. Specifically, for a 8-bit multiplier shown in Fig 4.2, it searches 2 × 8 = 16

logic columns, PO0 to PO15. The results of applying Algorithm 3 to this example

are shown in Table 4.1.

Table 4.1: The relationship between RLC and NTPP.
RLC: Rank of Logic Column, NTPP : Number of Total PPs

RLC NTPP RLC NTPP RLC NTPP
0 0 5 15 10 48
1 0 6 22 11 52
2 0 7 30 12 55
3 4 8 37 13 57
4 9 9 43 14,15 58

To assign the correct weight for each output bit, we traverse and count all those

PPs on which that output bit depends. This information is stored in Table 4.1, which

shows for each output bits (rank of logic column, RLC) the number of total PPs

(NTPP) that it depends on. Since all PPs in the LSPP minor logic were removed,

NTPP for RLC = 0, 1, 2 is 0. To find the weight of the current LSB of this truncated

51

multiplier, we examine the PPs that this bit depends on. In this case, four PPs have

been found, namely a0b4, a1b3, a2b2, a3b1, a4b0. We then examine Table 4.1 to find

which bit (RLC) depends on NTPP = 4. It turns out that RLC = 3 in this case,

which means the current LSB of this truncated multiplier is the PO3 of the complete

multiplier. Hence, the correct weight for this bit must be 23.

In the same way, we can assign the correct weights to the other output bits. For

example, if we determine that one of the output bits depends on 15 PPs, then the

correct weight of that output bit is 25, since RLC for NTPP = 15 is 5. Furthermore,

those 15 partial products consist of 6 PPs in PO5 logic column, 5 PPs in PO4 and 4

PPs in PO3.

Algorithm 3 explains a general idea of how the PPD works. However, a special

case needs to be discussed. Notice that the two MSBs PO14 and PO15 depend on

the same number of partial products, that is 58, as shown in Table 4.1. In such a

one-to-two mapping problem, PPD will determine the correct weight according to the

information of the circuit. That is, the output bit with the higher rank is assigned

the higher weight, that is 215, and the other output bit as 214.

Once all the output bits have been assigned their correct weights, we can then

apply function extraction to compute the input signature. Notice that the boundary

between LSPP minor and LSPP major does not necessarily have to be straight (along

the column lines). As long as the correct weight of each output bit is assigned and

the LSPP minor has been detected, the calculated signature will always be correct.

While searching each logic column, the discarded/undetected partial products will

be added as additional polynomial at the end of the signature calculation, with the

corresponding coefficients. In this case, the additional polynomial will be 22(a2b0 +

a1b1 +a0b2)+ 21(a1b0 +a0b1) +20a0b0. The polynomial of the compensatory circuit D

also need to be considered, if it exists. The size of the compensatory circuit depends

upon the number of partial products removed. The worst case size occurs when k = 0,

52

that is, when all the LSPPs are removed. However, the bigger the compensatory

circuit, the harder the verification process is. In the worst case scenario, most of the

time is spent on computing D. Therefore, if the size of the compensatory circuit is

too big, we need to remove it before the rewriting process.

Finally, we compare: 1) the calculated polynomial of the truncated circuit ex-

panded by additional polynomial, with 2) the sum of full multiplier specification and

polynomial D. The reason for doing this, is that the compensatory circuit is included

in the truncated circuit. This operation is trivial when there is no compensatory

circuit (D = 0). If the two polynomials are equal, the given circuit is proved to be a

Deletion-based truncated multiplier.

4.3.2 D-truncation scheme only

D-truncation is the process in which some of the output bits are removed without

changing the functionality of the remaining output bits. A fixed-width multiplier can

be built by simply applying the D-truncation scheme to a regular multiplier. For

example, in Fig. 4.2, assuming that k = 8, no partial product is removed and 8 LSBs

are truncated. Although the functionality of the remaining 8 MSBs has not changed,

the entire structure of adder tree is no longer complete. For example, assume that one

output bit is computed by the XOR gate of a HA block. When this bit is truncated,

the XOR gate will be automatically removed from the circuit because it is redundant.

However, the AND gate will remain to preserve the carry chain.

In this example, the XOR gates directly connected to PO2 to PO7 will disappear

due to D-truncation. The remaining AND gates make the structure of adder tree

incomplete. The nonlinear terms of polynomials, which were supposed to be canceled,

will propagate during the backward rewriting. This leads to an exponential increase in

memory size, potentially ending up in a memory explosion. In other words, we cannot

directly apply function extraction to such a circuit. To efficiently apply function

53

extraction, our approach transforms the incomplete function into a complete one.

This is achieved by functional merging, followed by re-synthesis of the combined

circuit by ABC [50].

Figure 4.3: Functional Merging and Re-synthesis.

To better explain this idea, we use a 2×2 multiplier in Fig. 4.3 as an illustrative

example. A 2-bit truncated multiplier (with two LSBs truncated) is presented in

Fig. 4.3(a). Assume that Fig. 4.3(a) represents the circuit to be verified if it is a 2-bit

fixed-width multiplier. We use Algorithm 1 to determine the correct weights of this

circuit. After reading the gate-level netlist, PPD assigns weight 23 to m1 and 22 to

m0. Then, we generate a regular 2×2 multiplier and remove the output bits with

weights 22 and 23. The generated circuit is shown in Fig. 4.3(b), whose weight of

m1′ is 21 and of m0′ is 20. Finally, we apply our scheme of functional merging and

re-synthesis resulting in the circuit in Fig. 4.3(c). The red (shaded) part in this figure

corresponds to the generated corrective circuit of Fig. 4.3(b).

If the re-synthesized circuit proves to be a 2×2 multiplier by algebraic polynomial

rewriting, this means that the given circuit in Fig. 4.3(a) is indeed a truncated mul-

tiplier. This is because the circuit generated in Fig. 4.3(b) has a correct function of

two LSBs in a regular 2×2 multiplier. If, and only if, the circuit in Fig. 4.3(a) has

54

the function of two MSBs of a regular 2×2 multiplier, the re-synthesized circuit can

be a 2×2 multiplier.

In general, for a given circuit X that needs to be verified whether it is the D-

truncation-based multiplier or not, we first calculate the correct weights for each

output bit by PPD. Then, we generate a regular multiplier and truncate those output

bits that have the same weight as the ones in circuit X. The generated circuit

should have the same number of input bits as circuit X. After functional merging

and re-synthesis, the number of output bits in the re-synthesized circuit is equal to

the sum of output bits in the given circuit X and the generated circuit, as shown

in Fig. 4.3. Finally we apply function extraction (backward rewriting) to the re-

synthesized circuit. If the computed signature matches the specification of a regular

multiplier, the functionality of circuit X as truncated multiplier is confirmed.

The goal of functional merging is to find the maximum functional similarity be-

tween the given circuit and the generated corrective circuit. The merging eliminates

as much as possible incomplete addition in the given circuit to speed up function

extraction. Resynthesis (performed using ABC [50]) transforms the two circuits into

And-Inverter-Graphs (AIGs) and performs sweeping, redundancy removal, common

logic identification, etc. If the two circuits (the original one and the reconstructed

one) have been built in the same way, resynthesis in effect transforms the structure

of the original circuit into the circuit performing a complete arithmetic function.

Despite ABC being the state-of-the-art synthesis and verification tool, it could

not solve the equivalence checking problem for two different 12-bit truncated mul-

tipliers. In contrast, our approach is scalable and can be used to verify truncated

multipliers up to 256 bits. The success of such verification depends on the local

structural similarity between the original and the generated corrective circuit. Such

a similarity assumption is acceptable, especially in industry. For example, designer

of the fixed-width multiplier may have access to the original regular multiplier. If the

55

designer use the structure of the regular multiplier to build the generated circuit, as in

Fig. 4.3(b), the problem can be solved very fast. This is also true even if the original

circuit and the generated circuit are not built using the same algorithm but exhibit

enough local functional similarity. The speed of applying function extraction to the

re-synthesized circuit will be much higher than directly applying function extraction

to the original circuit. This is because more nonlinear terms will be canceled during

polynomial rewriting. However, one cannot reconstruct a circuit without considering

the algorithm that was used to design it. For example, functional merging between a

Booth-Multiplier and non-Booth multiplier may make the process fail.

Another significant contribution of this approach is that we can verify a multiplier

whose arbitrarily output bits have been truncated. For example in Fig. 4.3(a), PPD

can assign the correct weight to each of the output bits. We can then generate a

regular 2×2 multiplier and truncate those output bits that have the same weight as

the one in the given circuit. Therefore, we don’t need to know which output bits are

truncated. Instead, we can automatically detect arbitrarily truncated bits and follow

the same procedure as described earlier.

A special case in weight determination is when either the MSB or (MSB-1)th

bit has been truncated. Since these two bits depend on all the PPs, PPD cannot

tell which one is truncated. In this case, we will generate two circuits: one circuit

assuming that MSB is truncated, and the other circuit assuming that (MSB-1)th bit

is truncated. In this case, both circuits are reconstructed, and only if either of them

turns out to be a regular multiplier, we conclude that the given circuit is a truncated

multiplier.

4.3.3 Deletion + D-truncation + Rounding

In this section, we discuss the case when a truncated multiplier is designed using

all of the three truncation schemes, Deletion, D-truncation, and Rounding. Partial

56

product detector (PPD), functional merging, and re-synthesis can still be used along

with the function extraction to solve the verification problem. Fig. 4.4 shows the

verification flow of our methodology applicable to the Deletion only, D-truncation

only, and a combination of these two schemes.

Original

Circuit

PPs

Detection

LSPP_minor

Determination

Output weights

Determination

Generate

Corrective Circuit

Calculate

Additional Polys

Functional Merging

& Re-synthesis

Function

Extraction

Compensatory

Polynomials with

Specification

Extracted

Polynomial=?

Figure 4.4: Verification Flow dealing with all truncation schemes.

An 8-bit fixed-width multiplier is used as an example for the analysis of these

truncation schemes. Assume that six of the partial products in LSPP minor are

removed, as shown in Fig. 4.2. Therefore, the output bits associated with PO0, PO1,

and PO2 will disappear due to Deletion. Then, five output bits, corresponding to logic

columns PO3 to PO7, will be removed using D-truncation and Rounding scheme.

In the verification flow, PPD detects the elements in LSPP minor and assigns a

correct weight to each of the output bits. Then, we generate a regular multiplier

which has the same number of inputs as the original circuit. An additional step,

which is different from the analysis in Section 4.3, is as follows. We discard the

undetected PPs in the generated circuit so that the PPs in the generated circuit and

the PPs in the original circuit are the same. After that, the generated circuit has 5

output bits, corresponding to PO3 to PO7, while the original circuit has 8 output bits,

corresponding to PO8 to PO15. We then apply functional merging and re-synthesis

to the combined circuit.

Finally, we calculate the polynomials as shown in Fig. 4.4, and compare the follow-

ing two terms: 1) the computed signature of the re-synthesized circuit with additional

polynomials representing the undetected PPs (LSPP minor); with 2) the specifica-

57

tion of the regular 8-bit multiplier enlarged by the polynomials of the compensatory

circuits. Upon being equal, the given circuit is proved to be an 8-bit fixed-width

multiplier. Experiments were performed on a Baugh-Wooley multiplier and a CSA

array multiplier for up to 256 bits.

4.4 Results

The partial product detector (PPD) in the proposed method has been imple-

mented in Python. ABC, a popular synthesis and verification tool [50] was used to

implement the functional merging and re-synthesis. We performed our experiments

on an Intel Core CPU i5-3470 @ 3.20 GHz 4 with 15.6 GB memory. Experiments

are performed on a Baugh-Wooley multiplier and a CSA multiplier for up to 256

bits. The Baugh-Wooley multiplier is a modified non-Booth unsigned multiplier us-

ing Baugh-Wooley scheme. CSA multiplier implemented in our experiments is an

array based CSA multiplier, generated by ABC. Unless stated otherwise, the trun-

cated multipliers in our experiments are obtained by removing 1/4 partial products

and truncating up to half of the output bits (LSBs).

Table 4.2: Results and comparison with Function Extraction [22] using truncated
CSA multipliers.

*TO : Time out of 9,000sec, MO : Memory out of 10GB.

bits
Function Extraction [22] This Work

Runtime (sec) Memory (MB) Runtime (sec) Memory (MB)
6 38.94 296.0 0.01 4.2
8 1174.4* MO 0.01 4.8
16 928.2* MO 0.05 7.3
32 796.3* MO 0.25 17.2
64 631.4* MO 1.05 57.3
128 470.9* MO 4.40 220.4
256 286.1* MO 18.94 880.1

As analyzed in Section 4.3, a direct application of function extraction to a trun-

cated multiplier causes a memory explosion during polynomial rewriting. Table 4.2

makes a comparison between our scheme and the original function extraction [22] in

terms of CPU execution time and memory consumption. Truncated multipliers used

58

here are CSA-based multipliers. Function extraction [22] succeed only for truncated

multipliers with the operand size up to 6. For larger operand sizes the system runs out

of memory and results in an incomplete calculation. The runtime numbers labeled

with * indicate the CPU time up to the moment when memory usage exceeds 10GB.

In principle, given enough memory, function extraction might be able to output a cor-

rect result. However, such an experiment is not feasible or scalable. Hence, a direct

implementation of function extraction to the truncated multiplier is neither efficient

nor scalable. In contrast, our approach based on functional merging and re-synthesis

is very fast, since we eliminate the incomplete additions in a truncated multiplier.

Table 4.3: Results and comparison with ABC, SMT, and SAT solvers using truncated
Baugh-Wooley multipliers.

*TO : Time out of 9,000sec, MO : Memory out of 10GB.

bits
cec-ABC
[50] (sec)

Lingeling
[9] (sec)

Boolector
[55] (sec)

This Work
Runtime (sec) Memory (MB)

6 0.41 0.30 0.16 0.01 4.6
8 16.2 5.92 3.49 0.28 15.4
10 318.1 350.3 261.6 0.50 19.8
12 TO TO 8746.4 0.81 24.1
16 TO TO TO 1.12 36.8
32 TO TO TO 3.87 50.9
64 TO TO TO 14.7 268.2
128 TO TO TO 68.2 757.6
256 TO TO TO 279.3* MO

We also analyzed truncated multipliers designed with Baugh-Wooley scheme with

bit-width varying from 6 to 256 bits. Comparison in Table 4.3 shows that our ap-

proach gives a much better performance than ABC and Lingeling SAT solver [9].

ABC runtime exceeds 9,000 seconds in checking equivalence between a 12-bit trun-

cated Baugh-Wooley multiplier and a CSA truncated multiplier generated by ABC.

The SAT solver of ABC [50], Lingeling solver [9], and SMT solver Boolector [55] all

fail for sizes greater than 12 bits for this experiment.

59

CHAPTER 5

VERIFICATION OF ARITHMETIC CIRCUITS
SUBJECTED TO ARITHMETIC CONSTRAINTS

Previous chapter described the reconstruction approach to the verification of arith-

metic circuits, in which some of the output bits have been truncated. In this chapter,

we will discuss the case when an arithmetic circuit is subjected to arithmetic con-

straints, applied to its inputs. The concept of vanishing monomial is introduced to

enable algebraic rewriting to verify such constrained circuits. A case-splitting verifi-

cation approach is proposed. The method has been tested on constrained arithmetic

circuits, such as adders, multipliers and dividers up to 128 bits.

5.1 Problem Statement

Certain applications require arithmetic circuits to be customized by imposing

some constraints to be satisfied by the circuit. When designing such circuits, the

circuit performance or its area can be improved by taking the information of these

constraints into account. For example, such constraints may ensure that operands of

a divider are normalized such that the MSB always has value 1. Similarly, while a

general n×n-bit multiplier has 2n output bits, the output range is not [0, 22n−1] but

[0, 22n−2n+1+1]. The designer can take this range into consideration when designing

circuits driven by a multiplier. Sometimes the constraints are not directly imposed

on the circuit, but given as preconditions that it should satisfy.

Another practical example can be found in the basic block of a constant divider

[4], shown in Figure 5.1. In each division iteration, the computed remainder R of one

60

Figure 5.1: Division operation and the basic divider block.

block is fed into the next block as input C. In such a design, the relationship C < D

should be satisfied, ensuring that the input remainder value C is strictly less than

the divisor value D (a known constant). Verification of such circuit has only recently

caught some attention of the verification community [43].

Computer algebra approaches discussed in Chapter 3, which can successfully verify

large standard arithmetic circuits, seem to be incapable to deal with the verification

of such constrained circuits. The main reason is that the computed input signature

of a circuit subjected to an arithmetic constraint will become too large to compute

or too complex to analyze. In the next section, an example is given to illustrate

the difference between two adder circuits, one being constraint-free and the other

subjected to some arithmetic constraints.

5.2 Constraint-free Circuit vs. Constrained Circuit

Recall that a pseudo-Boolean function f is an n-ary function f : Bn → Z, where B

is a set of Boolean variables, and Z is a set of integers. A pseudo-Boolean constraint

(PB-constraint) can be expressed by an equality or inequality relation between a

pseudo-Boolean function and an integer. In general, such a constraint has the form

∑
i

ai ·
∏
j

lij # c (5.1)

61

where the coefficients ai and the constant c are integers, # is one of the relations <

, ≤ , = , 6= , ≥. A literal lij can be either a Boolean variable xij or its negation xij.

Other, more complex constraints, such as max, min, or cardinality constraints, are

not under considered in this work. Since the relations = and 6= can be considered as

a special case of ≥ or ≤, we will focus on the inequality relations ≥ and ≤. In some

cases, Equation 5.1 can be simplified to an arithmetic constraint X ≥ c or X ≤ c,

where X represents a word-level input vector of the circuit, with the operand size n,

so that the constant integer c is in the range of [0, 2n − 1].

The following example, Figure 5.2, shows a standard 3-bit adder Z = A+B, with

the operand A having constraint A ≥ 3 imposed on it. We shall refer to this circuit as

a conditional adder. For ease of comparison between the original, constraint-free and

the constrained circuit, the original circuit in Figure 5.2, with outputs are {z′0, z′1,

z′2, z
′
3} is shown in black. For the sake of illustration, the entire circuit with outputs

{z0, z1, z2, z3} has not been optimized, so that a complete structure of the original

adder can be seen. In general, it is difficult to separate the constraint-free part after

the entire circuit has been synthesized, since the internal structure may change.

Figure 5.2: conditional 3-bit adder Z = A+B, with A ≥ 3.

62

Let us start from the unoptimized circuit in Figure 5.2, in which the black part

performs a 3-bit addition, stored in the output bits {z′0, z′1, z′2, z′3}. To get the function

of the entire circuit, we need to explore the relation between F (z′0, z
′
1, z
′
2, z
′
3, d) and

its transformed version, F (z0, z1, z2, z3), where d is an internal signal shown in the

figure. Each output zk of the transformed circuit is related to the original output by

Boolean relation zk = z′k ∨ d for k = 0, 1, 2, 3, where ∨ is the Boolean OR operation.

The following is true in the circuit: when d = 0, then zk = z′k, and when d = 1,

zk = 1, regardless of the value of z′k. That is, the function of d decides the condition

of the circuit. By analyzing the schematic in Figure 5.2, we get d = a2 · a0 · a1 =

a2 + a0 · a1, which is exactly in accord with the required condition, A ≥ 3, imposed

on the circuit. If the condition is not satisfied (that is A < 3), all the output bits will

produce 1, acting like don’t cares. The function table of the conditional 3-bit adder

A+ B (A ≥ 3), shown in table 5.1, are consistent with the expected behavior of the

circuit.

Table 5.1: Function table of a conditional 3-bit adder A+B (A ≥ 3).

A(a2a1a0) B(b2b1b0) d Z(z3z2z1z0)
000 - 1 1111
001 - 1 1111
010 - 1 1111

011 ... 111 000 ... 111 0 A+B

The expression d = a2 · a0 · a1 corresponds to the three invalid entries above, that

is, a2 = 0 and a1 ·a0 = 0. In this case, d evaluates to 1, so Z produces all 1′s regardless

of the value of A or B. On the other hand, the expression d = a2 +a0 ·a1 corresponds

to the remaining entries, that is, a2 = 1 or a1 · a0 = 1. In this case, d evaluates to 0,

and Z performs the addition between A and B.

The above analysis of the unoptimized circuit in Figure 5.2 shows that it is possible

to verify an arithmetic circuit under arithmetic constraints if the constraint-free part

can be identified. The constraint-free part can be easily verified using algebraic

63

rewriting, starting with the output signature 8z′3 + 4z′2 + 2z′1 + z′0. This signature is

rewritten using the equations of the logic components until it reaches the primary

inputs. At this point, the computed input signature 4a2 + 2a1 + a0 + 4b2 + 2b1 + b0 is

the proof that the original (black) portion of the circuit is performing a 3-bit addition.

However in a real optimized design, a separation between the original and the

modified circuit is unlikely. Now, let us assume that the circuit in Figure 5.2 is given

without knowing the boundary between the black (original) and the red (added) por-

tions of the circuit. The task is to explore the function of the entire circuit and to

verify that it is a conditional circuit satisfying the condition A ≥ 3. To do that, we

can apply the standard procedure of algebraic rewriting, and starting with the output

signature 8z3 + 4z2 + 2z1 + z0 rewrite it in a reverse topological order, until reaching

the primary inputs. The resulting polynomial is:

Sig = −12a0 · a1 − 11a2 − 4a0 · a1 · a2 · b2 − 2a0 · a1 · a2 · b1

− a0 · a1 · a2 · b0 + a0 · a1 · b0 + a0 · a2 + a2 · b0 + 2a0 · a1 · b1

+ 2a1 · a2 + 2a2 · b1 + 4a0 · a1 · b2 + 4a2 · b2 + 12a0 · a1 · a2 + 15

from which it is hard to tell what the actual function is.

In order to verify that this is a conditional 3-bit adder A+B, satisfying the con-

straint A ≥ 3, we can compare the computed signature Sig, although complex, with

the expected signature provided by the designer. However, this is neither practical

nor reliable. For a large circuit, the final signature may contains million of terms,

since it is not a standard circuit with a linear signature anymore. As shown in the Re-

sults section, computing the signature for a 32-bit constrained multiplier will quickly

run out of 16 GB memory. Even if the result can be achieved and compared with an

expected signature, the process is not very reliable, as we cannot identify the function

by analyzing such a complex polynomial.

64

At this point, the algebraic approach has lost its principle advantage, namely, the

function of the circuit can be easily recognized from the computed signature and the

specification can be written as a polynomial in a simple way. In the next section, the

concept of vanishing monomials will be introduced, which can be used to solve this

problem. We will then propose a case-splitting method to analyze and simplify the

signature to make it work for general case.

5.3 Verifying Constrained Circuit by Case-splitting Analysis

with Vanishing Monomials

5.3.1 Vanishing Monomials

From the analysis presented in the previous section, we conclude that we cannot

obtain signature (4a2 + 2a1 + a0 + 4b2 + 2b1 + b0) for the circuit in Figure 5.2 since

the circuit correctly performs addition only under certain condition. We also showed

that the condition is related to the terms a2 and a0 · a1. Hence, let us try to analyze

the computed signature by partitioning their terms into two groups: the terms with

a2 or a0 · a1, and the terms without a2 and a0 · a1. With this we obtain,

Sig = a2(−11− 4a0 · a1 · b2 − 2a0 · a1 · b1 − a0 · a1 · b0 + a0 + b0 + 2a1 + 2b1

+ 4b2 + 12a0 · a1) + a0 · a1(−12 + b0 + 2b1 + 4b2) + 15 (5.2)

We observe that the constant 15 is the only term that does not contain terms a2

and a0 · a1. Therefore, if both a2 and a0 · a1 are 0, then Z = 8z3 + 4z2 + 2z1 + z0 = 15.

This means that z3 = z2 = z1 = z0 = 1, since they are Boolean variables. This agrees

with the first three invalid entries of Table 5.1 in the previous section. Therefore, we

can infer that when the circuit is in an invalid state (A < 3), the monomials a2 and

a0 · a1 always evaluate to zero.

In our verification work, the monomials associated with invalid entries, in this case

a2 and a0 · a1, are defined as vanishing monomials. If the circuit is subjected to

65

certain arithmetic constraints, those conditions will appear as vanishing monomials

in the final signature. The vanishing monomials help us simplify and analyze the

signature generated in the verification process.

Going back to our analysis, when a2 and a0·a1 vanish (evaluate to 0), the first three

entries of each table in Figure 5.3 are selected, as shown in Figure 5.3(a), denoted

Case1. In this case, all the output bits {z0, z1, z2, z3} produce 1, indicating the don’t

care status. The opposite case is to select the remaining entries, as shown in Figure

5.3(b), Case2. This case can be further split into two cases: (1) Case3 in Figure 5.3(c);

and (2) {Case4 in Figure 5.3(d) or Case5 in Figure 5.3(e)}. In theory, choosing Case4

or Case5 gives the same result, as they cover all the possible assignments. We will

show, however, that choosing Case5 is more efficient.

Figure 5.3: Different cases of entry selection.

To select the four entries in Figure 5.3(c), we set a2 = 1. With this, the signature

in Equation 5.2 becomes Sig = a0 + b0 + 2a1 + 2b1 + 4 + 4b2. At the same time,

the specification of the 3-bit adder Fspec = a0 + b0 + 2a1 + 2b1 + 4a2 + 4b2 becomes

a0 + b0 + 2a1 + 2b1 + 4 + 4b2. Therefore, Sig = Fspec, proving that when a2 = 1, the

circuit performs a 3-bit addition.

Similarly, to select the entry in Figure 5.3(e), we apply a2 = 0 and a0 · a1 = 1

to both Sig and Fspec. Notice that, since a0 and a1 are Boolean, a0 · a1 = 1 implies

66

a0 = a1 = 1. In this case, Sig = Fspec = b0 + 2b1 + 3 + 4b2, proving that the circuit

performs 3-bit addition when selecting Case5. Finally, since all the entries, either

valid or invalid, are covered, we can conclude that the circuit is indeed a 3-bit adder

Z = A+B, under the condition A ≥ 3.

5.3.2 Case-splitting Verification Approach

In this section, we provide another example to further explain the proposed case-

splitting approach. In the previous sections, we discussed the scenario when constraint

X ≥ c is applied to the circuit. The following example in Figure 5.4 illustrates a

conditional 3-bit adder with a constraint A < 3, opposite to the one in Figure 5.2.

Figure 5.4: 3-bit adder Z = A+B, for A < 3.

In this example, the circuit in Figure 5.4 has been optimized. For a large de-

sign, it is unlikely to separate the constraint-free part from the entire circuit after

optimization. Since the condition of this circuit is the complement of the previous

one (A ≥ 3), all the previous invalid states (the first three entries of Table 5.1) now

become the valid states, and all the previous valid states become invalid.

After rewriting, the circuit’s signature is shown in Eqn.(5.3) below.

67

Sig = a2(−12a0 · a1 − 4b2 − 2a1 − 2b1 − a0 − b0 + a0 · a1 · b0 + 2a0 · a1 · b1 + 4a0 · a1 · b2

+ 15) + a0 · a1(−4b2 − 2b1 − b0 + 12) + (a0 + b0 + 2a1 + 2b1 + 4b2) (5.3)

It is obvioulsy different than Eqn.(5.2), since it represents a different circuit. However,

since the boundary between the valid and invalid states in the truth table is the same,

the vanishing monomials are still a2 and a0·a1. Also, because the vanishing monomials

are the same, the case-splitting analysis of Sig is the same, composed of three cases:

Case1, Case3, and Case5 in Figure 5.3.

To select Case1, Figure 5.3(a), we apply a2 = 0 and a0 · a1 = 0 to both Sig and

the expected Fspec of the adder, and the two turn out to be equivalent. In this case,

terms a2 and a0 ·a1 always evaluate to zero in the functionally correct implementation.

However, we cannot just assume that the circuit is correct; considering the valid

entries only is not sufficient since it does not cover all the possible assignments.

Therefore, we also need to select Case2 in Figure 5.3(b) in order to identify the

invalid entries.

Similarly, Case2 be further split into two cases, Case3 in Figure 5.3(c) and Case5

in Figure 5.3(e). After applying a2 = 1 or {a2 = 0, a0 · a1 = 1} to Sig, we obtain

Sig = 15, which agrees with the expected signature for invalid states. This is because

only when z3 = z2 = z1 = z0 = 1, do we have Z = 8z3 + 4z2 + 2z1 + z0 = 15.

Therefore, by case-splitting, we prove that the circuit in Figure 5.4 is a 3-bit adder

Z = A + B, under the condition A < 3. As we can see, the case-splitting strategy

for the verification of the two conditional adders (with A ≥ 3 and A < 3) is the

same, even though they have different signatures. Consequently, we can infer that

the vanishing monomials are related to the constant c in the constraint X ≥ c or

X < c. The method to systematically generate the vanishing monomials will be

discussed in the next section.

68

The process of setting the vanishing monomials to either 0 or 1 is called valuation of

vanishing monomials. The valuation of vanishing monomials help us choose between

different cases. For efficiency reason, the valuation is not performed only after the

final signature is computed. Instead, the valuation is applied during rewriting, once

a term that contains one of the vanishing monomials is detected; in this case the

term is simplified according to the pre-selected case. In this way, the redundant

terms are eliminated as soon as possible in an attempt to avoid the intermediate

polynomials growing dramatically. In the Result Section 5.4, a significant difference

in the result between valuation and without valuation will be demonstrated. This

is also the reason why we choose Case5 instead of Case4, since it provides a greater

degree of simplification.

In summary, to verify a circuit subjected to an arithmetic constraint, we first

generate the vanishing monomials using the knowledge of the given constraint. Then,

a case-splitting approach is applied according to the generated vanishing monomials.

The union of all cases will cover all possible input assignments. Each case requires

an individual rewriting with different valuation of vanishing monomials. The circuit

is correct, if the computed signature is equal to the specification in each case.

Specifically, there are two lists: 0-set and 1-set, each initialized to be empty. For

each case, one of the vanishing monomials will be moved into the 1-set, so that it will

be evaluated to 1 during the rewriting. After the current case is checked (Sig = Fspec),

the corresponding vanishing monomial is moved from the 1-set to the 0-set, so that

it will be evaluated to 0 in the next case. We repeat this procedure until the 0-set

contains all the vanishing monomials, suggesting that they all have been successively

evaluated to 1. The last case is to check when all the vanishing monomials vanish

(evaluate to 0). If the relationship Sig = Fspec is satisfied for all the cases, we conclude

that the circuit is correct. The order in which the vanishing monomials are evaluated

can be random, but a decreasing order (from MSB to LSB) is recommended for the

69

efficiency purpose. In the next section, we will discuss how to generate vanishing

monomials and analyze the complexity for the case-splitting approach.

5.3.3 Generation of Vanishing Monomials

As explained in the previous sections, vanishing monomials play an important role

in our verification approach. They are associated with invalid entries and reflect the

arithmetic constraints in the final signature. In this section, we explain the reason for

the appearance of vanishing monomials and describe the method for their detection.

In the following theorem we refer to a truth table as the way to describe the function.

Theorem: The input signature Sigin of the circuit contains vanishing monomials

associated with the dc-set of the truth table, regardless whether these don’t-care entries

are used during synthesis or not.

Proof. Let F be a single output bit of an arithmetic function, corresponding to one of

the output columns of the truth table. According to the standard design procedure, it

can be implemented as a disjunction (OR) of product terms. Since product term is a

conjunction (AND) of literals of individual variables, it is represented in an algebraic

form also as a product of the corresponding variables in respective polarities. This is

also true for products that include complemented variables, e.g., a∧¬b = a · (1− b) =

a − a · b. Hence, any product from the valid entries of the truth table may contain

vanishing monomials. The same argument applies to the case when input variables

appear in different product terms; a disjunction of those terms will also create a

product of the respective literals, according to the equation: a∨b = a+b−a ·b, where

a, b can be any product term. As a result, the signature expression generated during

rewriting may contain product of variables that correspond to vanishing monomials.

Our previous work [4] described an approach to generate vanishing monomials for

constant dividers by computing algebraic expressions for the invalid entries. However,

70

such a method is inefficient, since applying algebraic rewriting to a single output bit

misses the chance for polynomial cancellations. This causes an exponential increase

in the size of intermediate polynomials, resulting in a memory problem. For the case

of contiguous entries (block of entries with the same value of F) in the truth table, we

come up with a solution without performing rewriting. For the case of non-contiguous

entries, we might still rely the rewriting.

Based on the discussion in the previous section, we observe that the constraint

X ≥ c or X < c have the same vanishing monomials. Thus, we can infer that the

vanishing monomials are related to the constant c in the constraint. The following

examples illustrate the process of generating vanishing monomials.

Example1: Let an 8-bit operand A ≥ 201. We first convert the decimal number

201 into binary 11001001, then fill its truth table, shown in Table 5.2.

Table 5.2: Truth table for function F : A ≥ 201, where A is an 8-bit operand.

The symbol ”-” represents ”don’t care”

A(a7a6a5a4a3a2a1a0) F
00000000

... 0
11001000
11001001 1
1100101 - 1
110011 - - 1
1101 - - - - 1
111 - - - - - 1

According to the entry selection discussed in the previous section, if we want to

select the last row the table, we set a7 ·a6 ·a5 = 1. Then, a7 ·a6 ·a5 = 0 represents the

rest of the rows. According to this, in order to select the second row from the bottom,

we can first set a7 · a6 · a5 = 0, then a7 · a6 · a4 = 1. Since the expression a7 · a6 · a5 = 0

implies that a7 or a6 or a5 is 0, and a7 · a6 · a4 = 1 implies a7 = a6 = a4 = 1, the

combination of these two steps imply a7 = a6 = a4 = 1 and a5 = 0, allowing us to

71

select the second row from the bottom. Similarly, to select the third row, we can set

both a7 · a6 · a5 and a7 · a6 · a4 to 0 and a7 · a6 · a3 · a2 to 1.

Such a procedure is consistent with the 0-set and 1-set in the case-splitting strat-

egy, discussed in the previous section. Therefore, we can infer that the monomials

a7 ·a6 ·a5, a7 ·a6 ·a4 and a7 ·a6 ·a3 ·a2 are actually vanishing monomials. They simply

agree with the index of 1′s in each row. After collecting all the vanishing monomi-

als and performing factorization, we realize that we can directly get the expression

of vanishing monomials from the binary number 11001001 = (20110). The following

algorithm explains the procedure.

Scanning the binary string from the MSB to the LSB, we replace each binary

number 1 by a string ”ai · (” and replace 0 by ”ai+”. The character ”)” is then added

in the end. Thus, according to this procedure, 11001001 is replaced by:

a7 · (a6 · (a5 + a4 + a3 · (a2 + a1 + a0 · 1)))

= a7 · a6 · (a5 + a4 + a3 · (a2 + a1 + a0)) (5.4)

= a7 · a6 · a5 + a7 · a6 · a4 + a7 · a6 · a3 · a2 + a7 · a6 · a3 · a1 + a7 · a6 · a3 · a0

The vanishing monomials are clearly identified, since they are separated by a plus

sign +. When all the vanishing monomials evaluate to 0 (are added into the 0-set),

the first row for F = 0 in Table 5.2 is selected.

Example2: Let A < 108, where A is an 8-bit operand. As before, we first convert

the decimal number 108 into binary 01101100, and fill its truth table, Table 5.3.

In the same way, starting from the MSB to the LSB of binary number 01101100

(10810), we replace each 1 by a string ”ai · (” and replace 0 by ”ai+”. The character

”)” is finally added. According to this procedure, 01101100 is replaced by:

72

Table 5.3: Truth table of F :A < 108, where A is an 8-bit operand.

The symbol ”-” represents ”don’t care”

A(a7a6a5a4a3a2a1a0) F
00000000

... 1
01101011
01101100
01101101 0
0110111 -
0111 - - - - 0
1 - - - - - - - 0

a7 + a6 · (a5 · (a4 + a3 · (a2 · (a1 + a0 + 1)))) = a7 + a6 · a5 · (a4 + a3 · a2)

= a7 + a6 · a5 · a4 + a6 · a5 · a3 · a2 (5.5)

Therefore, there are three vanishing monomials a7, a6 ·a5 ·a4, and a6 ·a5 ·a3 ·a2. When

these monomials all evaluate to 0, the first row for F = 1 in Table 5.3 is selected.

5.3.4 Complexity Analysis

The complexity of the case-splitting approach is related to the number of vanish-

ing monomials. For m vanishing monomials, there are m + 1 cases to be checked.

Specifically, each of the vanishing monomials is evaluated to 1, consecutively for each

case. The last case is to put all the vanishing monomials into the 0-set to select the

upper entries. Checking each case requires one run of the rewriting. Thus, there will

be m + 1 times of algebraic rewriting needed with different valuation of vanishing

monomials. However, all the cases can be evaluated in parallel, since the value of

vanishing monomials in each case is known ahead of time. The total time is then

dictated by the slowest case. Since each case performs the same rewriting steps (gate

polynomials are the same), their performance would not vary much.

We now discuss the relationship between the size of the operand n (number of

bits of the constant) and the number of vanishing monomials m. For the contiguous

73

entries (block of entries with the same value of F) in the table, the best case is m = 1,

regardless of the value of n. This case occurs when valid entries and invalid entries

cut the overall space in half-and-half, with the MSB being 0 or 1. As the boundary

between the valid and invalid entries moves up or down, the value of m changes.

According to this, the worst case is when there is only one valid entry, for example,

when the constraint is A > 0, in which case m = n.

In the previous 3-bit adder example, the simulation would need 26 = 64 test

vectors to cover all possible assignments. In contrast, the case-splitting method has

only two vanishing monomials, thus checking only three cases will cover all the possible

assignments. In general, for a two n-bit operand circuit, simulation requires 22n test

vectors, while the proposed case-splitting method has n + 1 cases to check, in the

worst case. For both operands having constraints, there are n2 cases to check in the

worst case.

5.4 Results and Conclusion

The case-splitting approach and the modified algebraic rewriting technique have

been implemented as a program in C++. The experiments were performed on an

Intel Core CPU i5-3470, 3.20 GHz with 15.6 GB memory. The proposed method has

been tested on the constrained arithmetic circuits: adders, multipliers and dividers,

up to 128 bits. Standard arithmetic circuits are generated by the ABC tool [50].

The arithmetic constraints were manually imposed on the circuits and the circuit was

resynthesized.

Table 5.4 shows the verification time of different approaches, namely SAT (Lin-

geling [9]), original algebraic rewriting [86], and the proposed case-splitting method.

It turns out that building a miter between two circuits and trying to solve the SAT

problem is not efficient as it requires bit-blasting, i.e. representing the circuit as a

bit-level netlist. This approach could not verify constrained circuits beyond 16-bit

74

Table 5.4: Verification time of different approaches.

*T.O : Time out of 3,600 sec, M.O : Memory out of 10GB.

Operand
size

Verification time for
constrained adders (sec)

Verification time for
constrained multiplers (sec)

SAT [9]
(Lingeling)

Algebraic
rewriting [86]

This
work

SAT [9]
(Lingeling)

Algebraic
rewriting [86]

This
work

8 1.01 0.01 0.01 3.54 0.03 0.01
16 123.2 6.10 0.01 T.O 8.24 0.02
32 T.O 823.4 0.03 T.O M.O 0.13
64 T.O M.O 0.09 T.O M.O 2.10
128 T.O M.O 0.72 T.O M.O 9.94

operands. It should be noted that the case-splitting analysis can also be handled by

SAT solvers, since the valuation of VMs can be achieved by simply adding clauses to a

SAT formula. One observation is that, for the cases of invalid input assignment, SAT

solver is more efficient than rewriting and quickly gives an unSAT answer, suggesting

that the circuits are functionally equivalent. This is because, for invalid assignment,

the conditional circuit outputs all ’1’, bypassing the major logic. However, for the

valid cases, where the circuit is actually performing the required arithmetic opera-

tion, the SAT solver needs to examine a larger search space and is much slower than

rewriting. In summary, SAT does not offer much benefit in case-splitting approach

and shows a low scalability.

Direct application of algebraic rewriting to the constrained circuits is also not

feasible. As discussed in Section 5.3.2, the unresolved vanishing monomials will cause

the memory issue. In general, the constrained circuit has the form F ′ = F ∨ d, where

F represents the constraint-free part that can be quickly verified alone, and d is

the constraint condition which can be represented by the vanishing monomials. The

expression for the constrained circuit F ′ = F ∨d can be given in an algebraic form as

F + d− F · d, where F represents the output signature of the constraint-free circuit,

and polynomial d represents the imposed constraints condition. The rewriting of F

is fast as explained in Chapter 3. However, the size of intermediate polynomial d and

75

F · d grows exponentially without polynomial simplification during the rewriting. As

we can see in the table, calculating the signature for the constrained circuits beyond

32-bit use all the 10 GB memory (but still inconclusive).

In this work, we modify the algebraic rewriting technique to handle constraints

by valuation of vanishing monomials. During the rewriting process, once we detect a

term that contains one of the vanishing monomials, we simplify this term by valuation

of VMs according to the pre-selected case. By doing this, we resolve the expression of

d as soon as possible to avoid the size of intermediate signature becoming too large.

Hence, each rewriting does not suffer from memory issue. This is the reason that

the proposed method is fast and scalable, as shown in Table 5.4. The verification

time reported in the table is the time to verify a single case. However, as explained

earlier, since all of the cases can be checked in parallel, the total time is dictated by

the slowest case. Moreover, since each case performs the same rewriting steps with

different valuation of vanishing monomials, the performance does not vary much.

One might argue that if the applied constraint is changed, the verification time in

Table 5.4 may change dramatically. To verify this opinion, we performed an experi-

ment with a 64-bit multiplier to test if different constraints (with a different number of

vanishing monomials) affect the verification time and to what extent. Different con-

straints were applied to the multiplier to affect the number of vanishing monomials.

The results of this experiment are shown in Table 5.5.

Table 5.5: Verification time of a 64-bit multiplier (A×B) with different constraints.

Arithmetic constraint # Vanishing monomials Verification time (sec)
A ≥ 0x7FFFFFFFFFFFFFFF 1 2.01
A < 0x7FFF7FFFFFFBFFDF 4 1.99
A ≥ 0xF0FFFFFF9FFFFFF3 8 2.03
A < 0xFFF0FFF0FF0FF0FF 16 2.11
A ≥ 0x00F90F0FF00F73F1 32 2.52
A > 0x0000000000000000 64 2.50

76

One observation from the table is that, as the number of vanishing monomials

increases, the verification time does not increase much. This is because, when val-

uating the vanishing monomials, we avoid the increase in memory by resolving the

algebraic expressions of d before they grow too much. Thus, an increase in the num-

ber of vanishing monomials would not cause memory problem, despite the fact that

the increase in the number of vanishing monomials requires more cases to be checked.

This is not a problem, however, since all the cases can be checked in a parallel. The

only thing that would be affected is the search space in each step of the rewriting.

During the rewriting, we need to check if a new term contains one of the vanishing

monomials. Therefore, increasing the number of vanishing monomials require only a

little more time for each substitution. Since this will not cause the memory overload

issue, it has low net impact on the verification time.

The proposed case-splitting method has been also tested on a number of 32-bit

constant dividers for different divisor values. The basic block of a constant divider is

shown in Figure 5.5. Each block is subjected to a constraint C < D, where C is the

input remainder, and D is the divisor value. We compared our method against an

exhaustive simulation, the result of which is shown in Figure 5.6 and Table 5.6. Figure

5.6 shows the simulation results for D = 257 and 283 for the following three cases: 1)

LUT-based implementation generated by FloPoCo [27]; 2) Gate-level implementation

synthesized with ABC; and 3) A restoring constant divider implemented with ABC.

Figure 5.5: Division operation and the basic divider block.

77

a Divisor = 257 b Divisor = 283

Figure 5.6: Exhaustive simulation run time for divisors D=257 and D=283 for different
implementations, as a function of the dividend bit-width.

The results show that the simulation approach is competitive for dividend bit-widths

up to 22 bits, but for higher bit-widths simulation becomes prohibitive. For example,

the simulation for dividends larger than 28 bits required 15, 264 seconds (4h 24m),

with memory-out at 24 GB for larger bit-widths.

Table 5.6: Verification results for the divide-by-constant divider circuit with a 32-bit
dividend X using the proposed technique for Modular 1-bit block.

Divisor # Rem. bit Runtime w/o bug (sec) # Bugs Runtime w bugs (sec)
3 2 0.06 1 0.06
11 4 1.15 2 1.11
31 5 0.31 5 0.27
89 7 13.5 5 16.7
139 8 27.9 7 64.75
257 9 22.56 7 23.0
283 9 643.8 9 638.4

In the modular architecture, the boundary between adjacent blocks is known

and the vanishing monomials are extracted and removed from the signature at each

block, before rewriting the next block in series. The experiments in Table 5.6 include

both correct (bug-free) and faulty circuits. The faults were emulated by randomly

injecting multiple faults in the truth table into the valid portion of the look-up table.

The result shows that this method can verify a 32-bit constant divider (one-bit block

78

architecture) for the divisor value up to 283. However, verifying non-modular divider

architecture and a generic divider remains a challenging problem. The difficulty of

verifying such dividers does not lie in the proposed case-splitting method, but in the

divider itself (verifying constraint-free divider is hard). This problem requires more

work and is a subject of a future research [5].

79

CHAPTER 6

VERIFICATION AND DEBUGGING OF GALOIS FIELD
MULTIPLIERS

In this chapter, we present a novel method to verify and debug gate-level arith-

metic circuits implemented in Galois Field arithmetic. The method is based on the

computer algebra approach, similar to the one discussed in Chapter 3. However,

instead of an algebraic backward rewriting, a forward reduction of the specification

polynomials is applied to the circuit in GF (2m), using GF (2) models of logic gates.

To achieve this, we define a forward term order ”FO >” and the rules of forward re-

duction that enable verification, bug detection, and automatic bug correction in the

circuit. By analyzing the remainder generated by the forward reduction, the method

can determine whether the circuit is buggy, and finds the location and the type of

the bug. The experiments performed on Mastrovito and Montgomery multipliers

show that our debugging method is independent of the location of the bug(s) and the

debugging time is comparable to the time needed to verify the bug-free circuit.

6.1 Background

6.1.1 Galois Fields

A finite field or Galois field (GF) is a field that contains a finite number of ele-

ments. There are two main arithmetic operations in GF, addition and multiplication;

other operations such as division can be derived from those two [57]. Galois field with

p elements is denoted as GF(p). GF(p) is a prime field if it is consisted of a finite

number of integers {1, 2,, p − 1}, where p is a prime number, with additions and

80

multiplication performed modulo p. Of particular interest are binary extension fields,

denoted GF(2m) (or F2m), which are finite fields with 2m elements. The field of size

m is constructed using irreducible polynomial P (x), which includes terms of degree

with d ∈ [0,m] with coefficients in GF(2). Arithmetic operations in the field are then

performed modulo P(x). GF arithmetic is used in hardware design for many cryptog-

raphy applications, such as Advanced Encryption Standard (AES) and Elliptic-curve

cryptography (ECC).

6.1.2 Computer Algebra Approach in GF

Algebraic approach to circuit verification used in this chapter relies on polynomial

representation of the circuit specification and its logic gate components, discussed in

Chapter 3. We recall here definitions of two signatures that play a major role in

our algebraic-based verification. Input Signature, denoted Sigin, is the polynomial

in terms of the PI variables that represents the expected function of the circuit.

Output Signature, denoted Sigout, is a polynomial expressed in the PO variables

that represents a binary encoding of the output. As defined in Chapter 3, algebraic

backward rewriting is the process that transforms the output signature Sigout into a

unique input signature Sigin using algebraic (polynomial) models of the logic gates

of the circuit [22][87]. As discussed later in this chapter, the rewriting can also be

done in the opposite direction (from PI to PO), referred to as forward rewriting.

This work models Boolean operators using algebraic models of GF (2). For exam-

ple, the pseudo-Boolean model of XOR in integer arithmetic, XOR(a, b)=a+ b −2ab,

is reduced in GF(2) to (a+ b+ 2ab) mod 2 = (a+ b) mod 2. The following algebraic

models are used to describe basic logic gates in GF (2m) [46][87]:

81

¬a = 1 + a mod 2

a ∧ b = a · b mod 2

a ∨ b = a+ b+ a · b mod 2

a⊕ b = a+ b mod 2

(6.1)

To address the debugging problem of gate-level GF circuits we define two orders

by which monomials are listed in each polynomial:

Definition 1: BO > order: A backward, reverse-topological order, such that every

output signal of a gate is always greater than its input signal. The set of polynomials

representing a logic cone ordered according to BO > is called a BO base.

Definition 2: FO > order: A forward, topological order, such that every output

signal of a gate is always less than its input signal. The set of polynomials ordered

according to FO > is called an FO base.

For example, the polynomials for an OR gate z in these orders are:

BO > order: z + a+ b+ a · b,

FO > order: a+ b+ a · b+ z.

The BO > order has been used successfully in verification works of [63][86][87], but,

as demonstrated in this paper, it is ineffective in debugging of GF circuits. The

approach described in this paper is based on an FO > order.

6.1.3 GF Multiplier Principles

Galois Field multiplication is performed modulo an irreducible polynomial P (x),

a polynomial that cannot be factored into nontrivial polynomials over the given field

[57][53]. The inputs and outputs of GF(2k) multiplication are k-bit binary num-

bers. An example of a 4-bit GF(24) multiplication, with irreducible polynomial

P (x)=x4+x3+1, is shown in Figure 6.1.

82

a3 a2 a1 a0
b3 b2 b1 b0
a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1
a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3
s6 s5 s4 s3 s2 s1 s0

sq =
⊕

aibj, ∀ i+j=q, 0 ≤ q ≤ 6

s3 s2 s1 s0
s4 0 0 s4
s5 0 s5 s5
s6 s6 s6 s6
z3 z2 z1 z0

z0 = s0 ⊕ s4 ⊕ s5 ⊕ s6
z1 = s1 ⊕ s5 ⊕ s6
z2 = s2 ⊕ s6
z3 = s3 ⊕ s4 ⊕ s5 ⊕ s6

Figure 6.1: Multiplication in GF(24): Z mod P (x) = A · B mod P (x), where
P (x)=x4+x3+1.

The GF multiplication is performed in a straightforward way by: 1) generating

and adding the partial products; and 2) reducing the result over GF(2m) with P (x).

The partial products are generated in the same way as in the integer multiplication,

using AND operations. However the sum of the partial products (denoted sq in

Figure 6.1) is obtained using a series of XORs, since additions in finite field are

implemented as XOR operations. This multiplication structure is called Mastrovito

multiplier [76]. Note that in GF arithmetic there is no carry propagation between the

columns of the result bits. Hence, each bit can be computed separately as a linear

(XOR) sum of the product terms in the respective column. An alternative method

for performing fast modular multiplication is the Montgomery multiplication [51]. It

works by transforming two integer inputs, A, B, into Montgomery forms, AR mod N

and BR mod N , for some constant R, and computing the product ABR mod N .

The multiplication result A · B is then obtained by transforming the result from

the Montgomery form, as A ·B = A ·B ·R−1mod P (x). Since the Montgomery form

generator is a GF multiplication with a constant input R, each of the four components

can be considered as a simplified Mastrovito multiplication [42].

83

6.2 Bug Identification

This section describes an algorithm that utilizes the property of GF multipliers to

identify bug(s) in the circuit. It consists of two major parts: 1) Remainder Generation

and 2) Bug Analysis.

Algorithm 4 Remainder Generation via Forward Rewriting

Input: Gate-level netlist of the GF circuit
Input: Expected InputSignaturei of each output bit
Output: Residual polynomials {Remainderi}
Output: Non-zero elements of FOi base

1: PO={z0, z1, ..., zn−1}: primary output bits of the GF circuit
2: for i ← 0 to n− 1 do
3: Extract cone POi from the gate-level netlist and generate the FOi base
4: Speci ← InputSignatruei − zi
5: while Speci 6= 0 do
6: Successin ← 0
7: for each polynomial Pj in FOi base do
8: for each monomial Mk in Pi do
9: if Mk divides Speci and Deg(Mk) == Deg(Speci) and Mk is not

the last monomial in Pj then
10: Reduce Speci by Pj; Set Pj in FOi to 0; Successin ← 1
11: end if
12: end for
13: end for
14: if Successin == 0 then
15: Move the leading term of Speci into Remainderi
16: end if
17: end while
18: end for
19: return {Remainderi, non-empty FOi base}

Algorithm 4 describes forward rewriting; it imposes the FO > order on the poly-

nomials and reduces the specification by the FO base. Each polynomial representing

a logic gate in the FO base has the form: {head}, zi. The {head} is the set of head

monomials representing the gate inputs; the tail monomial zi is the output of the

gate. The degree of the monomial is the sum of the degrees of all its variables. For

example, polynomial of an XOR gate is a+ b+ zi, where the head set is {a, b}, each

of degree one, and the tail is zi.

84

Let the specification of the circuit be defined as Sigin − Sigout, the difference

between the correct (expected) world-level input signature Sigin and the output sig-

nature Sigout, which is the binary encoded outputs. Since in a GF circuit the output

bits are independent from each other, we can define Speci, the bit-level logic of out-

put zi, as Sigin(i) − zi. The input signature Sigin(i) is known, computed using the

irreducible polynomial P (x). The verification goal is then to reduce each specification

Speci by its FOi base. If the result is 0, we conclude that the logic cone associated

with bit i is bug-free. Otherwise, a non-zero Remainderi will indicate the presence

of a bug (or bugs) in that cone.

The first step of Algorithm 4 is to extract all the cones from the circuit and

derive the corresponding Speci (lines 3-6). Recall that the FOi base is the set of

polynomials with an FO > order describing the input-output relationship for cone i.

While creating logic cones for each output, the common logic is duplicated, effectively

making each cone fanout-free1. This means that every intermediate signal will

appear only once in the head monomials of FOi base.

The next step is to reduce each Speci by its corresponding FOi base. In lines

8-10, the Algorithm scans the polynomials in the FOi base to check if the leading

term lti of Speci is divisible by any of the head monomials with the same degree as

lti. This reduction is different than in the polynomial reduction based on the BO >

order, where only a leading monomial is used in the division process. Allowing the

use of any of the head monomials is essential in identifying the bugs.

As an example, consider the reduction of Speci = a + b + R, where R is the

remaining set of monomials, by polynomial f = a + b + z. The result of such a

reduction should be Speci = z + R. However, if the monomial a is missing in Speci

1This is true for most structures such as Mastrovito multipliers, but may not be true for more
complex ones, such as Montgomery; we currently limit our attention to those structures that can be
made reconvergent fanout free

85

due to a bug (when the gate with output a is false), i.e., when Speci = b+R, the head

monomial b in f still can be used to divide Speci. The result of such a reduction will

be Speci = a+ z+R . The monomial a in the reduced Speci will never be eliminated

by other polynomials in FOi base, since there would be no other gate with signal a

as input. When examining the content of the final remainder, it will be clear that

the gate with output a is the source of the bug.

In summary, if there is a polynomial Pi in FOi base that contains a head monomial

that divides Speci, it will be used to reduce Speci. The polynomial Pi will then be

removed from the base (each base polynomial can only be used once during the

reduction). However, if the leading term of Speci is not divisible by any of the head

monomials in the FOi base, it will be moved into Remainderi. This process will

be repeated until Speci becomes empty (lines 13-18); or until it cannot be reduced

anymore, in which case the content of the Remainder will be used to identify the bug.

a�

a�

b �

b �

c
�

c
�

c
�

c
�

r �

�

�

Figure 6.2: A two-bit Mastrovito GF multiplier.

Example 1: Consider a bug-free two-bit Mastrovito multiplier in Figure 6.2. The

circuit can be separated into two cones: z0 and z1. The FO1 base of cone z1 includes

polynomials: p1 = a0b1 + c1; p2 = a1b0 + c2; p3 = a1b1 + c3; p4 = c1 + c2 + r0 and

p5 = c3 + r0 + z1, each written in FO > order. According to the definition, Spec1 is

equal to the input signature of z1 minus z1, the output signature. The expected input

signature of the circuit is F = (a0+Xa1) ·(b0+Xb1) = a0b0+X(a0b1+a1b0)+X2a1b1.

After GF (2) reduction with the irreducible polynomial P (X) = X2+X+1, we obtain

F = X(a0b1 + a1b0 + a1b1) + (a0b0 + a1b1). Hence, for output z1, associated with X,

86

we have Spec1 = (a0b1 + a1b0 + a1b1) + z1(mod 2). Similar expression can be derived

for Spec0 of output z0.

The next step is to reduce the specification Spec1 by the polynomial base of FO1.

This process is shown in Figure 6.3. We can see that Spec1 is eventually reduced

to 0. That is, Remainder1 = 0 and all polynomials in FO1 have been used, which

indicates that cone z1 is bug-free. We proceed similarly with bit z0 to determine that

its logic cone is also bug-free.

Example 2: Let us now consider the case when there is a bug in the two-bit

multiplier in Figure 6.2. Let the bug be caused by replacing the XOR gate r0 with an

AND gate in cone z1. That is, polynomial p4 = c1+c2+r0 is replaced by p4 = c1c2+r0

in the FO1 base, while Spec1 remains the same.

The process of reducing Spec1 by the new FO1 base is shown in Figure 6.3. Note

that in the 4th iteration of the reduction, the polynomial c1 + c2 in Spec1 is not

divisible by any of the head monomials in FO1, so it will be moved into Remainder1.

The monomial r0 in the 5th iteration also be moved to Remainder1.

Polynomials in FO1 base
of a bug-free cone Spec1=a0b1+a1b0+a1b1+z1
p1=a0b1+c1 Spec1/p1=c1+a1b0+a1b1+z1
p2=a1b0+c2 Spec1/p2=c1+c2+a1b1+z1
p3=a1b1+c3 Spec1/p3=c1+c2+c3+z1
p4=c1+c2+r0 Spec1/p4=2c2+c3+r0+z1 mod 2
p5=c3+r0+z1 Spec1/p5=2r0+2z1 = 0 mod 2

Polynomials in FO1 base
of a buggy cone Spec1=a0b1+a1b0+a1b1+z1
p1=a0b1+c1 Spec1/p1=c1+a1b0+a1b1+z1
p2=a1b0+c2 Spec1/p2=c1+c2+a1b1+z1
p3=a1b1+c3 Spec1/p3=c1+c2+c3+z1
p4=c1c2+r0 Spec1/FO1=c1+c2+c3+z1
p5=c3+r0+z1 Spec1/p5=c1+c2+r0+2z1 mod 2

Figure 6.3: Generating Remainder with Forward Rewriting of bug-free and buggy
logic cone of output bit z1. Remainder = 0 for bug-free cone, and Remainder =
c1 + c2 + r0 for a buggy cone.

87

As a result, we obtain a non-zero Remainder1 = c1 + c2 + r0, and a non-empty

FO1 base: p4 = c1c2 + r0. This is a clear manifestation of a bug; namely, the XOR

gate (c1 + c2 + r0) has been replaced by an AND gate (c1c2 + r0), while during the

reduction, polynomial c1 + c2 should have been canceled by r0. In a similar fashion

we can identify other types of errors caused by gate replacement.

Table 6.1: Bug Analysis

Bug Type Correct gate False gate Remainder Non-empty base
1 XOR AND a+ b+ z a · b+ z
2 XOR OR a · b -
3 AND XOR a · b+ z a+ b+ z
4 AND OR a+ b -
5 OR XOR a · b -
6 OR AND a+ b -

Table 6.1 shows some common cases of erroneous gate-replacement in GF circuit

for 2-input logic gates: AND, OR, and XOR. Similar relations can be derived for

other gates as needed. In the table, signals a and b represent the inputs, and z is the

output of the false gate. By analyzing the Remainderi and the non-empty FOi base

generated by the algorithm, we can readily determine the type of the error and locate

the bug. This is possible because the remainder contains the names of the input and

output signals of the false gate.

The bug of type 2, 4, 5, 6 are all associated with the OR gate. Since the polynomial

of the OR gate is f = a + b + ab + z, the Spec polynomial can be reduced by f ,

regardless whether the inputs are in the sum form (a+ b) or the product form (a·b).

This means that the forward reduction will always ”go through” the bug, and leave

the residual polynomial with their inputs (a + b or a · b) in the remainder. As a

result, they do not have non-empty base and the Remainder contains only the input

variables of the false gate, making it easy to identify the bug. On the other hand,

for bug types 1 and 3, both the input signals (a, b) and the output signal (z) of the

88

false gate appear in the Remainder. Furthermore, a non-empty base indicates that

the polynomial propagating through the circuit during forward rewriting cannot ”go

through” the bug. As we can see in the next section, multiple of these bugs will affect

each other.

At this point the reader should fully appreciate the difference between forward

rewriting (using FO > order) and backward rewriting (using BO > order). For a

bug-free circuit both approaches will produce a zero remainder, indicating that the

circuit implements the correct function. However, for the buggy circuit the remainders

will be different. By construction, under the BO > order, the remainder will contain

only the primary inputs, but not the input and output signals of the false gates. This

does not provide sufficient information about the type of the bug and its location.

For example, assuming the same bug as in Example 2, the backward rewriting would

produce Rem1 = a0b0a1b1 + a1b1, with no indication as to the source of the bug.

Furthermore, a single bug can make the size of remainder very large, making the

analysis of the source of the bug difficult and the debugging process very hard. In

contrast, in forward reduction, the remainder contains the signal name of the faulty

gate and the location of the bug does not affect the size of the remainder.

6.3 Multiple Bugs Analysis

The debugging method using forward reduction described in the previous section

can be extended to multiple bugs. In general, arithmetic bugs can be divided into

independent bugs and dependent bugs. Independent bugs are those that will not

affect each other; typically they appear in different cones. Since each cone is verified

separately, each independent bug can be treated as a single bug in its own cone.

Dependent bugs can be classified into four cases, shown in Figure 6.4. The blank

circle in the figure represents the correct gate. The shaded circle represents a false

gate, i.e., the gate that was erroneously replaced by another gate. It can be of any type

89

Figure 6.4: Different cases for dependent bugs.

discussed in Table 6.1, and even extended to other gates. Assume that in a correct

implementation the gate e1 is an AND gate and the remaining gates are XOR. With

this, the specification of the cone with output z is Spec = d1d2 + e2 + e3 + e4 + z.

The remainder in the case of multiple bugs depends not only on the cases shown

in Figure 6.4, but also on the type of the bugs, listed in Table 6.1 (c.f. Section 6.2).

Recall that intermediate input variables appear exactly once in each fanout-free cone.

For this reason, the remainder for the circuit with bugs of type 2, 4, 5, 6 of Table

I (i.e., those that have only false inputs left in the remainder) will be composed of

disjoint sets of complete input pairs. As a result, the bugs of these types will not

affect each other, regardless how they are connected (c.f. Case 1, 2, 3, 4 in Figure

6.4). One just needs to identify the complete input pairs in the remainder to detect

the bugs. On the other hand, as mentioned in Section 6.2, for bug types 1 and 3 of

Table I, both the input signals and the output signal of the false gate will appear in

the Remainder. For this reason, when multiple bugs appear together, they will affect

each other.

90

Example 3: Consider Case 1 in Figure 6.4, where the bugs at e1 and f2 are

not connected directly. Assume that the AND gate e1 is replaced by an XOR, and

the XOR gate f2 is replaced by an AND. The remainder computed by Algorithm 4,

Rem = d1d2 + e1 + e3 + e4 + f2 can be partitioned into two disjoint groups, based

on the input and output variables, such that each group forms a complete input-

output pair: (d1d2 + e1) and (e3 + e4 + f2). In this case, it is always possible to

achieve such a partition, since the two bugs are not connected directly. Specifically,

the analysis of the non-zero base tells us that d1, d2, e3, e4 are the input signals (the

head monomials), and e1, f2 are output signal (the tail monomials). Therefore, both

bugs can be detected, one for e1 gate and the other for f2 gate.

Analysis of the other cases, where the false signals interact with each other, is

more complex, as illustrated by the following example.

Example 4: Consider Case 2 in Figure 6.4, when the XOR gates f1 and z are

replaced by the AND gates. Here we cannot find a complete input-output pair in

Remainder = e1 + e2 + f2 + z, because signal f1 is not only the false output of gate

f1 but also the false input of gate z. In this case we need to search for incomplete

pairs in order to properly identify the bugs. For Cases 3 and 4, with the same

Remainder = e1 + e2 + e3 + e4 + z, the input-output pairs cannot be found. The

result depends on how z can be expressed as a combination of f1, f2 that partitions

the remainder into groups. The detailed discussion of these cases is beyond the scope

of this thesis proposal.

6.4 Results and Conclusions

The debugging technique described in this paper was implemented in Python

and interfaced with the computer algebra tool, Singular [29], to affect the polynomial

reduction. The experiments were performed on an Intel Core CPU i5-3470 @ 3.20 GHz

4 with 15.6 GB memory, using Mastrovito multipliers up to 256 bits as benchmarks

[76]. The more complex and challenging Montgomery multipliers [42] have only been

partially tested and not reported here.

Table 6.2: Results of Mastrovito multipliers with single bug per cone.

Largest cone
Operand size

polys
Runtime for

bug-free
cone (sec)

Avg. runtime
for buggy
cone (sec)

Max runtime
for buggy
cone (sec)

z5, 16-bit 167 0.36 0.36 0.37
z21, 64-bit 539 6.2 6.3 6.3
z63,128-bit 1167 19.3 19.4 19.5
z10,256-bit 2033 46.3 46.5 46.6

Table 6.2 shows the verification results for a single bug inserted randomly in the

circuit and illustrates the fact that the location of the bug does not affect the ver-

ification performance. To ensure that the location of the bug is the only variable

factor in this experiment, for each circuit we extracted the largest output logic cone

and inserted a single bug in it. The experiment was repeated for each cone 20 times,

each time randomly changing the location of the bug, so they can be anywhere in

the circuit and of any type shown in Table 6.1. The average time of the experiments

was computed and the worst case runtime it took to locate the bug recorded. As we

can see in the Table, the longest and average times are similar, which means that the

time to locate and correct the bug does not depend on its location in the circuit. Fur-

thermore, the time to verify the bug-free circuit is almost the same as the debugging

of a single bug. In other approaches, the difference between these two times can be

significant [46] [74].

Table 6.3 shows the debugging results for Mastrovito multipliers with multiple bugs.

It gives the time it takes to verify the bug-free circuit, makes comparison with [62],

and shows the number of bugs and the time to debug multiple bugs. The data of

Table 6.3, in conjunction with that in Table 6.2, shows that the runtime for verifying

the entire circuit is much less than the runtime of verifying a single cone multiplied

92

Table 6.3: Results of Mastrovito multipliers with multiple bugs.

Operand
size

Runtime for
bug-free

circuit (sec)
Result of [62]

Number
of bugs

Avg. runtime for
multiple bugs
circuit (sec)

8 0.33 0.09 16 0.37
16 0.84 0.42 24 0.92
32 3.89 0.83 32 4.23
64 30.39 28.90 40 31.30
128 283.72 924.3 48 286.94
163 667.38 3,546.0 56 676.07
256 2,111.43 6,728.0 64 2,135.92

by the number of cones. This is because the verification of each cone is performed in

parallel since the cones are independent from each other.

Column 3 of Table 6.3 shows the performance of [62] that used backward reduction

with the BO > order and Gröebner basis. As we can see, our results are superior for

circuit sizes above 64 bits. This suggests that FO > order can be a better choice for

GF verification. The major advantage of the FO > order, however, is the performance

of debugging, as shown in columns 2 and 5 of Table 6.3. We randomly inserted bugs

(dependent or independent) in circuit. The runtime difference between the bug-free

circuit and a buggy circuit is negligible. Even in the largest case of the 256-bit

Mastrovito multiplier, with 64 bugs inserted, the runtime difference is insignificant.

In summary, our verification scheme based on forward reduction scheme offers

an effective method for identifying and removing bugs in GF circuits. Unlike other

methods, its performance does not depend on the location of the bug, and the time

to locate the bug is comparable to verifying a bug-free circuit.

93

CHAPTER 7

CONTRIBUTIONS, PUBLICATIONS

Symbolic computer algebra approach is believed to be the most successful ver-

ification technique for arithmetic circuits verification [25]. Two flavors of these

techniques dominate the field: one, based on Gröbner basis polynomial reduction

[69][82][59][46][68][66] [65]; and the other, based on algebraic rewriting [21][86], de-

scribed in this thesis.

Specifically, this work includes the following novel contributions:

• Formally analyzed the relation between algebraic rewriting and division-based

GB reduction techniques, coming to a reasonable conclusion that the algebraic

rewriting is more efficient from the implementation point of view.

• Contributed to the development of the bit-flow model, which provides an argu-

ment for soundness and completeness of the algebraic rewriting method, inde-

pendently from the computer algebra arguments.

• Developed an efficient approach to the verification of truncated multipliers. To

the best of our knowledge, it is the first successful approach to formally verify

such circuits. The framework using re-synthesis technique can be applied to

other truncated arithmetic circuits and other circuit verification problem.

• Proposed an efficient debugging method for Galois Field multipliers. To the best

of our knowledge, it is the first computer algebra based debugging technique

whose performance is not significantly affected by the bug location. In addition,

this method does not suffer from memory overload problem.

94

• The forward variable order ”FO >”, proposed for the debugging method, en-

ables performing verification and debugging at the same time. It also allows

forward rewriting of GF circuits.

• Proposed a case-splitting method to efficiently verify arithmetic circuits sub-

jected to arithmetic constraints. The concept of vanishing monomials is intro-

duced to analyze the problem of arithmetic constraints.

Publications Related to this Work

• Atif Yasin, Tiankai Su, Sébastien Pillement, Maciej Ciesielski, ”SPEAR: Hardware-

based Implicit Rewriting for Square-root Verification” (to be appear), Design,

Automation and Test in Europe Conference (DATE), 2020.

• Atif Yasin, Tiankai Su, Sébastien Pillement, Maciej Ciesielski, ”Functional

Verification of Hardware Dividersusing Algebraic Model”, IEEE international

conference on Very Large Scale Integration (VLSI) and System-on-Chip (SoC)

design (VLSI-SOC), Oct. 2019.

• Maciej Ciesielski, Tiankai Su, Atif Yasin, Cunxi Yu, ”Understanding Algebraic

Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model” , IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (TCAD

2019), April 2019.

• Atif Yasin, Tiankai Su, Sbastien Pillement, Maciej Ciesielski, ”Formal Veri-

fication of Integer Dividers: Division by a Constant”, IEEE Computer Society

Annual Symposium on VLSI (ISVLSI’19), Miami, Florida, July 2019.

• Cunxi Yu, Tiankai Su, Atif Yasin and Maciej Ciesielski,”Spectral Approach to

Verifying Non-linear Arithmetic Circuits”, ACM/IEEE Asia and South Pacific

Design Automation Conference (ASP-DAC’19), January 2019.

95

• Cunxi Yu, Atif Yasin, Tiankai Su, Alan Mishchenko and Maciej Ciesielski,

”Rewriting Environment for Arithmetic Circuit Verification”, International Con-

ference on Logic Programming and Automated Reasoning (LPAR-22) vol 57,

pages 656–666, November 2018.

• Tiankai Su, Atif Yasin, Cunxi Yu, Maciej Ciesielski, ”Computer Algebraic

Approach to Verification and Debugging of Galois Field Multipliers”, IEEE

International Symposium on Circuits and System (ISCAS’18) IEEE, May 2018.

• Tiankai Su, Cunxi Yu, Atif Yasin, and Maciej Ciesielski, ”Formal Verification

of Truncated Multipliers using Algebraic Approach”, IEEE Computer Society

Annual Symposium on VLSI (ISVLSI’17), Bochum, Germany, July 2017.

96

BIBLIOGRAPHY

[1] Electronic design automation consortium. In About the EDA Industry (Sep.
2014).

[2] Rand group. In Engineering Change Order: A Simple Explanation For Why You
Need One (2014-10-09).

[3] Adams, W.W., and Loustanau, P. An Introduction to Gröbner Bases. American
Mathematical Society, 1994.

[4] Atif Yasin, Tiankai Su, Sébastien Pillement Maciej Ciesielski. Ieee computer soci-
ety annual symposium on vlsi. In Formal Verification of Integer Dividers:Division
by a Constant (July 2019).

[5] Atif Yasin, Tiankai Su, Sébastien Pillement Maciej Ciesielski. Ieee international
conference on very large scale integration (vlsi) and system-on-chip (soc) de-
sign. In Functional Verification of Hardware Dividersusing Algebraic Model (Oct
2019).

[6] Balint, A., Belov, A., and Heule, M. Lingeling, Plingeling and Treengeling
Entering the sat Competition 2013. University of Helsinki B-2012-2 (2013),
51–52.

[7] Barr, Keith. New york: Mcgraw-hill. In ASIC Design in the Silicon Sand-
box: A Complete Guide to Building Mixed-signal Integrated Circuits (July 2007),
vol. 978-0-07-148161-8.

[8] Becker, Bernd, Drechsler, Rolf, and Werchner, Ralph. On the relation between
bdds and fdds. Inf. Comput. 123 (1995), 185–197.

[9] Biere, Armin. Lingeling, plingeling and treengeling entering the sat competition
2013. Proceedings of SAT Competition (2013), 51–52.

[10] Biere, Armin, Cimatti, Alessandro, Clarke, Edmund, and Zhu, Yunshan. Sym-
bolic model checking without BDDs. Springer, 1999.

[11] Brayton, R., and Mishchenko, A. ABC: An Academic Industrial-Strength Verifi-
cation Tool. In Proc. Intl. Conf. on Computer-Aided Verification (2010), pp. 24–
40.

[12] Brock, Bishop, Kaufmann Matt, and Moore, J Strother. Formal methods in
computer-aided design (fmcad). In Acl2 theorems about commercial micropro-
cessors (1996), no. 275-293.

97

[13] Bryant, R. E., and Chen, Y-A. Verification of Arithmetic Functions with Binary
Moment Diagrams. In Design Automation Conference (1995), pp. 535–541.

[14] Bryant, Randal E. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on 100, 8 (1986), 677–691.

[15] Buchberger, B. Ein algorithmus zum auffinden der basiselemente des restklassen-
ringes nach einem nulldimensionalen polynomideal. PhD thesis, Univ. Innsbruck,
1965.

[16] Burch, Jerry R, Clarke, Edmund M, Long, David E, McMillan, Kenneth L,
and Dill, David L. Symbolic model checking for sequential circuit verification.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on 13, 4 (1994), 401–424.

[17] Burgun Luc, Greiner Alain, and Eudes, Prado Lopes. Proceedings of the inter-
national conference on asic (asicon), pekin,. In A Consistent Approach in Logic
Synthesis for FPGA Architectures (October 1994), vol. 104107.

[18] Chen, Jingchao. Minisat blbd. SAT COMPETITION 2014 (2014), 45.

[19] Ciesielski, M., Kalla, P., Zeng, Z., and Rouzeyre, B. Taylor Expansion Diagrams:
A Compact Canonical Representation with Applications to Symbolic Verifica-
tion. In Design Automation and Test in Europe, DATE-02 (2002), pp. 285–289.

[20] Ciesielski, M., Su, T., Yasin, A., and Yu, C. Understanding algebraic rewrit-
ing for arithmetic circuit verification: a bit-flow model. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2019), 1–1.

[21] Ciesielski, M., and W. Brown, A. Rossi. Arithmetic Bit-level Verification using
Network Flow Model. In Haifa Verification Conference, HVC’13 (Nov. 2013),
Springer, LNCS 8244, pp. 327–343.

[22] Ciesielski, M, Yu, C, Brown, W, Liu, D, and Rossi, André. Verification of Gate-
level Arithmetic Circuits by Function Extraction. In Submitted to DAC 2015
(2015), ACM, pp. 1–6.

[23] Ciletti, Michael D. Prentice hall. In Advanced Digital Design with Verilog HDL
(2010).

[24] Clarke, Edmund M, Grumberg, Orna, and Peled, Doron. Model checking. MIT
press, 2000.

[25] Cox, D., Little, J., and O’Shea, D. Ideals, Varieties, and Algorithms. Springer,
1997.

[26] Davis, Martin; Logemann, George; Loveland Donald. Communications of the
acm. In A Machine Program for Theorem Proving (1962).

98

[27] De Dinechin, Florent, and Pasca, Bogdan. Designing custom arithmetic data
paths with flopoco. IEEE Design & Test of Computers 28, 4 (2011), 18–27.

[28] De Moura, Leonardo, and Bjrner, Nikolaj. Tools and algorithms for the con-
struction and analysis of systems. In Z3: An efficient smt solver (2008).

[29] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. Singular 3-1-6
A Computer Algebra System for Polynomial Computations. Tech. rep., 2012.
http://www.singular.uni-kl.de.

[30] Desai, Kirti Sikri. Eda cafe. In EDA Innovation through Merger and Acquisitions
(March 2010).

[31] Drane, Theo A., Rose, Thomas M., and Constantinides, George A. On the
Systematic Creation of Faithfully Rounded Truncated Multipliers and Arrays.
IEEE Trans. on Computers 63, 10 (Oct. 2014), 2513–2525.

[32] Drechsler, Rolf, and Große, Daniel. Verifying next generation electronic sys-
tems. In Infocom Technologies and Unmanned Systems (Trends and Future Di-
rections)(ICTUS), 2017 International Conference on (2017), IEEE, pp. 6–10.

[33] Duggal, Vijay. Cad. mailmax pub. In Cadd Primer: A General Guide to Com-
puter Aided Design and Drafting-Cadd (April 2000), no. 978-0962916595.

[34] Faugere, Jean-Charles. A New Efficient Algorithm for Computing Gröbner Bases
(F4). Journal of Pure and Applied Algebra 139, 13 (1999), 61 – 88.

[35] Gao, Sicun. Counting zeros over finite fields with gröbner bases. Master’s thesis,
Carnegie Mellon University (2009).

[36] Gordon, Michael JC, and Melham, Tom F. Cambridge university press. In
Introduction to HOL A Theorem Proving Environment for Higher Order Logic
(1993).

[37] Hamaguchi, K., Morita, A., and Yajima, S. Efficient construction of Binary Mo-
ment Diagrams for verifying arithmetic circuits. In Proceedings of IEEE Interna-
tional Conference on Computer Aided Design (ICCAD) (Nov 1995), pp. 78–82.

[38] Hany, A., Ismail, A., Kamal, A., and Badran, M. 2013 saudi international
electronics, communications and photonics conference. In Approach for a unified
functional verification flow (April 2013), pp. 1–6.

[39] I. Grobelna, M. Grobelny, M. Adamski. Proceedings of the ninth international
conference on dependability and complex systems depcos-relcomex, advances in
intelligent systems and computing volume 286, springer international publishing
switzerland. In Model Checking of UML Activity Diagrams in Logic Controllers
Design (2014), no. 233-242.

99

[40] Kapur, D., and Subramaniam, M. Mechanical Verification of Adder Circuits
using Rewrite Rule Laboratory. Formal Methods in System Design 13, 2 (1998),
127–158.

[41] Kaufmann, Matt, and Moore, J Strother. Compass96, systems integrity. soft-
ware safety. process security. proceedings of the eleventh annual conference on
computer assurance. In Acl2: An industrial strength version of nqthm (1996),
no. 23-34.

[42] Koc, Cetin K, and Acar, Tolga. Montgomery multiplication in GF(2k). Designs,
Codes and Cryptography 14, 1 (1998), 57–69.

[43] Kupferschmid, S., Becker, B., Teige, T., and Frnzle, M. Proof certificates and
non-linear arithmetic constraints. In 14th IEEE International Symposium on
Design and Diagnostics of Electronic Circuits and Systems (April 2011), pp. 429–
434.

[44] Lavagno, Martin, and Scheffer. Boston: Pearson/addison-wesley. In Electronic
Design Automation For Integrated Circuits Handbook (2010), no. 0-8493-3096-3.

[45] Loveland, Donald W. Volume 6. north-holland publishing. In Automated Theo-
rem Proving: A Logical Basis. Fundamental Studies in Computer Science (1978).

[46] Lv, J., Kalla, P., and Enescu, F. Efficient Gröbner Basis Reductions for Formal
Verification of Galois Field Arithmatic Circuits. TCAD 32, 9 (September 2013),
1409–1420.

[47] Marques-Silva, J. P., and Sakallah, K. A. Grasp: A new search algorithm for
satisfiability. Proceedings of International Conference on Computer-Aided Design
(1996), 220–227.

[48] McCaffrey, James D. Software research, development, testing, and education. In
Validation vs. Verification (April 2006).

[49] Mead, Carver A., and Conway, Lynn. Boston: Addison-wesley. In Introduction
to VLSI systems (1980), no. 0-201-04358-0.

[50] Mishchenko, A, et al. Abc: A system for sequential synthesis and verification.
URL http://www. eecs. berkeley. edu/˜ alanmi/abc (2007).

[51] Montgomery, Peter L. Modular multiplication without trial division. Mathemat-
ics of Computation 44, 170 (1985), 519–521.

[52] Moskewicz, Matthew W., Madigan, Conor F., Zhao, Ying, Zhang, Lintao, and
Malik, Sharad. Chaff: Engineering an efficient SAT solver. In Proceedings of
the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June
18-22, 2001 (2001), pp. 530–535.

100

[53] Nagell, Trygve. Introduction to Number Theory. Almqvist & Wiksell Stockholm,
1951.

[54] Narayan, K. Lalit. New delhi: Prentice hall of india. In Computer Aided Design
and Manufacturing (April 2008), no. 978-8120333420.

[55] Niemetz, Aina, Preiner, Mathias, and Biere, Armin. Boolector 2.0. Journal on
Satisfiability, Boolean Modeling and Computation 9 (2015).

[56] Owre, Sam, Rushby John M, and Shankar, Natarajan. Automated deduction -
cade-11. springer. In PVS: A Prototype Ver- ification System (1992), no. 748-752.

[57] Paar, Christof, and Pelzl, Jan. Understanding cryptography: a textbook for stu-
dents and practitioners. Springer Science & Business Media, 2009.

[58] Parthasarathy, Ganapathy, Huang, Chung-Yang, and Cheng, Kwang-Ting. An
analysis of atpg and sat algorithms for formal verification. In High-Level De-
sign Validation and Test Workshop, 2001. Proceedings. Sixth IEEE International
(2001), IEEE, pp. 177–182.

[59] Pavlenko, E., Wedler, M., Stoffel, D., Kunz, W., Dreyer, A., Seelisch, F., and
Greuel, G.M. Stable: A new qf-bv smt solver for hard verification problems
combining boolean reasoning with computer algebra. In DATE (2011), pp. 155–
160.

[60] Petra, Nicola, and Strollo, Antonio Giuseppe Maria. Design of Fixed-Width
Multipliers with Linear Compensation Function. IEEE Trans. Circuits Syst.I:
Regular Papers 58, 5 (May. 2011), 947–960.

[61] Pradhan, D., Abadir, M., and Varea, M. Recent advances in verification, equiv-
alence checking amp; sat-solvers. In 18th International Conference on VLSI De-
sign held jointly with 4th International Conference on Embedded Systems Design
(Jan 2005), pp. 14–.

[62] Pruss, T., Kalla, P., and Enescu, F. Equivalence Verification of Large Galois
Field Arithmetic Circuits using Word-Level Abstraction via Gröbner Bases. In
DAC’14 (2014), pp. 1–6.

[63] Pruss, Tim, Kalla, Priyank, and Enescu, Florian. Efficient Symbolic Compu-
tation for Word-level Abstraction from Combinational Circuits for Verification
Over Finite Fields. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems PP, 99 (November 2015), 1.

[64] Raghavendra, M. Noormohammadpour; C. S. Ieee. In Poster Abstract: Min-
imizing Flow Completion Times using Adaptive Routing over Inter-Datacenter
Wide Area Networks (2018).

101

[65] Ritirc, D., Biere, A., and Kauers, M. Improving and extending the algebraic
approach for verifying gate-level multipliers. In 2018 Design, Automation Test
in Europe Conference Exhibition (DATE) (March 2018), pp. 1556–1561.

[66] Ritirc, Daniela, Biere, Armin, and Kauers, Manuel. Column-wise verification of
multipliers using computer algebra. In FMCAD’17 (2017).

[67] S. Kirkpatrick, C. D. G. Jr., and Vecchi, M. P. Science, 220(4598):671680. In
Optimization by Simulated Annealing (1983).

[68] Sayed-Ahmed, Amr, Große, Daniel, Kühne, Ulrich, Soeken, Mathias, and Drech-
sler, Rolf. Formal verification of integer multipliers by combining gröbner basis
with logic reduction. In DATE’16 (2016), pp. 1–6.

[69] Shekhar, N., Kalla, P., and Enescu, F. Equivalence Verification of Polynomial
Data-Paths Using Ideal Membership Testing. TCAD 26, 7 (July 2007), 1320–
1330.

[70] Sheldon B. Akers, Jr. Ieee transactions on computers. In Binary Decision Dia-
grams (June 1978).

[71] Smith, Michael John Sebastian. Addison-wesley professional. In Application-
Specific Integrated Circuits (1997), vol. 978-0-201-50022-6.

[72] Sörensson, Niklas, and Eén, Niklas. MiniSat 2.1 and MiniSat++ 1.0 - SAT race
2008 editions. SAT (2009), 31.

[73] Stump, Aaron, Barrett, Clark W., and Dill, David L. CVC: A Cooperating
Validity Checker. In 14th International Conference on Computer Aided Verifica-
tion (CAV) (2002), Ed Brinksma and Kim Guldstrand Larsen, Eds., vol. 2404 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 500–504. Copenhagen,
Denmark.

[74] Su, Tiankai, Yu, Cunxi, Yasin, Atif, and Ciesielski, Maciej. Formal verification
of truncated multipliers using algebraic approach and re-synthesis. In 2017 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI) (2017), pp. 415–420.

[75] Sullivan, Michael B., and Swartzlander, Earl E. Truncated Error Correction for
Flexible Approximate Multiplication. Signals, Systems and Computers (ASILO-
MAR) ACSSC.2012.6489023 (Nov 2012), 10.1109.

[76] Sunar, Berk, and Koç, Ç K. Mastrovito multiplier for all trinomials. Computers,
IEEE Transactions on 48, 5 (1999), 522–527.

[77] Vahid, Frank. John wiley and sons. In Digital Design with RTL Design, Verilog
and VHDL (2nd ed.) (2010), vol. 978-0-470-53108-2.

[78] Vasudevan, S., Viswanath, V., Sumners, R. W., and Abraham, J. A. Automatic
Verification of Arithmetic Circuits in RTL using Stepwise Refinement of Term
Rewriting Systems. IEEE Trans. on Computers 56, 10 (2007), 1401–1414.

102

[79] Vizel, Y.; Weissenbacher, G.; Malik S. Proceedings of the ieee. 103 (11). In
Boolean Satisfiability Solvers and Their Applications in Model Checking (2015).

[80] Weste, Neil H. E. Harris, David M. Boston: Pearson/addison-wesley. In CMOS
VLSI Design: A Circuits and Systems Perspective (2010), no. 978-0-321-54774-3.

[81] Whitesitt, J. Eldon. Courier corporation. In Boolean Algebra and Its Applications
(24 May 2012).

[82] Wienand, O., Wedler, M., Stoffel, D., Kunz, W., and Greuel, G.-M. An Algebraic
Approach for Proving Data Correctness in Arithmetic Data Paths. CAV (July
2008), 473–486.

[83] Wikipedia. Dpll algorithm. https://en.wikipedia.org/wiki/DPLL_

algorithm. Last edited: 2019-04-09.

[84] Wikipedia. Semiconductor industry. https://en.wikipedia.org/wiki/

Semiconductor_industry. Last edited: 2019-04-09.

[85] Wos, Larry; Overbeek, Ross; Lusk Ewing; Boyle Jim. Mcgrawhill. In Automated
Reasoning: Introduction and Applications (1992), no. 23-34.

[86] Yu, Cunxi, Brown, Walter, Liu, Duo, Rossi, André, and Ciesielski, Maciej J.
Formal verification of arithmetic circuits using function extraction. TCAD 35,
12 (2016), 2131–2142.

[87] Yu, Cunxi, and Ciesielski, Maciej J. Efficient parallel verification of galois field
multipliers. ASP-DAC’17 (2017).

[88] Yu, Cunxi, Ciesielski, Maciej J., and Mishchenko, Alan. Fast algebraic rewriting
based on and-inverter graphs. IEEE Trans. on CAD of Integrated Circuits and
Systems 37, 9 (2018), 1907–1911.

[89] Zwolinski, V. Litovski; Mark. Springer science business media. In VLSI Circuit
Simulation and Optimization (Dec. 1996).

103

	ANALYSIS AND VERIFICATION OF ARITHMETIC CIRCUITS USING COMPUTER ALGEBRA APPROACH
	Recommended Citation

	tmp.1575661736.pdf.khZHz

