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ABSTRACT

Formal verification of hardware designs has become an essential component of the overall

system design flow. The designs are generally modeled as finite state machines, on which property

and equivalence checking problems are solved for verification. Reachability analysis forms the

core of these techniques. However, increasing size and complexity of the circuits causes the state

explosion problem. Abstraction is the key to tackling the scalability challenges.

This dissertation presents new techniques for word-level abstraction with applications in se-

quential design verification. By bundling together k bit-level state-variables into one word-level

constraint expression, the state-space is construed as solutions (variety) to a set of polynomial

constraints (ideal), modeled over the finite (Galois) field of 2k elements. Subsequently, techniques

from algebraic geometry – notably, Gröbner basis theory and technology – are researched to perform

reachability analysis and verification of sequential circuits. This approach adds a “word-level

dimension” to state-space abstraction and verification to make the process more efficient.

While algebraic geometry provides powerful abstraction and reasoning capabilities, the algo-

rithms exhibit high computational complexity. In the dissertation, we show that by analyzing the

constraints, it is possible to obtain more insights about the polynomial ideals, which can be exploited

to overcome the complexity. Using our algorithm design and implementations, we demonstrate how

to perform reachability analysis of finite-state machines purely at the word level. Using this concept,

we perform scalable verification of sequential arithmetic circuits. As contemporary approaches

make use of resolution proofs and unsatisfiable cores for state-space abstraction, we introduce

the algebraic geometry analog of unsatisfiable cores, and present algorithms to extract and refine

unsatisfiable cores of polynomial ideals. Experiments are performed to demonstrate the efficacy of

our approaches.
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CHAPTER 1

INTRODUCTION

1.1 Hardware Design and Verification Overview
During the past decades, the level of integration in modern VLSI systems is becoming higher and

higher because of Moore’s law. As a result, an entire system with billions of transistors can be built

upon a single chip. The design process also evolves from manual design with little validation, to a

formal 3-step procedure which requires collaboration of teams with large numbers of engineers. The

3 major steps are: 1) Design, which is to specify and enter the design intent; 2) Implement, which

is to refine the design through various abstraction levels with the assistance of Computer-Aided-

Design (CAD) tools; 3) Verify, which is to verify the correctness of design and implementation.

Nowadays the verification step is usually completed by a team that specializes in the testing,

verification and validation of circuits. This step is also automated as an indispensable part of the

CAD flow, when circuit synthesis is performed. Figure 1.1 shows the typical synthesis flow, which

covers procedures starting from the register-transfer-level (RTL) description (using hardware design

languages, i.e., HDL) to the physical design on silicon (depicted by the layout). The objective

of verification in synthesis is to ensure the implementation is consistent with the original design

intent. Verification is an important quality control measure before sending design layout to the

VLSI foundries. Considering the high cost of fabrication, faults and errors in the design will

bring considerable waste of funds for the designers. On the other hand, all aspects of the society

increasingly depend on the stability and accuracy of digital VLSI circuits; even small flaws or

short-time failures can cause huge loss, especially in medical applications, military facilities and

financial systems. Therefore, it is of utmost importance to verify the correctness of VLSI designs.

One way to perform verification is by simulation, which is the collage of all circuit validation

methods which apply stimulus on the inputs of circuit model and verify correctness of the outputs.

However, simulation is not a complete solution to circuit verification problems. In modern designs

with large number of logic components and complicated architectures, it is impractical to simulate

all possible test vectors. Usually only test vectors that correspond to typical failures are selected
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in simulation, which cannot cover unexpected failure patterns caused by special inputs. The noto-

rious Intel FDIV bug [1] is a good example where simulation failed. Failure occurred with input

assignments which were rarely used in most divisions. Because of the limitation of simulation, test

engineers from Intel failed to detect the bug, which brought a roughly $475 million-dollar recall bill

for the company. Thus, new methods that can guarantee the correctness of the design need to be

explored.

Another method developed besides simulation is formal verification, which utilizes mathemat-

ical theory to reason about the correctness of hardware designs. Formal verification can provide

100% fault coverage from two aspects. On the one hand, it adopts formal languages to strictly

describe the design intent and detailed implementation, and deduces circuit function from the

implementation. On the other hand, it formalizes properties for the circuit model which are relevant

only to specific input signals and prove the properties mathematically. These descriptions are

called specifications. Formal verification has two main forms: property checking and equivalence

checking.

1.2 Formal Verification: Property and Equivalence Checking
Property checking (or property verification) verifies that a design satisfies certain given proper-

ties. Property checking is done mainly in the form of theorem proving (TP), model checking (MC),

or TP/MC hybrid approaches.

1) Theorem proving [2] is a method of reasoning and mathematical logic dealing with proving

mathematical theorems. In the application to circuit property checking, the specification as well

as the circuit implementation are described as theorems in mathematical logic. Subsequently,

logic rules are employed to deduce new objective theorems. In practice, the tool can reduce a

proof goal to simpler subgoals for automatic verification.

2) Model checking [3] is a technique for verifying if the specification properties are violated in

finite-state systems. In the circuit verification domain, both the specification and the circuit

implementation are modeled as a system of logic formulas. The finite-state system is then

traversed to check if the properties are violated. If violation occurs, a counterexample is then

generated as a transition firing path that corresponds to the false behavior in the design. Modern

model checking techniques use the error-trace to automatically refine the system and perform

further checking.
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Equivalence Checking verifies that two different representations of a circuit design have equiva-

lent functionality. It can be applied to multiple steps in the hardware design flow in Figure 1.1, such

as checking functional equivalence between HDL description and RTL, checking RTL equivalence

between RTL and synthesized/optimized netlist, and checking layout verification between netlist

and layout for fabrication.

There are three major equivalence checking techniques: graph-based, satisfiability-based (SAT-

based), and induction-based.

1) Graph-based techniques compare two circuit implementations by representing them using canon-

Figure 1.1: Typical hardware design flow.
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ical graphs. The earliest invented canonical graph is the Binary Decision Diagram (BDD) [4].

Many variants branch out from BDDs; some widely used variants include ZDD [5], BMD [6],

FDD [7], etc. The comparison algorithms can determine whether the two graphs are isomorphic.

The canonicity of the graph representation guarantees that the graphs correspond to the two

circuits will be equivalent if and only if the circuits implement the same function.

2) Satisfiability (SAT) techniques utilize the satisfiability theory. In circuit equivalence checking, a

miter of the two circuits is created. A miter is a combination of the two circuits with one bit-level

output, which gives output “1” only when the outputs of the circuits differ with the same inputs,

e.g., inputs a, b, c shown in Figure 1.2. A SAT solver [8, 9] is then employed to simplify the

problem and find a satisfying assignment to the inputs for which the miter output is “1”. If

such an assignment exists, this solution acts as a counterexample to equivalence; otherwise the

circuits are functionally equivalent.

3) Induction-based techniques are developed and applied to verify the equivalence between se-

quential circuits, which is called the sequential equivalence checking (SEC) problem. A miter

model can also be built with two sequential circuits. Through the miter model, an SEC problem

is transformed into a sequential backward justification problem. Equivalence of states and

transitions between states can be proved using induction-based proof and fix-point calculation

[10, 11].

Many formal verification techniques adopt concepts and algorithms from computer-algebra

and algebraic geometry. Algebraic geometry provides a way to reason about the presence or

b

a

c

Y

X

Z

A

B

Figure 1.2: An example of equivalence checking on miter of circuit A and B using SAT.
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absence of solutions without actually solving the system of constraints. Using methods in [12–16],

the circuit design can be transformed into a polynomial system. Subsequently, this system of

polynomials is canonicalized by computing a Gröbner basis (GB) [17]. Computation of GB allows

for a straightforward proof of important properties of the polynomial system, such as the presence

or absence of solutions. These properties can also be leveraged for verification. The disadvantage of

the GB computation method is that its complexity can be doubly exponential in the worst case [18].

Thus, directly performing GB computation over an arbitrary setup is not practical for industry-level

applications. However, recent breakthroughs in computer-algebra hardware verification have shown

that it is possible to overcome the complexity of this computation while still utilizing the beneficial

properties of GB [19, 20].

1.3 Importance of Word-level Abstraction
Most formal verification techniques can benefit from word-level abstractions of the circuits they

verify. There are several advantages in exploiting word-level information for verification. A number

of designs have their datapaths and/or system-level models described as word-level RTL models.

Exploiting word-level instead of bit-level information is one way of abstraction – a key technique

to reduce the state space of a sequential circuit. It has the effect of combining sets of states with

similar properties. During reachability analysis, if we use bit-level variables to represent the states,

the representations may become too large to handle. However, when a “bundle” of bit-level variables

are represented as only one word-level variable, the set of reachable states can be represented by a

word-level constraint expression; which may lower verification complexity.

Word-level abstractions have a wide variety of applications in formal verification. For example,

they can work as automatic decision and canonical reduction engines in theorem proving; for RTL

composed of macro blocks, abstractions of these blocks also benefit RTL verification. Concretely,

MC and equivalence checking with abstractions can be classified as:

• Model checking with abstractions [21], where an overapproximation of RTL blocks is ab-

stracted and used for property checking on a simplified model.

• Graph-based equivalence checking with abstraction [22, 23], where abstraction generates a

word-level canonical graph representation of the circuit.

• SAT-based equivalence checking with abstraction [24], where abstractions are used to analyze
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structural symmetries and similarities such that the Boolean formulas fed to the SAT solver

are simplified.

Other equivalence checking techniques that employ abstractions include satisfiability modulo

theory (SMT) solvers [25, 26], as well as constraint programming (CP) techniques [27, 28].

Word-level abstractions also find applications in RTL and datapath synthesis [29–31]. Since

modern datapath design specifications are mostly word-level, synthesis tools with abstractions can

make use of larger macro blocks to generate and optimize the datapaths. Moreover, word-level

abstractions facilitate the use of uninterpreted functions (UFs) [32], which can be transformed into

proposition formulas with word-level information and verified using word-level theorem provers

and model checkers.

1.4 Abstractions in Sequential Design Verification
With the increasing size of integrated circuits, sequential circuit designers face complicated

problems of design errors in specification models and implementations. These errors are usu-

ally modeled as “bad” states, and the circuits/functional components are modeled as finite-state

machines (FSMs). Once state reachability is analyzed, the existence of errors can be identified

by checking whether “bad” states are reachable from certain initial states. Temporal logic model

checking formulations and solvers are often used for this purpose. Once the designs and specifica-

tion models are validated using model checking, optimized implementations of sequential circuits

are synthesized. Then there is a subsequent problem that needs to be solved: how to prove that the

sequential circuit implementations are equivalent to the original specification models. This problem

is called Sequential Equivalence Checking (SEC) problem. When the specification is given as an

arithmetic function which canonically represents the circuit, then the problem becomes functional

verification of sequential arithmetic circuits.

Reachability analysis forms the backbone of most sequential verification techniques. As the

state-space of FSMs increases, reachability analysis forms a fundamental bottleneck in sequential

verification. Contemporary approaches employ various techniques to overcome this state-explosion

problem:

1) Bounded model checking [33] traverses the FSMs for a fixed number of steps k (k-BMC) to

check whether a property violation can occur in k or fewer steps.



7

2) Analyze overapproximations (or abstractions) of the state-space. Abstraction proves properties

on the system by first simplifying them, and when the abstraction does not satisfy the same

properties as the original one, a process of refinement is needed. For example, counterexample

guided abstraction refinement (CEGAR) [34] uses proofs of unsatisfiability (UNSAT cores) to

refine the abstractions.

3) The recent breakthrough method of [35], where the set of overapproximations to forward reach-

able states are refined with inductive constraints – property directed reachability (PDR).

While the above techniques have made significant strides in sequential verification, numerous

practical instances remain unsolved. One issue with all of the above techniques is that they mostly

use bit-level constraints to model the transition relations and sets of states. Often, the designs

are expressed at the level of bit-vector words (e.g., Matlab code, Verilog), and these word-level

abstractions are rarely exploited in verification. The problem is further exacerbated when there are

arithmetic operators on word-level operands embedded in the control logic. While attempts have

been made towards word-level predicate abstraction [36–38], using a purely word-level representa-

tion of the state-space, the properties and their abstractions have not been fully explored as another

dimension in improving sequential verification.

1.5 Objective and Contribution of this Dissertation
This research proposes a set of new, promising approaches for word-level representation, reach-

ability analysis and abstraction for sequential design verification techniques. Our approaches

operate at the word level and are based largely on concepts from algebraic geometry.

For word-level SEC, we are given two designs, or their corresponding Mealy/Moore FSMs

M1,M2, along with their initial starting states S1
0 , S

2
0 . We wish to prove the absence of a sequence

of inputs (string) that distinguishes the initial states [39, 40]. Fundamentally, this requires the

construction of a product machine; and the main research problem relates to that of performing

FSM traversal [41] but at the word level. Analogously, in the case of MC, the problem is setup w.r.t.

a FSMM, a set of initial states S0 and a set of property states p. Techniques are to be researched

that verify that there exists no sequence of transitions from an initial state to a nonproperty state

(“bad” state). These problems have to be solved in the context of word-level verification – i.e., data

representation, abstraction using UNSAT cores, and algorithm execution have to be carried out at
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word level.

1.5.1 Word-level Reachability Analysis of FSMs

In this dissertation, we propose a method to perform reachability analysis at the word level.

The given FSM is modeled as a system of polynomials over a finite field, where the state space is

mapped to the solutions of the polynomial system. Our proposed algorithm utilizes ideal-variety

correspondences in algebraic geometry. It also forms the foundation for word-level verification by

enabling word-level abstraction of the state-space.

In this dissertation we represent the FSMs – the transition relations – by means of a set of

multivariate polynomials with coefficients from the finite (Galois) field F2k of 2k elements, i.e.,

polynomials in the ring F2k [x1, . . . , xd]. Each state of a FSM is identified with a Boolean assign-

ment to a set of k-bit state register variables S = {s0, . . . , sk−1}. Therefore, we can consider each

(k-bit) state as a word-level element S of the finite field F2k . Algorithms can directly operate on

polynomials in word-level variable S.

Boolean functions with k-bit inputs and k-bit outputs f : Bk → Bk,B = {0, 1} can be construed

as functions f : F2k → F2k . It is well known that over the finite field (Fq) of q elements, every

function f : Fq → Fq is a polynomial function [42]. Moreover, there exists a unique canonical

polynomial F that describes f . This implies that one can derive a canonical, polynomial abstraction

of the function as Z = F(A) where Z,A are word-level symbols representing k-bit operands. The

concept also generalizes to functions with different input/output bit-vector sizes, i.e., functions of

the type f : Bn → Bm, modeled as polynomials over f : F2k → F2k , where k = LCM(n,m) [42].

This implies that the FSM’s transition relations can be represented as polynomial functions (ideals)

in F2k , and values of state variables can be represented as solutions to these polynomials (variety

of the ideal). Subsequently, the ideal-variety correspondences in algebraic geometry can be applied

to implement symbolic reasoning about state reachability.

The decision and abstraction procedures in our setting will rely on the theory and technology of

Gröbner bases. GB-based algebraic reasoning is very powerful – in fact it is known to be strictly

stronger than resolution [43]. Therefore, in light of the above discussion, using concepts from

algebraic geometry and Gröbner bases over F2k , we can introduce another dimension of word-level

abstraction to the techniques in sequential verification. This work was published at [44].
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1.5.2 Application to Sequential Galois Field Arithmetic Circuit Verification

Sequential Galois field (GF) arithmetic circuits can be modeled as a special type of FSM, where

the preloaded operands are mapped to initial states, and pseudo outputs after k clock-cycles are

recognized as the final reached state after k transitions. Therefore, the word-level FSM traversal al-

gorithm can be applied to verify the correctness of final reached state, i.e., the functional correctness

of a sequential arithmetic circuit.

In our proposed approach, word-level abstraction is employed to generate, in every time-frame,

the word-level signature of the combinational logic component of the sequential arithmetic circuit.

This abstraction requires a GB computation, which usually has high time/space complexity. We

propose several improvements to simplify the GB computation procedure and make the entire

algorithm execution practical. As a result, we successfully verify sequential multipliers with 162-bit

datapaths. This work was published at [45] and a journal paper is under preparation.

1.5.3 UNSAT Cores in Algebraic Geometry

Abstraction is an effective method to lower the cost to traverse the state space. In modern model

checkers, abstraction is used to simplify and refine the model during the iterative execution of the

tool. An UNSAT core is widely used as an important component of abstraction refinement. The

reason is that UNSAT cores can provide information about the state variables that truly affect the

property, and that information is necessary for the refinement process.

In this dissertation, we explore the concept, and the computation, of unsatisfiable (UNSAT)

cores of a set of polynomials using the Gröbner bases algorithm. We also propose a number of

heuristics that extend the Buchberger’s algorithm to reduce the size of UNSAT core. We demon-

strate the use of UNSAT core extraction to a bounded model checking instance with abstraction

refinement. This work was published at [46].

1.6 Dissertation Organization
The rest of the dissertation is organized as follows: Chapter 2 reviews previous works and

analyzes their drawbacks with respect to the word-level sequential verification problem. Chapter

3 covers preliminary concepts and notation on finite fields, and the methodology about design

of arithmetic circuits in finite fields. Chapter 4 provides a theoretical background on algebraic

geometry and Gröbner bases. Chapter 5 describes the basic concept of word-level FSM traversal
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and introduces our proposed word-level FSM traversal algorithm. Chapter 6 explores the application

of FSM traversal algorithm on functional verification of sequential GF arithmetic circuits. Chapter 7

describes algorithmic techniques to derive UNSAT cores of polynomial ideals. It also demonstrates

with the help of an example how abstraction via UNSAT cores in algebraic geometry can simplify

BMC. Chapter 8 outlines potential future research for continuation of this work and concludes the

dissertation. An appendix provides theory and methodology on the characterization of finite-field

normal basis, as well as the construction of optimal normal basis and application to normal basis

multiplier design.



CHAPTER 2

PREVIOUS WORK

2.1 Sequential Equivalence Checking
As an important component of formal verification for sequential circuits, SEC techniques have

been developed over decades and widely utilized in both academia and industry. The specification

of a sequential circuit can be modeled as a (golden model) state machine; SEC is performed to

compare the functionality between the circuit for test and the golden one. One way to implement

SEC is to create a miter with two circuits to be verified, then prove that there exists no sequence of

inputs that generates different outputs.

Researchers proposed improvements by using Boolean functions to represent a set of states/-

transitions [40, 47], or by dividing the sequential circuit into a smaller subcircuit and remodeling

the FSM to conditional FSMs [48]. IBM created a toolset with interfaces that focuses on only the

designated initial states and removes redundancies in state space [49].

Another direction to improve SEC algorithms is to avoid using state space traversal. The forward

retiming method [50] and time-frame merging [11] all work on an array of time-frames, with the

assistance of combinational equivalence checking (CEC) techniques. These techniques require

structural similarities between the two circuits.

The most significant difference of sequential circuits from combinational circuits is that the

outputs of the circuit depend not only on the primary inputs, but also on current state. The be-

havioral difference reflects on the structural design of circuits and in the existence of memory

components such as latches and flip-flops. In order to test certain properties on some signals across

multiple clock-cycles, the most straightforward method is to propagate those signals throughout

all clock-cycles. Moreover, for formal verification, all signals on all paths from the circuit need

to be propagated through multiple clock-cycles. This indicates a time-to-space conversion, where

the combinational part of circuit is copied over several time-frames then connected together. The

procedure is called unrolling of a sequential circuit, as Figure 2.1 shows.

Unrolling provides a way to transform a sequential circuit into a combinational circuit. There-
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Figure 2.1: The unrolling of a sequential circuit.

fore, methods which can be applied to combinational circuit verification are also suitable for un-

rolled sequential circuits. The canonical graphical representation of the combinational circuit after

unrolling is also the canonical representation of the original sequential circuit. For the sequential

equivalence checking problem, we can also unroll the circuit to be verified and the specification

to combinational ones, and then perform combinational equivalence checking techniques [51]. In

the following part we review research and techniques which can be applied to unrolled sequential

circuits.

2.1.1 Canonical Decision Diagrams

The decision diagrams (DDs) are optimized data structures which can significantly accelerate

formal verification. The most fundamental DD is the Binary DD (BDD), which originates from the

Shannon’s expansion:

f(x, y, . . . ) = xfx + x′fx′ (2.1)

where fx = f(x = 1) and fx′ = f(x = 0) denote the positive and negative co-factors of f

w.r.t. x, respectively. A BDD is usually represented as a binary tree. Its ordered and reduced form,

the Reduced Ordered Binary Decision Diagram (ROBBD) [4], was the first significant contribution

because of its canonicity. ROBDDs represent a Boolean function as an implicit set of points on a
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canonical directed acyclic graph (DAG). Manipulation of Boolean functions can then be carried out

as composition operations on their respective DAGs. An example of ROBDD is shown as Figure

2.2.

Following BDDs, variants of Shannon’s decomposition principle were explored to develop other

functional decision diagrams such as FDDs [7], ADDs [52], MTBDDs [53], and their hybrid edge-

valued counterparts, HDDs [54] and EVBDDs [55]. Zero-suppressed BDDs (ZDDs) [5, 56] use

the if-then-else branches to represent the existence of variables in a cube, and result in lower space

complexity. They can be used to represent polynomials with integer coefficients.

The DDs above are all based on bit-level operations. Even in the Word-Level Decision Di-

agrams [22], the decomposition is still point-wise, binary, w.r.t. each Boolean variable. These

representations do not serve the purpose of word-level abstraction from bit-level representations.

Binary Moment Diagrams (BMDs) [6], and their derivatives K*BMDs [57] and *PHDDs [58],

perform the decomposition of a linear function based on its two moments instead of relying on

Boolean decomposition. MODDs [59, 60] are a DAG representation of the characteristic function

of a circuit over Galois fields F2k . However, MODDs fails to compactly represent large circuits.

Taylor Expansion Diagrams (TEDs) [61] are a word-level canonical representation of a poly-

nomial expression, based on the Taylor’s series expansion of a polynomial. However, they do not

represent a polynomial function canonically.

The use of DDs in traditional formal verification has a lot of advantages. For example, DD-based

model checking is very efficient as long as the DDs of sequential circuit can be setup. The existence

of violating states in constructed DDs immediately deduces the violation of property. However,

when the design gets larger and larger, the time and space cost of building and storing the diagram

d

a

b

c

0 1

Figure 2.2: ROBDD representing Boolean function ¬a ∧ b ∧ (c ∨ d) with order a > b > c > d.
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increases rapidly. In our experiment of verifying a k-bit arithmetic circuit using ZDDs, when k is

larger than 100, the construction of ZDDs occupies over 99% runtime of the whole procedure.

2.1.2 Combinational Equivalence Checking Techniques

The CEC problem can be solved using various methods. Besides using canonical DDs (BDDs

[4] and their word-level variants [22]), noncanonical representations such as And-Invert-Graph-

based (AIG-based) reductions [62, 63] are also very effective. Solvers for satisfiability problems

(SAT) are good candidates to solve CEC problems, as long as the miter of two circuits can be

described using conjunctive normal form (CNF) formulas. Applications of SAT on CEC include

circuit-SAT solvers [8], etc. If the circuits being compared are structurally highly similar, AIG

and circuit-SAT-based approaches are known to be efficient. However, when the circuits are func-

tionally equivalent but structurally very dissimilar, none of the contemporary techniques, including

quantifier-free bit-vector (QF-BV) theory-based SMT-solvers [64], offer a practical solution.

Recently integer polynomial based techniques [65, 66] have been proposed to verify the func-

tional correctness of integer arithmetic circuits. Their approach formulates the output signature as

a polynomial function with binary variables and integer coefficients, then rewrites the polynomial

by substituting gate output with gate inputs. After going through the backward rewriting procedure,

the polynomial will be composed by only input variables. Then the polynomial is converted to a

canonical representation, and compared with a designated input signature. If they are equivalent,

then the arithmetic circuit is successfully verified. This approach incurs polynomial term explosion

during the backward rewriting. The authors proposed a heuristic to levelize the arithmetic circuit,

and substitute several gates’ variables at the same time to minimize the risk. However, the heuristic

proved to be less effective when the inner symmetry of the circuit structure is missing.

2.2 Symbolic Model Checking and Abstraction Refinement
Model checking is a way to verify certain safety and liveness properties in sequential circuits.

Symbolic model checking, which avoids using explicit state encoding, provides more flexibility

to reduce the state space and enhance the efficiency of model checkers. The implementations of

symbolic model checking require canonical DDs or SAT solvers [67–69].

Abstraction is a technique to reduce the state space representation by combining states with

similar characteristics. Sometimes it can effectively lower the number of states that require analysis
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by orders of magnitude, without affecting the properties we need to verify. Model checkers then

utilize abstracted models with interpolation [37, 70]. At first, abstraction was done manually by

designers. Clarke et al. [71] proposed a BDD-based automated abstraction by removing spurious

paths from analysis of counterexamples. Zhang et al. [72] proposed another abstraction method

based on CNF-SAT. It implemented latch abstraction by removing ”irrelevant” latches by analyzing

the UNSAT core from the k-BMC. Jain et al. [36] improved the abstraction refinement technique

of [71], where they use CNF-SAT to perform the refinement instead of using BDDs. The new

approach is applied to verify RTL Verilog and was known to be successful.

The k-BMC with interpolation is a purely incremental model-checking approach, and the inter-

polation procedure relies on UNSAT core analysis. To overcome these weaknesses, a hybrid model

checker called IC3 is developed [35, 73]. IC3 works incrementally to find inductive subclauses of

negations of reached states, meanwhile it is monolithic when computing overapproximations to sets

of reachable states within 1, 2, . . . , k steps. It is proved to be more efficient than interpolation-based

model checking, although using similar mechanisms.

The above techniques have limitations: they all rely on bit-level information from the circuit,

which prevents them from being applied to circuits with large datapaths. Meanwhile, their imple-

mentation relies on SAT/BDDs, which is an extension of Boolean functions and not compatible with

other forms of constraints.

2.3 Word-level Techniques Applied to Sequential Circuit Synthesis
and Validation

To better verify word-level designs, word-level verification techniques have been explored in

recent years. Directly translating bit-vector problems to bit-level problems is called bit-blasting,

and usually brings high redundancy and computational complexity in verification. Attempts to

develop pure word-level techniques can be found in the rich domain of theorem proving [23] and bit-

vector SMT-solvers [25, 74–76], automated decision procedures for Presburger arithmetic [77, 78],

algebraic manipulation techniques [79], or the ones based on term rewriting [80], etc.

Polynomial, integer, and other nonlinear representations have also been researched: Difference

Decision Diagrams (DDDs) [81, 82], interval diagrams [83], interval analysis using polynomials

[84], etc. Most of these have found application in constraint satisfaction for simulation-based vali-

dation: [24,76,85–88]. Among these, [76,87,88] have been used to solve integer modular arithmetic



16

on linear expressions – a different application from representing finite field modulo-arithmetic on

polynomials in a canonical form.

Uninterpreted function abstraction is also an important category of word-level techniques which

facilitates word-level model checking. Usually uninterpreted symbols have no notion of bit-vector-

precision. However, these techniques constrain them using functional consistency among the eval-

uations of word variables [32, 89, 90].

2.4 Verification Using Algebraic Geometry
Symbolic computer algebra techniques have been employed for formal verification of circuits

over Z2k and also over Galois fields F2k . Verification techniques using Gröbner bases [12, 14, 91]

are proposed, but they do not address the problem of high computational complexity to compute

Gröbner bases.

Verification of a combinational Galois field arithmetic circuit C against a polynomial specifi-

cation F has been previously addressed [92–94]. Verification problems in [92, 93] are formulated

using Nullstellensatz and decided using the Gröbner basis algorithm.

The paper [94] performs verification by deriving a canonical word-level polynomial repre-

sentation F from the circuit C. Their approach views any arbitrary Boolean function (circuit)

f : Bk → Bk as a polynomial function f : F2k → F2k , and derives a canonical polynomial

representation F over F2k . They show that this can be achieved by computing a reduced Gröbner

basis w.r.t. an abstraction term order derived from the circuit. Subsequently, they propose a

refinement of this abstraction term order (called RATO) that enables them to compute the Gröbner

basis of a smaller subset of polynomials. The authors show that their approach can prove the

correctness of up to 571-bit combinational GF multipliers.

IBM proposed a method to apply algebraic geometry techniques to verifying error coding cir-

cuits [95]. Recent papers [66, 96] provide a way to utilize algebraic geometry and GB-based sym-

bolic computing and perform equivalence checking on integer arithmetic circuits and floating-point

arithmetic circuits, respectively.

The use of algebraic geometry for sequential circuit verification and symbolic model checking

has been presented before. Avrunin presented the concept of symbolic MC using algebraic geometry

in [12]. Later, in [97], Vardi presented GB-algorithms for CTL, LTL, and bounded MC over Boolean

rings. However, these approaches are a straightforward transformation of the problem to bit-level
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Boolean GB engines which are used in lieu of BDDs or SAT solvers. All the concepts of word-level

reachability, abstraction-refinement using interpolation or UNSAT cores, etc., that we desire were

not the focus of [12, 97].

2.5 Concluding Remarks
From the investigation of previous work, techniques are to be researched that can perform the

FSM traversal at word level to verify a property excluding spurious faults. Meanwhile, many

abstraction refinement techniques utilize information from UNSAT cores. We propose to solve

these problems in the context of word-level verification, with data representation, abstraction, and

algorithm execution all carried out at word level.

In this dissertation, we propose a purely word-level reachability analysis approach, which has

never been done before. We achieve this by modeling the transition relations, states and the traversal

algorithm at word level. We borrow inspirations from [20, 98] to perform state space abstraction.

Moreover, we demonstrate applications of our proposed approach to sequential arithmetic verifi-

cation, which has not been done before, either. Finally, we show algebraic geometry analogs of

UNSAT cores of polynomial ideals, and describe algorithms to extract and refine these cores.



CHAPTER 3

FINITE FIELDS AND SEQUENTIAL

ARITHMETIC CIRCUITS

This chapter provides a mathematical background for understanding finite fields (Galois fields)

and explains how to design Galois field (GF) arithmetic circuits. We first introduce the mathemat-

ical concepts of groups, rings, fields, and polynomials. We then apply these concepts to create

Galois field arithmetic functions and explain how to map them to a Boolean circuit implementation.

Additionally, we introduce a special type of sequential arithmetic hardware based on normal basis,

as well as the normal basis theory behind designing such hardware.

The material is taken from [42,99,100] for Galois field concepts, [101–105] for hardware design

over Galois fields, and previous work by Lv [19]. Normal basis theory in this section is referred

from [106, 107], and sequential normal basis arithmetic hardware designs come from [108–111].

3.1 Commutative Algebra
3.1.1 Group, Ring and Field

Definition 3.1. An Abelian group is a set S with a binary operation ′+′ which satisfies the following

properties:

• Closure Law: For every a, b ∈ S, a+ b ∈ S

• Associative Law: For every a, b, c ∈ S, (a+ b) + c = a+ (b+ c)

• Commutativity: For every a, b ∈ S, a+ b = b+ a.

• Additive Identity: There is an identity element 0 ∈ S such that for all a ∈ S; a+ 0 = a.

• Additive Inverse: If a ∈ S, then there is an element a−1 ∈ S such that a+ a−1 = 0.

The set of integers Z forms an Abelian group under the addition operation.
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Definition 3.2. Given a set R with two binary operations, ′+′ and ′·′, and element 0 ∈ R, the system

R is called a commutative ring with unity if the following properties hold:

• R forms an Abelian group under the ’+’ operation with additive identity element 0.

• Multiplicative Distributive Law: For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c.

• Multiplicative Associative Law: For every a, b, c ∈ R, a · (b · c) = (a · b) · c.

• Multiplicative Commutative Law: For every a, b ∈ R, a · b = b · a

• Identity Element: There exists an element 1 ∈ R such that for all a ∈ R, a · 1 = a = 1 · a

Ring is a broad algebraic concept. In this dissertation, this word is used to refer a special sort of

ring – commutative ring with unity. Two common examples of such rings are the set of integers,

Z, and the set of rational numbers, Q. While both of these examples are rings with an infinite

number of elements, the number of elements in a ring can also be finite, such as the ring of integers

modulo n (Zn).

Definition 3.3. A field F is a commutative ring with unity, where every nonzero element in F has a

multiplicative inverse; i.e., ∀a ∈ F− {0}, ∃â ∈ F such that a · â = 1.

A field is defined as a ring with one extra condition: the presence of a multiplicative inverse for

all nonzero elements. Therefore, a field must be a ring while a ring is not necessarily a field. For

example, the set Z2k = {0, 1, · · · , 2k − 1} forms a finite ring. However, Z2k is not a field because

not every element in Z2k has a multiplicative inverse. In the ring Z23 , for instance, the element 5

has an inverse (5 · 5 (mod 8) = 1) but the element 4 does not.

An important concept in field theory is field extension. The idea behind a field extension is

to take a base field and construct a larger field which contains the base field as well as satisfying

additional properties. For example, the set of real numbers R forms a field; one extension of R is

the set of complex numbers C = R(i). Every element of C can be represented as a + b · i where

a, b ∈ R, hence C is a two-dimensional extension of R.

Like rings, fields can also contain either an infinite or a finite number of elements. In this

dissertation we focus on finite fields – also known as Galois fields, the construction of their field

extensions, and their applications on circuit verification and abstraction techniques.
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3.1.2 Finite Field

Finite fields find widespread applications in many areas of electrical engineering and computer

science such as error-correcting codes, elliptic curve cryptography, digital signal processing, testing

of VLSI circuits, among others. In this dissertation, we specifically focus on their application to the

FSM traversal of sequential Galois field circuits as well as abstraction refinement based on UNSAT

core extraction. This section describes the relevant Galois field concepts [42,99,100] and hardware

arithmetic designs over such fields [101–105].

Definition 3.4. A Galois field, denote Fq, is a field with a finite number of elements, q. The number

of elements q of the field is a power of a prime integer, i.e., q = pk, where p is a prime integer, and

k ≥ 1. Thus a Galois field can also be denoted as Fpk .

Fields of the form Fpk are called Galois extension fields. We are specifically interested in

extension fields of type F2k , where k > 1, because they are extensions of the binary field F2.

Elements and operators in F2 can be mapped to Boolean values and Boolean operators, as Table 3.1

shows. Notice that addition over F2 is a Boolean XOR operation, because it is performed modulo

2. Similarly, multiplication over F2 performs a Boolean AND operation.

Algebraic extensions of the binary field F2 are generally termed binary extension fields F2k .

Where elements in F2 can only represent 1 bit, elements in F2k represent a k-bit vector. This allows

them to be widely used in digital hardware applications. In order to construct a Galois field of the

form F2k , an irreducible polynomial is required:

Definition 3.5. A polynomial P (x) ∈ F2 [x], i.e., the set of all polynomials in x with coefficients

in F2, is irreducible if P (x) is nonconstant with degree k and cannot be factored into a product of

polynomials of lower degree in F2[x].

Therefore, the polynomial P (x) with degree k is irreducible over F2 if and only if it has no roots

Table 3.1: Addition and multiplication operations over F2.

+ 0 1

0 0 1
1 1 0

Addition over F2

· 0 1

0 0 0
1 0 1

Multiplication over F2
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in F2, i.e., if ∀a ∈ F2, P (a) 6= 0. For example, x2 + x + 1 is an irreducible polynomial over F2

because it has no solutions in F2, i.e., (0)2 + (0) + 1 = 1 6= 0 and (1)2 + (1) + 1 = 1 6= 0 over F2.

Irreducible polynomials exist for any degree ≥ 2 in F2[x].

Given an irreducible polynomialP (x) of degree k in the polynomial ring F2[x], we can construct

a binary extension field F2k ≡ F2[x] (mod P (x)). Let α be a root of P (x), i.e., P (α) = 0. Since

P (x) is irreducible over F2[x], α /∈ F2. Instead, α is an element in F2k . Any element A ∈ F2k is

then represented as:

A =
k−1∑
i=0

(ai · αi) = a0 + a1 · α+ · · ·+ ak−1 · αk−1

where ai ∈ F2 are the coefficients and P (α) = 0.

To better understand this field extension, compare its similarities to another commonplace field

extension C, the set of complex numbers. C is an extension of the field of real numbers R with an

additional element i =
√
−1, which is an imaginary root in the algebraic closure of R – the closure

is known as the field of complex numbers C. Thus i /∈ R, rather i ∈ C. Every element A ∈ C can

be represented as:

A =

1∑
j=0

(aj · ij) = a0 + a1 · i (3.1)

where aj ∈ R are coefficients. Similarly, F2k is an extension of F2 with an additional element α,

which is the “imaginary root” of an irreducible polynomial P in F2[x].

Every element A ∈ F2k has a degree less than k because A is always computed modulo P (x),

which has degree k. Thus, A (mod P (x)) can be of degree at most k − 1 and at least 0. For this

reason, the field F2k can be viewed as a k dimensional vector space over F2. The equivalent bit

vector representation for element A is:

A = (ak−1ak−2 · · · a0) (3.2)

Example 3.1. A 4-bit Boolean vector, (a3a2a1a0) can be presented over F24 as:

a3 · α3 + a2 · α2 + a1 · α+ a0 (3.3)

For instance, the Boolean vector 1011 is represented as the element α3 + α+ 1.

Example 3.2. Let us construct F24 as F2[x] (mod P (x)), where P (x) = x4 + x3 + 1 ∈ F2[x] is

an irreducible polynomial of degree k = 4. Let α be the root of P (x), i.e., P (α) = 0.
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Any element A ∈ F2[x] (mod x4 + x3 + 1) has a representation of the type: A = a3x
3 +

a2x
2 + a1x+ a0 (degree < 4) where the coefficients a3, . . . , a0 are in F2 = {0, 1}. Since there are

only 16 such polynomials, we obtain 16 elements in the field F24 . Each element in F24 can then be

viewed as a 4-bit vector over F2. Each element also has an exponential α representation. All three

representations are shown in Table 3.2.

We can compute the polynomial representation from the exponential representation. Since every

element is computed (mod P (α)) = (mod α4 + α3 + 1), we compute the element α4 as

α4 (mod α4 + α3 + 1) = −α3 − 1 = α3 + 1 (3.4)

Recall that all coefficients of F24 are in F2 where −1 = +1 modulo 2. The next element α5 can be

computed as

α5 = α4 · α = (α3 + 1) · α = α4 + α = α3 + α+ 1 (3.5)

Then α6 can be computed as α5 ∗ α and so on.

An irreducible polynomial can also be a primitive polynomial.

Definition 3.6. A primitive polynomial P (x) is a polynomial with coefficients in F2 which has a

root α ∈ F2k such that {0, 1(= α2k−1), α, α2, · · · , α2k−2} is the set of all elements in F2k . Here α

is called a primitive element of F2k .

A primitive polynomial is guaranteed to generate all distinct elements of a finite field F2k

while an arbitrary irreducible polynomial has no such guarantee. Often, there exists more than

one irreducible polynomial of degree k. In such cases, any degree k irreducible polynomial can be

Table 3.2: Bit-vector, Exponential and Polynomial representation of elements in F24 = F2[x]
(mod x4 + x3 + 1).

a3a2a1a0 Exponential Polynomial a3a2a1a0 Exponential Polynomial
0000 0 0 1000 α3 α3

0001 1 1 1001 α4 α3 + 1

0010 α α 1010 α10 α3 + α

0011 α12 α+ 1 1011 α5 α3 + α+ 1

0100 α2 α2 1100 α14 α3 + α2

0101 α9 α2 + 1 1101 α11 α3 + α2 + 1

0110 α13 α2 + α 1110 α8 α3 + α2 + α

0111 α7 α2 + α+ 1 1111 α6 α3 + α2 + α+ 1
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used for field construction. For example, both x3 + x+ 1 and x3 + x2 + 1 are irreducible in F2 and

either one can be used to construct F23 . This is due to the following:

Theorem 3.1. There exist a unique field Fpk , for any prime p and any positive integer k.

Theorem 3.1 implies that Galois fields with the same number of elements are isomorphic to

each other up to the labeling of the elements.

Theorem 3.2 provides an important property for investigating solutions to polynomial equations

in Fq.

Theorem 3.2. [Generalized Fermat′s Little Theorem] Given a Galois field Fq, each element

A ∈ Fq satisfies:

Aq ≡ A

Aq −A ≡ 0 (3.6)

We can extend Theorem 3.2 to polynomials in Fq[x] as follows:

Definition 3.7. Let xq − x be a polynomial in Fq[x]. Every element A ∈ Fq is a solution to

xq − x = 0. Therefore, xq − x always vanishes in Fq. Such polynomials are called vanishing

polynomials of the field Fq.

Example 3.3. Given F22 = {0, 1, α, α+ 1} with P (x) = x2 + x+ 1, where P (α) = 0.

02
2

= 0

12
2

= 1

α22 = α (mod α2 + α+ 1)

(α+ 1)2
2

= α+ 1 (mod α2 + α+ 1)

A Galois field Fq can be fully contained within a larger field Fqk . That is, Fq ⊂ Fqk . For

example, the containment relation of the fields F2 ⊂ F2k is usually used to represent bit-level

Boolean variables as field elements in larger finite field which allows projection of k-bit word-level

variables. Concretely, F16 = F42 = F24 contains F4 and F2. The elements {0, 1, α, . . . , α14}

designate F16. Of these, {0, 1, α5, α10} create F4. From these, only {0, 1} exist in F2.

Theorem 3.3. F2n ⊂ F2m iff n | m, i.e., if n divides m.
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Therefore:

• F2 ⊂ F22 ⊂ F24 ⊂ F28 ⊂ . . .

• F2 ⊂ F23 ⊂ F29 ⊂ F227 ⊂ . . .

• F2 ⊂ F25 ⊂ F225 ⊂ F2125 ⊂ . . . , and so on

Definition 3.8. The algebraic closure of the Galois field F2k , denoted F2k , is the union of all fields

F2n such that k | n.

3.2 Normal Basis Multiplier over Galois Field
From an algebraic perspective, a field is a space, and field elements are points in the space.

Those elements can be represented with unique coordinates, which requires the predefinition of a

basis vector. In this section, we discuss a special basis called normal basis, as well as the advantages

of adopting it in GF operations, especially multiplication.

3.2.1 Normal Basis

Given a Galois field F2k is a finite field with 2k elements and characteristic equals to 2. Its

elements can be written in polynomials of α, when there is an irreducible polynomial p(α) defined.

If we use a basis {1, α, α2, α3, . . . , αk−1}, we can easily transform polynomial representations

to binary bit-vector representations by recording the coefficients. For example, for elements in F24 ,

the results are shown in Table 3.2, column “Polynomial”.

The basis {1, α, α2, α3, . . . , αk−1} is called a standard basis (StdB), which results in a straight-

forward representation for elements, and operations of elements such as addition and subtraction.

The addition/subtraction of GF elements in StdB follows the rules of polynomial addition/subtrac-

tion where coefficients belong to F2. In other words, using the definition of exclusive or (XOR) in

Boolean algebra, element A add/subtract by element B in StdB is defined as

A+B = A−B = (a0, a1, . . . , ak−1)StdB
⊕

(b0, b1, . . . , bk−1)StdB

= (a0 ⊕ b0, a1 ⊕ b1, . . . , ak−1 ⊕ bk−1)StdB (3.7)

3.2.2 Multiplication Using Normal Basis

Besides addition/subtraction, multiplication is also very common in arithmetic circuit design.

The multiplication of GF elements in F2k in StdB follows the rule of polynomial multiplication, but
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it will result in O(k2) bitwise operations. In other words, if we implement GF multiplication in a

bit-level logic circuit, it will contain O(k2) gates. When the datapath size k is large, the area and

delay of circuit will be costly.

In order to lower the complexity of arithmetic circuit design, Massey and Omura [109] use a

new basis to represent GF elements, which is called a normal basis (NB). A normal basis over F2k

is written in the form of

N.B. N = {β, β2, β4, β8, . . . , β2k−1}

Normal element β is an element from the field which is used to construct the normal basis, and

can be represented as a power of the primitive element α:

β = αt, 1 ≤ t < 2k

Exponent t takes values in the given range when N fulfills the definition of a basis.

Correspondingly, a field element in NB representation is actually

A = (a0, a1, . . . , ak−1)NB

= a0β + a1β
2 + · · ·+ ak−1β

2k−1

=
k−1∑
i=0

aiβ
2i

According to the definition, a normal basis is a vector where the next entry is the square of the

former one. We note that the vector is cyclic, i.e., β2
k

= β due to Fermat’s little theorem.

The addition and subtraction of elements in NB representation are similar to Equation 3.7.

However, what makes NB powerful is its ease of implementation when doing multiplications and

exponentiations. The following lemmas and examples illustrate this fabulous property very well.

Lemma 3.1 (Square of NB). In F2k ,

(a+ b)2 = a2 + b2

According to the binomial theorem, it can be extended to

β2 =(b0β + b1β
2 + b2β

4 + · · ·+ bk−1β
2k−1

)2

=b20β
2 + b21β

4 + b22β
8 + · · ·+ b2k−1β

=b2k−1β + b0β
2 + b1β

4 + · · ·+ bk−2β
2k−1
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This lemma concludes that the square of an element in NB equals to a simple right-cyclic shift

of the bit-vector. Obviously, StdB representation does not have this benefit.

Example 3.4 (Square of NB). In GF F23 constructed by irreducible polynomial x3 + x + 1, the

standard basis is denoted as {1, α, α2} where α3 + α+ 1 = 0. Let β = α3, then N = {β, β2, β4}

forms a normal basis. Write down element E using both representations:

E = (a0, a1, a2)StdB = (b0, b1, b2)NB

= a0 + a1α+ a2α
2 = b0β + b1β

2 + b2β
4

Compute the square of E in StdB first:

E2 = a0 + a1α
2 + a2α

4

= a0 + a2α+ (a1 + a2)α
2

= (a0, a2, a1 + a2)StdB

When it is computed in NB, we can make it very simple:

E2 =

Cyclic shift−−−−−−−−→
(b0, b1, b2) NB

= (b2, b0, b1)NB

This example shows the convenience of using NB when computing 2k power of an element.

Multiplication is more complicated than squaring; but when it is decomposed as bit-wise operations,

the property in Lemma 3.1 can be well utilized.

Example 3.5 (Bit-wise NB multiplication). Assume there are 2 binary vectors representing 2 operands

in NB over F2k : A = (a0, a1, . . . , ak−1), B = (b0, b1, . . . , bk−1). Note that in this example, by

default we use normal basis representation so subscript “NB” is skipped. Their product can also

be written as:

C = A×B = (c0, c1, . . . , ck−1)

Assume the most significant bit (MSB) of the product can be represented by a function fmult:

ck−1 = fmult(a0, a1, . . . , ak−1; b0, b1, . . . , bk−1) (3.8)
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Before discussing the details of the function fmult, we can square both sides of Equation 3.8, i.e.,

C2 = A2 × B2. Obviously, using the property in Lemma 3.1, the original second most significant

bit becomes the new MSB because of right-cyclic shifting. Concretely,

(ck−1, c0, c1, . . . , ck−2) = (ak−1, a0, a1, . . . , ak−2)× (bk−1, b0, b1, . . . , bk−2)

Note A2, B2 and C2 still belong to F2k , thus as a universal function implementing MSB multiplica-

tion over F2k , fmult still remains the same. As a result, the new MSB can be written as

ck−2 = fmult(ak−1, a0, a1, . . . , ak−2; bk−1, b0, b1, . . . , bk−2) (3.9)

Similarly, if we take a square again on the new equation, we can get ck−3. Successively we can

derive all bits of product C using the same function fmult, and the only adjustment we need to make

is to right-cyclic shift 2 operands by 1 bit each time.

From the above example, it is known that a universal structure that implements fmult can be

reused k times in NB multiplication over F2k . Compared to StdB, which requires a distinct design

for every bit of multiplication, NB is less costly – as long as we can prove fmult implies a structure

with o(k2) complexity (symbol o denotes “strictly lower than bound”).

If we want to make the complexity of fmult lower than O(k2), then the best choice is to try

out linear functions. As we know, matrix multiplication can simulate all possible combinations of

linear functions. Imagine A is a k-bit row vector and B is a k-bit column vector, then the single bit

product can be written as the product of matrix multiplication

cl = A×M ×B

where

A = (a0, a1, . . . , ak−1)

B =


b0
b1
...

bk−1


Moreover, M is a k × k square binary matrix. If we can find M , we obtain the design of the

multiplier.
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Definition 3.9 (λ-Matrix). A binary k × k matrix M is used to describe the bit-wise normal basis

multiplication function fmult where

cl = fmult(A,B) = A×M ×BT (3.10)

Symbol BT denotes vector transposition. Matrix M is called λ-Matrix of k-bit NB multiplication

over F2k .

When taking different bits l of the product in Equation 3.10, we obtain a series of conjugate

matrices of M . This means that instead of shifting operands A and B, we can also shift the matrix.

More specifically, we denote the matrix by l-th λ-Matrix as

cl = A×M (l) ·BT

Meanwhile, the operator-shifting rule in Equation 3.9 still holds. Then we have the relation

cl−1 = A ·M (l−1) ·BT = shift(A) ·M (l) · shift(B)T

which means by right and down cyclically shifting M (l−1), we can get M (l).

Example 3.6 (NB multiplication using λ-Matrix). Over GF F23 constructed by irreducible polyno-

mial α3+α+1, let normal element β = α3,N = {β, β2, β4} forms a normal basis. Corresponding

0-th λ-Matrix is

M (0) =

 0 1 0
1 0 1
0 1 1


i.e.,

c0 = (a0 a1 a2)

 0 1 0
1 0 1
0 1 1

 b0
b1
b2


From 0-th λ-Matrix we can directly write down all remaining λ-Matrices:

M (1) =

 1 0 1
0 0 1
1 1 0

 M (2) =

 0 1 1
1 1 0
1 0 0


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If we generalize the definition and explore the nature of λ-Matrix, it is defined as cross-product

terms from multiplication, which is

Product vector C = (
k−1∑
i=0

aiβ
2i)(

k−1∑
j=0

bjβ
2j ) =

k−1∑
i=0

k−1∑
j=0

aibjβ
2iβ2

j
(3.11)

The expressions β2
i
β2

j
are referred to as cross-product terms, and can be represented by NB, i.e.,

β2
i
β2

j
=

k−1∑
l=0

λ
(l)
ij β

2l , λ
(l)
ij ∈ F2. (3.12)

Substitution yields an expression for l-th digit of product as showed in Equation 3.8:

cl =
k−1∑
i=0

k−1∑
j=0

λ
(l)
ij aibj (3.13)

λ
(l)
ij is the entry with coordinate (i, j) in l-th λ-Matrix.

The λ-Matrix can be implemented with XOR and AND gates in circuit design. The very naive

implementation requires O(CN ) gates, where CN is the number of nonzero entries in λ-Matrix.

There usually exist multiple NBs in F2k , k > 3. If we employ a random NB, there is no mathe-

matical guarantee that CN has bound o(k). However, Mullin et al. [108] prove that in certain GF

F
pkopt

, there always exists at least one NB such that its corresponding λ-Matrix has CN = 2n − 1

nonzero entries. A basis with this property is called optimal normal basis (ONB), details of which

are introduced in Appendix B.

In practice, large NB multipliers are usually designed in F2k when ONB exists to minimize the

number of gates. So in the following part of this chapter and our experiments, we only focus on

ONB multipliers instead of general NB multipliers.

3.2.3 Comparison between Standard Basis and Normal Basis

At the end of this section, a detailed example is used to make a comparison between StdB

multiplication and NB multiplication.

Example 3.7 (Rijndael’s finite field). Rijndael uses a characteristic 2 finite field with 256 elements,

which can also be called the GF F28 . Let us define the primitive element α using irreducible

polynomial α8 + α7 + α6 + α4 + α2 + α + 1. Coincidently, α is also a normal element, i.e.,

β = α can construct a NB {α, α2, α4, α8, α16, α32, α64, α128}.
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We pick a pair of elements from the Rijndael’s field: A = (0100 1011)StdB = (4B)StdB, B =

(1100 1010)StdB = (CA)StdB . First let us compute their product in StdB, the rule follows ordinary

polynomial multiplication.

A ·B = (α6 + α3 + α+ 1)(α7 + α6 + α3 + α)

= (α13 + α10 + α8 + α7) + (α12 + α9 + α7 + α6) + (α9 + α6 + α4 + α3)

+ (α7 + α4 + α2 + α)

= α13 + α12 + α10 + α8 + α7 + α3 + α2 + α

Note that this polynomial is not the final form of the product because it needs to be reduced modulo

irreducible polynomial α8 + α7 + α6 + α4 + α2 + α + 1. This can be done using base-2 long

division. Note the dividend and divisor are written in pseudo Boolean vectors, not real Boolean

vectors in any kind of bases.

111010111
101001)

11010110001110
111010111

111101101
111010111

111010110
111010111

1

The final remainder is 1, i.e., the product equals 1 in StdB.

On the other hand, operands A and B can be written in NB as

A = (0010 1001)NB, B = (0100 0010)NB

The λ-Matrix for F2[x] (mod x8 + x7 + x6 + x4 + x2 + x+ 1) is (Computation of λ-Matrix refers

to Appendix A)
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M (0) =



0 0 0 0 1 0 1 1
0 0 1 1 1 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 1 1 0 1
1 1 0 1 0 1 0 0
0 1 0 1 1 0 0 1
1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 1


Taking matrix multiplication c0 = A×M (0) × BT , the result is c0 = 1. Then by cyclic shifting A

and B (or shifting M (0), either is applicable), we can successively obtain other bits of product. The

final answer is

C = (0000 0001)NB

It is equivalent to the result in StdB.

Mastrovito multiplier [101] and Montgomery multiplier [102] are 2 common designs of GF

multipliers using StdB. As a naive implementation of GF multiplication, Mastrovito multiplier uses

most number of gates: k2 AND gates and less than k2 XOR gates [112]. Montgomery multiplier

applies lazy reduction techniques and results in a better latency performance, while the number of

gates are about the same with Mastrovito multiplier: k2 AND gates and k2− k/2 XOR gates [104].

For an 8-bit (F28) multiplier, typical design of Mastrovito multiplier consists of 218 logic gates,

while Montgomery multiplier needs 198 gates. However, the NB multiplier reuses the λ-Matrix

logic, so this component will only need to be implemented for once. Consider the definition of

matrix multiplication, it needs CN AND gates to apply bit-wise multiplication and CN − 1 XOR

gates to sum the intermediate products up. The number of nonzero entries in the λ-Matrix can be

counted: CN = 27. As a result, the most naive NB multiplier design (or Massey-Omura multiplier

[109]) contains 53 gates in total, which is a great saving in area cost compared to StdB multipliers.

3.3 Design of a Normal Basis Multiplier on Gate Level
The NB multiplier design consists of fewer gates than ordinary StdB multiplier design, even if

we use the most naive design. However, the modern NB multiplier design has been improved a lot

from the very first design model proposed by Massey and Omura in 1986 [109]. In order to test

our approach on practical contemporary circuits, it is necessary to learn the mechanism and design

routine of several kinds of modern NB multipliers.
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3.3.1 Sequential Multiplier with Parallel Outputs

The major benefit of NB multiplier originates from the sequential design. A straightforward

design implementing the cyclic-shift of operands and λ-Matrix logic component is the Massey-

Omura multiplier.

Figure 3.1 shows the basic architecture of a Massey-Omura multiplier. The operands A and B

are 2 arrays of flip-flops which allow 1-bit right-cyclic shift every clock cycle. The logic gates in the

boxes implements the matrix multiplication with λ-MatrixM (0), while each AND gate corresponds

to term aibj and each XOR gate corresponds to addition aibj + ai′bj′ . The XOR layer has only 1

output, giving out 1 bit of product C every clock cycle.

The behavior of Massey-Omura multiplier can be described as follows: preload operands A,B

and reset C to 0, after executing for k clock cycles, the data stored in flip-flop array C is the

product A × B. We note that there is only one output giving 1 bit of the product each clock cycle,

which matches the definition of serial output to communication channel. Therefore this type of

design is called a sequential multiplier with serial output (SMSO). The SMSO architecture needs

CN AND gates and CN − 1 XOR gates, which equals to 2k− 1 AND gates and 2k− 2 XOR gates

if it is designed using ONB. In fact, the number of gates can be reduced if the multiplication is

implemented using a conjugate of SMSO.

The gate-level logic boxes implement the following function:

cl = row1(A×M (l))×B + row2(A×M (l))×B + · · ·+ rowk(A×M (l))×B (3.14)

It can be decomposed into k terms. If we only compute one term for each cl, 0 ≤ l ≤ k − 1 in one

clock cycle, make k outputs and add them up using shift register after k clock cycles, it will generate

the same result with SMSO. This kind of architecture is called a sequential multiplier with parallel

outputs (SMPO). The basic SMPO, as a conjugate of Massey-Omura multiplier, was invented by

Agnew et al. [110].

Example 3.8 (5-bit Agnew’s SMPO). Given GF F25 and primitive element α defined by irreducible

polynomial α5 +α2 + 1 = 0, normal element β = α5 constructs an ONB {β, β2, β4, β8, β16}. The

0-th λ-Matrix for this ONB is

M (0) =


0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
0 0 1 0 1


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a1 a2 ak b1 b2 bk

c1c2ck

AND Layer

XOR Layer

Output

… … … …

… … … …

… …… …

…
…

…
…

… … c3

C

Figure 3.1: A typical SMSO structure of Massey-Omura multiplier.
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Then a typical design of 5-bit Agnew’s SMPO is depicted in Figure 3.2.

The operands part of this circuit is the same with Massey-Omura multiplier. The differences are

on the matrix multiplication part, while it is implemented as separate logic blocks for 5 outputs, and

the 5 blocks are connected in a shift register fashion. By analyzing the detailed function of logic

blocks, we can reveal the mechanism of Agnew’s SMPO.

Suppose we implement M (0) as the logic block in SMSO. In the first clock cycle, the output is

c0 = a1b0 + (a0 + a3)b1 + (a3 + a4)b2 + (a1 + a2)b3 + (a2 + a4)b4 (3.15)

It is written in the form of Equation 3.14. In next clock cycles we can obtain remaining bits of the

product, which can be written in the following general form polynomial:

ci =biai+1 + bi+1(ai + ai+3) + bi+2(ai+3 + ai+4)

+ bi+3(ai+1 + ai+2) + bi+4(ai+2 + ai+4), 0 ≤ i ≤ 4

Note all index calculations are reduced modulo 5.

DFF

R
i

R
4

R
3

R
2

R
1

R
0

a
0
a
1
a
2
a
3
a
4

b
0
b
1
b
2
b
3
b
4

a
u

a
v

c
i

r
i

b
w

Figure 3.2: 5-bit Agnew’s SMPO. Index i satisfies 0 < i < 4, indices u, v are determined by
column # of nonzero entries in i-th row of λ-Matrix M (0), i.e., if entry M (0)

ij is a nonzero entry, u
or v equals to i+ j (mod 5). Index w = 2i (mod 5).
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Now let us observe the behavior of 5-bit Agnew’s SMPO. Initially all DFFs are reset to 0. In the

first clock cycle, signal sent to the flip-flop in block R0 denotes function:

R
(1)
0 = a1b0.

This equals the first term of Equation 3.15. In the second clock cycle, this signal is sent to block

R1 through wire r0, and this block also receives data from operands (shifted by 1 bit), generating

signal au, av and bw. Concretely, signal sent to flip-flop in block R1 is:

R
(2)
1 = R

(1)
0 + (a0 + a3)b1 = a1b0 + (a0 + a3)b1

which forms the first 2 terms of Equation 3.15. Similarly, we track the signal on R2 in the third

clock cycle, signal on R3 in the fourth clock cycle, finally we can get

R
(5)
4 = a1b0 + (a0 + a3)b1 + (a3 + a4)b2 + (a1 + a2)b3 + (a2 + a4)b4

which is equal to c0 in Equation 3.15. After the fifth clock cycle ends, this signal can be detected on

wire r0. It shows that the result of c0 is computed after 5 clock cycles and given on r0.

If we track R1 → R2 → R3 → · · · → R0, we can obtain c1. Thus we conclude that Agnew’s

SMPO functions the same with Massey-Omura multiplier.

The design of Agnew’s SMPO guarantees that there is only one AND gate in eachRi block. For

ONB, adopting Agnew’s SMPO will reduce the number of AND gates from 2k − 1 to k.

3.3.2 Multiplier Not Based on the λ-Matrix

Both Massey-Omura multiplier and Agnew’s SMPO rely on the implementation of λ-Matrix,

which means that they will be identical if unrolled to full combinational circuits. After Agnew’s

work of parallelization, researchers proposed more designs of SMPO, some of which jump out of

the box and are independent from λ-Matrix. One competitive multiplier design of this type was

invented by Reyhani-Masoleh and Hasan [111], which is therefore called RH-SMPO.

Figure 3.3 is a 5-bit RH-SMPO, which is functionally equivalent to the 5-bit Agnew’s SMPO in

Figure 3.2. A brief proof is as follows:

Proof. First, we define an auxiliary function for i-th bit

Fi(A,B) = aibiβ +

v∑
j=1

di,jβ
1+2j (3.16)
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a0 a1 a2 a3 a4 b0 b1 b2 b3 b4

R0R1R2R3R4

c1
c3

c2 c4

d0
d2d1

e4 e3 e0

r1

r0
r2

r3r4

c-Layer

d-Layer

e-Layer

XOR

Outputs

Figure 3.3: A 5-bit RH-SMPO.
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where 0 ≤ i ≤ k − 1, v = bk/2c, 1 ≤ j ≤ v. The d-layer index di,j is defined as

di,j = ca,icb,i = (ai + ai+j)(bi + bi+j), 1 ≤ j ≤ v (3.17)

i + j here is the result reduced modulo k. Note that there is a special boundary case when k is an

even number (v = k
2 ):

di,v = (ai + ai+v)bi

With the auxiliary function, we can utilize the following theorem (proof refers to [111]):

Theorem 3.4. Consider three elements A,B, and R such that R = A×B over F2k . Then,

R = (((F 2
k−1 + Fk−2)

2 + Fk−3)
2 + · · ·+ F1)

2 + F0

where auxiliary function Fi is as given in Equation 3.16. This form is called inductive sum of

squares, and corresponds to the cyclic shifting on Ri flip-flops.

Concretely, the multiplier behavior is an implementation of the following algorithm:

Algorithm 1: NB Multiplication Algorithm in RH-SMPO [111]
Input: A,B ∈ F2k given w.r.t. NB N
Output: R = A×B

1 Initialize A,B and aux var X to 0;
2 for (i = 0; i < k; ++i ) do
3 X ← X2 + Fk−1(A,B) /*use aux-func from Equation 3.16*/;
4 A← A2, B ← B2 /*Right-cyclic shift A and B*/;

5 end
6 R← X

In this algorithm, we use a fixed auxiliary function Fk−1 inside the loop. This is because of

equation

Fk−l = Fk−1(A
2l−1

, B2l−1
), 1 ≤ l ≤ k

So, using fixed Fk−1 and squaring A2i every time inside the loop is equivalent to computing

sequence Fk−1, Fk−2, . . . , F0 with fixed operands A,B.

To better understand the mechanism of RH-SMPO, we will use this 5-bit RH-SMPO as an

example and introduce the details on how to design it.

Example 3.9 (Designing a 5-bit RH-SMPO). From Equation 3.16 we can deploy AND gates in

d-layer according to di,j , and XOR gates in c-layer according to Equation 3.17. Concretely, as

Algorithm 1 describes, we implement auxiliary function Fk−1 in the logic:

i = k − 1 = 4; v = b5/2c = 2
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F4(A,B) = a4b4β +

2∑
j=1

d4,jβ
1+2j = d0β +

2∑
j=1

d4,jβ
1+2j (3.18)

Consider equality of indices 4 + 1 = 0 mod 5, 4 + 2 = 1 mod 5, we can write down gates in

c-layer and d-layer (besides d0)

c1 = a0 + a4, c2 = b0 + b4, d1 = d4,1 = c1c2 = (a4 + a0)(b4 + b0)

c3 = a1 + a4, c4 = b1 + b4, d2 = d4,2 = c3c4 = (a4 + a1)(b4 + b1)

The difficult part of the whole design is to deploy XOR gates in e-layer. As the logic layer closest

to the outputs Ri, e-layer actually finishes the implementation of Fk−1(A,B). But it is not a simple

addition; the reason is before bit-wise adding to X2, it is necessary to turn the sum to NB form.

In other words, theoretically we need k XOR gates in e-layer, the output of i-th gate forms the

coefficient of β2
i
.

In order to obtain information indicating interconnections between the d-layer and e-layer, we

need to interpret β1+2j to NB representation. There is a concept called multiplication table (M-

table) which can assist this interpretation. It is defined as a k × k matrix T over F2:
β1+20

β1+21

β1+22

...
β1+2k−1

 = β


β
β2

β4

...
β2

k−1

 =


T0,0 T0,1 . . . T0,k−1
T1,0 T1,1 . . . T1,k−1
T2,0 T2,1 . . . T2,k−1

...
...

. . .
...

Tk−1,0 Tk−1,1 . . . Tk−1,k−1




β
β2

β4

...
β2

k−1

 = T


β
β2

β4

...
β2

k−1

 (3.19)

It is a known fact that M-table T can be converted from λ-Matrix M :

M
(0)
i,j = Tj−i,−i

with indices reduced modulo k (proof given in Appendix B). Thus we can write down the M-table of

F25 with current NB N :

Note that we only use row 1 and row 2 from the M-table since range 1 ≤ j ≤ 2. All

nonzero entries in these 2 rows corresponds to the interconnections between d-layer and e-layer.

For example, row 1 has two nonzero entries at column 0 and column 3, which corresponds to

interconnections between d1 and e0, e3. This conclusion comes from row 1 in Equation 3.19:

β · β2 =
[
1 0 0 1 0

]

β
β2

β4

β8

β16

 = β + β2
3
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Similarly, from row 2 of the M-table we derive that d2 has fanouts e3, e4:

β · β22 =
[
0 0 0 1 1

]

β
β2

β4

β8

β16

 = β2
3

+ β2
4

Let us look back at Equation 3.18; we already dealt with the latter part. The first term is always

d0β, which denotes d0 should always be connected to e0(β). After gathering all interconnection

information, we can translate it to gate-level circuit implementation:

e0 = d0 + d1, e3 = d1 + d2, e4 = d2

Then the last mission is to implement the output Ri layer. Assume ri−1 is the output of Ri−1 in

the last clock cycle, we can connect using the relation

Ri = ri−1 + ei

In this example, according to the M-table in Figure 3.4, columns e1, e2 have only zeros in their

intersection with rows d1, d2. Thus gates for e1, e2 can be omitted.

This finishes the full design procedure for a 5-bit RH-SMPO.

The area cost of RH-SMPO is even smaller than Agnew’s SMPO. XOR gates correspond to all

nonzero entries in M-table, which is with the same number of nonzero entries in λ-Matrix (CN ).

The number of AND gates equals to v plus 1 (for gate d0). When using ONB (CN = 2k − 1), the

total number of gates is 2k + bk2c.

0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
0 0 1 0 1

d1

d2

e0 e3 e4

Figure 3.4: A 5× 5 multiplication table.
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3.4 Concluding Remarks
In this chapter, we introduced basic concepts such as the definition of finite fields and the

construction of finite fields. Moreover, we described a special kind of basis in finite field, and its

application on Galois field hardware design. The sequential Galois field multipliers based on these

principles are used as candidates for applying our functional verification approach in subsequent

chapters.



CHAPTER 4

GRÖBER BASES AND ALGEBRAIC GEOMETRY

This chapter reviews fundamental concepts of commutative and computer algebra which are

used in this work. Specifically, this chapter covers monomial ordering, polynomial ideals and

varieties, and the computation of Gröbner bases. It also overviews elimination theory as well as

Hilbert’s Nullstellensatz theorems and how they apply to Galois fields. The results of these theorems

are used in polynomial abstraction and formal verification of Galois field circuits and are discussed

in subsequent chapters. The material of this chapter is mostly taken from the textbooks [17, 113]

and previous work by Lv [19] as well as Pruss [16].

4.1 Algebraic Geometry Fundamentals
4.1.1 Monomials, Polynomials and Polynomial Algebra

Definition 4.1. A monomial in variables x1, x2, · · · , xd is a product of the form:

xα1
1 · x

α2
2 · · · ·x

αd
d , (4.1)

where αi ≥ 0, i ∈ {1, · · · , d}. The total degree of the monomial is α1 + · · ·+ αd.

Thus, x2 ·y is a monomial in variables x, y with total degree 3. For simplicity, we will henceforth

denote a monomial xα1
1 · x

α2
2 · · · ·x

αd
d as xα, where α = (α1, · · · , αd) is a vector size d of integers

≥ 0, i.e., α ∈ Zd≥0.

Definition 4.2. Let R be a ring. A polynomial over R in the indeterminate x is an expression of the

form:

a0 + a1x+ a2x
2 + · · ·+ akx

k =
k∑
i=0

aix
i,∀ai ∈ R. (4.2)

The constants ai are the coefficients and k is the degree of the polynomial. For example, 8x3 +

6x+ 1 is a polynomial in x over Z, with coefficients 8, 6, and 1 and degree 3.
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Definition 4.3. The set of all polynomials in the indeterminate x with coefficients in the ring R

forms a ring of polynomials R[x]. Similarly, R[x1, x2, · · · , xn] represents the ring of multivariate

polynomials with coefficients in R.

For example, Z24 [x] stands for the set of all polynomials in x with coefficients in Z24 . 8x3 +

6x+ 1 is an instance of a polynomial contained in Z24 [x].

Definition 4.4. A multivariate polynomial f in variables x1, x2, . . . , xd with coefficients in any

given field F is a finite linear combination of monomials with coefficients in F:

f =
∑
α

aα · xα, aα ∈ F

The set of all polynomials in x1, x2, . . . , xd with coefficients in field F is denoted by F[x1, x2, . . . , xd].

Thus, f ∈ F[x1, x2, . . . , xd]

1. We refer to the constant aα ∈ F as the coefficient of the monomial aαxα.

2. If aα 6= 0, we call aαxα a term of f .

As an example, 2x2 + y is a polynomial with two terms 2x2 and y, with 2 and 1 as coefficients

respectively. In contrast, x+ y−1 is not a polynomial because the exponent of y is less than 0.

Since a polynomial is a sum of its terms, these terms have to be arranged unambiguously so that

they can be manipulated in a consistent manner. Therefore, we need to establish a concept of term

ordering (also called monomial ordering). A term ordering, represented by >, defines how terms

in a polynomial are ordered.

Common term orderings are lexicographic ordering (LEX) and its variants: degree-lexicographic

ordering (DEGLEX) and reverse degree-lexicographic ordering (DEGREVLEX).

A lexicographic ordering (LEX) is a total-ordering > such that variables in the terms are

lexicographically ordered, i.e., simply based on when the variables appear in the ordering. It is also

a well-order, where the least element exists. Higher variable-degrees take precedence over lower

degrees for equivalent variables (e.g., a3 > a2 due to a · a · a > a · a · 1).

Definition 4.5. Lexicographic order: Let x1 > x2 > · · · > xd lexicographically. Also let α =

(α1, . . . , αd); β = (β1, . . . , βd) ∈ Zd≥0. Then we have:

xα > xβ ⇐⇒

{
Starting from the left, the first co-ordinates of αi, βi
that are different satisfy αi > βi

(4.3)
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A degree-lexicographic ordering (DEGLEX) is a total-ordering> such that the total degree of

a term takes precedence over the lexicographic ordering. A degree-reverse-lexicographic ordering

(DEGREVLEX) is the same as a DEGLEX ordering, but terms are LEXed in reverse.

Definition 4.6. Degree Lexicographic order: Let x1 > x2 > · · · > xd lexicographically. Also let

α = (α1, . . . , αd); β = (β1, . . . , βd) ∈ Zd≥0. Then we have:

xα > xβ ⇐⇒

{∑d
i=1 αi >

∑d
i=1 βi or∑d

i=1 αi =
∑d

i=1 βi and xα > xβ w.r.t. LEX order
(4.4)

Definition 4.7. Degree Reverse Lexicographic order: Let x1 > x2 > · · · > xd lexicographically.

Also let α = (α1, . . . , αd); β = (β1, . . . , βd) ∈ Zd≥0. Then we have:

xα > xβ ⇐⇒


∑d

i=1 αi >
∑d

i=1 βi or∑d
i=1 αi =

∑d
i=1 βi and the first co-ordinates

αi, βi from the right, which are different, satisfy αi < βi

(4.5)

Based on the monomial ordering, we have the following concepts:

Definition 4.8. The leading term is the first term in a term-ordered polynomial. Likewise, the

leading coefficient is the coefficient of the leading term. Finally, a leading monomial is the leading

term lacking the coefficient. We use the following notation:

lt(f) Leading Term (4.6)

lc(f) Leading Coefficient (4.7)

lm(f) Leading Monomial (4.8)

tail(f) f − lt(f) (4.9)

Example 4.1.

f = 3a2b+ 2ab+ 4bc (4.10)

lt(f) = 3a2b (4.11)

lc(f) = 3 (4.12)

lm(f) = a2b (4.13)

tail(f) = 2ab+ 4bc (4.14)

Polynomial division is an operation over polynomials that is dependent on the imposed mono-

mial ordering. Dividing a polynomial f by another polynomial g cancels the leading term of f to

derive a new polynomial.
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Definition 4.9. Let F be a field and let f, g ∈ F[x1, x2, . . . , xd] be polynomials over the field.

Polynomial division of f by g is computed following:

f − lt(f)

lt(g)
· g (4.15)

This polynomial division is denoted

f
g−→ r (4.16)

where r is the resulting polynomial of the division. If lt(f)lt(g) is nonzero, then f is considered divisible

by g, i.e., g | f .

Notice that if g - f , that is if f is not divisible by g, then the division operation gives r = f .

Example 4.2. Over R[x, y, z], set the lex term order x > y > z. Let f = −2x3 + 2x2yz + 3xy3

and g = x2 + yz.
lt(f)

lt(g)
=
−2x3

x2
= −2x (4.17)

Since lt(f)
lt(g) is nonzero g|f . The division, f

g−→ r, is computed as:

r = f − lt(f)

lt(g)
· g = −2x3 + 2x2yz + 3xy3 − (−2x · (x2 + yz))

= −2x3 + 2x2yz + 3xy3 − (−2x3 − 2xyz) = 2x2yz + 3xy3 + 2xyz (4.18)

Notice that the division f
g−→ r cancels the leading term of f .

Similarly, we can also define when a polynomial is divided (reduced) by a set of polynomials.

Definition 4.10. The reduction of a polynomial f , by another polynomial g, to a reduced polyno-

mial r is denoted:

f
g−→+ r

which is the transitive and reflective closure of the relation f
g−→ r. Reduction is carried out using

multivariate, polynomial long division.

For sets of polynomials, the notation

f
F−→+ r

represents the reduced polynomial r resulting from f as reduced by a set of nonzero polynomials

F = {f1, . . . , fs}. The polynomial r is considered reduced if r = 0 or no term in r is divisible by

lm(fi), ∀fi ∈ F .
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The reduction process f F−→+ r, of dividing a polynomial f by a set of polynomials of F ,

can be modeled as repeated long-division of f by each of the polynomials in F until no further

reductions can be made. The result of this process is then r. This reduction process is shown in

Algorithm 2.

Algorithm 2: Polynomial Reduction
Input: f, f1, . . . , fs
Output: r, a1, . . . , as, such that f = a1 · f1 + · · ·+ as · fs + r.

1 a1 = a2 = · · · = as = 0; r = 0;
2 p := f ;
3 while p 6= 0 do
4 i=1;
5 divisionmark = false;
6 while i ≤ s && divisionmark = false do
7 if fi can divide p then
8 ai = ai + lt(p)/lt(fi);
9 p = p− lt(p)/lt(fi) · fi;

10 divisionmark = true;
11 else
12 i=i+1;
13 end
14 end
15 if divisionmark = false then
16 r = r + lt(p);
17 p = p− lt(p);
18 end
19 end

The reduction algorithm keeps canceling the leading terms of polynomials until no more leading

terms can be further canceled. So the key step is p = p− lt(p)/lt(fi) · fi, as the following example

shows.

Example 4.3. Given f = y2−x and f1 = y−x in Q[x, y] with deglex: y > x, perform f
f1−→+ r:

1. f = y2 − x, f/f1 = f − lt(f)/lt(f1) · f1 = y2 − x− (y2/y) · (y − x) = y · x− x

2. f = y · x− x, f/f1 = f − lt(f)/lt(f1) · f1 = (y · x− x)/f1 = x2 − x

3. f = x2 − x, no more operations possible, so r = x2 − x

4.1.2 Varieties and Ideals

In computer-algebra-based formal verification, it is often necessary to analyze the presence or

absence of solutions to a given system of constraints. In our applications, these constraints are
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polynomials and their solutions are modeled as varieties.

Definition 4.11. Let F be a field, and let f1, . . . , fs ∈ F[x1, x2, . . . , xd]. We call V (f1, . . . , fs) the

affine variety defined by f1, . . . , fs as:

V (f1, . . . , fs) = {(a1, . . . , ad) ∈ Fd : fi(a1, . . . , ad) = 0,∀i, 1 ≤ i ≤ s} (4.19)

V (f1, . . . , fs) ∈ Fd is the set of all solutions in Fd of the system of equations: f1(x1, . . . , xd) =

· · · = fs(x1, . . . , xd) = 0.

Example 4.4. Given R [x, y], V (x2 + y2) is the set of all elements that satisfy x2 + y2 = 0 over

R2. So V (x2 +y2) = {(0, 0)}. Similarly, in R [x, y], V (x2 +y2−1) = {all points on the circle :

x2 + y2 − 1 = 0}. Note that varieties depend on which field we are operating on. For the same

polynomial x2 + 1, we have:

• In R[x], V (x2 + 1) = ∅.

• In C[x], V (x2 + 1) = {(±i)}.

The above example shows the variety can be infinite, finite (nonempty set) or empty. It is

interesting to note that since we will be operating over finite fields Fq, any finite set of points is

a variety. Likewise, any variety over Fq is finite (or empty). Consider the points {(a1, . . . , ad) :

a1, . . . , ad ∈ Fq} in Fdq . Any single point is a variety of some polynomial system: e.g. (a1, . . . , ad)

is a variety of x1 − a1 = x2 − a2 = · · · = xd − ad = 0. Finite unions and finite intersections of

varieties are also varieties.

Example 4.5. Let U = V (f1, . . . , fs) and W = V (g1, . . . , gt) in Fq. Then:

• U ∩W = V (f1, . . . , fs, g1, . . . , gt)

• U ∪W = V (figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t)

One important distinction we need to make about varieties is that a variety depends not just on

the given system of polynomial equations, but rather on the ideal generated by the polynomials.

Definition 4.12. A subset I ⊂ F[x1, x2, . . . , xd] is an ideal if it satisfies:

• 0 ∈ I



47

• I is closed under addition: x, y ∈ I ⇒ x+ y ∈ I

• If x ∈ F[x1, x2, . . . , xd] and y ∈ I , then x · y ∈ I and y · x ∈ I .

An ideal is generated by its basis or generators.

Definition 4.13. Let f1, f2, . . . , fs be polynomials of the ring F[x1, x2, . . . , xd]. Let I be an ideal

generated by f1, f2, . . . , fs. Then:

I = 〈f1, . . . , fs〉 = {h1f1 + h2f2 + . . .+ hsfs : h1, . . . , hs ∈ F[x1, . . . , xd]}

then, f1, . . . , fs are called the basis (or generators) of the ideal I and correspondingly I is denoted

as I = 〈f1, f2, . . . , fs〉.

Example 4.6. The set of even integers, which is a subset of the ring of integers Z, forms an ideal of

Z. This can be seen from the following;

• 0 belongs to the set of even integers.

• The sum of two even integers x and y is always an even integer.

• The product of any integer x with an even integer y is always an even integer.

Example 4.7. Given R [x, y], I = 〈x, y〉 is an ideal containing all polynomials generated by x and

y, such as x2 + y and x + x · y. The ideal J = 〈x2, y2〉 is an ideal containing all polynomials

generated by x2 and y2, such as x2 + y3 and x10 + x2 · y2. Notice that J ⊂ I because every

polynomial generated by J can be generated by I . But I 6= J because x+ y can only be generated

by I .

The same ideal may have many different bases. For instance, it is possible to have different sets

of polynomials {f1, . . . , fs} and {g1, . . . , gt} that may generate the same ideal, i.e., 〈f1, . . . , fs〉 =

〈g1, . . . , gt〉. Since variety depends on the ideal, these sets of polynomials have the same solutions.

Proposition 4.1. If f1, . . . , fs and g1, . . . , gt are bases of the same ideal in F[x1, . . . , xd], so that

〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V (f1, . . . , fs) = V (g1, . . . , gt).
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Example 4.8. Consider the two bases F1 = {(2x2+3y2−11, x2−y2−3} and F2 = {x2−4, y2−1}.

These two bases generate the same ideal, i.e., 〈F1〉 = 〈F2〉. Therefore, they represent the same

variety, i.e.,

V (F1) = V (F2) = {±2,±1}. (4.20)

Ideals and their varieties are a key part of computer-algebra-based formal verification. A given

hardware design can be transformed into a set of polynomials over a field, F = {f1, . . . , fs}. This

set of polynomials gives the system of equations:

f1 = 0

...

fs = 0

Using algebra, it is possible to derive new equations from the original system. The ideal 〈f1, . . . , fs〉

provides a way of analyzing such consequences of a system of polynomials.

Example 4.9. Given two equations in R[x, y, z]:

x = z + 1

y = x2 + 1

we can eliminate x to obtain a new equation:

y = (z + 1)2 + 1 = z2 + 2z + 2

Let f1, f2, h ∈ R[x, y, z] be polynomials based on these equations:

f1 = x− z − 1 = 0

f2 = y − x2 − 1 = 0

h = y − z2 − 2z − 2 = 0

If I is the ideal generated by f1 and f2, i.e., I = 〈f1, f2〉, then we find h ∈ I as follows:

g1 = x+ z + 1

g2 = 1

h = g1 · f1 + g2 · f2 = y − z2 − 2z − 2

where g1, g2 ∈ R[x, y, z]. Thus, we call h a member of the ideal I .
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Let F be any field and let a = (a1, . . . , ad) ∈ Fd be a point, and f ∈ F[x1, . . . , xd] be a

polynomial. We say that f vanishes on a if f(a) = 0, i.e., a is in the variety of f .

Definition 4.14. For any variety V of Fd, the ideal of polynomials that vanish on V , called the

vanishing ideal of V , is defined as ideal of variety:

I(V ) = {f ∈ F[x1, . . . , xd] : ∀a ∈ V, f(a) = 0}

Proposition 4.2. If a polynomial f vanishes on a variety V , then f ∈ I(V ).

Example 4.10. Let ideal J = 〈x2, y2〉. Then V (J) = {(0, 0)}. All polynomials in J will obviously

agree with the solution and vanish on this variety. However, the polynomials x, y are not in J but

they also vanish on this variety. Therefore, I(V (J)) is the set of all polynomials that vanish on

V (J), and the polynomials x, y are members of I(V (J)).

Definition 4.15. Let J ⊂ F[x1, . . . , xd] be an ideal. The radical of J is defined as
√
J = {f ∈

F[x1, . . . , xd] : ∃m ∈ N, fm ∈ J}.

Example 4.11. Let J = 〈x2, y2〉 ⊂ F [x, y]. Neither x nor y belongs to J , but they belong to
√
J .

Similarly, x · y /∈ J , but since (x · y)2 = x2 · y2 ∈ J , therefore, x · y ∈
√
J .

When J =
√
J , then J is said to be a radical ideal. Moreover, I(V ) is a radical ideal. By

analyzing the ideal J , generated by a system of polynomials derived from a hardware design, its

variety V (J), and the ideal of polynomials that vanish over this variety, I(V (J)), we can reason

about the existence of certain properties of the design. To check for the validity of a property, we

formulate the property as a polynomial and then perform an ideal membership test to determine

if this polynomial is contained within the ideal I(V (J)). A Gröbner basis provides a decision

procedure for performing this test, which is described in the following part.

4.1.3 Gröbner Bases

As mentioned earlier, different polynomial sets may generate the same ideal. Some of these

generating sets may be a better representation of the ideal, and thus provide more information and

insight into the properties of the ideal. One such ideal representation is a Gröbner basis, which

has a number of important properties that can solve numerous polynomial decision questions; the

following are used in this dissertation:
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• Check for presence or absence of solutions (varieties)

• Compute dimension of the varieties

• Test ideal membership of a polynomial

• Find projection of varieties by eliminating variables in LEX order

In essence, a Gröbner basis is a canonical representation of an ideal. There are many equivalent

definitions of Gröbner bases, so we start with the definition that best describes their properties:

Definition 4.16. A set of non-zero polynomials G = {g1, . . . , gt} which generate the ideal I =

〈g1, . . . , gt〉, is called a Gröbner basis for I if and only if for all f ∈ I where f 6= 0, there exists a

gi ∈ G such that lm(gi) divides lm(f).

G = GröbnerBasis(I) ⇐⇒ ∀f ∈ I : f 6= 0,∃gi ∈ G : lm(gi) | lm(f) (4.21)

Gröbner basis has an important property, and therefore can be used to perform an ideal mem-

bership test. Formally speaking, a Gröbner basis gives a decision procedure to test for polynomial

membership in an ideal. This is explained in the following Theorem.

Theorem 4.1. Ideal Membership Test Let G = {g1, · · · , gt} be a Gröbner basis for an ideal

I ⊂ K[x1, · · · , xd] and let f ∈ K[x1, . . . , xd]. Then f ∈ I if and only if the remainder on division

of f by G is zero.

In other words,

f ∈ I ⇐⇒ f
G−→+ 0 (4.22)

Example 4.12. Consider Example 4.13. Let f = y2x − x be another polynomial. Note that

f = yf1 + f2, so f ∈ I . If we divide f by f1 first and then by f2, we will obtain a zero remainder.

However, since the set {f1, f2} is not a Gröbner basis, we find that the reduction f
f2−→ x2−x f1−→

x2−x 6= 0; i.e., dividing f by f2 first and then by f1 does not lead to a zero remainder. However, if

we compute the Gröbner basis G of I , G = {x2− x, yx− y, y2− x}, dividing f by polynomials in

G in any order will always lead to the zero remainder. Therefore, one can decide ideal membership

unequivocally using the Gröbner basis.

The foundation for computing the Gröbner basis of an ideal was laid out by Buchberger [114].

Given a set of polynomials F = {f1, . . . , fs} that generate ideal I = 〈f1, . . . , fs〉, Buchberger gives
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an algorithm to compute a Gröbner basis G = 〈g1, . . . , gt〉. This algorithm relies on the notions of

S-polynomials and polynomial reduction.

Definition 4.17. For f, g ∈ F[x1, . . . , xd], an S-polynomial Spoly(f, g) is defined as:

Spoly(f, g) =
L

lt(f)
· f − L

lt(g)
· g (4.23)

where L = lcm (lt(f), lt(g))

Note lcm denotes least common multiple.

With the notions of S-polynomials and polynomial reduction in place, we can now present

Buchberger’s Algorithm for computing Gröbner bases [114]. Note that a fixed monomial (term)

ordering is required for a Gröbner basis computation to ensure that polynomials are manipulated in

a consistent manner.
Algorithm 3: Buchberger’s Algorithm

Input: F = {f1, . . . , fs}, such that I = 〈f1, . . . , fs〉, and term order >
Output: G = {g1, . . . , gt}, a Gröbner basis of I

1 G := F ;
2 repeat
3 G′ := G;
4 for each pair {fi, fj}, i 6= j in G′ do
5 Spoly(fi, fj)

G′−→+ r ;
6 if r 6= 0 then
7 G := G ∪ {r} ;
8 end
9 end

10 until G = G′;

Buchberger’s algorithm takes pairs of polynomials (fi, fj) in the basis G and combines them

into “S-polynomials” (Spoly(fi, fj)) to cancel leading terms. The S-polynomial is then reduced

(divided) by all elements of G to a remainder r, denoted as Spoly(fi, fj)
G−→+ r. This process is

repeated for all unique pairs of polynomials, including those created by newly added elements, until

no new polynomials are generated; ultimately constructing the Gröbner basis.

Example 4.13. Consider the ideal I ⊂ Q[x, y], I = 〈f1, f2〉, where f1 = yx − y, f2 = y2 − x.

Assume a degree-lexicographic term ordering with y > x imposed.

First, we need to compute Spoly(f1, f2) = x · f2 − y · f1 = y2 − x2. Then we conduct a

polynomial reduction y2 − x2
f2−→ x2 − x

f1−→ x2 − x. Let f3 = x2 − x. Then G is updated

as {f1, f2, f3}. Next we compute Spoly(f1, f3) = 0. So there is no new polynomial generated.
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Similarly, we compute Spoly(f2, f3) = x · y2 − x3, followed by x · y2 − x3 f1−→ y2 − x3 f2−→

x− x3 f2−→ 0. Again, no polynomial is generated. Finally, G = {f1,f2, f3}.

When computing a Gröbner basis, it is important to note that if lt(fi) and lt(fj) have no common

variables, the Spoly reduction step in Buchberger’s algorithm will reduce to 0.

Lemma 4.1. In Buchberger’s algorithm, when gcd(lt(fi), lt(fj)) = 0, the Spoly reduction

Spoly(fi, fj)
G′−→+ r

will produce r = 0.

Proof. If lt(f) and lt(g) have no common variables, L = lcm(lt(f), lt(g)) = lt(f) · lt(g). Then:

Spoly(f, g) =
L

lt(f)
· f − L

lt(g)
· g =

lt(f) · lt(g)

lt(f)
· f − lt(f) · lt(g)

lt(g)
· g = lt(g) · f − lt(f) · g

Thus, every monomial in Spoly(f, g) is divisible by either lt(f) or lt(g), so computing the remain-

der of Spoly: Spoly(f, g)
f,g−→+ r will give r = 0.

A Gröbner basis is not a canonical representation of an ideal, but a reduced Gröbner basis is.

To compute a reduced Gröbner basis, we first must compute a minimal Gröbner basis.

Definition 4.18. A minimal Gröbner basis for a polynomial ideal I is a Gröbner basis G for I

such that

• lc(gi) = 1,∀gi ∈ G

• ∀gi ∈ G, lt(gi) /∈ 〈lt(G− {gi})〉

A minimal Gröbner basis is a Gröbner basis such that all polynomials have a coefficient of 1

and no leading term of any element in G divides another in G. Given a Gröbner basis G, a minimal

Gröbner basis can be computed as follows:

1. Minimize every gi ∈ G, i.e., gi = gi/lc(gi).

2. For gi, gj ∈ Gwhere i 6= j, remove gi fromG if lt(gi) | lt(gj), i.e., remove every polynomial

in G whose leading term is divisible by the leading term of some other polynomial in G.

A minimal Gröbner basis can then be further reduced.
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Definition 4.19. A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G =

{g1, . . . , gt} such that:

• lc(gi) = 1,∀gi ∈ G

• ∀gi ∈ G, no monomial of gi lies in 〈lt(G− {gi})〉

G is a reduced Gröbner basis when no monomial of any element in G divides the leading term

of another element. This reduction is achieved as follows:

Definition 4.20. Let H = {h1, . . . , ht} be a minimal Gröbner basis. Apply the following reduction

process:

• h1
G1−→+ g1, where g1 is reduced w.r.t. G1 = {h2, . . . , ht}

• h2
G2−→+ g2, where g2 is reduced w.r.t. G2 = {g1, h3, . . . , ht}

• h3
G3−→+ g3, where g3 is reduced w.r.t. G3 = {g1, g2, h4, . . . , ht}
...

• ht
Gt−→+ gt, where gt is reduced w.r.t. Gt = {g1, g2, g3, . . . , gt−1}

Then G = {g1, . . . , gt} is a reduced Gröbner basis.

Subject to the given term order >, such a reduced Gröbner basis G = {g1, . . . , gt} is a unique

canonical representation of the ideal, as given by Proposition 4.3 below.

Proposition 4.3. [17] Let I 6= {0} be a polynomial ideal. Then, for a given monomial ordering, I

has a unique reduced Gröbner basis.

The high computational complexity of the Gröbner basis problem is an important issue because

of its high cost in time and space. Concretely, for an arbitrary polynomial set, the worst case

computation time/space cost of its Gröbner basis is doubly exponential, as the total degree of

polynomials in the Gröbner basis is bounded by O(2(12d
2 + d)2

n−1
) where d is the degree of the

ideal and n is the number of variables [18]. However, in situations such as applications of circuit

verification, the polynomial is well restricted rather than arbitrary. Gao et al. [98] prove that in

zero-dimensioned ideals, the complexity reduces to single exponential qO(|φ|). This provides the
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possibility to make use of Gröbner basis under restricted situations, which is the theoretical basis of

this dissertation.

Gröbner basis computation depends on the Spoly computation, which in turn depends on the

leading terms of polynomials. Thus, different monomial orderings can result in different Gröbner

basis computations for the same ideal. Computation using a DEGREVLEX ordering tends to be

least difficult, while lex ordering tends to be computationally complex. However, lex ordering used

in the computation of Gröbner basis is an elimination ordering; that is, the polynomials contained

in the resulting Gröbner basis have continuously eliminated variables in the ordering. This is the

topic of elimination theory, which is described in the following sections as well as its theoretic basis

– the Nullstellensatz theory.

4.2 Hilbert’s Nullstellensatz
In this section, we further describe some correspondence between ideals and varieties in the

context of algebraic geometry. The celebrated results of Hilbert’s Nullstellensatz establish these

correspondences.

Definition 4.21. A field F is an algebraically closed field if every polynomial in one variable with

degree at least 1, with coefficients in F, has a root in F.

In other words, any nonconstant polynomial equation over F [x] always has at least one root in

F. Every field F is contained in an algebraically closed one F. For example, the field of real numbers

R is not an algebraically closed field, because x2 + 1 = 0 has no root in R. However, x2 + 1 = 0

has roots in the field of complex numbers C, which is an algebraically closed field. In fact, C is the

algebra closure of R. Every algebraically closed field is an infinite field.

Theorem 4.2 (Weak Nullstellensatz). Let J ⊂ F[x1, x2, · · · , xd] be an ideal satisfying V (J) = ∅.

Then J = F[x1, x2, · · · , xd], or equivalently,

V (J) = ∅ ⇐⇒ J = F[x1, x2, · · · , xd] = 〈1〉 (4.24)

Corollary 4.1. Let J = 〈f1, . . . , fs〉 ⊂ F[x1, x2, · · · , xd]. Let G be the reduced Gröbner basis of

J . Then V (J) = 0 ⇐⇒ G = {1}.

Weak Nullstellensatz offers a way to evaluate whether or not the system of multivariate poly-

nomial equations (ideal J) has common solutions in Fd. For this purpose, we only need to check
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if the ideal is generated by the unit element, i.e., 1 ∈ J . This approach can be used to evaluate

the feasibility of constraints in verification problems. An interesting result is one of Strong Null-

stellensatz. The strong Nullstellensatz establishes the correspondence between radical ideals and

varieties.

Theorem 4.3 (Strong Nullstellensatz [17]). Let F be an algebraically closed field, and let J be an

ideal in F[x1, . . . , xd]. Then we have I(VF(J)) =
√
J .

Strong Nullstellensatz holds a special form over Galois fields Fq. Recall the notion of vanishing

polynomials over Galois fields from the previous chapter: for every element A ∈ Fq, A− Aq = 0;

then the polynomial xq−x in Fq[x] vanishes over Fq. Thus, if J0 = 〈xq−x〉 is the ideal generated by

the vanishing polynomial, V (J0) = Fq. Similarly, over Fq[x1, . . . , xd], J0 is 〈xq1−x1, . . . , x
q
d−xd〉

and V (J0) = (Fq)d.

Definition 4.22. Given two ideals, I1 = 〈f1, . . . , fs〉 and I2 = 〈g1, . . . gt〉, then the sum of ideals

I1 + I2 = 〈f1, . . . , fs, g1, . . . gt〉.

Theorem 4.4. (Strong Nullstellensatz over Fq) For any Galois field Fq, let J ⊂ Fq[x1, . . . , xd] be

any ideal and let J0 = 〈xq1−x1, . . . , x
q
d−xd〉 be the ideal of all vanishing polynomials. Let VFq(J)

denote the variety of J over Fq. Then, I(VFq(J)) = J + J0.

The proof is given in [115]. Here, we provide a proof outline.

Proof.

1)
√
J + J0 = J + J0. That is, J + J0 is a radical ideal (Lemma 2.1 in [98]).

2) VFq(J) = VFq
(J + J0).

3) Due to 2), I(VFq(J)) = I(VFq
(J + J0)). By Strong Nullstellensatz, this is equivalent to

√
J + J0. Finally, due to 1), this is equivalent to J + J0.

Using this result, Weak Nullstellensatz can be modified to be applicable over finite fields Fq.

Theorem 4.5 (Weak Nullstellensatz in Fq [116]). Given f1, f2, · · · , fs ∈ Fq[x1, x2, · · · , xd]. Let

J = 〈f1, f2, · · · , fs〉 ⊂ Fq[x1, x2, · · · , xd] be an ideal. Let J0 = 〈x2k1 −x1, x2
k

2 −x2, · · · , x2
k

d −xd〉
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be the ideal of vanishing polynomials in Fq. Then VFq(J) = VFq
(J + J0) = ∅, if and only if the

reduced Gröbner Basis RGB(J + J0) = {1}.

The proof is given in [116]. Here, we provide a proof outline.

Proof. The variety of J over Fq[x1, x2, · · · , xd] is equivalent to the variety over the algebraic

closure of Fq intersected by the entire field Fq. That is, VFq(J) = VFq
(J) ∩ Fq.

Let J0 = 〈x2k1 −x1, x2
k

2 −x2, · · · , x2
k

d −xd〉 be the ideal generated by all vanishing polynomials

in Fq[x1, x2, · · · , xd]. Then VFq
(J0) = Fq.

Thus, VFq(J) = VFq
(J) ∩ VFq

(J0) = VFq
(J + J0).

4.3 Elimination Theory and Application to Abstraction
Elimination of certain variables in a system of polynomials is a common operation when some

variables are not needed in modeling and analysis. In this section, eliminating variables targets a

tight-bound overapproximation. This is equivalent to the existential quantifier elimination in first-

order logic, or variable smoothing in Boolean operations. We introduce an elimination method

based on algebraic geometry concepts, and use it as the fundamental of abstraction of a circuit.

4.3.1 Elimination Theory

Assume we are given a set of polynomials f1, . . . , fs from a ring Fq[x1, . . . , xl, . . . , xd]. First,

we show that eliminating x1, . . . , xl variables related to projecting the variety V (〈f1, . . . , fs〉) from

Fdq to Fd−lq . Figure 4.1 is an example of projection in space of varieties from F3
q to F2

q , corresponding

to eliminating variable x1 from a system of polynomials belonging to Fq[x1, x2, x3].

Formally, we define concepts of the projection and elimination ideals:

Definition 4.23. The l-th projection mapping is defined as:

πl : Fdq → Fd−lq , πl((x1, . . . , xd)) = (xl+1. . . . , xd)

where l < d. For any subset V ⊆ Fdq , we write

πl(V ) = {πi(x) : x ∈ A} ⊆ Fd−lq

Definition 4.24. Let J be an ideal in Fq[x1, . . . , xd]. The l-th elimination ideal Jl is the ideal of

Fq[xl+1, . . . , xd] defined by

Jl = J ∩ Fq[xl+1, . . . , xd] (4.25)
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x1

x2

x3

Figure 4.1: An example of projection from F3
q to F2

q .
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The elimination ideal Jl has eliminated all the variables x1, . . . , xl, i.e., it only contains poly-

nomials with variables in xl+1, . . . , xd. In a general setting, πl(Vd(J)) from Fdq to Fd−lq is a subset

of V (Jl). But over Fq, consider ideal J + J0 where J0 is the ideal of vanishing polynomials, it is

proved in [98] that

πl(V (J + J0)) = V ((J + J0)l).

This shows that in finite fields, projection of the variety Vd(〈f1, . . . , fs〉) from Fdq to Fd−lq , is exactly

the variety Vd−l(〈f1, . . . , fs〉 ∩ Fq[xl+1, . . . , xd]).

Elimination theory uses elimination ordering to systematically eliminate variables from a

system of polynomial equations. We can generate elimination ideals by computing Gröbner bases

using elimination orderings.

Theorem 4.6 (Elimination Theorem). Let J be an ideal in F[x1, . . . , xd] and let G be the Gröbner

basis of J with respect to the lex order (elimination order) x1 > x2 > · · · > xd. Then, for every

0 ≤ l ≤ d,

Gl = G ∩ F[xl+1, . . . , xd] (4.26)

is a Gröbner basis of the l-th elimination ideal Jl.

This can be better understood using the following example.

Example 4.14. Given the following equations in R[x, y, z]

x2 + y + z = 1

x+ y2 + z = 1

x+ y + z2 = 1

let I be the ideal generated by these equations:

I = 〈x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1〉

The Gröbner basis for I with respect to lex order x > y > z is found to be G = {g1, g2, g3, g4}

where



59

g1 = x+ y + z2 − 1

g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = z6 − 4z4 + 4z3 − z2

Notice that while g1 has variables in R[x, y, z], g2 and g3 only have variables in R[y, z] and g4

only has variables in R[z]. Thus, G1 = G ∩ R[y, z] = {g2, g3, g4} and G2 = G ∩ R[z] = {g4}

Also notice that since g4 only contains variable z, and since g4 = 0, a solution for z can be

obtained. This solution can then be applied to g2 and g3 to obtain solutions for y, and so on.

Elimination theory provides the basis for the following abstraction approach.

4.3.2 Abstraction Using Nullstellensatz and Gröbner Basis

Problem Setup 4.1. Let S be the system of polynomials, {f1, . . . , fs, fA1 , . . . , fAn , fZ} ⊂ F2k ,

derived from the hardware implementation of any circuit over Fq, q = 2k, as Figure 4.2 shows. In

general, this circuit performs some unknown function f over Fq such that every f : Fq → Fq is

represented in polynomial form. For any circuit C, Z = F(A). Then how to derive this function F

using GB?

The polynomial representation of F over F2k is:

fF : Z + F(A1, . . . , An)

Since fF is ultimately derived from the circuit implementation, it agrees with the solution to the

system of polynomials {S} = 0, i.e.,:

f1 = · · · = fs = fA1 = · · · = fAn = fZ = 0

Thus, if we let J = 〈f1, . . . , fs, fA1 , . . . , fAn , fZ〉 be the ideal generated by S, fF vanishes on the

variety VF
2k

(J). Therefore, due to Proposition 4.2, fF must be contained in the ideal of polynomials

that vanish on this variety, fF ∈ I(VF
2k

(J)).

By applying Strong Nullstellensatz over F2k (Theorem 4.3), I(VF
2k

(J)) = J + J0 where J0

is the ideal generated by all vanishing polynomials in F2k . Recall that a vanishing polynomial in
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Figure 4.2: Galois field arithmetic circuit model for abstraction.

F2k [x] is xq − x = xq + x. In our case, {x1, . . . , xd} ∈ F2 and {A1, . . . , An, Z} ∈ F2k . Thus, for

F2k [x1, . . . , xd, A1, . . . , An, Z]:

J0 = 〈x21 + x1, . . . , x
2
d + xd, A

2k

1 +A1, . . . , A
2k

n +An, Z
2k + Z〉

The generators of the ideal sum J + J0 are simply the combination of the generators of J and

the generators J0.

The variety VFq(J) is the set of all consistent assignments to the nets (signals) in the circuitC. If

we project this variety on the word-level input and output variables of the circuit C, we essentially

generate the function F implemented by the circuit. Projection of varieties from d-dimensional

space Fdq onto a lower dimensional subspace Fd−lq is equivalent to eliminating l variables from the

corresponding ideal. This can be done by computing a Gröbner basis of the ideal with elimination

ordering, as described in the Elimination Theorem (Theorem 4.6). Thus, we can find the polynomial

fF : Z + F(A1, . . . , An) by computing the Gröbner basis of J + J0 using the proper elimination

ordering.

The proposed elimination order for abstraction is defined as the abstraction term order.

Definition 4.25. Given a circuit C, let x1, . . . , xd denote all the bit-level variables, let A1, . . . , An
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denote the k-bit word-level inputs, and let Z denote the k-bit word-level output. Using any refine-

ment of the partial variable order {x1, . . . , xd} > Z > {A1, . . . , An}, impose a lex term order

> on the polynomial ring R = Fq[x1, . . . , xd, Z,A1, . . . , An]. This elimination term order > is

defined as the Abstraction Term Order (ATO). The relative ordering among x1, . . . , xd is not

important and can be chosen arbitrarily. Likewise, the relative ordering among A1, . . . , An is also

unimportant.

Theorem 4.7 (Abstraction Theorem [20]). Using the notations from Problem Setup 4.1 at the

beginning of this subsection, we compute a Gröbner basis G of ideal (J +J0) using the abstraction

term order >. Then:

1) For every word-level input Ai, G must contain the vanishing polynomial Aqi − Ai as the only

polynomial with Ai as its only variable;

2) G must contain a polynomial of the form Z + G(A1, . . . , An); and

3) Z + G(A1, . . . , An) is such that F(A1, . . . , An) = G(A1, . . . , An), ∀A1, . . . , An ∈ Fq. In other

words, G(A1, . . . , An) and F(A1, . . . , An) are equal as polynomial functions over Fq.

Corollary 4.2. By computing a reduced Gröbner basis Gr of J +J0, Gr will contain one and only

one polynomial in of the form Z + G(A1, . . . , An), such that Z = G(A1, . . . , An) is the unique,

minimal, canonical representation of the function F implemented by the circuit.

Example 4.15. Consider a 2-bit multiplier over F22 with P (x) = x2 + x + 1, given in Figure

4.3. Variables a0, a1, b0, b1 are primary inputs, z0, z1 are primary outputs, and c0, c1, c2, c3, r0 are

intermediate variables.

b0

c1

c2 z1

a1

a0 c0

z0

b1

c3

r0

A

B

Z

Figure 4.3: A 2-bit multiplier over F22 .
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Polynomials extracted from the circuit implementation represent the ideal J . Along with the

ideal of vanishing polynomials J0, the following polynomials represent the generators of J +J0 for

the multiplier circuit.

f1 : c0 + a0 · b0

f2 : c1 + a0 · b1

f3 : c2 + a1 · b0

f4 : c3 + a1 · b1

f5 : r0 + c1 + c2

f6 : z0 + c0 + c3

f7 : z1 + r0 + c3



Bit-level circuit constraints (⊂ J )

fA : A+ a0 + a1 · α

fB : B + b0 + b1 · α

fZ : Z + z0 + z1 · α

 Word-level designation (⊂ J )

a20 − a0, a21 − a1, b20 − b0, b21 − b1

c20 − c0, c21 − c1, c22 − c2, c23 − c3

r20 − r0, z20 − z0, z21 − z1

A4 −A, B4 −B, Z4 − Z


vanishing polynomials(J0 )

We apply abstraction term order >, i.e a lex order with ”bit-level variables” > ”Output Z” >

”Inputs A, B”.

When we compute the reduced Gröbner basis, Gr, of {J +J0} with respect to this ordering, Gr

= {g1, . . . , g14} :

g1 : B4 +B; g2 : b0 + b1α+B; g3 : a0 + a1α+A;

g4 : c0 + c1α+ c2α+ c3(α+ 1) + Z; g5 : r0 + c1 + c2; g6 : z0 + c0 + c3;

g7 : z1 + r0 + c3; g8 : Z + A ·B; g9 : b1 +B2 +B; g10 : a1 +A2 +A;

g11 : c3 + a1 · b1g12 : c2 + a1 · b1α+ a1 ·B; g13 : c1 + a1 · b1α+ b1A; g14 : A4 +A

Here g8 = Z + A · B is the canonical, word-level polynomial representing the function

performed by the multiplier Z = A ·B.
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4.4 Concluding Remarks
Our approach to word-level abstraction of Galois field arithmetic circuits applies concepts of

polynomial ideals, varieties, Gröbner basis, and abstraction theory to implement verifications on

sequential circuits. The application of these approaches to sequential circuit verification is described

in the following chapters.



CHAPTER 5

WORD-LEVEL TRAVERSAL OF FINITE STATE

MACHINES USING ALGEBRAIC GEOMETRY

Reachability analysis is a basic component of sequential circuit verification, especially for

formal equivalence checking and model checking techniques. Concretely, in modern synthesis

tools, in order to improve various performance indicators such as latency, clock skew, or power

density, sequential optimization techniques such as retiming [117], scan logic [118], sequential

power optimization [119], and clock-gating techniques [120] are applied. These modifications may

introduce bugs, errors or malfunctions to the original logic and cause problems. Based on traditional

localized simulation or formal verification method (e.g., equivalence checking), designers are reluc-

tant to make aggressive optimization since the malfunctions are considered “faults” in the circuits.

However, if the circuit behavior is carefully investigated, it may become evident that those faults

may never be activated during a restricted execution starting from legal initial states and with legal

inputs. Thus we will call those faults spurious faults (false negatives), since they will not affect the

circuit’s normal behavior.

Almost all practical sequential logic components can be modeled as finite state machines (FSMs).

If we apply constraints upon the machine to make it start from designated initial states, and take

specific legal inputs, a set of reachable states can be derived. As long as the faults can be modeled

as bad states, we can judge whether they are spurious faults by checking if they belong to the

unreachable states. From the spurious fault validation perspective, reachability analysis is a must

when developing a full set of sequential circuit verification techniques.

There are quite a few methods to perform reachability checking on FSMs. One of them is

state space traversal. Conventionally, the algorithm is based on bit-level techniques such as binary

decision diagrams (BDDs) and Boolean logic. We propose a new traversal algorithm at word level,

which brings critical advantages. In this chapter the approach will be described and discussed

in depth, with examples and experiments showing its feasibility when applied on general circuit
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benchmarks.

5.1 Motivation
Before introducing the details of our approach, there are a few questions to ask: What is the

benefit of executing FSM traversal at word level? How can algebraic geometry make this happen?

The answers can be found in this section, as a statement of the motivation of our research.

5.1.1 FSM Traversal Algorithms

Sequential circuits are modeled as FSMs, which can be implemented as graphs. Thus a graph-

traversal-based algorithm is created to analyze the reachable states [47]. A traversal algorithm using

the concept of implicit state enumeration is proposed [121]. Concretely, the algorithm is given in

Algorithm 4:

Algorithm 4: BFS Traversal for FSM Reachability
Input: Transition functions ∆, initial state S0

1 from0 = reached = S0;
2 repeat
3 i← i+ 1;
4 toi ←Img(∆, fromi−1);
5 newi ← toi ∩ reached;
6 reached← reached ∪ newi;
7 fromi ← newi;
8 until newi == 0;
9 return reached

The above algorithm describes a breath-first-search (BFS) traversal in state space. The traversal

algorithm is a simple variation of a BFS algorithm where states are nodes and transitions are

arcs. Each state is uniquely encoded by a combination of a set of register data, which is usually

represented by a Boolean vector.

Since a typical sequential circuit usually contains a combinational logic component, the traversal

algorithm analyzes the combinational logic and derives the transition function for one-step reach-

ability within the current time-frame, and extends the result to complete execution paths through

unrolling. If each state encoding (i.e., exact values in the selected registers) is explicitly analyzed

and counted during the unrolling procedure, this unrolling is called explicit unrolling. In the BFS

traversal algorithm, the states cannot be directly read in the execution; instead, they are implicitly
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represented using a conjunction of several Boolean formulas. Such techniques differ from explicit

unrolling and are called implicit unrolling.

However, the BFS traversal algorithm proposed by the author is usually not practical. The con-

junctions of Boolean formulas are stored as BDDs, which is a canonical and convenient structure.

Nevertheless, the size of a BDD explodes when the formulas become too long and too complicated.

In [121], the authors make a compromise between accuracy and cost, and turn to approximate

reachability. In this research work, the aim is to explore a word-level technique which can make an

accurate reachability analysis available.

5.1.2 Word-Level Data Flow on Modern Datapath Designs

The level of integration of modern digital circuit designs is very high. For example, processor

A10 designed by Apple integrates 3.3 billion transistors on a 125 mm2 chip [122]. Such a high

density makes the silicon implementation of large datapaths possible. In recent decades, 64-bit

or even larger datapaths frequently appear in modern digital IC designs such as powerful central

processing units (CPUs) and high-bandwidth memory (HBM). Meanwhile, with the development

of electronic design automation (EDA) tools, data flow is described by the designer as word-level

specifications. Therefore, it will be straightforward and beneficial for users if formal verification

tools can work at word level. Moreover, adopting word-level techniques will greatly reduce the

state space and make verification more efficient.

In order to throw light on the advantages of using word-level techniques, we pick a typical digital

circuit component in a modern 64-bit MIPS processor as an example.

Example 5.1. Figure 5.1 depicts a sequential multiplication hardware implementation within a

64-bit MIPS. Initially, one multiplicand is preloaded to the lower 64 bits of the product registers.

Iteratively, the last significant bit (LSB) of current (temporary) product is used as flag to activate

the ALU to add on the other multiplicand. For each iteration the data in product registers shifts

right by 1 bit. Finally when the most significant bit (MSB) of preloaded multiplicand arrives at the

MSB of product registers, the registers contains the result – a 128-bit product. The behavior can be

described by the following algorithm:
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64-bit ALU

Multiplicand

128-bit Product Register
Control

Test

Right-Shift

Write

en_SH

en_WR

en_ALU

A [a63,…,a0]

S [s63,…,s0]

P [p127,…,p0]

p0

P1/2

[p63,…,p0]

Figure 5.1: A 64-bit sequential multiplication hardware design.

Algorithm 5: Sequential multiplication hardware in 64-bit MIPS
Input: Multiplicand A,B
Output: Product C

1 Preload B into lower 64-bit of Product Register P ;
2 repeat
3 if Last Bit of Product Register LSB(P ) == 1 then
4 P = P1/2 +B;
5 end
6 Right shift P ;
7 until 64 Repetitions;
8 return C = P

Traditionally, to verify the functional correctness of this multiplier, SAT-based or BDD-based

model checking is applied on basic function units. For example, as a part of functional verification,

we would like to check “P = P1/2 +B” is correctly executed. Then in a model checker we need to

add following specifications:
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en ALU

∧s0 = a0 ⊕ p0

∧s1 = a1 ⊕ p1 ⊕ (a0 ∧ p0)

∧s2 = a2 ⊕ p2 ⊕ ((a1 ⊕ p1) ∧ a0 ∧ p0 ∨ a0 ∧ p0)

∧ · · ·

∧s63 = a63 ⊕ p63 ⊕ (c63)

We can see that when checking a single part of the whole structure, the number of clauses needed

will increase to k + 1 when using k-bit datapath. Considering the formula representing carry-in

will become longer and longer, the final conjunction of all clauses will contain O(2k) Boolean

operators. If by some means we can write the specification with only 3 variables:

S = P1/2 +B (5.1)

the abstraction to word-level will reduce symbolic storage and execution cost; the complexity to

traverse the state space will be greatly reduced.

On the other hand, when implementation details of the datapath are not available, it is not

convenient any more for users of conventional model checkers. The reason is that the user has

to write all clauses for the implementation, which contains cross-literals, e.g., s2 may associate with

a1, p0, etc. If the user is not familiar with the implementation of this adder, those cross-literals

will bring confusion. However, if word-level techniques allow specification like Equation 5.1, the

verification tool will be very user-friendly and straightforward even if the implementation details

are in a black box.

5.1.3 On the Existence of Word-Level Abstraction for Arbitrary Circuits

When given a bit-level netlist, the prerequisites to use word-level techniques are to convert

bit-level to word-level first. This conversion is usually completed by abstraction techniques.

An old but universally effective abstraction method is Lagrange’s interpolation, which can be

applied over finite fields. Here we use an example to illustrate the conversion in Galois field using

Lagrange’s interpolation for an arbitrary circuit.

Example 5.2 (Lagrange’s interpolation). Assume we are given gate-level netlist shown in Figure

5.2. It can be written as 3 Boolean equations:
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Figure 5.2: Gate-level netlist for Lagrange’s interpolation example.

z0 = a0 ∨ a1 ∨ a2

z1 = a1 ∧ ¬a2 ∨ a0 ∧ ¬a1 ∧ a2

z2 = a1 ∨ ¬a0 ∧ a2

Define 2 word-level variables A,Z as input and output:

A = {a2a1a0}, Z = {z2z1z0}

To convert bit-level to word-level, we need to find mapping B3 → B3, or F23 → F23 . The latter one,

as mentioned in preliminaries, is a polynomial function in F23 .

For each element in F23 , we write down the truth table as Table 5.1. Now our objective is to

abstract a function over finite field F23 in word-level variables, i.e., Z = F(A). Recall Lagrange’s

interpolation formula:

F(x) =
N∑
k=1

 ∏
(0≤j≤k−1),(j 6=i)

x− xj
xi − xj

· yk

 (5.2)

The geometric meaning of Lagrange’s interpolation in real algebra is: given N points with

coordinates (xi, yi), they can always be fitted into a polynomial function with at most N −1 degree,

and that function can be written in the form of Equation 5.2. In this example, although defined in
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Table 5.1: Truth table for mappings in B3 and F23 .
{a2a1a0} ∈ B3 A ∈ F23 → {z2z1z0} ∈ B3 Z ∈ F23

000 0 → 000 0
001 1 → 001 1
010 α → 111 α2 + α+ 1
011 α+ 1 → 111 α2 + α+ 1
100 α2 → 101 α2 + 1
101 α2 + 1 → 011 α+ 1
110 α2 + α → 101 α2 + 1
111 α2 + α+ 1 → 101 α2 + 1

a Galois field instead of the real number field, the essential concept of Lagrange’s interpolation

remains the same. We can get 8 points in the affine space:

Generic form : (a2α
2 + a1α+ a0, z2α

2 + z1α+ z0)← (A,Z)

Point 1 : (0, 0)← (000, 000)

Point 2 : (1, 1)← (001, 001)

Point 3 : (α, α2 + α+ 1)← (010, 111)

Point 4 : (α+ 1, α2 + α+ 1)← (011, 111)

Point 5 : (α2, α2 + 1)← (100, 101)

Point 6 : (α2 + 1, α+ 1)← (101, 011)

Point 7 : (α2 + α, α2 + 1)← (110, 101)

Point 8 : (α2 + α+ 1, α2 + 1)← (111, 101)

Substitute 8 (xi, yi) pairs in Equation 5.2 with these 8 points in F23 . The result is a polynomial

function with degree no greater than 7:

Z =F(A)

=(α2 + α+ 1)A7 + (α2 + 1)A6 + αA5 + (α+ 1)A4

+ (α2 + α+ 1)A3 + (α2 + 1)A

The Lagrange’s interpolation theorem also proves the existence of a word-level abstraction for

a bit-level netlist. In practice, Lagrange’s interpolation is not scalable. The reason is that it needs

the entire function (state space), but usually we only have the circuit representation of the FSM.

Considering this fact, a symbolic method is needed. Our approach in this section uses abstraction
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based on Gröbner basis with abstraction term order (ATO), which is briefly introduced in Section

4.3.

5.1.4 Significance of Developing Word-Level Reachability Analysis

Based on the aforementioned discussions, the importance of performing FSM traversal at word

level can bring a dimension of abstraction in sequential circuit reachability analysis. To overcome

the cost incurred by searching in a large space, we propose to use word-level polynomials to

represent the states and transition relations. As a result, states are categorized into sets represented

by a small number of word-level polynomials (more specifically, the varieties to the polynomial

ideals), and multiple transition relations are therefore merged together. All of these efforts reduce

the cost of state space, meanwhile lowering the time complexity to traverse such a state space. As

Lagrange’s interpolation confirms the existence of word-level abstraction for bit-level circuits, the

concept can be extended to encode the state space of a sequential circuit by word-level polynomials

in F2k .

5.2 FSM Reachability Using Algebraic Geometry
We use symbolic state reachability with algebraic geometry concepts. It is an abstraction based

on word operand definition of datapaths in circuits, and it can be applied to arbitrary FSMs by

bundling a set of bit-level variables together as one or several word-level variables. The abstraction

polynomial, encoding the reachable state space of the FSM, is obtained through computing a GB

over F2k of the polynomials of the circuit using an elimination term order based on Theorem 4.6.

5.2.1 FSM Model for Sequential Circuits

A finite state machine (FSM) is a mathematical model of computation for designing and ana-

lyzing sequential logic circuits. If a FSM’s primary outputs depend on primary inputs and present

state inputs, it is called a Mealy machine; the formal definition is as follows:

Definition 5.1. A Mealy machine is an n-tupleM = (Σ, O, S, S0,∆,Λ) where

• Σ is the input label, O is the output label;

• S is the set of states, S0 ⊆ S is the set of initial states;

• ∆ : S × Σ→ S is the next state transition function;
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• Λ : S × Σ→ O is the output function.

The other kind of FSM is Moore machine, its difference from Mealy machine is that its primary

outputs only depend on the present states, i.e., the output function is defined as

Λ : S → O

Typical sequential circuits can be depicted as Figure 5.3(a). Primary inputs x1, . . . , xm ∈ Σ, and

primary outputs z1, . . . , zn ∈ O. Signals s1, . . . , sk are present state (PS) variables, t1, . . . , tk are

next state (NS) variables. We can define 2 k-bit words denoting the PS/NS variables as there are k

flip-flops in the datapath: S = (s1, . . . , sk), T = (t1, . . . , tk). Transition function at bit level are

defined as ∆i:

ti = ∆i(s1, . . . , sk, x1, . . . , xm)

In some cases, arithmetic computations are implemented as Moore machines where input operands

are loaded into register files R and the FSM is executed for k clock cycles. We can simplify them

to the model in Figure 5.3(b).

5.2.2 Conventional Traversal Method

Conceptually, the state-space of a FSM is traversed in a breadth-first manner, as shown in

Algorithm 4. The algorithm operates on the FSM M = (
∑
, O, S, S0,∆,Λ) underlying a se-

quential circuit. In such cases, the transition function ∆ and the initial states are represented

and manipulated using Boolean representations such as BDDs or SAT solvers. The variables

from, reached, to, new represent characteristic functions of sets of states. Starting from the initial
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Figure 5.3: FSM models of sequential circuits.



73

state fromi = S0, the algorithm computes the states reachable in 1-step from fromi in each

iteration. In line 4 of Algorithm 4, the image computation is used to compute the reachable states

in every execution step.

The transition function ∆ is given by Boolean equations of the flip-flops of the circuit: ti =

∆i(s, x), where ti is a next state variable, s represents the present state variables and x represents

the input variables. The transition relation of the FSM is then represented as

T (s, x, t) =
n∏
i=1

(ti⊕∆i) (5.3)

where n is the number of flip flops, and ⊕ is XNOR operation. Let from denote the set of initial

states, then the image of the initial states, under the transition function ∆ is finally computed as

to = Img(∆, from) = ∃s ∃x [T (s, x, t) · from] (5.4)

Here, ∃x(f) represents the existential quantification of f w.r.t. variable x. In Boolean logic,

this operator is implemented as

∃x(f) = fx ∨ fx

Let us describe the application of the algorithm on the FSM circuit of Figure 5.4. We will

first describe its operation at the Boolean level, and then describe how this algorithm can be

implemented using algebraic geometry at word level.

x
s0
s1 t0

t1

Z

s0

s1

S0 S1

S2 S3

00 01

10 11

0/0 1/1

1/1

0/1

*/1

(a) (b)

a

b

c

d

Figure 5.4: The example FSM and the gate-level implementation.
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In Line 1 of the BFS algorithm, assume that the initial state is S3 in Figure 5.4(b), which is

encoded as S3 = {11}. Using Boolean variables s0, s1 for the present states, from0 = s0 · s1 is

represented as a Boolean formula.

Example 5.3. For the circuit in Figure 5.4(b), we have the transition functions of the machine as

∆1 : t0⊕((x ∨ s0 ∨ s1) ∨ s0s1)

∆2 : t0⊕(s0x ∨ s1s0)

from : from0 = s0 · s1

When the formula of Equation 5.4 is applied to compute 1-step reachability, to = ∃s0,s1,x(∆1 ·

∆2 · from0), we obtain to = t0 · t1, which denotes the state S1 = {01} reached in 1-step from S3.

In the next iteration, the algorithm uses state S1 = {01} as the current (initial) state, and computes

S2 = {10} = t0 · t1 as the next reachable state, and so on.

Our objective is to model the transition functions ∆ as a polynomial ideal J , and to perform the

image computations using Gröbner bases over Galois fields. This requires performing quantifier

elimination, which can be accomplished using the GB computation over F2k using elimination ide-

als [98]. Finally, the set union, intersection, and complement operations are also to be implemented

in algebraic geometry.

5.2.3 FSM Traversal at Word-Level over F2k

The state transition graph (STG) shown in Figure 5.4(a) uses a 2-bit Boolean vector to represent

4 states {S0, S1, S2, S3}. We map these states to elements in F22 , where S0 = 0, S1 = 1, S2 =

α, S3 = α+ 1. Here, we take P (X) = X2 +X + 1 as the irreducible polynomial to construct F4,

and P (α) = 0 so that α2 + α+ 1 = 0.

Initial state: Line 1 of Algorithm 4 specifies the initial state. In algebraic geometry, it can be

specified by means of a corresponding polynomial f = F(S) = S − 1 − α. Notice that if we

consider the ideal generated by the initial state polynomial, I = 〈f〉, then its variety V (I) = 1 + α

corresponds to the state encoding S3 = {11} = 1 + α, where a polynomial in word-level variable

S encodes the initial state.

Set operations: In Lines 5 and 6 of Algorithm 4, we need union, intersection, and complement

of varieties over F2k , for which we again use algebraic geometry concepts.



75

Definition 5.2. (Sum/Product of Ideals [113]) If I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉 are ideals

in R, then the sum of I and J is defined as I +J = 〈f1, . . . , fr, g1, . . . , gs〉. Similarly, the product

of I and J is I · J = 〈figj | 1 ≤ i ≤ r, 1 ≤ j ≤ s〉.

Theorem 5.1. If I and J are ideals in R, then V(I + J) = V(I)
⋂
V(J) and V(I · J) =

V(I)
⋃

V(J).

In Line 5 of Algorithm 4, we need to compute the complement of a set of states. Assume that J

denotes a polynomial ideal whose variety V (J) denotes a set of states. We require the computation

of another polynomial ideal J ′, such that V (J ′) = V (J). We show that this computation can be

performed using the concept of ideal quotient:

Definition 5.3. (Quotient of Ideals) If I and J are ideals in a ring R, then I : J is the set {f ∈

R | f · g ∈ I, ∀g ∈ J} and is called the ideal quotient of I by J .

Example 5.4. In Fq[x, y, z], ideal I = 〈xz, yz〉, ideal J = 〈z〉. Then

I : J = {f ∈ Fq[x, y, z] | f · z ∈ 〈xz, yz〉}

= {f ∈ Fq[x, y, z] | f · z = Axz +Byz}

= {f ∈ Fq[x, y, z] | f = Ax+By}

= 〈x, y〉

We can now obtain the complement of a variety through the following results which are stated

and proved below:

Lemma 5.1. Let f, g ∈ F2k [x], then 〈f : g〉 =
〈

f
gcd(f,g)

〉
.

Proof. Let d = gcd(f, g). So, f = df1, g = dg1 with gcd(f1, g1) = 1. Note that f1 = f
gcd(f,g) .

Take h ∈ 〈f : g〉. According to the Definition 5.3, hg ∈ 〈f〉, which means hg = f · r with

r ∈ F2k [x]. Therefore, hdg1 = df1r and hg1 = f1r. But considering gcd(g1, f1) = 1 we have the

fact that f1 divides h. Hence h ∈ 〈f1〉.

Conversely, let h ∈ 〈f1〉. Then h = s · f1, where s ∈ F2k [x]. So, hg = hdg1 = sf1dg1 =

sg1f ∈ 〈f〉. Therefore, h ∈ 〈f : g〉.

Theorem 5.2. Let J be an ideal generated by a single univariate polynomial in variable x over

F2k [x], and let the vanishing ideal J0 = 〈x2k − x〉. Then
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V (J0 : J) = V (J0)− V (J),

where all the varieties are considered over the field F2k .

Proof. Since F2k [x] is a principal ideal domain, J = 〈g(x)〉 for some polynomial g(x) ∈ F2k [x].

Let h(x) = gcd(g(x), x2
k−x). So, g(x) = h(x)g1(x), x2

k−x = h(x)f1(x), with gcd(f1(x), g1(x)) =

1. Then J0 : J = 〈f1(x)〉 by Lemma 5.1.

Let x ∈ V (J0)−V (J). From the definition of set complement, we get x ∈ F2k while g(x) 6= 0.

Since x2
k

= x, we see that either h(x) = 0 or f1(x) = 0. Considering g(x) 6= 0, we can assert

that h(x) 6= 0. In conclusion, f1(x) = 0 and x ∈ V (f1).

Now let x ∈ V (f1), we get f1(x) = 0. So, x2
k −x = 0 gives x ∈ V (J0) = F2k which contains

all elements in the field.

Now we make an assumption that x ∈ V (g). Then g(x) = 0 = d(x)g1(x), which means either

h(x) = 0 or g1(x) = 0.

If g1(x) = 0, then since f1(x) = 0 we get that f1(x), g1(x) share a root. This contradicts the

fact that gcd(f1(x), g1(x)) = 1.

On the other hand, if h(x) = 0, then since f1(x) = 0 and x2
k − x = d(x)f1(x), we get that

x2
k − x has a double root. But this is impossible since the derivative of x2

k − x is −1.

So, x /∈ V (g(x)) and this concludes the proof.

Let x2
k − x be a vanishing polynomial in F2k [x]. Then V (x2

k − x) = F2k , i.e., the variety

of vanishing ideal contains all possible valuations of variables, so it constitutes the universal set.

Subsequently, based on Theorem 5.2, the absolute complement V (J ′) of a variety V (J) can be

computed as:

Corollary 5.1. Let J ⊆ F2k [x] be an ideal, and J0 = 〈x2k − x〉. Let J ′ be an ideal computed as

J ′ = J0 : J . Then

V (J ′) = V (J) = V (J0 : J)

With Corollary 5.1, we are ready to demonstrate the concept of word-level FSM traversal over

F2k using algebraic geometry. The algorithm is given in Algorithm 6. Note that in the algorithm,

fromi, toi, newi are univariate polynomials in variables S or T only, due to the fact that they are

the result of a GB computation with an elimination term order, where the bit-level variables are

abstracted and quantified away.
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5.3 Problem Setup and Formulation
Problem Setup 5.1. We use the notions from Figure 5.3(a) in this setup.

1) The circuit is modeled over F2k = F2[x] (mod p(x)), p(α) = 0, where k is the number of

flip-flops, the PS variables {s0, . . . , sk−1}, NS variables {t0, . . . , tk−1}.

2) Denote S as the PS word-level by the following polynomial:

fS : S = s0 + s1α+ s2α
2 + · · ·+ sk−1α

k−1

Similarly we define NS word-level variable T by:

fT : T = t0 + t1α+ t2α
2 + · · ·+ tk−1α

k−1

3) Impose ATO for sequential circuits, which is

LEX : all bit-level variables in any order > S > T

4) Write polynomials f1, . . . , fs for each gate, and construct ideal describing the circuit:

Jckt = 〈f1, . . . , fs, fS , fT 〉

as well as the ideal with vanishing polynomials:

J0 = 〈. . . , x2i − xi, . . . , S2k − S, T 2k − T 〉

where xi corresponds to bit-level variables denoting wires in the circuit.

5) Compute GB with ATO for G. Then obtain the projection of variety only on NS variable T , by

G ∩ F2k [T ]

5.3.1 Word-Level FSM Traversal Example

Example 5.5. We apply Algorithm 6 to the example shown in Figure 5.4 to execute the FSM

traversal. Let the initial state from0 = {00} in B2 or 0 ∈ F4. Polynomially, it is written as

from0 = S − 0. In the first iteration, we compose an ideal J with
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Algorithm 6: Algebraic Geometry based FSM Traversal
Input: The circuit’s characteristic polynomial ideal Jckt, initial state polynomial F(S), and

LEX term order: bit-level variables x, s, t > PS word S > NS word T
1 from0 = reached = F(S);
2 repeat
3 i← i+ 1;
4 G←GB(〈Jckt, Jv, fromi−1〉);

/* Compute Gröbner basis with elimination term order: T
smallest */

5 toi ← G ∩ F2k [T ];
/* There will be a univariate polynomial in G denoting the

set of next states in word-level variable T */

6 〈newi〉 ← 〈toi〉+ (〈T 2k − T 〉 : 〈reached〉);
/* Use quotient of ideals to attain complement of reached

states, then use sum of ideals to attain an intersection
with next state */

7 〈reached〉 ← 〈reached〉 · 〈newi〉;
/* Use product of ideals to attain a union of newly reached

states and formerly reached states */
8 fromi ← newi(S \ T );

/* Start a new iteration by replacing variable T in newly
reached states with current state variable S */

9 until 〈newi〉 == 〈1〉;
/* Loop until a fixpoint reached: newly reached state is

empty */
10 return 〈reached〉

f1 : t0 − (xs0s1 + xs0 + xs1 + x+ s0 + s1 + 1)

f2 : t1 − (xs0 + x+ s0s1 + s0)

f3 : S − s0 − s1α; f4 : T − t0 − t1α

Jckt = 〈f1, f2, f3, f4〉, and the vanishing polynomials:

f5 : x2 − x; f6 : s20 − s0, f7 : s21 − s1

f8 : t20 − t0, f9 : t21 − t1; f10 : S4 − S, f11 : T 4 − T

with Jv = 〈f5, f6, . . . , f11〉.
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Compute G = GB(J) for J = Jckt + J0 + 〈from0〉, with an elimination term order

{x, s0, s1, t0, t1}︸ ︷︷ ︸
all bit-level variables

> S︸︷︷︸
(PS word)

> T︸︷︷︸
(NS word)

.

The resulting GB G contains a polynomial generator with only T as the variable. In Line 5,

assign it to the next state

to1 = T 2 + (α+ 1)T + α.

Note that the roots or variety of T 2 + (α+ 1)T + α is {1, α}, denoting the states {01, 10}.

Since the formerly reached state “reached = T ,” its complement is computed using Corollary

5.1

〈T 4 − T 〉 : 〈T 〉 = 〈T 3 + 1〉.

V (〈T 3 + 1〉) = {1, α, α+ 1} denoting the states {01, 10, 11}. Then the newly reached state set

in this iteration is

〈T 3 + 1, T 2 + (α+ 1)T + α〉 = 〈T 2 + (α+ 1)T + α〉

We add these states to formerly reached states

reach = 〈T 〉 · 〈T 2 + (α+ 1)T + α〉

= 〈T · T 2 + (α+ 1)T + α〉

= 〈T 3 + (α+ 1)T 2 + αT 〉

i.e., states {00, 01, 10}. We update the present states for next iteration

from1 = S2 + (α+ 1)S + α.

In the second iteration, we compute the reduced GB with the same term order for ideal J =

Jckt + Jv + 〈from1〉. It includes a polynomial generator

to2 = T 2 + αT

denotes states {00, 10}. The complement of reached is

〈T 4 − T 〉 : 〈T 3 + (α+ 1)T 2 + αT 〉 = 〈T + 1 + α〉

(i.e., states {11}). We compute the newly reached state

〈T 2 + αT, T + 1 + α〉 = 〈1〉
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Since the GB contains the unit ideal, it means the newly reached state set is empty, thus a

fix-point has been reached. The algorithm terminates and returns

reached = 〈T 3 + (α+ 1)T 2 + αT 〉

which, as a Gröbner basis of the elimination ideal, canonically encodes the final reachable state

set.

5.3.2 Significance of Using Algebraic Geometry and Gröbner Bases

The essence of our approach is based on algebraic geometry and Gröbner basis concepts. On

the one hand, we use GB with elimination term ordering as an analog of image function. As

mentioned in Section 4.3, we construct the ideal J + J0 to describe the circuit in Figure 5.5 using

algebraic geometry. Given the present states, the next states are implicitly represented in the variety

of the elimination ideal obtained by quantifying away the remaining variables. This projects the

variety on the NS output T by eliminating all other variables. This projection gives us the canonical

representation of NS in a polynomial in T .

On the other hand, we use the algebraic ideals to implement set operations. States are finite

sets of points, which can be mapped to a variety. In algebraic geometry, manipulating the ideals

provides a mechanism to operate on the varieties without actually solving the system of equations.

The intersection, union and complement of varieties are mapped to varieties of the sum, product and

quotient of ideals, respectively.

As a result, we create the analog of the FSM traversal algorithm in algebraic geometry which is

compatible with word-level variables (e.g., S, T ). We show it is effective to perform the reachability

analysis.

5.4 Improving Our Approach
Using elimination term ordering on computing GB for a large set of polynomials is time-

consuming, and usually intractable. The reason is the exponential computational complexity [115]:

Theorem 5.3. Let J + J0 = 〈f1, . . . , fs, xq1 − x1, . . . , x
q
d − xd〉 ⊂ Fq[x1, . . . , xd] be an ideal.

The time and space complexity of Buchberger’s algorithm to compute a Gröbner basis of J + J0 is

bounded by qO(d).

In our case q = 2k, and when k and d are large, this complexity makes abstraction infeasible.
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Buchberger’s algorithm consists of two major operations: one is finding Spoly pairs, the other

is dividing the Spoly by the set of polynomials. Its actual cost is very sensitive to the term ordering:

If there exists a term order making most Spoly computation unnecessary, then the cost to compute

Spoly is saved. Moreover, it prevents the generation of new polynomials from unnecessary Spoly

reductions, which further reduces the cost because there are less Spoly pairs as well as candidate

divisors. Besides tuning the term ordering, directly cutting down the number of polynomials in the

set is also effective.

In order to make our approach scalable, we propose improvements from two aspects: 1) using

another term ordering which can lower the computational complexity of obtaining GB; and 2)

reducing the number of polynomials by collecting bit-level primary inputs (PIs) and integrating

them as word-level variables which are compatible with our working GF.

5.4.1 Simplifying the Gröbner Bases Computation

In Algorithm 6, a Gröbner basis is computed for each iteration to attain the word-level polyno-

mial representation of the next states. In practice, for a sequential circuit with complicated structure

and large size, Gröbner basis computation is intractable. To overcome the high computational

complexity of computing a GB, we describe a method that computes a GB of a smaller subset

of polynomials. The approach draws inspirations from [16], which defined and justified a refined

abstraction term order (RATO). The following definition rephrases Definition 5.1 in [16] with our

sequential circuit setup and notations.

Definition 5.4 (Refined Abstraction Term Order >r). Starting from the pseudo outputs (NS vari-

ables) of the combinational component of a sequential circuit C, perform a reverse topological

traversal toward the pseudo inputs (PS variables) and primary inputs. Order each variable of the

circuit according to its reverse topological order. Impose a LEX term order>r on Fq[x1, . . . , xd, T, S]

with the “bit-level variables x1, . . . , xd ordered reverse topologically ”> T > S, this term order is

called RATO.

According to proposition 5.1 in [16], if the GB is computed using RATO, there will be only one

pair of polynomials {fw, fg} such that their leading monomials are not relatively prime, i.e.,

gcd(LM(fw), LM(fg)) 6= 1

As a well-known fact from Buchberger’s algorithm, the S-polynomial (Spoly) pairs with relatively
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prime leading monomials will always reduce to 0 modulo the basis and have no contribution to the

Gröbner basis computation. Therefore, by removing the polynomials with relatively prime leading

terms from Jckt, the Gröbner basis computation is transformed to the reduction of Spoly(fw, fg)

modulo Jckt. More specifically, we turn the GB computation into one-step multivariate polynomial

division, and the obtained remainder r will only contain bit-level inputs and word-level output.

Example 5.6. In this example, we impose RATO on the polynomial ideal generated from the circuit

in Figure 5.4(b). We start from the outputs t0, t1, then intermediate bit-level signals a, b, c, d because

they are the fanins of the corresponding gates which fanout t0, t1. Then we ends at the pseudo inputs

s0, s1, and primary input x. Thus variables in Jckt can be ordered by LEX with:

(t0, t1) > (a, b, c, d) > (x, s0, s1)

> T > S

This is the RATO for circuit in Figure 5.4(b).

We can write down all polynomial generators of Jckt:

f1 : a+ xs0s1 + xs0 + xs1 + x+ s0s1 + s0 + s1 + 1

f2 : b+ s0s1 f3 : c+ x+ xs0

f4 : d+ s0s1 + s0 f5 : t0 + ab+ a+ 1

f6 : t1 + cd+ c+ d f7 : t0 + t1α+ T

From observation, the only pair which is not relatively prime is (f5, f7), thus the critical

candidate polynomial pair is (fw, fg), where

fw = f5 = t0 + a · b+ a+ b, fg = f7 = t0 + t1α+ T

Result after reduction is:

Spoly(fw, fg)
J+J0−−−→+ T + s0s1x+ αs0s1

+ (1 + α)s0x+ (1 + α)s0 + s1x+ s1 + (1 + α)x+ 1

The remainder contains only bit-level inputs (x, s0, s1) and word-level output T .
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The remainder from Spoly reduction contains bit-level PS variables, and our objective is to get

a polynomial containing only word-level PS variables. One possible method is to rewrite bit-level

variables in terms of word-level variables, i.e.,

si = G(S) (5.5)

Then we can substitute all bit-level variables with the word-level variable and obtain a word-

level expression. The authors of [16] propose a method to construct a system of equations, such that

the solution to the system consists of Equation 5.5. It relies on a lemma which can be derived from

Fermat’s Little Theorem:

Lemma 5.2. For elements αi in F2k , the following equation holds (n ≥ 0):

(α1 + α2 + · · ·+ αt)
2n = α2n

1 + α2n

2 + · · ·+ α2n

t

The solution to the system of equations can be obtained by Gaussian elimination, which could

compute corresponding G(S) efficiently with time complexity O(k3).

Example 5.7. Objective: Abstract polynomial si + Gi(S) from f0 : s0 + s1α+ S.

First, compute f20 : s0 + s1α
2 + S2. Apparently variable s0 can be eliminated by operation

f1 =f0 + f20

=(α2 + α)s1 + S2 + S

Now we can solve univariate polynomial equation f1 = 0 and get solution

s1 = S2 + S

Using this solution we can easily solve equation f0 = 0. The result is

s0 = αS2 + (1 + α)S

More formally, polynomial expressions for si in terms of S can be obtained by setting up and

solving the following system of equations:
S
S2

S22

...
S2k−1

 =


1 α α2 · · · αk−1

1 α2 α4 · · · α2(k−1)

1 α4 α8 · · · α4(k−1)

...
...

...
. . .

...
1 α2k−1

α2·2k−1 · · · α(k−1)·2k−1




s0
s1
s2
...

sk−1

 (5.6)



85

Let ~S be a vector of k unknowns (s0, . . . , sk−1), then Equation 5.6 can be solved by using Cramer’s

rule or Gaussian elimination. In other words, we can obtain si = G(S) by solving Equation 5.6

symbolically.

In this approach we get word-level variable representation for each bit-level PS variable. By

substitution, a new polynomial in word-level PS/NS variables could be obtained.

After processing with RATO and bit-to-word conversions, we get a polynomial in the form of

fT = T + F(S, x) denoting the transition function. We include a polynomial in S to define the

present states fS , as well as the set of vanishing polynomials for primary inputs JPI0 = 〈x21 −

x1, . . . , x
2
d − xd〉. Using elimination term order with S > xi > T , we can compute a GB of the

elimination ideal 〈fT , fS〉 + JPI0 . This GB contains a univariate polynomial denoting next states.

The improved algorithm is depicted in Algorithm 7.

5.4.2 Primary Inputs Partitioning

Using above techniques we can get a remainder polynomial with only word-level PS/NS vari-

ables. However in most cases, the number of bit-level PIs will be too large for the last-step Gröbner

basis computation. Therefore it is necessary to convert bit-level PIs to word-level PI variables.

As in Figure 5.6, assume there exist k-bit datapath and n-bit PIs. In finite field, we need to

carefully partition n PIs such that states of each partition can be covered by a univariate polynomial

respectively.

Proposition 5.1. Divide n-bit PIs into partitions n1, n2, . . . , ns where each ni|k. Then let n1-bit,

n2-bit, . . . , ns-bit word-level variables represent their evaluations in F2k as F2ni ⊂ F2k .

Again, assume a partition ni | k and corresponding word-level variable is P . Then we can use

polynomial P 2ni − P to represent all signals at free-end PIs, according to the following theorem

about composite fields [123]:

Theorem 5.4. Let k = m · ni, such that F2k = F(2ni )m . Let α be primitive root of F2k , β be

primitive root of the ground field F2ni . Then

β = αω, where ω =
2k − 1

2ni − 1

Example 5.8. In a sequential circuit, PS/NS inputs/outputs are 4-bit signals, which means we will

use F24 as working field. PIs are partitioned to 2-bit vectors, which means the ground field is F22 .
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Figure 5.6: PI partition of a sequential circuit.
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Algorithm 7: Refined Algebraic Geometry based FSM Traversal
Input: Input-output circuit characteristic polynomial ideal Jckt, initial state polynomial F(S)
Output: Final reachable states represented by polynomial G(T )

1 from0 = reached = F(S);
2 fT =Reduce(Spoly(fw, fg), Jckt);
/* Compute Spoly for the critical pair, then reduce it with

circuit ideal under RATO */
3 Eliminate bit-level variables in fT ;
4 repeat
5 i← i+ 1;
6 G←GB(〈fT , fromi−1〉+ JPI0 );

/* Compute Gröbner basis with elimination term order: T
smallest; JPI0 covers all possible inputs from PIs */

7 toi ← G ∪ F2k [T ];
/* There will be a univariate polynomial in G denoting next

state in word-level variable T */

8 〈newi〉 ← 〈toi〉+ (〈T 2k − T 〉 : 〈reached〉);
/* Use quotient of ideals to attain complement of reached

states, then use sum of ideals to attain an intersection
with next state */

9 〈reached〉 ← 〈reached〉 · 〈newi〉;
/* Use product of ideals to attain a union of new reached

states and formerly reached states */
10 fromi ← newi(S \ T );

/* Start a new iteration by replacing variable T in new
reached states with current state variable S */

11 until 〈newi〉 == 〈1〉;
/* Loop until a fix-point reached: newly reached state is

empty */
12 return 〈reached〉

In ground field we can represent all possible evaluations of this PI partition {p0, p1} with

P 4 + P, where P = p0 + p1 · β

Using Theorem 5.4 we get β = α5, so we can redefine word P as an element from F24:

P = p0 + p1 · α5

Using this method we can efficiently partition large-size PIs to a small number of word-level PI

variables. One limitation of this approach is PIs cannot be partitioned when k is prime.
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5.5 Implementation of Word-Level FSM Traversal Algorithm
In this section, we describe the architecture of our tool which can perform word-level FSM

traversal on FSM benchmark circuits. Our tool consists of 3 functional components. First, the

gate-level netlist of circuit is translated to polynomial form and variables are sorted in RATO.

This part is implemented using a scripting language such as Perl. If the given benchmark is a

structural/behavior hybrid description, we perform preprocessing on it to get a synthesized netlist.

Secondly, the polynomial reduction is executed using our customized reduction engine, which is

written in C++. Finally, we utilize the symbolic computation engine SINGULAR [124] to code

Algorithm 7 and execute the BFS traversal. The tool outputs a univariate polynomial for NS word

T , denoting the set of reachable states from given initial state.

Figure 5.7 illustrates the execution of reachability analysis approach based on C++ and SINGU-

LAR implementation.

Usually FSM designs can be described in behavior/structural hybrid languages. One of these

languages is the Berkeley logic interchange format (BLIF) [125], which allows state behavior

representation and logic component representation.

Example 5.9. In this example, we use benchmark FSM “lion9” from the MCNC benchmark library.

This benchmark circuit is given as a state-table-based BLIF representation of a FSM.

In order to compose the polynomial set in elimination ideal, we need to synthesize it to a gate-

level netlist. Modern synthesizers including ABC [126] and SIS [127] can perform this task. In this

example we use a synthesis library containing only 2-input AND, NAND, OR, NOR, XOR, XNOR

gates as well as the inverter, the synthesized FSM is also given in BLIF format.

Using our interpreter, the synthesized BLIF file is translated to a polynomial file customized for

our polynomial reduction engine. The input file format includes all variables in RATO, along with

the Spoly that is need to be reduced, and polynomials in Jckt.

The result given by our reduction engine is in the form of the polynomial

T + F(s0, . . . , sk−1, x0, . . . , xn−1)

where si and xj denote bit-level PS variables and PIs. Concretely in this example, the result is
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Figure 5.7: Execution process of word-level FSM traversal tool.
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T + (α2 + α+ 1)x0x1s1s3 + (α3 + α)x0x1s1 + (α+ 1)x0x1s3

+ (α3 + 1)x0s1s3 + (α3 + α)x0s1 + (α+ 1)x0s3 + (α2)x0

+ (α2 + α+ 1)x1s1s3 + (α3 + α)x1s1 + (α2 + α+ 1)x1s3

+ (α)x1 + (α3 + 1)s1s3 + (α3 + α)s1 + (α3 + 1)s3 + α2

This is the transition function of this FSM. We utilized SINGULAR to integrate both bit-to-word

substitution and the traversal algorithm. In Figure 5.8, “tran” is the transition function we just

obtained. “init S” is the initial state, note it equals to “0100” register reset values preloaded

in the BLIF file. Moreover, 2 bits PIs x0, x1 are combined to a word-level PI variable P using

our conclusion in Example 5.8: “def X” is the definition of 2-bit word, and “red X” denotes the

vanishing polynomial for word P .

After the script is executed, the traversal finishes after 4 transition iterations, which denotes

BFS depth equal to 4. According to the output in Figure 5.9, the final reachable states is a degree-9

polynomial in T , indicating final reachable states set contains 9 states. And state encodings can be

obtained by solving this polynomial equation.

5.6 Experiment Results
We have implemented our traversal algorithm in 3 parts: the first part implements polynomial

reductions (division) of the Gröbner basis computations, under the term order derived from the

circuit as Line 2 in Algorithm 7. This is implemented with our customized data structure in C++.

The second part implements the bit-level to word-level abstraction to attain transition functions at

the word-level using the SINGULAR symbolic algebra computation system [v. 3-1-6] [124], as Line

3 in Algorithm 7; and the third part executes the reachability checking iterations using SINGULAR

as well. With our tool implementation, we have performed experiments to analyze reachability of

several FSMs. Our experiments run on a desktop with 3.5GHz Intel CoreTM i7-4770K Quad-core

CPU, 32 GB RAM and 64-bit Ubuntu Linux OS. The experiments are shown in Table 5.2.

There are 2 bottlenecks, which restricts the performance of our tool: One bottleneck is that the

polynomial reduction engine is slow when the number of gates (especially OR gates) is large; the

other one is the high computational complexity of a Gröbner basis engine in general. Therefore, we

pick 10 FSM benchmarks of reasonable size for testing our tool. Among them “b01, b02, b06” come

from ITC’99 benchmarks, “s27, s208, s386” are from ISCAS’89 benchmarks and “bbara, beecount,
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<"FSM.lib"; 

// ring var: just all bit-level inputs (PS and PI) followed by S and T 

ring rr = (2,X), (n23,n43,n42,n18,n40,n39,n38,n8,n31,n13,n36,n35,n34,n30,n33,v6_4,n28,n27, 

n26,n25,n24,n23_1,n22,n21,n20,n19,n18_1,n17,n16,v0,v1,v2,v3,v4,v5,P,S,T), lp; 

minpoly = X^4+X+1; 

 

ideal A_in = v2,v3,v4,v5; 

poly def_S = v2+ v3*X+ v4*X^2+ v5*X^3+S; 

ideal X_in = v0,v1; 

poly def_X = v0 + v1*X^5+P; 

poly red_S = S^16+S; 

poly red_T = T^16+T; 

poly red_X = P^4 + P; 

// red_all: all bit-level vars and red_S 

ideal red_all = v0^2+v0, v1^2+v1, v2^2+v2, v3^2+v3, v4^2+v4, v5^2+v5,red_S,red_X; 

poly tran = T+(X^2+X+1)*v0*v1*v3*v5+(X^3+X)*v0*v1*v3+(X+1)*v0*v1*v5 

+(X^3+1)*v0*v3*v5+(X^3+X)*v0*v3+(X+1)*v0*v5+(X^2)*v0+(X^2+X+1)*v1*v3*v5+(X^3+X)*v1*v3+(X^2+X+1)*v1*

v5+(X)*v1+(X^3+1)*v3*v5+(X^3+X)*v3+(X^3+1)*v5+X^2; 

 

poly init_S = S+X^2; 

poly reached = T+X^2; 

 

ideal I1 = preprocess(def_S, red_all, A_in); 

poly unitran = conv_word(tran,I1); 

I1 = preprocess(def_X, red_all, X_in); 

unitran = conv_word(unitran,I1); 

 

int i = 1; 

ideal from_I,to_I,new_I; 

from_I[1] = init_S; 

while(1) 

{ 

 i++; 

 to_I[i] = transition(from_I[i-1],unitran,red_all); 

 "Iteration #",i-2; 

 "Next State(s): ",to_I[i]; 

 new_I[i] = redWord(to_I[i]+compl(reached,red_T), red_T); 

 "Newly reached states: ",new_I[i]; 

 if ((redWord(new_I[i],red_T) == 1) or (i>25)) 

 { 

  "*************** TERMINATE! ***************"; 

  break; 

 } 

 reached = redWord(reached * new_I[i],red_T); 

 "Currently reached states: ",reached; 

 from_I[i] = subst(new_I[i],T,S); 

} 

"BFS depth: ",i-2; 

"Final reachable states: ",reached; 

Figure 5.8: Singular script for executing bit-to-word substitution and traversal loop.
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Iteration # 0
Next State(s):  T^4+(X^3+X^2+X+1)*T^2+(X^2+1)*T
Newly reached states:  T^3+(X^2)*T^2+(X^3+X^2)*T
Currently reached states:  
T^4+(X^3+X^2+X+1)*T^2+(X^2+1)*T
Iteration # 1
Next State(s):  
T^5+(X^3+X^2+X)*T^4+(X^3+X^2+X+1)*T^3+(X+1)*T
Newly reached states:  T+(X^3+X^2+X)
Currently reached states:  
T^5+(X^3+X^2+X)*T^4+(X^3+X^2+X+1)*T^3+(X+1)*T
Iteration # 2
Next State(s):  
T^4+(X^3+X^2+X)*T^3+(X^2+X)*T^2+(X^2)*T+(X)
Newly reached states:  T^2+(X^2+X)*T+1
Currently reached states:  
T^7+(X^3)*T^6+(X^3+X^2)*T^5+(X^3+X)*T^4+(X^3+X^2)*T^3
+(X^3+X)*T^2+(X+1)*T
Iteration # 3
Next State(s):  
T^6+(X^3+X+1)*T^5+(X^2+X+1)*T^4+(X^2+X)*T^3+(X^3+1)*T
^2+(X)*T+(X^2)
Newly reached states:  T^3+T^2+(X^2+1)*T+(X^3)
Currently reached states:  
T^9+(X^3+X^2+1)*T^8+(X+1)*T^5+(X^2)*T^4+(X^3+X^2)*T^3
+(X^3)*T^2+(X^2+X)*T
Iteration # 4
Next State(s):  
T^8+(X+1)*T^7+T^6+(X^3+X^2+X)*T^5+(X^3)*T^4+(X^3+X^2+
1)*T^3+(X^2+X)*T^2+(X^3+X)*T
Newly reached states:  1
*************** TERMINATE! ***************
BFS depth:  4
Final reachable states:  
T^9+(X^3+X^2+1)*T^8+(X+1)*T^5+(X^2)*T^4+(X^3+X^2)*T^3
+(X^3)*T^2+(X^2+X)*T

Figure 5.9: The output given by our traversal tool.
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Table 5.2: Results of running benchmarks using our tool. Parts I to III denote the time taken
by polynomial divisions, bit-level to word-level abstraction, and iterative reachability convergence
checking part of our approach, respectively.

Benchmark #
Gates

#
Latches # PIs #

States
#

iterations
Runtime (sec) Runtime

of VIS
(sec)I II III

b01 39 5 2 18 5 < 0.01 0.01 0.02 < 0.01
b02 24 4 1 8 5 < 0.01 0.01 < 0.01 < 0.01
b06 49 9 2 13 4 < 0.01 0.07 5.0 < 0.01
s27 10 3 4 6 2 < 0.01 0.01 0.02 < 0.01
s208 61 8 11 16 16 < 0.01 0.32 2.4 < 0.01
s386 118 6 13 13 3 1.0 7.6 8.2 < 0.01
bbara 82 4 4 10 6 0.04 0.01 0.04 < 0.01

beecount 48 3 3 7 3 < 0.01 0.01 0.01 < 0.01
dk14 120 3 3 7 2 45 < 0.01 0.08 < 0.01

donfile 205 5 2 24 3 12316 0.02 1.7 < 0.01

dk14, donfile” are from MCNC benchmarks. ISCAS benchmarks are given in bench format so

we can directly read gate information, where ITC/MCNC FSMs are given in unsynthesized BLIF

format so we first turn them into gate-level netlists using AIG-based synthesizer ABC. Since the

number of primary inputs (m) is relatively small, in our experiments we partition primary inputs as

m single bit-level variables. To verify the correctness of our techniques and implementations, we

compare the number of reachable states obtained from our tool against the results obtained from the

VIS tool [128].

In Table 5.2, # States denotes the final reachable states starting from given reset state, which,

given by our tool, is the same with the return value of compute reach in VIS. Meanwhile, from

observation of the experiment run-times, we find the reduction runtime increases as the number

of gates grows. Also, iterative reachability convergence check’s runtime reflects both the size of

present state/next state words (k) and the number of final reached states, which corresponds to the

degree of polynomial reached in Algorithm 6. Although the efficiency of our initial implementation

fails to compete with the BDD-based FSM analyzer VIS, the experiment demonstrates the power of

abstraction of algebraic geometry techniques for reachability analysis applications.

5.7 Concluding Remarks
This chapter has presented a new approach to perform reachability analysis of finite state ma-

chines at the word-level. This is achieved by modeling the transition relations and sets of states

by way of polynomials over finite fields F2k , where k represents the size of the state register bits.
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Subsequently using the concepts of elimination ideals, Gröbner bases, and quotients of ideals, we

show that the set of reachable states can be encoded, canonically, as the variety of a univariate

polynomial. This polynomial is computed using the Gröbner basis algorithm w.r.t. an elimination

term order. Experiments are conducted with a few FSMs that validate the concept of word-level

FSM traversal using algebraic geometry.



CHAPTER 6

FUNCTIONAL VERIFICATION OF

SEQUENTIAL NORMAL BASIS

MULTIPLIERS

With the size of sequential arithmetic circuits increasing rapidly, conventional methods become

inefficient for verifying the correctness of these circuits. In Chapter 5 we proposed a FSM traversal

approach at word level based on abstractions. Since the sequential arithmetic circuits can be

modeled as FSMs, it is possible to apply our word-level traversal algorithm to solving the functional

verification problem on these circuits. From the work of Lv [19], we learn that arithmetic circuits

in Galois field (GF) can be represented using an ideal of polynomials, and the ideal generators

themselves form a GB under a specialized term order obtained by a reverse topological traversal

of the circuit. Furthermore, according to the work of Pruss et al. [16], we can also abstract the

word-level signature of an arithmetic component working in GF. Thus, we consider exploiting the

concepts of [19] and [16] to efficiently perform abstraction of the state-space to specific sequential

GF circuits. In each time-frame, we can use the techniques from [16] to abstract the word-level

signature of the combinational logic, which corresponds to the transition function in our traversal

algorithm. We show how this approach can be applied to verify sequential GF multipliers which we

can apply to our traversal algorithm to actually verify its functional correctness.

6.1 Motivation
As depicted in Figure 6.1(a), a typical Moore machine implementation consists of combinational

logic component and register files, where r0, . . . , rk are present state (PS) variables standing for

pseudo inputs, and r′0, . . . , r
′
k are next state (NS) variables standing for pseudo outputs. Figure

6.1(b) shows the state transition graph (STG) of a GF arithmetic circuit implementation of a Moore

machine with k + 1 distinct states. We notice that it forms a simple chain, with k consecutive

transitions the machine reaches final state Rk.

In practice, some arithmetic components are designed in sequential circuits similar to the struc-



96

Combinational

Logic
R

E

G

r’0~r’k-1r0~rk-1

Rinit R1 Rk-1 Rk
Tr Tr Tr Tr

……

(a) (b)

Figure 6.1: A typical Moore machine and its state transition graph.

ture in Figure 6.1(a). Initially the operands are loaded into the registers, then the closed circuit

executes without taking any additional information from outside, and stores the results in registers

after k clock cycles. Its behavior can be described using the STG in Figure 6.1(b): state R denotes

the bits stored in registers. Concretely, Rinit is the initial state, R1 to Rk−1 are intermediate results

stored as NS variables of current time-frame and PS variables for the next time-frame, and Rk (or

Rfinal) is the final result given by arithmetic circuits (and equals to the arithmetic function when

circuit is working correctly). This kind of design results in reusing a smaller combinational logic

component such that the area cost is greatly optimized. An example of such designs is the sequential

GF arithmetic multipliers described in Chapter 3. However, it also brings difficulties in verifying

the circuit functions.

Conventional methods to such a sequential circuit may consist of unrolling the circuit for k time-

frames, and performing an equivalence checking between the unrolled machine and the specification

function, as shown in Figure 6.2. However, the number of gates will grow fast when unrolling at

bit level. Meanwhile the structural similarity-based equivalence checking techniques will fail when

the sequential circuit is highly customized and optimized from the naive specification function. As

a result, conventional techniques are grossly inefficient for large circuits. Therefore, a new method

based on our proposed word-level FSM traversal technique is worthy of exploration.
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Figure 6.2: Conventional verification techniques based on bit-level unrolling and equivalence
checking.

6.2 Formal Verification of Normal Basis Multipliers Using Gröbner
Bases

The gate-level design of a NB multiplier can be generated using approaches introduced in

Section 3.3. The gate-level netlist is ready to be verified using an approach similar to that in

Chapter 5. First we introduce the sketch of our approach using abstraction term order (ATO),

mentioned previously in Section 4.3, then refine our approach using the concept of “RATO”, which

was previously used in Section 5.4.

6.2.1 Implicit Unrolling Based on Abstraction with ATO

The concept of abstraction was discussed in Section 4.3. If we use an elimination term order

with intermediate variables > R > A,B for the circuit in Figure 6.3 to compute Gröbner

basis, the function of the combinational logic component can be abstracted as

R = F(A,B)

To verify the functional correctness of a combinational NB multiplier (e.g., Mastrovito multiplier

or Montgomery multiplier), the function given by abstraction will be computed as

R = A ·B

While in the sequential case, the function of combinational logic only fulfills a part of the multipli-

cation. For example, in the RH-SMPO introduced in Section 3.3, the combinational logic actually

implements Fk−1 in Equation 3.16, while computing all of Fi requires k-cycle unrolling of the
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Figure 6.3: Architecture of a combinational GF multiplier.

circuit. Nevertheless, the abstraction still provides a word-level representation which can be more

efficient for unrolling than bit-level expressions. In other words, with the assistance of abstraction,

we can execute implicit unrolling instead of explicit unrolling and avoid a bit-blasting problem.

For 2-input sequential NB multipliers, abstraction is utilized to implement Algorithm 8. Nota-

tions in Figure 6.4 as well as in the next example comply with the notations in this algorithm.

Given a sequential GF circuit in Figure 6.4 over F2k = F2[x], irreducible polynomial p(α) = 0

defines the primitive element α, β = αt is the normal element. The circuit includes word-level

variables A,B,R denoting the present states (PS) and A′, B′, R′ denoting the next states (NS) of

the machine; where A =
∑k−1

i=0 aiβ
2i for the PS variables and A′ =

∑k−1
i=0 a

′
iβ

2i for NS variables,

and so on. Variables R (R′) correspond to those that store the result, and A,B (A′, B′) store input

operands. For example, for a GF multiplier, Ainit, Binit (and Rinit = 0) are the initial values

(operands) loaded into the registers, and R = F(Ainit, Binit) = Ainit × Binit is the final result

after k-cycles. Our approach aims to find this polynomial representation for R.

Each gate in the combinational logic is represented by a Boolean polynomial. To this set

of Boolean polynomials, we append the polynomials that define the word-level to bit-level rela-

tions for PS and NS variables (A =
∑k−1

i=0 aiβ
2i). We denote this set of polynomials as ideal
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Figure 6.4: A typical normal basis GF sequential circuit model. A = (a0, . . . , ak−1) and similarly
B,R are k-bit registers; A′, B′, R′ denote next-state inputs.

Algorithm 8: Abstraction via implicit unrolling for Sequential GF circuit verification
Input: Circuit polynomial ideal Jckt, vanishing ideal J0, initial state ideal for output R(= 0),

inputs G(Ainit),H(Binit)
Output: Circuit function Rfinal after k cycles of Ainit, Binit

1 from0(R,A,B) = 〈R,G(Ainit),H(Binit)〉;
/* A,B are word-level variables, solutions to polynomial

equations G,H denote the initial values of preloaded
operands Ainit, Binit */

2 i = 0;
3 repeat
4 i← i+ 1;
5 G←GB(〈Jckt + J0 + fromi−1(R,A,B)〉) with ATO;
6 toi(R

′, A′, B′)← G ∩ F2k [R′, A′, B′, R,A,B];
/* Using projections of varieties from abstraction theory,

we get NS variables R′, A′, B′ in terms of PS A,B */
7 fromi ← toi({R,A,B} \ {R′, A′, B′});

/* By replacing NS variables with PS variables we push it
to next time-frame */

8 until i == k;
9 return fromk(Rfinal)

Jckt = 〈f1, . . . , fs〉 ⊂ F2[x1, . . . , xd, R,R
′, A,A′, B,B′], where x1, . . . , xd denote the bit-level

(Boolean) variables of the circuit. The ideal of vanishing polynomials J0 = 〈x2i − xi, R
2k
j −

Rj〉, ∀ bit-level variables xi, and word-level variables Rj , is also included. Then the implicit FSM

unrolling problem is set up for abstraction.

The configurations of the flip-flops are the states of the machine. Since the set of states is a finite

set of points, we can consider it as the variety of an ideal related to the circuit. Moreover, since we
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are interested in the function encoded by the state variables (over k-time frames), we can project

this variety on the word-level state variables, starting from the initial stateAinit, Binit. Projection of

varieties (geometry) corresponds to elimination ideals (algebra), and can be analyzed via Gröbner

bases as shown in Section 4.3. Therefore, we employ a Gröbner basis computation with ATO: we

use a lex term order with bit-level variables > word-level NS outputs > word-level PS inputs. This

allows us to eliminate all the bit-level variables and derives a representation only in terms of words.

Consequently, k-successive Gröbner basis computations implicitly unroll the machine, and provide

a word-level algebraic k-cycle abstraction for R′ as R′ = F(Ainit, Binit).

Algorithm 8 describes our approach. In the algorithm, fromi and toi are polynomial ideals

whose varieties are the valuations of word-level variablesR,A,B andR′, A′, B′ in the i-th iteration;

and the notation “\” signifies that theNS in iteration (i) becomes the PS in iteration (i+1). Line 5

computes the Gröbner basis with the abstraction term order. Line 6 computes the elimination ideal,

eliminating the bit-level variables and representing the set of reachable states up to iteration i in

terms of the elimination ideal. These computations are analogous to those of image computations

performed in the FSM reachability algorithm (given in Chapter 5).

In the practice of sequential GF multiplier verification, the combinational logic actually imple-

ments function not only related to current operands A and B, but also involved with PS variable

(i.e., temporary product) R, which can be obtained using the abstraction:

R′ = F(A,B,R)

Using ATO, if we put R ahead of R′, A,B in term ordering, R is thus eliminated and the result in

single iteration will be R′ = F(A,B). NS operands A′ and B′ are right-cyclic shift of A and B,

which can be directly written. If initial values Ainit, Binit are treated as parameters, the NS ideal

contains polynomials with A′, B′ and R′ = F(Ainit, Binit). This is also shown in the following

example.

Example 6.1 (Functional verification of 5-bit RH-SMPO). Figure 3.3 shows the detailed structure

of a 5-bit RH-SMPO, with normal element β = α5. The transition function for operands A,B

perform cyclic shift, while the transition function for R has to be computed through the Gröbner

basis abstraction approach. Following ideal Jckt from line 5 in Algorithm 8 is the ideal for all gates

in a combinational logic block and definition of word-level variables.

Jckt = 〈f1, f2, . . . , f19〉
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d0 + a4b4, c1 + a0 + a4, c2 + b0 + b4, d1 + c1c2, c3 + a1a4

c4 + b1b4, d2 + c3c4, e0 + d0 + d1, e3 + d1 + d2, e4 + d2

R0 + r4 + e0, R1 + r0, R2 + r1, R3 + r2 + e3, R4 + r3 + e4

 {f1 . . . f15}

A+ a0α
5 + a1α

10 + a2α
20 + a3α

9 + a4α
18

B + b0α
5 + b1α

10 + b2α
20 + b3α

9 + b4α
18

R′ + r′0α
5 + r′1α

10 + r′2α
20 + r′3α

9 + r′4α
18

R+R0α
5 +R1α

10 +R2α
20 +R3α

9 +R4α
18


{f16 . . . f19}

In our implementation here, since we only focus on the output variable R, evaluations of

intermediate input operands A,B are replaced by evaluations with parameters Ainit, Binit. Thus

polynomials describingA andB (f16 and f17) can be removed from Jckt, andR is directly evaluated

by initial operands Ainit and Binit. Those two parameters are associated with PS bit-level inputs

a0, a1, . . . , a4 and b0, b1, . . . , b4 by polynomials given in fromi.

According to line 5 of Algorithm 8, we merge Jckt, J0 and fromi, then compute its Gröbner

basis with abstraction term order. Concretely, in the first iteration from0 contains three generators.

The first one describes PS variableR – temporary (or initial, in first iteration) product, which equals

to 0 according to the mechanism of sequential GF multiplier. The polynomial is written as

R

The other two polynomials describe PS variable A,B – current multiplication operands, and we

write them in parameters Ainit, Binit. Since this is the first iteration, they have the same form as

f16 and f17:

Ainit + a0α
5 + a1α

10 + a2α
20 + a3α

9 + a4α
18

Binit + b0α
5 + b1α

10 + b2α
20 + b3α

9 + b4α
18

After computing the Gröbner basis of Jckt + J0 + from0 using ATO

all bit-level variables > R > {R′, Ainit, Binit}

there is a polynomial in the form of R′ + F(Ainit, Binit), which should be included in toi+1. toi+1

also excludes next state variable A′ and B′, instead we redefine Ainit and Binit using next state

bit-level variables {a′i, b′j}. Next state Bit-level variables a′i = ai−1 (mod k), b
′
j = bj−1 (mod k)

according to definition of cyclic shift.
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Line 7 in Algorithm 8 is implemented by replacing R′ with R, {a′i, b′j} with {ai, bj}.

All intermediate results for each clock cycle are listed below:

• Clock-cycle 1: from0 = {R,Ainit+a0α
5 +a1α

10 +a2α
20 +a3α

9 +a4α
18, Binit+ b0α

5 +

b1α
10 + b2α

20 + b3α
9 + b4α

18},

to1 = {R′ + (α4 + α3 + 1)A16
initB

16
init + (α4 + α2)A16

initB
4
init + (α3 + 1)A16

initB
2
init +

(α4 + α3 + 1)A16
initBinit + (α4 + α3 + α2 + 1)A8

initB
8
init + (α4 + α3 + α+ 1)A8

initB
4
init +

(α3 + α + 1)A8
initB

2
init + (α4 + α2)A8

initBinit + (α4 + α2)A4
initB

16
init + (α4 + α3 + α +

1)A4
initB

8
init+(α2)A4

initB
4
init+(α3+α2+α+1)A4

initB
2
init+(α4+α3+α+1)A4

initBinit+

(α3 + 1)A2
initB

16
init + (α3 + α+ 1)A2

initB
8
init + (α3 + α2 + α+ 1)A2

initB
4
init + (α3 + α2 +

α)A2
initB

2
init + (α4 + α)A2

initBinit + (α4 + α3 + 1)AinitB
16
init + (α4 + α2)AinitB

8
init +

(α4 +α3 +α+ 1)AinitB
4
init+ (α4 +α)AinitB

2
init+ (α3 +α+ 1)AinitBinit, Ainit+a′4α

5 +

a′0α
10 + a′1α

20 + a′2α
9 + a′3α

18, Binit + b′4α
5 + b′0α

10 + b′1α
20 + b′2α

9 + b′3α
18}

• Clock-cycle 2: from1 = {R + (α4 + α3 + 1)A16
initB

16
init + (α4 + α2)A16

initB
4
init + (α3 +

1)A16
initB

2
init + (α4 + α3 + 1)A16

initBinit + (α4 + α3 + α2 + 1)A8
initB

8
init + (α4 + α3 + α+

1)A8
initB

4
init+(α3 +α+1)A8

initB
2
init+(α4 +α2)A8

initBinit+(α4 +α2)A4
initB

16
init+(α4 +

α3 + α+ 1)A4
initB

8
init + (α2)A4

initB
4
init + (α3 + α2 + α+ 1)A4

initB
2
init + (α4 + α3 + α+

1)A4
initBinit+(α3 +1)A2

initB
16
init+(α3 +α+1)A2

initB
8
init+(α3 +α2 +α+1)A2

initB
4
init+

(α3+α2+α)A2
initB

2
init+(α4+α)A2

initBinit+(α4+α3+1)AinitB
16
init+(α4+α2)AinitB

8
init+

(α4 +α3 +α+ 1)AinitB
4
init+ (α4 +α)AinitB

2
init+ (α3 +α+ 1)AinitBinit, Ainit+a4α

5 +

a0α
10 + a1α

20 + a2α
9 + a3α

18, Binit + b4α
5 + b0α

10 + b1α
20 + b2α

9 + b3α
18},

to2 = {R′ + (α3 + α+ 1)A16
initB

16
init + (α4 + α3 + 1)A16

initB
8
init + (α2)A16

initB
4
init + (α3 +

1)A16
initB

2
init+(α4+α3+1)A8

initB
16
init+(α4+α2)A8

initB
8
init+(α4)A8

initB
4
init+(α4+α3+

1)A8
initB

2
init + (α3 + 1)A8

initBinit + (α2)A4
initB

16
init + (α4)A4

initB
8
init + (α4)A4

initB
4
init +

(α4+α3+α+1)A4
initB

2
init+(α)A4

initBinit+(α3+1)A2
initB

16
init+(α4+α3+1)A2

initB
8
init+

(α4 +α3 +α+ 1)A2
initB

4
init + (α2)A2

initB
2
init + (α4 +α3 +α2 +α+ 1)A2

initBinit + (α3 +

1)AinitB
8
init + (α)AinitB

4
init + (α4 + α3 + α2 + α+ 1)AinitB

2
init + (α4 + α3 + α2 + α+

1)AinitBinit, Ainit+a′3α
5 +a′4α

10 +a′0α
20 +a′1α

9 +a′2α
18, Binit+b′3α

5 +b′4α
10 +b′0α

20 +

b′1α
9 + b′2α

18}

• Clock-cycle 3: from2 = {R + (α3 + α + 1)A16
initB

16
init + (α4 + α3 + 1)A16

initB
8
init +

(α2)A16
initB

4
init + (α3 + 1)A16

initB
2
init + (α4 + α3 + 1)A8

initB
16
init + (α4 + α2)A8

initB
8
init +
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(α4)A8
initB

4
init+(α4+α3+1)A8

initB
2
init+(α3+1)A8

initBinit+(α2)A4
initB

16
init+(α4)A4

initB
8
init+

(α4)A4
initB

4
init+(α4 +α3 +α+1)A4

initB
2
init+(α)A4

initBinit+(α3 +1)A2
initB

16
init+(α4 +

α3 + 1)A2
initB

8
init + (α4 +α3 +α+ 1)A2

initB
4
init + (α2)A2

initB
2
init + (α4 +α3 +α2 +α+

1)A2
initBinit + (α3 + 1)AinitB

8
init + (α)AinitB

4
init + (α4 + α3 + α2 + α+ 1)AinitB

2
init +

(α4 +α3 +α2 +α+ 1)AinitBinit, Ainit + a3α
5 + a4α

10 + a0α
20 + a1α

9 + a2α
18, Binit +

b3α
5 + b4α

10 + b0α
20 + b1α

9 + b2α
18},

to3 = {R′+(α4+α3+1)A16
initB

16
init+(α)A16

initB
8
init+(α4+α3+α2+1)A16

initB
4
init+(α4+

α3+α2+α+1)A16
initB

2
init+(α4+α3+α2+1)A16

initBinit+(α)A8
initB

16
init+(α+1)A8

initB
8
init+

(α4)A8
initB

4
init+ (α3 +α2 + 1)A8

initB
2
init+ (α4 +α3 +α+ 1)A8

initBinit+ (α4 +α3 +α2 +

1)A4
initB

16
init+(α4)A4

initB
8
init+(α4+α3+α+1)A4

initB
4
init+(α3+α+1)A4

initB
2
init+(α4+

α3 +α2 +α+1)A4
initBinit+(α4 +α3 +α2 +α+1)A2

initB
16
init+(α3 +α2 +1)A2

initB
8
init+

(α3 + α+ 1)A2
initB

4
init + (α3 + α+ 1)A2

initB
2
init + (α4 + α3 + α2 + 1)AinitB

16
init + (α4 +

α3 + α+ 1)AinitB
8
init + (α4 + α3 + α2 + α+ 1)AinitB

4
init + (α4 + α)AinitBinit, Ainit +

a′2α
5 + a′3α

10 + a′4α
20 + a′0α

9 + a′1α
18, Binit + b′2α

5 + b′3α
10 + b′4α

20 + b′0α
9 + b′1α

18}

• Clock-cycle 4: from3 = {R + (α4 + α3 + 1)A16
initB

16
init + (α)A16

initB
8
init + (α4 + α3 +

α2 + 1)A16
initB

4
init + (α4 + α3 + α2 + α+ 1)A16

initB
2
init + (α4 + α3 + α2 + 1)A16

initBinit +

(α)A8
initB

16
init + (α + 1)A8

initB
8
init + (α4)A8

initB
4
init + (α3 + α2 + 1)A8

initB
2
init + (α4 +

α3 + α + 1)A8
initBinit + (α4 + α3 + α2 + 1)A4

initB
16
init + (α4)A4

initB
8
init + (α4 + α3 +

α + 1)A4
initB

4
init + (α3 + α + 1)A4

initB
2
init + (α4 + α3 + α2 + α + 1)A4

initBinit + (α4 +

α3 + α2 + α+ 1)A2
initB

16
init + (α3 + α2 + 1)A2

initB
8
init + (α3 + α+ 1)A2

initB
4
init + (α3 +

α+ 1)A2
initB

2
init + (α4 + α3 + α2 + 1)AinitB

16
init + (α4 + α3 + α+ 1)AinitB

8
init + (α4 +

α3 +α2 +α+ 1)AinitB
4
init + (α4 +α)AinitBinit, Ainit + a2α

5 + a3α
10 + a4α

20 + a0α
9 +

a1α
18, Binit + b2α

5 + b3α
10 + b4α

20 + b0α
9 + b1α

18},

to4 = {R′+(α3+α+1)A16
initB

16
init+(α4+α3+α2+α+1)A16

initB
8
init+(α4+α)A16

initB
4
init+

(α3 + 1)A16
initB

2
init + (α3 + α+ 1)A16

initBinit + (α4 + α3 + α2 + α+ 1)A8
initB

16
init + (α3 +

1)A8
initB

8
init+(α4+α2+α)A8

initB
4
init+(α2+α)A8

initB
2
init+(α3+α2+1)A8

initBinit+(α4+

α)A4
initB

16
init + (α4 +α2 +α)A4

initB
8
init + (α4 +α2 +α)A4

initB
4
init + (α2 +α)A4

initBinit +

(α3 +1)A2
initB

16
init+(α2 +α)A2

initB
8
init+(α4 +α2)A2

initB
2
init+(α3 +α2 +1)A2

initBinit+

(α3 + α + 1)AinitB
16
init + (α3 + α2 + 1)AinitB

8
init + (α2 + α)AinitB

4
init + (α3 + α2 +

1)AinitB
2
init+(α)AinitBinit, Ainit+a′1α

5 +a′2α
10 +a′3α

20 +a′4α
9 +a′0α

18, Binit+b′1α
5 +
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b′2α
10 + b′3α

20 + b′4α
9 + b′0α

18}

• Clock-cycle 5: from4 = {R+(α3 +α+1)A16
initB

16
init+(α4 +α3 +α2 +α+1)A16

initB
8
init+

(α4 +α)A16
initB

4
init + (α3 + 1)A16

initB
2
init + (α3 +α+ 1)A16

initBinit + (α4 +α3 +α2 +α+

1)A8
initB

16
init + (α3 + 1)A8

initB
8
init + (α4 +α2 +α)A8

initB
4
init + (α2 +α)A8

initB
2
init + (α3 +

α2+1)A8
initBinit+(α4+α)A4

initB
16
init+(α4+α2+α)A4

initB
8
init+(α4+α2+α)A4

initB
4
init+

(α2 + α)A4
initBinit + (α3 + 1)A2

initB
16
init + (α2 + α)A2

initB
8
init + (α4 + α2)A2

initB
2
init +

(α3 + α2 + 1)A2
initBinit + (α3 + α + 1)AinitB

16
init + (α3 + α2 + 1)AinitB

8
init + (α2 +

α)AinitB
4
init + (α3 + α2 + 1)AinitB

2
init + (α)AinitBinit, Ainit + a1α

5 + a2α
10 + a3α

20 +

a4α
9 + a0α

18, Binit + b1α
5 + b2α

10 + b3α
20 + b4α

9 + b0α
18},

to5 = {R′ + AinitBinit, Ainit + a′0α
5 + a′1α

10 + a′2α
20 + a′3α

9 + a′4α
18, Binit + b′0α

5 +

b′1α
10 + b′2α

20 + b′3α
9 + b′4α

18}

The algorithm returns

from5(Rfinal) = Rfinal +AinitBinit

which is the function of the multiplier: Rfinal = Ainit ·Binit

6.2.2 Overcome Computational Complexity Using RATO

We implemented Algorithm 8 in SINGULAR, with similar setup and environments as with the

experiments in Section 5.6. The result of verifying Agnew’s SMPO is shown in Table 6.1. It

indicates that our approach based on ATO cannot verify sequential GF multiplier with size larger

than 11 bits operands. Similar to our improvements in Section 5.4, RATO [129] can also be applied

to accelerate the GB computation here. More specifically, we circumvent the GB computation

of Line 5 in Algorithm 8 by turning the Buchberger’s algorithm into a single-step of multivariate

polynomial division.

Table 6.1: Runtime of Gröbner Basis Computation of Agnew’s SMPO in Singular using ATO >.
Word Size (k) Number of Polynomials (d) Computation Time (seconds)

5 65 16
6 90 368
9 189 43602
11 275 TO (> 48 hr)
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• First, a set of polynomials is constructed from each logic gate in the circuit, and they generate

ideal Jgates. Similarly, ideal JWB is generated by polynomials representing the word-to-bit

correspondences. They are merged as an ideal describing the combinational logic of the

circuit: Jckt = Jgates + JWB .

• Second, we impose RATO on ideal Jckt: all bit-level variables are sorted using a reverse

topological order derived from the circuit structure, followed by word-level NS outputs (e.g.,

R′ in Figure 6.4), then word-level PS inputs (e.g. A,B,R in Figure 6.4).

• When computing the Gröbner basis of Jckt + J0 (adding vanishing polynomials), because of

RATO, there exists only one pair of polynomials (fw, fg) such thatLCM(lm(fw), lm(fg)) 6=

lm(fw) · lm(fg).

• Then we only need to compute the Spoly for (fw, fg), and reduce the Spoly by Jckt + J0.

After executing the reduction, the remainder only contains a limited number of variables. It can

be further transformed to a canonical polynomial function of the circuit. We illustrate the whole

improved procedure by applying RATO on 5-bit RH-SMPO described in Example 6.1 and Figure

3.3.

Example 6.2. From the circuit topological structure in Figure 3.3, the term order under RATO is:

{r′0, r′1, r′2, r′3, r′4} > {r0, r1, r2, r3, r4}

> {e0, e3, e4}, {d0, d1, d2}, {c1, c2, c3, c4}

> {a0, a1, a2, a3, a4, b0, b1, b2, b3, b4} > R′ > R > {A,B}

The variables in braces are at the same topological level and are arranged in LEX order. We search

among all generators of Jckt from Example 6.1 using RATO, and find a pair of polynomials whose

leading monomials are not relatively prime: (fw, fg), fw = r′0 + r4 + e0, fg = r′0α
5 + r′1α

10 +

r′2α
20 + r′3α

9 + r′4α
18 +R′. We calculate Spoly can reduce it by Jckt + J0:
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S-poly(fw, fg)
Jckt+J0−−−−−→+

(α3 + α2 + α)r1 + (α4 + α3 + α2)r2 + (α2 + α)r3 + (α)r4

+ (α3 + α2)a1b1 + (α4 + α3 + α2 + α)a1b2 + (α2 + α)a1b3

+ (α2 + 1)a1b4 + (α4 + 1)a1B + (α4 + α)a2b1 + (α4 + α3 + α)a2b2

+ (α3 + 1)a2b3 + (α3 + α2 + 1)a2b4 + (α3 + α2)a2B + (α2 + α)a3b1

+ (α3 + 1)a3b2 + (α+ 1)a3b3 + (α4 + α2 + α)a3b4

+ (α4 + α3 + α)a3B + (α3 + 1)a4b1 + a4b2 + (α4 + α2 + α)a4b3

+ (α4 + α3 + 1)a4b4 + (α2 + α)a4B + (α4 + 1)b1A+ (α3 + α2)b2A

+ (α4 + α3 + α)b3A+ (α2 + α)b4A+ (α4 + α2 + α+ 1)R′ +R+AB

The above example indicates that RATO-based abstraction on 5-bit RH-SMPO will result in a

remainder containing both bit-level variables and word-level variables. Moreover, the number of

variables is still large such that Gröbner basis computation will be inefficient.

Since the remainder from Spoly reduction contains some bit-level variables, our objective is to

compute a polynomial that contains only word-level variables (such asR′+F(A,B)). One possible

solution to this problem is to replace the bit-level variables by equivalent polynomials that only

contain word-level variables, e.g., ai = G(A), rj = H(R). In this section a Gaussian-elimination

approach is introduced to compute corresponding G(A),H(R) efficiently.

Example 6.3. Objective: In F25 with normal element β = α5, compute polynomial ai + Gi(A)

from f0 = a0α
5 + a1α

10 + a2α
20 + a3α

9 + a4α
18 +A = g0 +A.

First, compute f20 = a0α
10 + a1α

20 + a2α
9 + a3α

18 + a4α
5 +A2 = g20 +A2; then f40 , f

8
0 , f

16
0 .

Use Lemma 5.2, by repeating squaring we get a system of equations:



f0 = 0

f20 = 0

f40 = 0

f80 = 0

f160 = 0

⇐⇒



g0 = A

g20 = A2

g40 = A4

g80 = A8

g160 = A16

Following is the coefficient matrix form of this system of equations:
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α5 α10 α20 α9 α18

α10 α20 α9 α18 α5

α20 α9 α18 α5 α10

α9 α18 α5 α10 α20

α18 α5 α10 α20 α9



a0
a1
a2
a3
a4

 =


A
A2

A4

A8

A16


Then we use Gaussian elimination on coefficients matrix to recursively eliminate a1 from the

third row, a2 from the fourth row, etc. The final solution to this system of equations is

a0 = (α+ 1)A16 + (α4 + α3 + α)A8 + (α3 + α2)A4

+(α4 + 1)A2 + (α2 + 1)A
a1 = (α2 + 1)A16 + (α+ 1)A8 + (α4 + α3 + α)A4

+(α3 + α2)A2 + (α4 + 1)A
a2 = (α4 + 1)A16 + (α2 + 1)A8 + (α+ 1)A4

+(α4 + α3 + α)A2 + (α3 + α2)A
a3 = (α3 + α2)A16 + (α4 + 1)A8 + (α2 + 1)A4

+(α+ 1)A2 + (α4 + α3 + α)A
a4 = (α4 + α3 + α)A16 + (α3 + α2)A8 + (α4 + 1)A4

+(α2 + 1)A2 + (α+ 1)A

Similarly we can compute equivalent polynomials Hi(R) for ri and Tj(B) for bj , respectively.

Using those polynomial equations, it is sufficient to translate all bit-level inputs in the remainder

polynomial because of following proposition:

Proposition 6.1. Due to RATO, remainder of Spoly reduction will only contain primary inputs (bit-

level) and word-level output; furthermore, there will be one and only one term containing word-level

output with degree equal to 1.

Proof. The first proposition is easy to prove by contradiction: Assume there exists an intermediate

bit-level variable v in the remainder, then this remainder must be divided further by a polynomial

with leading term v. Since the remainder cannot be divided by any other polynomials in Jckt, the

assumption does not hold.

Second part, the candidate pair of polynomials only have one term of single word-level output

variable (say it is R) and this term is the last term under RATO, which means there is only one term

with R in Spoly. Meanwhile in other polynomials from Jckt + J0 there is no such term containing

R, so this term will appear in remainder r, with exponent equal to 1.

By replacing all bit-level variables with corresponding word-level variable polynomials, we

transform the remainder of Spoly reduction to the form of R′ + R + F ′(A,B). Note R is the

present state notion of output, which equals to initial value R = 0 in first clock cycle, or value of R′
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from the last clock cycle. By substituting R with its corresponding value (0 or a polynomial only

about A and B), we get the desired polynomial function R′ + F(A,B).

6.2.3 Solving a Linear System for Bit-to-Word Substitution

In Example 6.3 we show a Gaussian-elimination method to solve the system of polynomial

equations. We describe another formal method to solve the following system of equations


S
S2

S22

...
S2k−1

 =


β β2 β2

2 · · · β2
k−1

β2 β2
2

β2
3 · · · β

β2
2

β2
3

β2
4 · · · β2

...
...

...
. . .

...
β2

k−1
β β2 · · · β2

k−2




s0
s1
s2
...

sk−1

 (6.1)

Let s be a vector of k unknowns s0, . . . , sk−1, then Equation 6.1 can be solved by using Cramer’s

rule:

si =
|Mi|
|M|

, 0 ≤ i ≤ k − 1, |M| 6= 0 (6.2)

where Mi denotes a coefficient matrix replacing i-th column in M with vector S = [S S2 · · · S2k−1
]T .

Notice that M is constructed by squaring a row and assigning it to the next row, therefore its

determinant exhibits certain special properties:

Definition 6.1. Let {α0, α1, . . . , αk−1} be a set of k elements of Fpk . Then the determinant

detM(α0, . . . , αk−1) =

∣∣∣∣∣∣∣∣∣
α0 α1 · · · αk−1
αp0 αp1 · · · αpk−1
...

...
. . .

...

αp
k−1

0 αp
k−1

1 · · · αp
k−1

k−1

∣∣∣∣∣∣∣∣∣ (6.3)

is called the Moore determinant of set {α0, . . . , αk−1}.

The Moore determinant can be written as an explicit expression

detM(α0, . . . , αk−1) = α0

k−1∏
i=1

 ∏
c0,...,ci−1∈Fp

(αi −
i−1∑
j=0

cjαj)

 (6.4)

We use an example to help understand the notations in Equation 6.4:
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Example 6.4. Let {α0, α1, α2} be a set of elements of F23 . Then

detM(α0, α1, α2) =

∣∣∣∣∣∣
α0 α1 α2

α2
0 α2

1 α2
2

α4
0 α4

1 α4
2

∣∣∣∣∣∣ (6.5)

=α0

2∏
i=1

∏
c0,...,ci−1∈F2

(αi −
i−1∑
j=0

cjαj)

First, let i = 1, we obtain c0 ∈ F2. When c0 = 0, the product term equals α1; when c0 = 1 it equals

(α1−α0). Then let i = 2, we obtain c0, c1 ∈ F2, they can take value from {0, 0}, {0, 1}, {1, 0} and

{1, 1}. We add 4 more product terms α2, (α2 − α1), (α2 − α0), (α2 − α0 − α1), respectively.

Thus, the result is

detM(α0, α1, α2) = α0α1(α1 − α0)α2(α2 − α1)(α2 − α0)(α2 − α0 − α1) (6.6)

We discover through investigation that |M| has a special property when the set of elements

forms a basis. The proof is given below:

Lemma 6.1. Let {α0, α1, . . . , αk−1} be a normal basis of Fpk over Fp. Then

detM(α0, α1, . . . , αk−1) = 1 (6.7)

Proof. According to Equation 6.4, the Moore determinant consists of all possible linear combina-

tions of {α0, α1, . . . , αk−1} with coefficients over Fp. If {α0, α1, . . . , αk−1} is a (normal) basis,

then all product terms are distinct and represents all elements in the field Fpk . Since the product of

all elements of a field equals 1, the Moore determinant |M| = 1.

Applying Lemma 6.1 to Equation 6.2 gives

si = |Mi|, 0 ≤ i ≤ k − 1 (6.8)

where |Mi| can be computed using Laplace expansion method, with complexity O(k!).

6.2.4 The Overall Verification Approach

Based on the above concepts and improvements, the functional verification for sequential GF

multiplier on word level with k-bit input operands A,B and k-bit output R is described as follows:

1) Given a sequential GF multiplier S, with word-level k-bit inputs A,B and output R.

2) Given a primitive polynomial P (x) of degree k and construct F2k , and let P (α) = 0.
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3) Perform a reverse-topological traversal of S to derive RATO: LEX with {x1 > x2 > · · · > xd >

R′ > R > A > B}, where {x1, . . . , xd} are bit-level variables of S, R′ is the NS output value,

and R,A,B are word-level PS variables.

4) Derive the set of bit-level polynomials {f1, . . . , fs} from each gate in S, and represent them

using RATO. These polynomials are in the form xi + tail(fi) where xi is the output of the

corresponding logic gate.

5) Compose the bit-level to word-level correspondences polynomials such as r0β + r1β
2 + · · · +

rk−1β
2k−1

+ R. Add them to set {f1, . . . , fs} and generate ideal Jckt. Compose the ideal of

vanishing polynomials J0 = 〈x2i + xi, . . . , R
2k +R, . . . 〉.

6) Select the only critical pair (fw, fg) that does not have relatively prime leading terms. Compute

Spoly(fw, fg)
Jckt+J0−−−−−→+ r.

7) Construct matrices M0, . . . ,Mk−1, where Mi is M with the i-column replaced by circulant

vector [R R2 · · · R2k−1
]T , and M is the reverse-circulant matrix generated by circulant vector

(β, β2, . . . , β2
k−1

).

8) Symbolically compute the determinants |Mi| to find set FR, where fRi : Ri + |Mi|, for 0 ≤ i ≤

k − 1. Obtain FA, FB from FR since they have the same form.

9) Compute r FA∪FB∪FR−−−−−−−→+ rw, and iterate rw as toi in Algorithm 8. Then rw after iteration k is

of the form R′ + F(A,B) and it is the unique, canonical word-level abstraction of S over

F2k after k clock-cycles.

6.3 Software Implementation of Implicit Unrolling Approach
Our experiment on different sizes of SMPO designs is performed with both SINGULAR [124]

symbolic algebra computation system and our customized toolset developed using C++. The SMPO

designs are given as gate-level netlists with registers, then translated to polynomials to compose

elimination ideals for Gröbner basis calculation. The experiment is conducted on a desktop with

3.5GHz Intel CoreTM i7 Quad-core CPU, 16 GB RAM and running 64-bit Linux OS.

The SINGULAR tool can read scripts written in its own format similar to ANSI-C. The input

file format for our C++ tool is also designed to be compatible with SINGULAR ring and polynomial

definitions. For SMPO experiments, the main loop of our script file performs the same function



111

as Algorithm 8 describes, while the Gröbner basis computation in the main loop is divided into 4

different functional parts:

1) Preprocessing:

This step is executed only once before the main loop starts. The function of preprocessing is to

compute the following system of equations for bit-level inputs a0 . . . ak−1:
a0 = f0(A)
a1 = f1(A)
...
ak−1 = fk−1(A)

The methodology has been discussed in this chapter. For 5-bit SMPO example, we start from

bit-to-word correspondence polynomial

A+ a0α
5 + a1α

10 + a2α
20 + a3α

9 + a4α
18

and the result is 

a0 = (α+ 1)A16 + (α4 + α3 + α)A8 + (α3 + α2)A4

+(α4 + 1)A2 + (α2 + 1)A
a1 = (α2 + 1)A16 + (α+ 1)A8 + (α4 + α3 + α)A4

+(α3 + α2)A2 + (α4 + 1)A
a2 = (α4 + 1)A16 + (α2 + 1)A8 + (α+ 1)A4

+(α4 + α3 + α)A2 + (α3 + α2)A
a3 = (α3 + α2)A16 + (α4 + 1)A8 + (α2 + 1)A4

+(α+ 1)A2 + (α4 + α3 + α)A
a4 = (α4 + α3 + α)A16 + (α3 + α2)A8 + (α4 + 1)A4

+(α2 + 1)A2 + (α+ 1)A

By replacing bit-level variable ai with bi, ri or r′i, and word-level variable A with B,R,R′ respec-

tively, we can directly get bit-to-word relation functions for another operand input, pseudo input

and pseudo output.

One limitation of the SINGULAR tool is the degree of a term cannot exceed 263, so when

conducting experiments for SMPO circuits larger than 62 bits, we rewrite the degree using smaller

integers (the feasibility of this rewriting can also be verified in the following steps). Our C++

tool does not have a data size limit, but it accumulates exponents when computing the power of a

variable. Thus if the exponent is as large as 263, its runtime is very long. As a result, our C++ tool

also adopts and benefits from this rewriting technique. Since the bit-to-word substitution procedure

only requires squaring of equations each time, the exponent of wordA can only be in the form 2i−1,

i.e., A20 , A21 , . . . , A2k−1
. To minimize the exponents presenting in both SINGULAR and our tool,
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we rewrite exponent 2i−1 to exponent i, i.e., (A20 , A21 , . . . , A2k−1
) → (A,A2, . . . , Ak). In this

way result is rewritten to be

a0 = (α+ 1)A5 + (α4 + α3 + α)A4 + (α3 + α2)A3 + (α4 + 1)A2 + (α2 + 1)A

Thus the exponents do not exceed the SINGULAR data size limit.

This step requires limited substitution operations, so although we use the naive Gaussian elimi-

nation method (whose time complexity isO(k3)), the time cost is trivial comparing to the following

steps.

2) Spoly reduction:

First, Spoly is calculated based on RATO, then reduced with the ideal composed by the circuit

description polynomials (Jckt).

For SMPO experiments, reduced Spoly has the following generic form (all coefficients are

omitted):

redSpoly = R′+F(ai, bj , rl, A,B,R) =
∑

ri +
∑

aibi +
∑

aiB+
∑

biA+R′+R (6.9)

From observation, there is no cross-product terms of bit-by-bit or bit-by-word variables from the

same input/output such as aiaj , aiA, etc. For our exponent rewriting approach to give a faithful

result, it has to satisfy an important condition: there exist no cross-product terms simultaneously

containing elements within the same set, i.e., sets {A, ai}, {B, bj} and {R, ri}. We now show that

redSpoly actually satisfies this condition. This property of redSpoly guarantees the word-level

variable can only exist in the form A2i−1
, after substituting a bit-level variable with a corresponding

word-level variable.

3) Substitute bit-level variables in reduced Spoly, i.e.,

F(ai, bj , rl, A,B,R)
ai+Gi(A),bj+Gj(B),rl+Gl(R)
−−−−−−−−−−−−−−−−−−→ H(A,B,R)

Use the result from preprocessing, get rid of ri, ai and bi through substitution. This step yields

the following polynomial:

R′ +H(A,B,R) = R′ +
∑

Ri +
∑

AiBj (6.10)

all coefficients omitted.
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4) Substitute PS word-level variable R with inputs A and B, i.e.,

F(A,B,R)
R+F ′(A,B)−−−−−−−→ F(A,B)

In Equation 6.10, there are still terms containing R in the ideal for which we want to compute

Gröbner basis. For PS variable R we can use relation R + F ′(A,B), which is the last clock-

cycle’s output (R′ + F ′(A,B)) with only the leading term replaced in step “fromi ← toi” in

Algorithm 8. This step needs to be specially executed because of the exponent rewriting technique.

If R + F ′(A,B) contains terms AiBj , it should be transformed back to the original exponent first,

then compute the exponential of the entire term. Because of following equation

(A2i−1
B2j−1

)2
m−1

= A2((i+m−2) mod k)+1
B2((j+m−2) mod k)+1

the correct exponent for A and B in (AiBj)m should be ((i+m− 2) mod k) + 1 and ((j +m−

2) mod k) + 1, respectively.

Within one iteration, after finishing steps 2) to 4), the output should correspond to the inter-

mediate multiplication result (temporary product) R′ + F(A,B). After k iterations, the output is

R+A ·B when SMPO circuit is bug-free.

6.4 Experiment Results
We have implemented our approach within the SINGULAR symbolic algebra computation sys-

tem [v. 3-1-6] [124] as well as C++/GCC. Using our implementation, we have performed experi-

ments to verify two SMPO architectures — Agnew-SMPO [110] and the RH-SMPO [111] — over

F2k , for various datapath/field sizes. Bugs are also introduced into the SMPO designs by modifying

a few gates in the combinational logic block. Experiments using SAT-, BDD-, and AIG-based

solvers are also conducted and results are compared against our approach. Our experiments run on

a desktop with 3.5GHz Intel CoreTM i7 Quad-core CPU, 16 GB RAM and 64-bit Linux.

Evaluation of SAT/ABC/BDD-based methods: To verify circuit S against the polynomial F , we

unroll the SMPO over k time-frames, and construct a miter against a combinational implementation

of F . A (preverified) F2k Mastrovito multiplier [101] is used as the spec model. This miter is

checked for SAT using the Lingeling [130] solver. We also experiment with the Combinational

Equivalence Checking (CEC) engine of the ABC tool [131], which uses AIG-based reductions to

identify internal AIG equivalences within the miter to efficiently solve verification. The BDD-based

VIS tool [128] is also used for equivalence check. The run-times for verification of (unrolled)
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RH-SMPO against Mastrovito spec are given in Table 6.2 – which shows that the techniques fail

beyond 23-bit fields.

CEC between unrolled RH-SMPO and Agnew-SMPO also suffers the same fate (results omit-

ted). In fact, both SMPO designs are based on slightly different mathematical concepts and their

computations in all clock-cycles, except for the kth one, are also different. These designs have no

internal logical/structural equivalences, and verification with SAT/BDDs/ABC is infeasible. Their

dissimilarity is depicted in Table 6.3, where N1 depicts the number of AIG nodes in the miter prior

to fraig sweep, and the nodes after fraiging are recorded as N2; so N1−N2
N1

reflects the proportion of

equivalent nodes in original miter, which emphasizes the (lack of) similarity between two designs.

Evaluation of Our Approach: Our algorithm inputs the circuit given in BLIF format, derives

RATO, and constructs the polynomial ideal from the logic gates and the register/data-word de-

scription. We perform one Spoly reduction, followed by the bit-level to word-level substitution,

in each clock cycle. After k iterations, the final result polynomial R is compared against the

spec polynomial. The run-times for verifying bug-free and buggy RH-SMPO and Agnew-SMPO

are shown in Tables 6.4 and 6.5 (using SINGULAR) and Table 6.6 (using C++ implementation),

respectively. We can verify, as well as catch bugs in, up to 100-bit (using SINGULAR) and 162-bit

(using C++ implementation) multipliers.

Beyond 162-bit fields, our approach is infeasible – mostly due to the fact that the intermediate

abstraction polynomial R is very dense and contains high-degree terms, which can be infeasible to

Table 6.2: Run-time for verification of bug-free RH-SMPO circuits for SAT, ABC and BDD based
methods. TO = timeout 14 hrs

Word size of the operands k-bits
Solver 11 18 23 33

Lingeling 593 TO TO TO

ABC 6.24 TO TO TO

BDD 0.1 11.7 1002.4 TO

Table 6.3: Similarity between RH-SMPO and Agnew’s SMPO
Size k 11 18 23 33
N1 734 2011 3285 6723
N2 529 1450 2347 4852

Similarity 27.9% 27.9% 28.6% 27.8%
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Table 6.4: Run-time (seconds) for verification of bug-free and buggy RH-SMPO with SINGULAR

Operand size k 33 51 65 81 89 99
#variables 4785 11424 18265 28512 34354 42372

#polynomials 3630 8721 13910 21789 26255 32373
#terms 13629 32793 52845 82539 99591 122958

Runtime(bug-free) 112.6 1129 5243 20724 36096 67021
Runtime(buggy) 112.7 1129 5256 20684 36120 66929

Table 6.5: Run-time (seconds) for verification of bug-free and buggy Agnew’s SMPO with SINGU-
LAR

Operand size k 36 66 82 89 100
#variables 6588 21978 33866 39872 50300

#polynomials 2700 8910 13694 16109 20300
#terms 12996 43626 67322 79299 100100

Runtime(bug-free) 113 3673 15117 28986 50692
Runtime(buggy) 118 4320 15226 31571 58861

Table 6.6: Run-time (seconds) for verification of RH-SMPO and Agnew’s SMPO using C++
implementation

Operand size k 36 60 81 100 131 162

RH-SMPO #Polynomials 4716 12960 21870 35600 56592 92826
Runtime 14.3 213.3 1343 4685 26314 124194

Agnew’s
SMPO

#Polynomials 2700 7380 13356 20300 34715 52974
Runtime 10.2 212.0 2684 4686 56568 119441

compute. However, it should be noted that if we do not use the proposed bit-level to word-level

substitution, and compute reduced Gröbner bases with RATO, then our approach does not scale

beyond 11-bit datapaths (Table 6.1).

6.5 Concluding Remarks
This chapter has described a method to verify sequential Galois field multipliers over F2k

using an approach based on computer algebra and algebraic geometry. As sequential Galois field

circuits perform the computations over k clock-cycles, verification requires an efficient approach to

unroll the computation and represent it as a canonical word-level multivariate polynomial. Using

algebraic geometry, we show that the unrolling of the computation at word level can be performed

by Gröbner bases and elimination term orders. Subsequently, we show that the complex Gröbner

basis computation can be eliminated by means of a bit-level to word-level substitution, which
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is implemented using the binomial expansion over Galois fields and Gaussian elimination. Our

approach is able to verify up to 162-bit sequential circuits, whereas contemporary techniques (e.g.,

BDDs) fail beyond 23-bit datapaths.



CHAPTER 7

FINDING UNSATISFIABLE CORES OF A SET OF

POLYNOMIALS USING THE GRÖBNER BASIS

ALGORITHM

In previous chapters, we have introduced the concept of word-level abstraction and reachability

analysis of the state-space of sequential circuits for equivalence checking. Modern property ver-

ification techniques employ state-space abstraction using interpolants and UNSAT cores. In this

chapter, we explore algebraic geometry analogs of UNSAT cores which can be applied at both bit

and word-level, actually over any field.

The Boolean satisfiability (SAT) problem is the basis of most decidable decision problems, as

well as the basis of many formal verification techniques. In this chapter, we discuss a special topic

branching out from SAT theory. It is about a situation when SAT problems give negative answer,

which are called unsatisfiability (UNSAT) problems. Within a set of constrains (e.g., clauses,

formulas, or polynomials) which is unsatisfiable, sometimes it is worthwhile to explore the reasons

for UNSAT. From the execution of the GB algorithm, an auxiliary structure can be obtained to

help explore the reasons causing UNSAT. This chapter introduces the details about the motivation,

mechanism, and implementation.

7.1 Motivation
In this section, we introduce the motivation of our UNSAT core extraction research. We start

by defining an UNSAT problem, then review the previous work and applications to abstraction

refinement. We then present the need for finding a word-level analog to contemporary UNSAT

reasoning techniques.

7.1.1 Preliminaries of SAT/UNSAT Theory

The Boolean satisfiability (SAT) problem is a fundamental problem in computer science. In the

following part we define the terminology related to a SAT problem [132].



118

Definition 7.1. A literal l is defined as a variable v, or its negation v. A disjunction (OR relation)

of literals forms a clause, i.e., c = l1 ∨ l2 ∨ · · · ∨ lk. A Boolean formula can always be written

as conjunctive normal form (CNF), which is the conjunction (AND relation) of clauses: F =

c1 ∧ c2 ∧ · · · ∧ ck.

Using above concepts, the SAT/UNSAT problem can also be formally defined:

Definition 7.2. A satisfiability (SAT) problem is a decision problem that takes a CNF formula

and returns that the formula is SAT, whenever there is an assignment of variables that makes the

formula evaluate to true. Otherwise, the formula is unsatisfiable (UNSAT).

Figure 7.1 shows a simple example of a SAT problem on circuit verification: we need to verify

whether subcircuit A and subcircuit B have the same function, so we build a miter circuit for their

outputs X and Y , and the equivalence checking problem is turned into a SAT problem as follows:

Is subcircuit A functionally equivalent to subcircuit B?

⇐⇒ Is it true that no Boolean vector assignment to PIs a,b,c exists such that Z=1?

For an UNSAT problem, the cause of UNSAT may include a subset of clauses.

Definition 7.3. Assume a CNF formula F is UNSAT. A subformula M ⊆ F is an UNSAT core if

M is also UNSAT. Further, if ∀c ∈ M , M \ {c} is SAT, then M is called a minimal UNSAT core

of F .

b

a

c

Y

X

Z

A

B

Figure 7.1: An example of Boolean satisfiability problem on circuits.
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7.1.2 Previous Work on CNF-UNSAT

In most cases, SAT problems are modeled as conjunctive normal form (CNF) formulas, and

solved by procedures based on the Davis-Putnam and Davis-Logemann-Loveland (DPLL) algo-

rithm. The main idea of the DPLL algorithm is recursive branching and backtrack searching. To

improve the efficiency of a DPLL-based SAT solver, efforts are made to minimize the number of

branches, accelerating unit propagation and modifying backtrack algorithm. Recently, state-of-art

SAT solvers developed a conflict-driven clause learning (CDCL) technique to prune the search

space, which is effective at reducing search time.

When a SAT solver fails to give a SAT assignment, it will provide an UNSAT proof or refutation

proof to prove the problem is UNSAT. By analyzing clauses involved in the UNSAT proof, we can

generate a subformula which remains UNSAT. A naive method is to collect all leaf clauses in an

UNSAT proof as an UNSAT core. In practice, a minimal UNSAT core is more valuable. There are

mainly two kinds of methods to find minimal UNSAT cores. One is the insertion-based method,

which is achieved by adding clauses to the smallest subset until the subset turns to be UNSAT.

The other method is the deletion-based method, which is realized by deleting clauses from a larger

subset until the subset turns to be SAT. Recently heuristics such as clause-set refinement [133] and

model rotation [134] have been applied as improvements on the deletion/insertion-based methods.

These methods are also expanded to satisfiability modulo theories (SMT) [135].

On the other hand, researchers are seeking an alternative solution for SAT problem using a

totally different method from “old-fashioned” DPLL algorithm. One promising option is polyno-

mial calculus (PC), mapping Boolean variables and connectors in CNF formulas to variables and

operators in Galois fields as examples in Table 7.1. In this way clauses are transformed to monomi-

als/polynomials, thus theorems and concepts in computer algebra such as Hilbert’s Nullstellensatz

and Gröbner basis can be employed to assist finding valid assignments or proofs of unsatisfiability.

Basic concepts about PC will be formally introduced with definitions from computer algebra.

Table 7.1: Mapping Boolean operators to functions over F2k

Boolean operator Function over F2k

a ∧ b a · b
a⊕ b a+ b

ā 1 + a

a ∨ b a+ b+ a · b
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The inspiration to use PC to solve SAT problems first came from [136]. Using PC and its

variations, researchers developed many SAT solvers [95, 137, 138]. Besides, researchers borrow

concepts from PC and combine them with traditional DPLL and clause learning techniques to build

hybrid SAT solvers [139, 140].

7.1.3 Exploiting UNSAT Cores for Abstraction Refinement

The problem of finding small UNSAT cores has attracted interest for decades because of its

applications to various verification and synthesis problems. In solving MaxSAT problems, a small

UNSAT proof provides a lower bound for the branch-and-bound searching algorithm [141]. It is

applied to solving logic synthesis problems, such as Boolean function decomposition [142]. Small

explanation generation in general constraint programming problems also relies on small UNSAT

cores [143].

UNSAT cores can find a wide range of applications in circuit verification as well. Many

abstraction refinement techniques require information mining from UNSAT proofs of intermediate

abstractions. Here we use an abstraction refinement algorithm from [72] to explain how an UNSAT

proof is utilized in such techniques.

Bounded model checking (BMC) is a model checking technique which set an upper bound to

the length of all paths. It can be solved by solving a SAT problem. Given a model M , property p,

and bound k, the k-BMC unrolls M by k clock-cycles and generates Boolean formula F including

violation check of p. Then F is fed to a SAT solver, if the SAT solver returns SAT, then p is violated

in some paths shorter than k. Otherwise, UNSAT indicates p is not violated in all paths shorter than

k. Algorithm 9 makes an improvement on BMC using abstraction refinement.

Assume that we are given a sequential circuit with n latches as shown in Figure 7.2(a). This

circuit can be modeled as a Mealy machine M and the states s can be explicitly encoded by bit-

level latch variables l1, . . . , ln. Algorithm 9 describes an approach to check if machine M violates

property p. This algorithm relies on k-BMC technique, which works on the basis of CNF-SAT

solving. The k-BMC represents the initial states I , the transition relation T and property p as CNF

formulas.

The first “if-else” branch in Algorithm 9 can be explained as: we check if the conjunction of

formulas

I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧ ¬p
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Algorithm 9: Abstraction refinement using k-BMC
Input: M – original machine, p – property to check, k – # of steps in k-BMC
Output: If p is violated, return error trace; otherwise p is valid on M

1 k = InitValue;
2 if k-BMC(M,p, k) is SAT then
3 return “Found error trace”
4 else
5 Extract UNSAT proof P of k-BMC;
6 M ′ = ABSTRACT(M,P);
7 end
8 if MODEL-CHECK(M ′, p) returns PASS then
9 return “Passing property”

10 else
11 Increase bound k;
12 goto Line 2;
13 end

is SAT or not, where si denotes the set of reached states in i-th time-frame. If the result is SAT,

then a counterexample is found that violates property p. If the result is UNSAT, we cannot assert

that p is satisfied for the original machine M because we only unrolled M for a given specific

number of time-frames without any fix-point detection. In this algorithm, we analyze the UNSAT

core composed by a set of clauses whose conjunction is UNSAT. If there are some latch variables

(Labs) not included in this UNSAT core, then we can assert that the evaluations of these variables

will not affect the unsatisfiability of the original formula. Therefore, we can ignore them in the

abstracted model. In practice, we turn these latches into primary inputs/outputs as shown in Figure

7.2(b) (Labs = {l1, . . . , lm}).

Combinational

Logic

…

PI
1

PI
t

…

PO
1

PO
t

LATCH

LATCH

…

l
n

l
1

l’
n

l’
1

Combinational

Logic

…

PI
1

PI
t

…

PO
1

PO
t

LATCH

LATCH

…

l
n

l
m+1

l
n
’

l
m+1
’

…l
1

l
m

l
1
’

l
m
’

…

Abstraction

(a) (b)

Figure 7.2: Abstraction by reducing latches.
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The second “if-else” branch means: if we model check the abstracted machine M ′ and find no

error trace, we can assert that property p also holds on the original machine M . The reason for this

assertion is that the abstracted states represented using abstracted latches cover the original states,

which means M ′ is an overapproximation of M , such that

(M ′ =⇒ p) =⇒ (M =⇒ p)

If we find a violation on an abstracted machine, then this abstracted model is not a suitable

model to check p, so we have to increase the bound k to find a finer abstraction.

It is clear that UNSAT cores play an important role in abstraction refinement approaches. In

[72] the UNSAT core is extracted using a conventional CNF-SAT solver, which encounters the

“bit-blasting” problem when the size of the datapath (number of latches in Figure 7.2) is very large.

Here we propose an altogether new method based on Gröbner basis computation to extract UNSAT

cores, and we believe it may become an efficient method according to the following observation:

While the complexity of computing a GB over finite fields is exponential in the number of

variables, the GB computation is observed to be more efficient for UNSAT problems. The reason is

as follows:

Theorem 7.1 (Weak Nullstellensatz). Given ideal J ⊆ F[x1, . . . , xn], its variety over algebraic

closure F of field F is empty if and only if its reduced Gröbner basis contains only one generator

“1.”

VF(J) = ∅ ⇐⇒ reduced GB(J) = {1}

It is well known that using Buchberger’s algorithm and its variations to compute a GB has a

very high space and time complexity and is usually not practical. One reason is that the size of

the GB may explode even if the term ordering is carefully chosen. However if the reduced GB is

{1}, which means every term in the original polynomials will be canceled, the degree of remainders

when computing GB with Buchberger’s algorithm will be limited. Thus the number of polynomials

in nonreduced GB is much smaller than usual. Instead of applying polynomial calculus to SAT

solving, it may be more efficient to try it for UNSAT problems.

Moreover, conventional techniques are limited to bit-level variables (literals). Algebraic ge-

ometry methods allow the use of word-level variables, which provides a strong potential for all

applications which can be modeled as polynomials in finite-field extensions.
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7.2 UNSAT Cores of Polynomial Ideals
In this section we provide a solution to the problem of how to use GB to extract the UNSAT

core.

Problem statement: Let F = {f1, . . . fs} be a set of multivariate polynomials in the ring

R = F[x1, . . . , xd] that generate ideal J = 〈f1, . . . , fs〉 ⊂ R. Suppose that it is known that

V (J) = ∅, or it is determined to be so by applying the Gröbner basis algorithm. Identify a subset

of polynomials Fc ⊆ F, Jc = 〈Fc〉, such that V (Jc) = ∅ too. Borrowing the terminology from the

Boolean SAT domain, we call Fc the infeasible core or the UNSAT core of F .

It is not hard to figure out that an UNSAT core should be identifiable using the Gröbner basis

algorithm: Assume that Fc = F − {fj}. If GB(F ) = GB(Fc) = {1}, then it implies that fj is a

member of the ideal generated by (F − {fj}), i.e., fj ∈ 〈F − {fj}〉. Thus fj can be composed of

the other polynomials of Fc, so fj is not a part of the UNSAT core, and it can be safely discarded

from Fc. This can be identified by means of the GB algorithm for this ideal membership test.

A naive way (and inefficient way) to identify a minimal core using the GB computation is as

follows: Select a polynomial fi and see if V (Fc−{fi}) = ∅ (i.e., if reducedGB(Fc−{fi}) = {1}).

If so, discard fi from the core; otherwise retain fi in Fc. Select a different fi and continue until all

polynomials fi are visited for inclusion in Fc. This approach will produce a minimal core, as we

would have tested each polynomial fi for inclusion in the core. This requires O(|F |) calls to the

GB engine, which is really impractical.

7.2.1 An Example Motivating Our Approach

Buchberger’s algorithm picks pairs of polynomials from a given set, computes their Spoly, then

reduces this Spoly with the given set of polynomials. If the remainder is nonzero, it is added to

the set of polynomials. By tracking Spoly computations and multivariate divisions that lead to

remainder 1, we can obtain an UNSAT core. Moreover, we can identify a minimal UNSAT core

with one-time execution of Buchberger’s algorithm.

Example 7.1. A SAT problem is described with 8 CNF clauses:

c1 : ā ∨ b̄
c2 : a ∨ b̄
c3 : ā ∨ b
c4 : a ∨ b

c5 : x ∨ y
c6 : y ∨ z
c7 : b ∨ ¬y
c8 : a ∨ x ∨ ¬z
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Using Boolean to polynomial mappings given in Table 7.1, we can transform them to a set of

polynomials F = {f1, . . . , f8} over ring F2[a, b, x, y, z]:

f1 : ab

f2 : ab+ a

f3 : ab+ b

f4 : ab+ a+ b+ 1

f5 : xy + y + x+ 1

f6 : yz + y + z + 1

f7 : by + y

f8 : axz + az + xz + z

We compute its GB using Buchberger’s algorithm with lexicographic term ordering a > b >

x > y > z. Since this problem is UNSAT, we will stop when “1” is added to GB.

1) First we compute Spoly(f1, f2)
F−→+ r1, remainder r1 equals to a;

2) Update F = F ∪ r1;

3) Next we compute Spoly(f1, f3)
F−→+ r2, remainder r2 equals to b;

4) Update F = F ∪ r2;

5) We can use a directed acyclic graph (DAG) to represent the process to get r1, r2, as Figure 7.3(a)

shows;

6) Then we compute Spoly(f1, f4) = s3 = a + b + 1, obviously a + b + 1 can be reduced

(multivariate divided) by r1 , the intermediate remainder r3 = b + 1. It can be immediately

divided by r2, and the remainder is “1,” we terminate the Buchberger’s algorithm;

7) We draw a DAG depicting the process through which we obtain remainder “1” as shown in

Figure 7.3(b). From leaf “1” we backtrace the graph to roots f1, f2, f3, f4. They constitute an

UNSAT core for this problem as these polynomials are the “causes” of the unsatisfiability of the

original set of polynomials.

This general idea is depicted in Algorithm 10. We now show a formal and efficient implemen-

tation.

7.2.2 The Refutation Tree of the GB Algorithm: Find Fc from F

We investigate whether it is possible to identify a core by analyzing the Spoly(fi, fj)
F−→+ gij

reductions in Buchberger’s algorithm. Since F is itself an UNSAT core, definitely there exists a

sequence of Spoly reductions in Buchberger’s algorithm where Spoly(fi, fj)
F−→+ 1 is achieved.
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Figure 7.3: DAG representing Spoly computations and multivariate divisions.

Algorithm 10: Extract UNSAT core using a variation of Buchberger’s algorithm
Input: A set of polynomials F = {f1, f2, . . . , fs}
Output: An UNSAT core {fm1 , fm2 , . . . , fmt}

1 repeat
2 Pick a pair fi, fj ∈ F that has never been computed Spoly;

3 if Spoly(fi, fj)
F−→+ rl 6= 0 then

4 F = F ∪ rl;
5 Create a DAG Gl with fi, fj as roots, rl as leaf, recording the Spoly, all intermediate

remainders and fk ∈ F that cancel monomial terms in the Spoly;
6 end
7 until rl == 1;
8 Backward traverse the DAG for remainder “1”, replace rl with corresponding DAG Gl;
9 return All roots

Moreover, polynomial reduction algorithms can be suitably modified to record which polynomials

from F are used in the division leading to Spoly(fi, fj)
F−→+ 1. This suggests that we should be

able to identify a core by recording the data generated by Buchberger’s algorithm — namely, the

critical pairs(fi, fj) used in the Spoly computations, and the polynomials from F used to cancel

terms in the reduction Spoly(fi, fj)
F−→+ 1. The following example motivates our approach to

identify Fc ⊆ F using this data:
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Example 7.2. Consider the following set of polynomials F = {f1, . . . , f9}:

f1 : abc+ ab+ ac+ bc

+ a+ b+ c+ 1

f2 : b

f3 : ac

f4 : ac+ a

f5 : bc+ c

f6 : abd+ ad+ bd+ d

f7 : cd

f8 : abd+ ab+ ad+ bd+ a+ b+ d+ 1

f9 : abd+ ab+ bd+ b
Assume >DEGLEX monomial ordering with a > b > c > d. Let F = {f1, . . . , f9} and

J = 〈F 〉 ⊂ F2[a, b, c, d] where F2 = {0, 1} is the finite field of 2 elements. Then V (J) = ∅

as GB(J) = 1. The set F consists of 4 minimal cores: Fc1 = {f1, f2, f3, f4, f7, f8}, Fc2 =

{f2, f4, f5, f6, f8}, Fc3 = {f2, f3, f4, f6, f8}, and Fc4 = {f1, f2, f4, f5}.

Buchberger’s algorithm terminates to a unique reduced GB, irrespective of the order in which

the critical pairs (fi, fj) are selected and reduced by operation Spoly(fi, fj)
F−→+ gij . Let us

suppose that in the GB computation corresponding to Example 7.2, the first 3 critical Spoly pairs

analyzed are (f1, f2), (f3, f4), and (f2, f5). It turns out that the Spoly-reductions corresponding to

these 3 pairs lead to the unit ideal. Recording the data corresponding to this sequence of reductions

is depicted by means of a graph in Figure 7.4. We call this graph a refutation tree.

In the figure, the nodes of the graph correspond to the polynomials utilized in Buchberger’s

c• f2

f5

f3

f4

f1

ac• f2

“1”

a• f2
f3

c• f2

f2

f10

f11

Figure 7.4: Generating refutation trees to record UNSAT cores.
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algorithm. The leaf nodes always correspond to polynomials from the given generating set. An

edge eij from node i to node j signifies that the polynomial at node j results from the polynomial

at node i. For example, consider the computation Spoly(f1, f2)
F−→+ f10, where f10 = a + c +

1. Since Spoly(f1, f2) = f1 − ac · f2, the leaves corresponding to f1 and ac · f2 are created.

The reduction Spoly(f1, f2)
F−→+ f10 is carried out as the following sequence of 1-step divisions:

Spoly(f1, f2)
a·f2−−→ f3−→ c·f2−−→ f2−→ f10. This is depicted as the bottom subtree in the figure,

terminating at polynomial f10. Moreover, the multiplication a·f2 implies that division by f2 resulted

in the quotient a. The refutation tree of Figure 7.4 shows further that Spoly(f3, f4)
f10−−→ f11 = c+1

and, finally, Spoly(f5, f2)
f11−−→ 1.

To identify an Fc ⊂ F , we start from the refutation node “1” and traverse the graph in reverse,

all the way up to the leaves. Then, all the leaves in the transitive fanin of “1” constitute an UNSAT

core. The polynomials (nodes) that do not lie in the transitive fanin of “1” can be safely discarded

from Fc. From Figure 7.4, Fc = {f1, f2, f3, f4, f5} is identified as an UNSAT core of F .

7.3 Reducing the Size of the UNSAT Core Fc
The core Fc obtained from the aforementioned procedure may contain redundant elements

which could be discarded. For example, consider the core Fc = {f1, . . . , f5} generated in the

previous section. While Fc is a smaller infeasible core of F , it is not minimal. In fact, Example 1

shows that Fc4 = {f1, f2, f4, f5} is the minimal core, where Fc4 ⊂ Fc. Clearly, the polynomial

f3 ∈ Fc is a redundant element of the core and can be discarded. We will now describe techniques

to further reduce the size of the UNSAT core by identifying such redundant elements. For this

purpose, we perform a more systematic book-keeping of the data generated during the execution of

Buchberger’s algorithm and the refutation tree.

7.3.1 Identifying Redundant Polynomials from the Refutation Tree

We record the S-polynomial reduction Spoly(fi, fj)
F−→+ gij , which gives a nonzero remainder

when divided by the system of polynomials F at that moment. The remainder gij is a polynomial

combination of Spoly(fi, fj) and the current basis F ; thus, it can be represented as

gij = S(fi, fj) +

m∑
k=1

ckfk, (7.1)

where 0 6= ck ∈ F[x1, . . . , xd] and {f1, . . . , fm} is the “current” system of polynomials F . For

each nonzero gij , we will record the following data:
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((gij)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl)) (7.2)

In Equation 7.1 and Equation 7.2, gij denotes the remainder of the S-polynomial Spoly(fi, fj)

modulo the current system of polynomials f1, . . . , fm, and we denote by

hij :=
LCM(lm(fi), lm(fj))

lt(fi)
, hji := −LCM(lm(fi), lm(fj))

lt(fj)

the coefficients of fi, respectively fj , in the S-polynomial Spoly(fi, fj). Furthermore, in Equation

7.2, (ck1, . . . ckl) are the respective quotients of division by polynomials (fk1, . . . , fkl), generated

during the Spoly reduction.

Example 7.3. Revisiting Example 7.2, and Figure 7.4, the data corresponding to Spoly(f1, f2)

F−→+ g12 = f10 reduction is obtained as the following sequence of computations:

f10 = g12 = f1 − acf2 − af2 − f3 − cf2 − f2.

As the coefficient field is F2 in this example, −1 = +1, so:

f10 = g12 = f1 + acf2 + af2 + f3 + cf2 + f2

is obtained. The data is recorded according to Equation 7.2:

((f10 = g12), (f1, 1)(f2, ac)|(a, f2), (1, f3), (c, f2), (1, f2))

Our approach and the book-keeping terminates when we obtain “1” as the remainder of some

S-polynomial modulo the current system of generators. As an output of the Buchberger’s algorithm,

we can obtain not only the Gröbner basis G = {g1, . . . , gt}, but also a matrix M of polynomials

such that:


g1
g2
...
gt

 = M


f1
f2
...
fs

 (7.3)

Each element gi of G is a polynomial combination of {f1, . . . , fs}. Moreover, this matrix M

is constructed precisely using the data that is recorded in the form of Equation 7.2. We now give a

condition when the matrix M may identify some redundant elements.
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Theorem 7.2. With the notations above, we have that a core for the system of generators F =

{f1, . . . , fs} of the ideal J is given by the union of those fi’s from F that appear in the data

recorded above and correspond to the nonzero entries in the matrix M .

Proof. In our case, since the variety is empty, and hence the ideal is unit, we have thatG = {g1 = 1}

and t = 1. Therefore M = [a1, . . . , as] is a vector. Then the output of the algorithm gives:

1 = a1f1 + · · · + asfs. Clearly, if ai = 0 for some i then fi does not appear in this equation and

should not be included in the infeasible core of F .

Example 7.4. Corresponding to Example 7.2 and the refutation tree shown in Figure 7.4, we

discover that the polynomial f3 is used only twice in the division process. In both occasions, the

quotient of the division is 1. From Figure 7.4, it follows that

1 = (f2 + f5) + · · ·+ 1 · f3 + · · ·+ 1 · f3 + · · ·+ (f1 + f2) (7.4)

Since 1 + 1 = 0 over F2, we have that the entry in M corresponding to f3 is 0, and so f3 can

be discarded from the core.

7.3.2 The GB-Core Algorithm Outline

The following steps describe an algorithm (GB-Core) that allows us to compute a refutation tree

of the polynomial set and corresponding matrix M .

Inputs: Given a system of polynomialsF = {f1, . . . , fs}, a monomial order> on F[x1, . . . , xd].

S-polynomial reduction: We start computing the S-polynomials of the system of generators

{f1, . . . , fs}, then divide each of them by the current basis G = {f1, . . . , fs, . . . , fm}, which is the

intermediate result of Buchberger’s algorithm. In this way, we obtain expressions of the following

type:

gij = hijfi + hjifj︸ ︷︷ ︸
Spoly(fi,fj)

+

m∑
k=1

ckfk (7.5)

If the remainder gij is nonzero, we denote it by fm+1 and add it to the current set of generators G.

We also record the data as in Equation 7.2:

((fm+1 = gij)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl))

This data forms a part of the refutation tree rooted at node fm+1.
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Recording the coefficients: In Equation 7.5 we obtain a vector of polynomial coefficients ck

where k > s. These coefficients are associated with new elements (remainders) in the Gröbner

basis that are not a part of the UNSAT core. Since each polynomial fk, (k > s) is generated by

{f1, . . . , fs}, we can re-express fk in terms of {f1, . . . , fs}. Thus, each fk, k > s can be written as

fk = d1f1 + · · ·+ dsfs. This process adds a new row (d1, . . . , ds) to the coefficient matrix M .

Termination and refutation tree construction: We perform S-polynomial reductions and

record these coefficients generated during the division until the remainder fm = 1 is encountered.

The corresponding data is stored in a data-structure D corresponding to Equation 7.2. The matrix

M is also constructed. From this recorded data the refutation tree can be easily derived.

We start with the refutation node “fm = 1”:

((fm = 1)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl))

and recursively substitute the expressions for the polynomials fk (k > s) until we obtain the tree

with all the leaf nodes corresponding to the original set of polynomials {f1, . . . , fs}. Algorithm 11

describes this data recording through which the refutation tree T and the matrix M is derived.

Algorithm 11: GB-core algorithm (based on Buchberger’s algorithm)
Input: F = {f1, . . . , fs} ∈ F[x1, . . . , xd], fi 6= 0
Output: Refutation tree T and coefficients matrix M

1: Initialize: list G← F ; Dataset D ← ∅; M ← s× s unit matrix
2: for each pair (fi, fj) ∈ G do
3: fsp, (fi, hij)(fj , hji)← Spolyfi, fj) {fsp is the S-polynomial}
4: gij |(ck1, fk1), . . . , (ckl, fkl)← (fsp

G−→+ gij)
5: if gij 6= 0 then
6: G← G ∪ gij
7: D ← D ∪ ((gij)(fi, hij)(fj , hji)|(ck1, fk1), (ck2, fk2), . . . , (ckl, fkl))
8: Update matrix M
9: end if

10: if gij = 1 then
11: Construct T from D
12: Return(T,M )
13: end if
14: end for
Notice that the core can actually be derived directly from the matrix M . However, we also

construct the refutation tree T as it facilitates an iterative refinement of the core, which is described

in the next section.
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7.4 Iterative Refinement of the UNSAT Core
As with most other UNSAT core extractors, our algorithm also cannot generate a minimal core

in one execution. To obtain a smaller core, we re-execute our algorithm with the core obtained in

the current iteration. We describe two heuristics that are applied to our algorithm to increase the

likelihood of generating a smaller core in the next iteration.

An effective heuristic should increase the chances that the refutation “1” is composed of fewer

polynomials. In our GB-core algorithm, we use a strategy to pick critical pairs such that polynomials

with larger indexes get paired later in the order:

(f1, f2)→ (f1, f3)→ (f2, f3)→ (f1, f4)→ (f2, f4)→ · · ·

Moreover, for the reduction process Spoly(fi, fj)
F−→+ gij , we pick divisor polynomials from

F following the increasing order of polynomial indexes. Therefore, by relabeling the polynomial

indexes, we can affect their chances of being selected in the UNSAT core. We use two criteria to

to affect the polynomial selection in the UNSAT core. One corresponds to the refutation distance,

whereas the other corresponds to the frequency with which a polynomial appears in the refutation

tree.

Definition 7.4 (Refutation Distance). Refutation distance of a polynomial fi in a refutation tree

corresponds to the number of edges on the shortest path from refutation node “1” to any leaf node

that represents polynomial fi.

On a given refutation tree, polynomials with shorter refutation distances are used as divisors

in later stages of polynomial reductions, which implies that they may generally have lower-degree

leading terms. This is because we impose a degree-lexicographic term order, and successive divi-

sions (term cancellations) reduce the degree of the remainders. However, what is more desirable is

to use these polynomials with lower-degree leading terms earlier in the reduction, as they can cancel

more terms. This may prohibit other (higher-degree) polynomials from being present in the UNSAT

core.

Similarly, we can define the concept of another heuristic:

Definition 7.5 (Frequency of Occurrence). The frequency of occurrence of a polynomial fi in a

refutation tree corresponds to the number of times it appears in the refutation tree.
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The motivation for using the frequency of occurrence of fi in the refutation tree is as follows:

polynomials that appear frequently in the refutation tree may imply that they have certain properties

(leading terms) that give them a higher likelihood of being present in the UNSAT core.

We apply both heuristics: After the first iteration of the GB-core algorithm, we analyze the

refutation tree T and sort the polynomials in the core by the refutation distance criterion, and use

the frequency criterion as the tie-breaker. The following example illustrates our heuristic.

Example 7.5. Consider a set of 6 polynomials over F2 of an infeasible instance.

f1 : x1x3 + x3; f2 : x2 + 1

f3 : x2x3 + x2; f4 : x2x3

f5 : x2x3 + x2 + x3 + 1; f6 : x1x2x3 + x1x3

After the first iteration of the GB-core algorithm, the core is identified as {f1, f2, f3, f4}, and

we obtain a refutation tree as shown in Figure 7.5(a).

The refutation distance corresponding to polynomial f2 is equal to 2 levels. Note that while

three leaf nodes in Figure 7.5 (a) correspond to f2, the shortest distance from “1” to any f2 node is

2 levels. The refutation distance and frequency measures of other polynomials are identical – equal

to 3 and 1, respectively – so their relative ordering is unchanged. We reorder f2 to be the polynomial

with the smallest index. We reindex the polynomial set f ′1 = f2, f
′
2 = f1, f

′
3 = f3, f

′
4 = f4 and

apply our GB-core algorithm on the core {f ′1, f ′2, f ′3, f ′4}. The result is shown in Figure 7.5(b) with

x3• f2

“1”

(a) (b)

x2• f1

x1• f4

f2

x3• f2

f3

f2

“1”

x3• f2

f3

x3• f2

f4

Figure 7.5: Refutation trees of core refinement example.
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the core identified as {f ′1, f ′3, f ′4} = {f2, f3, f4}. Further iterations do not refine the core – i.e., a

fix point is reached.

7.5 Refining the UNSAT Core Using Syzygies
The UNSAT core obtained through our GB-core algorithm is by nature a refutation polynomial

equal to 1:

1 =

s∑
i=1

ci · fi

where 0 6= ci ∈ F[x1, . . . , xd] and the polynomials F = {f1, . . . , fs} form a core. Suppose that

a polynomial fk ∈ F can be represented using a combination of the rest of the polynomials of the

core, e.g.,

fk =
∑
j 6=k

c′jfj .

Then we can substitute fk in terms of the other polynomials in the refutation. Thus, fk can

be dropped from the core as it is redundant. One of the limitations of the GB-core algorithm and

the relabeling/refinement strategy is that they cannot easily identify such polynomials fk in the

generating set F that can be composed of the other polynomials in the basis, i.e., fk ∈ 〈F − {fk}〉.

We present an approach targeted to identify such combinations to further refine the core.

During the execution of Buchberger’s algorithm, many critical pairs (fi, fj) do not add any new

polynomials in the basis when Spoly(fi, fj)
F−→+ 0 gives zero remainder. Naturally, for the purpose

of the GB computation, this data is discarded. However, our objective is to gather more information

from each GB iteration so as to refine the core. Therefore, we further record the quotient-divisor data

from S-polynomial reductions that result in the remainder 0. Every Spoly(fi, fj)
F−→+ 0 implies

that some polynomial combination of {f1, . . . , fs} vanishes: i.e., c1f1 + c2f2 + · · ·+ csfs = 0, for

some c1, . . . , cs. These elements (c1, . . . , cs) form a syzygy on f1, . . . , fs.

Definition 7.6 (Syzygy [113]). Let F = {f1, . . . , fs}. A syzygy on f1, . . . , fs is an s-tuple of

polynomials (c1, . . . , cs) ∈ (F[x1, . . . , xd])
s such that

∑s
i=1 ci · fi = 0.

For each Spoly(fi, fj)
F−→+ 0 reduction, we record the information on corresponding syzygies

as in Equation 7.6, also represented in matrix form in Equation 7.7:
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c11f1 + c12f2 + · · ·+ c1sfs = 0

c21f1 + c22f2 + · · ·+ c2sfs = 0
...

cm1 f1 + cm2 f2 + · · ·+ cms fs = 0

(7.6)


c11 c12 · · · c1s
c21 c22 · · · c2s
...

...
. . .

...
cm1 cm2 · · · cms



f1
f2
...
fs

 = 0 (7.7)

Here {f1, f2, . . . , fs} is the given core. Take one column of the syzygy matrix (e.g., the set of

polynomials in j-th column c1j , c
2
j , . . . , c

m
j ) and compute its reduced Gröbner basisGr. IfGr = {1},

then it means that there exists some polynomial vector [r1, r2, . . . , rm] such that 1 = r1c
1
j + r2c

2
j +

· · ·+ rmc
m
j =

∑m
i=1 ric

i
j . If we multiply each row i in the matrix of Equation 7.7 with ri, and sum

up all the rows, we will obtain the following equation:

[∑m
i=1 ric

i
1 · · · 1 · · ·

∑m
i=1 ric

i
s

]

f1
f2
...
fs

 = 0 (7.8)

This implies that

m∑
i=1

ric
i
1f1 + · · ·+ fj + · · ·+

m∑
i=1

ric
i
sfs = 0,

or that fj is a polynomial combination of f1, . . . , fs (excluding fj). Subsequently, we can deduce

that fj can be discarded from the core. By repeating this procedure, some redundant polynomials

can be identified and the size of UNSAT core can be reduced further.

Example 7.6. Revisiting Example 7.2, execute the GB-core algorithm and record the syzygies

on f1, . . . , fs corresponding to the S-polynomials that give 0 remainder. The coefficients can

be represented as entries in the matrix shown below. For example, the first row in the matrix

corresponds to the syzygies generated by Spoly(f1, f3)
F−→+ 0.
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10


Spoly(f1, f3) 1 a+ c+ 1 b+ 1 0 0 0 0 0 0 1
Spoly(f2, f3) 0 ac b 0 0 0 0 0 0 0
Spoly(f1, f4) 1 c+ 1 1 b 0 0 0 0 0 1
Spoly(f2, f4) 0 ac+ a 0 b 0 0 0 0 0 0
Spoly(f1, f5) 1 a+ c+ 1 0 0 a 0 0 0 0 1

(7.9)

Usually, we need to generate extra columns compared to the syzygy matrix of Equation 7.7. In

this example, we need to add an extra column for the coefficient of f10. This is because f10 is not

among the original generating set; however, some S-polynomial pairs require this new remainder

f10 as a divisor during reduction. In order to remove this extra column, we need to turn the nonzero

entries in this column to 0 through standard matrix manipulations.

Recall that we record f10 in M as a nonzero remainder when reducing S-polynomial pair

Spoly(f1, f2)
F−→+ f10. We extract this information from the coefficient matrix M :

(1 ac+ a+ c+ 1 1 0 0 0 0 0 0)

It represents f10 is a combination of f1 to f9:

f10 = f1 + (ac+ a+ c+ 1)f2 + f3

It can be written in the same syzygy matrix form (with column f10 present) as follows:

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
( )Spoly(f1, f2) 1 ac+ a+ c+ 1 1 0 0 0 0 0 0 1 (7.10)

By adding this row vector (Equation 7.10) to the rows in Equation 7.9 corresponding to the

nonzero entries in the column for f10, we obtain the syzygy matrix only for the polynomials in the

core:
f1 f2 f3 f4 f5 f6 f7 f8 f9


Spoly(f1, f3) 0 ac b 0 0 0 0 0 0
Spoly(f2, f3) 0 ac b 0 0 0 0 0 0
Spoly(f1, f4) 0 ac+ a 0 b 0 0 0 0 0
Spoly(f2, f4) 0 ac+ a 0 b 0 0 0 0 0
Spoly(f1, f5) 0 ac 1 0 a 0 0 0 0

We find out there is a “1” entry in the f3 column. The last row implies that f3 is a combination

of f2, f5 (f3 = acf2 + af5), so f3 can be discarded from the core.
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The syzygy heuristic gathers extra information from the GB computation, it is still not sufficient

to derive all polynomial dependencies. In Buchberger’s algorithm, many S-polynomials reduce to

zero, so the number of rows of the syzygy matrix can be much larger than the size of the original

generating set. Full GB computation on each column of the syzygy matrix can become prohibitive

to apply iteratively. For this reason, we only apply the syzygy heuristic on the smaller reduced core

given by our iterative refinement algorithm.

Our Overall Approach for UNSAT Core Extraction: i) Given the set F = {f1, . . . , fs}, we

apply the GB-core algorithm, record the dataD,M (Section 4) and the syzygies S on f1, . . . , fs. ii)

From M , we obtain a core Fc ⊆ F . iii) Iteratively refine Fc (Section 5) until |Fc| cannot be reduced

further. iv) Apply the syzygy-heuristic (Section 6) to identify if some fk ∈ Fc is a combination of

other polynomials in Fc; all such fk are discarded from Fc. This gives us the final UNSAT core Fc.

7.6 Application to Abstraction Refinement
In this section we apply our UNSAT core extraction approach to the k-BMC in Algorithm 7.

This algorithm utilizes UNSAT core to remove irrelevant latches (state variables) to reduce the state

space. Since those state variables contribute nothing to the violation of property p, the abstracted

model is a reasonable overapproximation for checking p without loss of accuracy. In the following

example, we apply the UNSAT core extraction approach to a FSM which is complicated for bounded

model checking and show the power of abstraction refinement to reduce the state space for refined

k-BMC.

Example 7.7. Figure 7.6 shows a sequential circuit (“s27” from the ISCAS benchmark set) with

3-bit state registers PS = {G7, G6, G5} and NS = {G13, G11, G10}. Its underlying FSM contains

8 states, as shown in Figure 7.7

On this FSM, define a linear temporal logic (LTL) property

p = AG((¬G13)U(¬Z))

with given initial state {000}. Model checking on this machine requires traversal on the STG to

search for an accepting trace. If we use k-BMC without abstraction refinement, we need to unroll

the machine to iteration k = 3. We show how abstraction will be applied using our setup.

Because the circuit has 3 latches, we model the problem over the field F23 . First, let the bound

k = 0. Generate the polynomial constraints for initial state ideal I and check SAT (I ∧ ¬p) using
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Figure 7.6: Gate-level schematic of the example circuit.

011 000 001

010 101 100

111 110

Figure 7.7: State transition graph of example circuit.
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Gröbner bases. The ideal

I = 〈G14 + 1 +G0, G8 +G14 ·G6, G15 +G12 +G8 +G12 ·G8,

G16 +G3 +G8 +G3 ·G8, G9 + 1 +G16 ·G15,

G10 + 1 +G14 +G11 +G14 ·G11, G11 + 1 +G5 +G9 +G5 ·G9,

G12 + 1 +G1 +G7 +G1 ·G7, G13 + 1 +G2 +G12 +G2 ·G12,

Z + 1 +G1,

(Initial state 000 )G5, G6, G7〉;

Property ¬p is also written as a polynomial in the first time-frame:

¬p = Z ·G13 + 1

As I∧¬p is UNSAT by the weak Nullstellensatz, we extract an UNSAT core using our approach:

Core(I ∧ ¬p) =G12 + 1 +G1 +G7 +G1 ·G7, G13 + 1 +G2 +G12 +G2 ·G12,

Z + 1 +G1, G7;

The result shows that state variables {G5, G6, G10, G11} are irrelevant when considering the

violation of p. Thus, we can remove the latches G10, G11, and make G5, G6 primary inputs. In

this way, the number of state variables is reduced to 1, such that the new machine only contains 2

states, as the STG in Figure 7.8.

Since the state space is greatly reduced, we can execute unbounded model checking on this

abstracted machine with less cost. As a result, property p is not violated on the abstracted machine.

Therefore, p is also a passing property of the original machine and the refined k-BMC algorithm

terminates!

7.7 Experiment Results
We have implemented our core extraction approach (the GB-Core and the refinement algo-

rithms) using the SINGULAR symbolic algebra computation system [v. 3-1-6] [124]. With our tool

implementation, we have performed experiments to extract a minimal UNSAT core from a given set

of polynomials. Our experiments run on a desktop with 3.5GHz Intel CoreTM i7-4770K Quad-core

CPU, 16 GB RAM and 64-bit Ubuntu Linux OS. The experiments are shown in Table 7.2.
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Figure 7.8: State transition graph of abstracted machine.

Gröbner basis is not an efficient engine for solving contemporary industry-size CNF-SAT bench-

marks, as the translation from CNF introduces too many variables and clauses for GB engines to

handle. On the other hand, although our approach is totally compatible with any constraints which

can be written as polynomials in GF extensions, there is no benchmark library clearly identifying a

minimal core within which to test our tool.

In order to validate our approach, we make a compromise and create a somewhat customized

benchmark library by modifying SAT benchmarks and translating from circuit benchmarks: 1)

“aim-100” is a modified version of the random 3-SAT benchmark “aim-50/100”, modified by adding

some redundant clauses; 2) The “subset” series are generated for random subset sum problems; 3)

“cocktail” is similarly revised from a combination of factorization and a random 3-SAT bench-

mark; 4) and “phole4/5” are generated by adding redundant clauses to pigeon hole benchmarks; 5)

Moreover, “SMPO” and “RH” benchmarks correspond to hardware equivalence checking instances

of Agnew’s SMPO and RH-SMPO circuits [110, 111], compared against a golden model spec.

Similarly, the “MasVMon” benchmarks are the equivalence checking circuits corresponding to

Mastrovito multipliers compared against Montgomery multipliers [93]. Some of these are available

as CNF formulas, whereas others were available directly as polynomials over finite fields. The

CNF formulas are translated as polynomial constraints over F2 (as shown in [13]), and the GB-Core
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Table 7.2: Results of running benchmarks using our tool. Asterisk(∗) denotes that the benchmark
was not translated from CNF. Our tool is composed of 3 parts: part I runs a single GB-core
algorithm, part II applies the iterative refinement heuristic to run the GB-core algorithm iteratively,
part III applies the syzygy heuristic.

Benchmark #
Polys

#
MUS

Size of
core

#
GB-core
iterations

Runtime
(sec)

Runtime of
PicoMUS

(sec)I II III I II III
5× 5 SMPO 240 137 169 137 137 8 1222 1938 1698 < 0.1
4× 4 SMPO∗ 84 21 21 21 21 1 125 0.3 29 -
3× 3 SMPO∗ 45 15 15 15 15 1 6.6 0.2 5.7 -
3× 3 SMPO 17 2 2 2 2 1 0.07 0.01 0.01 < 0.1

4× 4 MasVMont∗ 148 83 83 83 83 1 23 139 12 -
3× 3 MasVMont∗ 84 53 53 53 53 1 4.3 4.6 0.9 -
2× 2 MasVMont 27 23 24 23 23 2 1.3 1.0 80 < 0.1

5× 5 RH∗ 142 34 48 35 35 4 997 1.0 80 -
4× 4 RH∗ 104 35 43 36 36 3 96 5.7 0.6 -
3× 3 RH∗ 50 20 20 20 20 1 2.9 3.5 10 -
aim-100 79 22 22 22 22 1 43 0.7 0.2 < 0.1
cocktail 135 4 6 4 4 2 51 0.01 0.01 < 0.1
subset-1 100 6 6 6 6 1 2.4 0.01 0.01 < 0.1
subset-2 141 19 37 23 21 2 12 1.6 1.1 < 0.1
subset-3 118 16 13 12 11 2 8.6 0.2 0.07 < 0.1
phole4 104 10 16 16 10 1 4.3 0.2 0.5 < 0.1
phole5 169 19 30 25 19 3 12 3.2 2.7 < 0.1

algorithm and the refinement approach are applied.

In Table 7.2, #Polys denotes the given number of polynomials from which a core is to be

extracted. #MUS is the minimal core either extracted by PicoMUS (for CNF benchmarks) or

exhaustive deletion method (for non-CNF bencmarks). #GB-core iterations corresponds to the

number of calls to the GB-core engine to arrive at the reduced UNSAT core. The second-last

column shows the improvement in the minimal core size by applying the syzygy heuristic on those

cases which cannot be iteratively refined further. We choose PicoMUS as a comparison to our tool

because it is a state-of-art MUS extractor, and the results it returned for our set of benchmarks are

proved to be minimal. The data shows that in most of these cases, our tool can produce a minimal

core. For the subset-3 benchmark, we obtain another core with even smaller size than the one from

PicoMUS. The results demonstrate the power of the Gröbner basis technique to identify the causes

of unsatisfiability.
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7.8 Concluding Remarks
This chapter addresses the problem of identifying an infeasible core of a set of multivariate

polynomials, with coefficients from a field, that have no common zeros. The problem is posed in

the context of computational algebraic geometry and solved using the Gröbner basis algorithm. We

show that by recording the data produced by Buchberger’s algorithm – the Spoly(fi, fj) pairs, as

well as the polynomials of F used in the division process Spoly(fi, fj)
F−→+ 1 – we can identify

certain conditions under which a polynomial can be discarded from a core. An algorithm was

implemented within the Singular computer algebra tool and some experiments were conducted to

validate the approach. While the use of GB engines for SAT solving has a rich history, the problem

of UNSAT core identification using GB-engines has not been addressed by the SAT community. We

hope that this technique will kindle some interest in this topic, which is worthy of attention from the

SAT community – particularly when there seems to be a renewal of interest in the use of Gröbner

bases for formal verification [66, 93, 98, 144].



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation presents a new approach to perform reachability analysis of FSMs at the word-

level. It is facilitated by investigating the analog of implicit state enumeration algorithm in computer

algebra and algebraic geometry domains. The image function part of the computation is mapped

to a variety projection on next state variables. This projection is implemented by computing the

Gröbner basis of an elimination ideal with abstraction term orders. Moreover, the set operations

in the state space are mapped to the arithmetic of ideals, as algebraic geometry provides a way

to reason about the variety (solutions) by manipulating the ideals. A special term order (RATO)

is utilized to improve the Gröbner bases computation, and a tool is developed to implement our

word-level FSM traversal algorithm. Experiments are performed to analyze the reachability for

ISCAS’89 and ITC’99 circuit benchmarks.

Next, we describe a method to execute functional verification on sequential Galois field multi-

pliers over F2k . The core algorithm is based on word-level unrolling of a Moore machine, which

applies concepts from the word-level FSM traversal algorithm. As a result, transition relations are

represented as a polynomial with word-level inputs/outputs. We implement our algorithm with

both the SINGULAR platform and a custom C++ toolset and perform experiments on two classes

of circuits. Our approach is able to verify up to 162-bit sequential circuits, whereas contemporary

techniques fail beyond 23-bit datapaths.

At last we explore abstraction UNSAT cores in algebraic geometry – the foundation for re-

finement techniques to boost sequential circuit verification. We use the Weak Nullstellensatz as

the essential theory of UNSAT core extraction, then develop heuristics to improve the core that

exploit the structure of the refutation proof. An algorithm was implemented within the SINGULAR

computer algebra tool and experiments were conducted to validate the approach.

Our approaches still have limitations: For word-level FSM traversal and sequential GF multi-

plier verification, our methods are more efficient for XOR-rich circuits, while most industrial de-
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signs are AND-OR gate dominant. For UNSAT core extraction, the abstraction refinement approach

such as k-BMC has only limited application on certain model checking problems. To overcome

these limitations, the following further explorations are worthy of investigation.

8.1 Future Work
In this section, we highlight some research problems that deserve further study.

8.1.1 Multivariate Polynomial Ideal Based FSM Traversal

In Chapter 5, we always use a single word-level variable T to denote the next state. However,

in some situations we need to keep recording the relations between T and the inputs, e.g. the

reached states contain multivariate polynomials in T , as well as PS variable S and PI x. While the

elimination and set union/intersection are compatible with multivariate polynomials, the set com-

plement requires an extension of Theorem 5.2 on ideals with multivariate polynomial generators.

We conjecture as follows:

Conjecture 8.1. Assume we are given ring variables xi, and an ideal J composed by s generators:

J = 〈f1, . . . , fs〉. Additionally J0 is the vanishing polynomial for variables xi: x
q
i − xi where q is

the size of signal xi represents. We conjecture that

V (J ′) = V (J0 : J) = V (J0) \ V (J) = V (J)

In univariate case, F[x] is the principle ideal domain thus Theorem 5.2 can be proved. However

over multivariate case, the proof of this conjecture is not available.

The following example illustrates a different operation from Example 5.5.

Example 8.1. In Figure 5.4, we denote that {s0, s1} are state/pseudo inputs, {t0, t1} are state/pseudo

outputs, and there is a primary input (1-bit) x. We propose a new algorithm (Algorithm 12) by

modifying Algorithm 6.

The inputs of this algorithm include the transition polynomial (result of word-level abstraction)

and initial states description ideal, which contains 2 generators corresponding to constraints of

PI and combinational input S. For example, 〈S + 1 + α, x2 + x〉 means initial state= {11},

〈S + x · α, x2 + x〉 means initial states= {00, 10}).

Transition polynomial calculation uses the abstraction and bit-to-word conversion method from

Chapter 5. After Constructing an elimination ideal, we impose RATO such that reverse topo order
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Algorithm 12: Algebraic Geometry based Traversal Algorithm (multivariate-generator ideals)
Input: Transition polynomial ft = T + F(S, x), initial state ideal

from0 = 〈S + G(x), xq1 − x〉
Output: Reachable states

1 reached = from0(T \ S);
2 repeat
3 i← i+ 1;
4 toi ←GB(〈ft, fromi−1〉) \ H(S);
5 reached = 〈T q2 − T, xq1 − x〉 : reached;
6 newi ←GB(toi + reached);
7 reached←GB(reached · newi);
8 fromi ← newi(S \ T );
9 until GB(newi) == 1;

10 return reached

ckt variables > T > S > x, the reduction remainder has the form T + F(s0, s1, x). According to

the bit-to-word correspondence S + s0 + s1α we get

s0 = αS2 + (1 + α)S, s1 = S2 + S

After substitution, we obtain the transition polynomial of example circuit:

fT = T + S3 · x+ αS3 + (1 + α)S2 · x+ S2 + S · x+ (1 + α)x+ 1

Assume the initial state is {11}. In the first iteration, the reached state is {01}. Line 4 is to

compose an ideal with 2 generators from from0 and transition polynomial ft, compute its Gröbner

basis. Note this ideal has the form

Itran =


T + F(S, x)
S + G(x)

vx

(8.1)

vx is a polynomial containing only q1-bit PI x, initially it should be vanishing polynomial xq1 − x,

with the program executing it may be factorized.

Considering Buchberger’s algorithm, all generators’ leading terms are relatively prime, so Itran

is a GB itself. Furthermore, generator S+G(x) could (possibly) be reduced by vx, and T +F(S, x)

will definitely be reduced by S+G(x). In the end we obtain a polynomial T +F ′(x) in the reduced

GB. We can then include this polynomial and vx and exclude the polynomial containing S (i.e.,

H(S) in Algorithm 12), to compose an ideal representing next states toi. In iteration 1, the result is

to1 = 〈T + 1, x2 + x〉
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Line 5 is the ideal quotient of universal set and reached states. In the first iteration, the initial

state reached is 〈T + 1 +α, x2 +x〉. The result of ideal quotient is 〈T 3 + (1 +α)T 2 +αT, x2 +x〉

represents {00, 01, 10}.

Line 6 is ideals’ sum (intersection of their varieties) and is done by combining all generators

from 2 ideals and computing GB. In the first iteration, the result is GB(〈T + 1, T 3 + (1 + α)T 2 +

αT, x2 + x〉) = 〈T + 1, x2 + x〉, representing {01}.

Line 7 is ideals’ product (union of their varieties) and is done by multiplying all pairs of

generators from both ideals. For the first iteration it gives the result as GB(〈(T + 1)(T + 1 +

α), (T + 1)(x2 +x), (T + 1 +α)(x2 +x), (x4 +x)〉) = 〈T 2 +αT + (1 +α), x2 +x〉, representing

{01, 11}.

The traversal algorithm executes 3 iterations and terminates at the 4th iteration. We list all

intermediate results below:

• Iteration 1: from0 = 〈S + 1 + α, x2 + x〉, to1 = 〈T + 1, x2 + x〉, reached = 〈T 2 + αT +

(1 + α), x2 + x〉

• Iteration 2: from1 = 〈S + 1, x2 + x〉, to2 = 〈T + α, x2 + x〉, reached = 〈T 3 + 1, x2 + x〉

• Iteration 3: from2 = 〈S+α, x2 +x〉, to3 = 〈T +αx, x2 +x〉, reached = 〈T 3 ·x+x, T 4 +

T, x2 + x〉

• Iteration 4: from3 = 〈S, x〉, to4 = 〈T + 1, x〉, new = 〈1〉

The final reachable states are represented by a multivariate polynomial ideal 〈T 3 · x + x, T 4 +

T, x2 + x〉, which denotes {00, 01, 10, 11}.

8.1.2 Use of the F4 Algorithm and ZDDs to Accelerate GB Reduction

In Chapters 5 and 6, by using RATO we transform the GB-based computation to that of a multi-

variate polynomial division. However, this division (reduction) still incurs exponential complexity

in the worst case. In a situation where division is to be performed modulo a chain of OR gates, the

size of the remainder polynomial will explode. For example, a chain of OR gates can be written as

the Boolean function

f = ((a ∨ b) ∨ c) ∨ d (8.2)
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which equals the following polynomial function in F2:

f = abcd+ abc+ abd+ ab+ acd+ ac+ ad+ a+ bcd+ bc+ bd+ b+ cd+ c+ d

Notice, f contains 24 − 1 = 15 terms, which is exponential in the number of variables. The size

explosion is a major factor affecting the efficiency of polynomial division.

One way to further boost the efficiency is to adopt techniques from sparse linear algebra.

Analysis of experimental results shows that multivariate polynomial division procedure consumes

most of the verification time. A matrix-based technique named as ”F4 style reduction” [145] can

speed up the procedure of dividing a low-degree polynomial with a term-sparse polynomial ideal.

Another way is to utilize DDs, e.g., ZDDs. ZDDs can represent unate covers of Boolean

formulas. We can represent f using a ZDD, where every path in the ZDD from a root to a terminal

corresponds to a monomial term.

Figure 8.1 shows a ZDD representing Equation 8.2 with size 2 × 4 − 1 = 7, which is linear

in the number of variables. The reduction process using ZDDs can be executed as in [138]. The

graphical illustration of the remainder in ZDDs is also shown in Figure 8.1.

d

c

b

a

 ZBDD      

0x71

0x70 0x43

0x60 0x42

0x410x48

10

Figure 8.1: A ZDD representing remainder polynomial reducing by a chain of OR gates with order
d > c > b > a.
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8.1.3 Craig Interpolants in Algebraic Geometry

The concept of Craig Interpolants (CI) and their existence comes from symbolic logic [146];

later, algorithms were presented to find the CI for Boolean formulas [70,147]. Assume that Boolean

formulas are represented in Clause Normal Form (CNF) as f = C1 ∧ C2 ∧ · · · ∧ Cm where: 1)

Each clause Ci is a disjunction (Boolean OR, denoted ∨) of literals; 2) Each literal is a Boolean

variable xi or its complement xi. The Boolean satisfiability (SAT) problem requires that we find an

assignment to the variables such that the formula f is satisfied (SAT), or otherwise prove that no

such assignment exists (UNSAT). A CI is related to an UNSAT formula.

Definition 8.1. (From [70]) Let A and B be Boolean formulas given as sets of clauses such that

A ∧ B is unsatisfiable (UNSAT). Then there exists a formula P such that: 1) A implies P (or

A ⊆ P ); 2) P ∧B is UNSAT; 3) P refers to only the common variables of A and B. The formula

P represents an interpolant of A and B.

Given the pair (A,B) and their refutation proof, a procedure called interpolation system con-

structs an interpolant in linear time and space in the size of the proof [70] [147].

Example 8.2. Let f = (d)(c)(a ∨ d)(a ∨ b ∨ c)(b) be a CNF formula. Let f = A ∧B = ∅, where

A = (d)(c)(a ∨ d) and B = (a ∨ b ∨ c)(b). Then P = a ∧ c is an interpolant of (A,B).

CIs are used to derive abstractions to produce overapproximate image operators in model check-

ing [70]. Since A =⇒ P , P contains A and is an abstraction of A. It also has fewer variables,

so checking invariants on P ∧ B is easier. The interpolant is derived through a resolution proof of

the SAT problem. There can be many interpolants Pi for a pair (A,B); however, it is not feasible to

explore a few or all of these interpolants by means of the resolution proof.

We introduce the algebraic geometry analog of CI. We conjecture that the concept of CI should

be related to elimination ideals, so future lines of investigation should focus on Gröbner basis

computations with elimination term orders for their computation.

Definition 8.2. Let F = {f1, . . . , fs} be a set of polynomials in the ring R = Fq[x1, . . . , xn]. Let

F = FA ∪FB and ideals J = 〈F 〉, JA = 〈FA〉, JB = 〈FB〉 be corresponding ideals in R such that

J = JA + JB . Let it be known (say, due to application of Weak Nullstellensatz and Gröbner basis)

that the varieties VFq(J) = VFq(JA)∩ VFq(JB) = VFq(JA + JB) = ∅. Also, let the set of variables

X = {x1, . . . , xn} = XA ∪ Xc ∪ XB where XA, XB are the set of variables present exclusively
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in the sets of polynomials FA, FB respectively. Only Xc is the set of variables that are common to

both sets of polynomials FA, FB . Then, there exists a set of polynomials FP and ideal JP = 〈FP 〉

such that

• VFq(JA) ⊆ VFq(JP )

• VFq(JP ) ∩ VFq(JB) = ∅

• Polynomials of FP contain the common variables (XC) of FA, FB .

We call the ideal JP = 〈FP 〉 the algebraic interpolant of JA + JB .

Existence of algebraic interpolant comes from [146]. The question for exploring is, how do we

compute it in algebraic geometry?

Example 8.3. Based on Example 8.2, we translated the system over F2[a, b, c, d]. Let FA =

{f1, f2, f3} and FB = {f4, f5} where: f1 : d; f2 : c; f3 : a + da; f4 : abc + ab + ac +

bc+ a+ b+ c+ 1; f5 : b. The Boolean interpolant a∧ c from Example 8.2 translates to F2 as the

polynomial fp = ac+ a+ c, with its variety V (fp) = {a = 0, c = 0}.

Algebraic interpolation is strongly related to the GB computation with the elimination order

XA > XB > XC , and this relationship needs to be formally derived.

Conjecture 8.2. Computations of algebraic interpolants: Let J0 denote the ideal of all vanishing

polynomials in F2k [x1, . . . , xn].

• Compute a Gröbner basis G1 = GB(JA + J0) with the elimination order XA > XB > XC ,

and select FP1 = G1∩F2k [XC ]. We conjecture that the Gröbner basis FP1 of the elimination

ideal corresponds to an algebraic interpolant.

• Analogously, compute a Gröbner basisG2 = GB(JB+J0) with the elimination orderXB >

XA > XC , and select FP2 = G2∩F2k [XC ]. Find an ideal F ′P2 such that the variety V (F ′P2)

is the complement of the variety V (FP2). Then the set F ′P2 gives another interpolant.

Example 8.4. Consider the polynomials {f1, . . . , f5} from Example 8.3. Computing FP1 as de-

scribed in Conjecture 8.2 produces FP1 = {a, c}, correctly giving us the desired variety V (a =

0, c = 0). Similarly, when we compute FP2, we find that the interpolant is ac + a + c + 1. Notice
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that the variety V (ac + a + c + 1) = {(0, 1), (1, 0), (1, 1)}, which is exactly the complement of

V (FP1).

The aforementioned experiments in Example 8.4 do not invalidate our conjectures. Moreover,

the above experiment shows that there can be multiple ways of computing the interpolants. What

can these Gröbner basis computations tell us about the number of valid algebraic interpolants for

any given problem? Can they be classified as weak or strong interpolants based on the sparsity of

the polynomials (power of abstraction)?

As there can be many interpolants for an ideal-pair (JA, JB), the following questions should

also be investigated in the future:

• Find the minimal interpolant, i.e., find the interpolant FP such that V (JP ) is the smallest

variety larger than V (JA) such that V (JP ) ∩ V (JB) = ∅.

• Analogously, find the maximal interpolant.

• Over finite fields, the variety of an elimination ideal is exactly equal to the projection of the

variety on the remaining variables. Consider Figure 8.2, where variety of the ideals JA, JB

are respectively projected on the common variablesXC = {a, c}. Then, does computing FP1

(resp. FP2) deliver the minimal (resp. maximal) interpolant?

8.1.4 Technology Mapping for Word-Level Functional Blocks

Technology mapping is an important problem in digital circuit synthesis. Designers are given a

library of well-designed functional/macro blocks (including IP cores) and a raw netlist. Technology

mapping’s objective is to map as many as blocks to the raw netlist and keep the functional equiva-

lence. Contemporary techniques rely on bit-wise analysis on the signals to deduce the boundary

of mapped blocks. It is possible to use the equivalence checking techniques proposed in this

dissertation as an alternative way to perform technology mapping, especially at word level when

given blocks represent word-level functions.

The objective of our approach is to map the macro blocks without boundary information. Map-

ping is an essential technique used in synthesis and verification. In synthesis, we can map the macro

functions with smaller and faster implementations to optimize the timing and area; in simulation,

we can map a complicated function to a simple execution to accelerate simulation speed.
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Figure 8.2: Algebraic interpolant: projection of varieties on common variables.

Problem Setup 8.1. Given a gate-level design N and several word-level macro blocks {Bi}, we

need to map macro blocksBi into designN , and write out the mapped designN ′ which is equivalent

to original design D. The objective is to generate a mapped design N ′ with as many of Bi such that

the area and timing are optimal. The procedure is also illustrated in Figure 8.3.

The following part describes the sketch of our proposed approach based on loop-invariant

constraints [148]. First, a transition system is modeled by algebraic assertions, then the ideal

Original Netlist

N

B1 B2

B3 B4

Blocks to be mapped

Technology Mapping 
Synthesizer

Netlist after mapping

N’

B1 B2

B4

Figure 8.3: The outline and flow of technology mapping of macro blocks.
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membership test [19] is applied on the set of assertions to help abstract the loop invariant. We

introduce concept template from [148] to apply on our proposed approach.

1) Template and state constraints: The ideal membership test requires a setup of ideal Jloop

for loop invariants. One heuristic that can provide better coverage for loop-invariant abstraction as

well as a relatively small size is generic quadratic form (GQF).

For example, the GQF of a pair of state variables {x, y} is

F = a0x
2 + a1x+ a2xy + a3y + a4y

2 + a5

It covers all possible terms with degree no more than 2. Constants a0, a1, . . . , a5 are usually

real number parameters, some of their assignments can turn F into the desired invariant. This

parameterized constraint polynomial covers all combinations of state variables, and is also called a

template. Subsequently, finding a proper assignment is the essential part of our proposed research.

2) Initial state constraints: For initial states, the constraints are explicit. A template is adopted

and refined by the Gröbner basis generated by original constraints, by equaling the remainder to 0

we can get constraints on parameters from the template.

An example is shown in the following 3-line algorithm multiplying two natural numbers.

integer i, j, s where(s = 0 ∧ j = j0)

l0 : while (· · · ) do

l1 : (s, j)← (s+ i, j − 1) (8.3)

Its template is the generic quadratic form of {s, i, j, j0}, which is

F = a0s
2 + a1s+ a2si+ a3sj + a4sj0

+ a5i
2 + a6i+ a7ij + a8ij0 + a9j

2

+ a10j + a11jj0 + a12j
2
0 + a13j0 + a14

with parameters a0, . . . , a14.

Constraints of initial state s = 0 ∧ j = j0 can be interpreted as polynomials:

{s, j − j0}

Since their leading terms are relatively prime, the polynomial set itself constitutes a Gröbner basis

G = {s, j − j0}

Therefore its ideal can be written as J = 〈s, j − j0〉.
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In the next step, we reduce the template with the Gröbner basis G: F G−→+ r. The remainder

equals to

r = a5i
2 + a6i+ (a7 + a8)ij0 + (a9 + a11 + a12)j

2
0 + (a10 + a13)j0 + a14

Let it equal 0, then each coefficient will generate a constraint. The solution to the system forms the

candidate assignment to generate loop invariants.
a5 = a6 = a14 = 0
a7 + a8 = 0
a9 + a11 + a12 = 0
a10 + a13 = 0

(8.4)

3) Modeling state transitions: A typical state transition starts from the previous state (PS)

and ends at next state (NS). Our proposed approach models the 2 states individually, i.e., performs

polynomial reduction separately and obtains remainders r1 and r2. Assume a constraint polynomial

describing the state transition is rt, then we require that when invariant of PS holds and transition

PS → NS stands, the invariant of NS should also be satisfied:

(r1 = 0) ∧ (rt = 0) =⇒ (r2 = 0)

One reasonable conjecture is

rt = r1 − λr2

Theoretically λ can be any polynomial in arbitrary rings. To make it practical, in terms of solving

the system, we limit λ to the polynomial ring with only real numbers.

Take Equation 8.3 as the example (which refers to Example 10 in [148]). PS is the initial state

we just characterized

F = f(s, i, j, j0)

and NS has exactly the same form of constraint:

F ′ = f(s′, i′, j′, j′0)

Considering the transition relation, we substitute s′ with s+ i and replace j′ with j − 1, i′ for i, j′0

for j0, respectively. The template for NS is polynomial f ′ in Example 10 in [148].

We then perform reduction with the Gröbner basis generated from the transition relation mod-

eling, which is the Gröbner basis of polynomial ideal corresponding to the gates in the circuit
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partition. After recording the NS remainder r2, by using equality r2 = λr1 we get constraints for

the parameters. We solve the system using similar algorithm to solve binate-covering problems,

which is also described in Section 4 as elimination by splitting technique in [148]. One of the

branching results is

a0, a2, . . . , a6, a9, . . . , a14 = 0

a1 = a7 = −a8

The reduced remainder is

r2 = a1s+ (a1 − a7)i+ a7ij + a8ij0 = a1(s+ ij − ij0) = 0

Thus the invariant of the program in Equation 8.3 is

s = i(j0 − j)

We can verify the invariant by executing the program which calculates i × j0. Initially s = 0,

j0 − j = 0, invariant holds; during each cycle, s′ = s + i, (j′0 − j′) = (j0 − j) + 1, the invariant

also holds. In conclusion, this is a loop invariant for program in Equation 8.3.

Our proposed approach on technology mapping: Our approach is inspired by the concept of

templates in [148]. However, we make an improvement on the original approach: instead of using

a template polynomial to describe the system, we add some extra templates into the ideal of macro

blocks which serve as technology mapping candidates. In this way we can cover all possibilities of

boundary cutting (circuit partition).

1) System abstraction: The polynomial we use to test ideal membership should include all the

information of a circuit partition, which requires us to abstract information from the system and

write it into a single polynomial. Usually this polynomial has the following generic form:

Z + f(i1, i2, . . . , in)

where Z is the output. When there is only one output, Z collapses to a bit-level variable. However,

in most cases there are multiple outputs on the cut, indicating Z as a word-level variable. Boolean

function F covers all inputs, and i1, i2, . . . , in are all bit-level inputs.

Figure 8.4 shows an example circuit partition with s0, s1, s2, s3 as inputs and Z = {z0, z1} as

outputs. If we use elements from Galois field F22 to represent word Z, we have Z = z0 + α · z1.
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s0
s1

s2
s3

ci

p1

a1

t1

t2

g1

t

z0

z1

Z

Output cut-set PinsInput cut-set Pins

Figure 8.4: An example gate-level netlist of a target sub-circuit to be mapped. “�” denotes a pin,
which is the boundary for the mapper.

After imposing ATO of LEX with

Other circuit variables > output word Z > all cut-set bit level inputs

on the ideal describing the partitioned circuit as well as the ideal with vanishing polynomials, the

reduced Gröbner basis has a single polynomial generator in the form of Z + F(s0, s1, s2, s3). In

this example:

• Term ordering: {z0, z1, t, g1, p1, ci, t1, t2} > Z > {s0, s1, s2, s3}

• Gate description: z0 + t+ g1 + t · g1, t+ t1 + t2 + t1 · t2, g1 + s0 · s1, t1 + s0 · ci, t2 + s1 ·

ci, ci+ s2 · s3, z1 + p1 + ci, p1 + s0 + s1

• Word definition: Z + z0 + z1 · α

• Vanishing polynomial ideal (J0): z20 +z0, z
2
1 +z1, t

2+t, g21 +g1, t
2
1+t1, t

2
2+t2, p

2
1+p1, ci

2+

ci, s22 + s2, s
2
3 + s3, s

2
0 + s0, s

2
1 + s1, Z

4 + Z (since Z is a 2-bit word)

The result is a Gröbner basis with single polynomial generator. The polynomial has leading

term Z:

Z + s2 · s3 · s0 + s2 · s3 · s1 + α · s2 · s3 + s0 · s1 + α · s0 + α · s1

2) Templates on Boundary Information:
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Figure 8.5 shows a 2-bit standard cell. It has 3 outputs (t0, t1, CO) mapped to 2 output pins

(z0, z1), and 4 inputs (a0, a1, b0, b1) mapped to 3 input pins (s0, s1, s2, the excessive input e.g. b1 is

assigned to fixed 0/1 signal). Dashed connection lines show one possible mapping, to find out this

kind of feasible mapping, we need to simulate all possible mappings where the concept ”template”

can be used.

Output template: z0 + ct0z0 · t0 + ct1z0 · t1 + cz0CO · CO + cn0

The above polynomial includes all possibilities where z0 could be mapped to. When cn0 = 0,

then {ct0z0 , ct1z0 , cz0CO} equals 1 denotes a valid mapping to a corresponding output pin. Con-

versely if cn0 = 1, the “1” evaluation denotes mapping to negation of corresponding output pin.

Input template: a0 + cs0a0 · s0 + cs1a0 · s1 + cs2a0 · s2 + pa0

When pa0 = 0, then {cs0a0 , cs1a0 , cs2a0} equal to 1 denotes a valid mapping to corresponding

input pin. Conversely if every variable in set {cs0a0 , cs1a0 , cs2a0} equals to 0, it denotes mapping to

fixed signal “0” (when pa0 = 1 then mapping to fixed signal “1”).

With these settings, we propose an approach to perform technology mapping with boundary

information:

• First, choose a cut-set of independent wires in target circuit as input pins;

• Second, propagate forward the cut for a certain number of gates (depth), choose a cut-set

which fully depends on these inputs as output pins. Thus we obtain a subcircuit by partition-

ing;

• Third, abstract a description polynomialF of the target subcircuit using GB based abstraction;

Figure 8.5: Candidate cell: a standard 2-bit adder with one possible input/output mapping.



156

• Fourth, reduce the description polynomial F with the GB we computed associated to macro

block and templates, obtain a remainder polynomial;

• Last, but not the least, abstract all coefficients from the remainder polynomial and set up a

system of equations similar to Equation 8.4. If we find a solution to this system, then the

solution is a feasible mapping; no solution means we cannot make a feasible mapping.



APPENDIX A

NORMAL BASIS THEORY

In Chapter 3 we briefly introduced the concept of normal basis (NB), and the benefits of using

NB. In this appendix chapter we describe more details about NB theory by characterizing NB from

a linear algebra perspective, constructing a general NB in an arbitrary field, and converting between

NB and StdB. All theorems and lemmas refer to the dissertation of Gao [107], and we deduce all

the proofs for them.

A.1 Characterization of Normal Basis
In order to depict the characterization of NB, we need to introduce some concepts from the

domain of linear algebra.

Definition A.1 (Frobenius Map). Define map σ : x → xp, x ∈ Fpn . This map denoting the linear

map of field extension Fpn over Fp.

Additionally we can define a subspace based on linear map T :

Definition A.2. A subspace W ⊂ V is called T -invariant when

Tu ∈W, ∀ vector u ∈W

Subspace Z(u, T ) = 〈u, Tu, T 2u, . . . 〉 is called T -cyclic subspace of V . If Z(u, T ) = V

holds, then u is called a cyclic vector of V for T .

We define the nullspace of a polynomial as:

Definition A.3 (Nullspace of a polynomial). For any polynomial g(x) ∈ F[x], the null space of

g(T ) consists of all vectors u such that g(T )u = 0.

Finally we get to the most important concept: T -Order, which derives the construction of a ring

extended by a field requiring a minimal polynomial.
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Definition A.4. For any vector u ∈ V , the monic polynomial g(x) ∈ F[x] with smallest degree such

that g(T )u = 0 is called the T -Order of u or minimal polynomial of u.

Let map T = σ, for an arbitrary element u = θ in Fpn , find least positive integer k such that

σkθ =
∑k−1

i=0 ciσ
iθ, then the σ-Order of θ can be written as

Ordθ,σ(x) = xk −
k−1∑
i=0

cix
i

Using the concepts introduced above, along with other basic concepts in linear algebra and finite

field theory, we can derive the following theorems.

Lemma A.1. Given g(x) ∈ F[x] and W is its nullspace. Let d(x) = gcd(f(x), g(x)), e(x) =

f(x)/d(x). Then dim(W ) = deg(d(x)) and W = {e(T )u | u ∈ V }.

Proof. Assume f(x) is the minimal and characteristic polynomial for T . Then according to

Definition A.3 we obtain

W = {u ∈ V | g(T )u = 0}

Let k be a polynomial whose degree is larger than that of f(x), i.e., deg(k(x)) > deg(f(x)),

then

f(x)|k(x) iff k(T ) = 0

Since the construction of f(x) relies on T , f(T ) = 0, we get

∀u, f(T )u = 0

Consider W (u, T ) subsequently relies on g(T ), we deduce

dim(W ) = deg(d(x))

According to the definition of W , we have

∀u, e(T )u ∈W ⇐⇒

g(T )e(T )u = g(T )
f(T )

d(T )
u = h(T ) · f(T )u = 0

The T -Order and corresponding nullspace also affect the factorization of polynomials:
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Lemma A.2 (Factorization of f(x)). Factorization f(x) =
∏r
i=1 f

di
i (x), where each fi(x) is prime

to others. Assume Vi be nullspace of fdii (x), then V = V1 ⊕ V2 ⊕ · · · ⊕ Vr.

Furthermore, we can define a polynomial Ψi(x) = f(x)/fdii (x), where

∀uj ∈ Vj , uj 6= 0,Ψi(T )uj 6= 0

only if i = j.

Proof. We can use Lemma A.1:

gcd(f(x), fdii (x)) = fdii (x), dim(Vi) = deg(fdii (x))

Which implies

dim(Vi) = deg

(∏
i

fdii (x)

)
=
∏
i

dim(Vi) =⇒ V =
⊕
i

Vi

Assume i 6= j, Ψi(x) = f(x)

f
di
i (x)

= h(x)f
dj
j (x). Then

∀uj ∈ Vj , fj(T )uj = 0 =⇒ h(x)f
dj
j (T )uj = 0

=⇒ Ψi(x)uj = 0

Conversely, if i = j, then

Ψi(x) =
f(x)

fdii (x)
⊥ fi(x)

=⇒ Ψi(x)uj 6= 0

For a given Frobenius map σ, corresponding minimal polynomial is restricted:

Lemma A.3. The minimal (and characteristic) polynomial for σ is xn − 1.

Proof. Consider Fermat’s little theorem in Fpn . Let β be an element in the field, then

σnβ = βp
n

= β =⇒ σn − I = 0

where I is the identity map. For characteristic polynomial, assume ∃f(x) =
∑

i fix
i ∈ Fp[x], such

that the degree of characteristic polynomial is lower than n:∑
i

fiσ
i = 0 and deg(f(x)) < n
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Then ∀β ∈ Fpn , (∑
i

fiσ
i

)
β =

∑
i

fiβ
pi = 0

This equation denotes that β is one of pn roots of polynomial F(x) =
∑

i fi(x
pi). However,

the maximum number of roots allowed equals the degree of F(x), which is pn−1 < pn, we find a

contradiction. Thus we conclude that

Both characteristic and minimal polynomial is xn − 1

From the lemmas above we can deduce the following corollary:

Corollary A.1. An element α ∈ Fpn is a normal element if and only if Ordα,σ(x) = xn − 1.

Proof. Normal bases require {β, β2, . . . , β2n−1} to be linearly independent, which is equivalent to

the following expression:

∀f(x) ∈ Fp[x], deg(f(x)) < n

Furthermore, because there are no annihilators in the T -Order, this implies that

Ordα,σ(x) = xn − 1

From corollary above we can deduce another form of criterion of normal element:

Theorem A.1. Given finite field F2n , the field characteristic p = 2. Define t = pe such that

n = kpe, gcd(k, p) = 1, so t = 1 if n is an odd integer. Then xn − 1 can be factorized as

(ϕ1(x)ϕ2(x) · · · ϕr(x))t

Additionally, define Φi(x) = (xn − 1)/ϕi(x). We assert that

An element α ∈ Fpn is a normal element if and only if Φi(σ)α 6= 0, i = 1, 2, . . . , r.

Proof. Let us analyze the auxiliary polynomial Φi(x) = xn−1
ϕi(x)

first.

Φi(σ)α 6= 0⇔ No factor in xn − 1 annihilates α

On the other hand, according to Lemma A.3, it is a known fact that any annihilator always divide

xn − 1. As a result, the only possible situation is

Ordα,σ(x) = xn − 1
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Using Corollary A.1 we deduce that α is a normal element.

The normal element identification can also be described from the nullspace perspective:

Theorem A.2. Let Wi be the nullspace of ϕti(x) and W̃i the nullspace of ϕt−1i (x). Let Wi be any

subspace of Wi such that Wi = Wi ⊕ W̃i. Then

Fpn =
r∑
i=1

Wi ⊕ W̃i

is a direct sum where dim(Wi) = di and dim(W̃i) = (t− 1)di.

Using above setup we define an element α ∈ Fpn with α =
∑r

i=1(αi + α̃i), αi ∈Wi, α̃i ∈ W̃i,

as a normal element if and only if αi 6= 0, ∀i = 1, 2, . . . , r.

Ultimately, since there always exist at least one element fulfilling requirements in Theorem A.1

or Theorem A.2, we obtain the following theorem:

Theorem A.3 (Normal Basis Theorem over Finite Fields). There always exists a normal basis of

Fpn over Fp.

A.2 Construction of General Normal Bases
After proving the existence of normal bases, the upcoming question is how to find such a

normal basis/element. For general normal basis identification, there are two methods widely used:

Lüneburg’s algorithm and Lenstra’s algorithm.

A.2.1 Lüneburg’s Algorithm

Lüneburg’s algorithm can be described with the following steps:

1) Randomly pick an element α from Fpn . For each i = 0, 1, . . . , n − 1, compute σ-Order fi =

Ordαi(x). Then xn − 1 = lcm(f0, f1, ..., fn−1).

2) Apply factor refinement to set {f0, . . . , fn−1} and obtain fi =
∏

1≤j≤r g
eij
j , i = 0, 1, . . . , n−1.

We can write the result as an i× j matrix.

3) For each j, find an index ij (denote as i(j)) such that eij is maximum in the j-th column.

4) Let hj = fi(j)/g
ei(j)j
j , take βj = hj(σ)αi(j). Then

β =
r∑
j=1

βj
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is a normal element.

Lüneburg’s algorithm starts with a random element and ends with a normal element. The

justification of its soundness is as follows:

Proposition A.1. Lüneburg’s algorithm always generates a normal element over the field Fpn .

Proof. First, according to the definition of T -Order:

fi = Ordαi ⇔ fi(σ)αi = 0

Use Lemma A.3, the minimal/characteristic polynomial for σ is xn − 1 implies that any anni-

hilator of αi (i.e., fi(σ)) divides xn − 1. Meanwhile, {αi | 0 < i < n − 1} forms a (standard)

basis of field Fpn , this means αi are linearly independent with each other (i = 0, 1, . . . , n − 1).

Since linear map f(σ) guarantees that all elements in the field have order lcm(f0, . . . , fn−1), i.e.,

f(σ)γ = f(σ)(
∑

i α
i) =⇒ f(σ) = lcm(f0, . . . , fn−1). By contradiction we can prove that there

is no factor of xn− 1 that can be divided by the product of elements in set {f0, f1, . . . , fn−1}. This

actually corresponds to the assertion in the first step of the algorithm:

xn − 1 = lcm(f0, f1, . . . , fn−1)

In the second step, after factorization of set {fi}, we transform fi(σ)αi = 0 to

hj(σ) · gei(j)jj (σ) · αi(j) = 0

Furthermore we have

g
ei(j)j
j (σ)βj = 0⇔ Ordσ,βj (x) = g

ei(j)j
j (x)

Consider the facts: 1) elements in set {gj} are relatively prime; 2) g
ei(j)j
j is the maximum factor;

3) xn − 1 = lcm(f0, f1, . . . , fn−1), we deduce that

xn − 1 =
∏
j

g
ei(j)j
j (x) =

∏
j

Ordσ,βj (x)

As a result

xn − 1 = Ordσ,β(x) =⇒ β is a normal element.
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A.2.2 Lenstra’s Algorithm

Lüneburg’s algorithm is an analytic method, which requires relatively high computational com-

plexity mainly because of the factorization in its second step. To overcome the high cost, an

inductive method is proposed, which is Lenstra’s algorithm. It allows for setup of heuristics to

accelerate the procedure. Before introducing the details of the algorithm, we demonstrate two

preliminary lemmas.

Lemma A.4. For an arbitrary element θ ∈ Fpn that Ordθ(x) 6= xn − 1, let g(x) = (xn −

1)/Ordθ(x). There exists another element β such that g(σ)β = θ.

Proof. Assume γ is the desired normal element. From the definition of normal element we derive

∃f(x) ∈ Fpn [x], f(σ)γ = θ

Then using the definition of T -Order, we derive

Ordσθ = 0 =⇒ (Ordσf(σ))γ = 0

Since γ is the normal element, Ordγ(x) = xn−1 =⇒ xn−1 | (Ordθ(x)f(x)). Furthermore,

g(x) =
xn − 1

Ordθ(x)
=⇒ xn − 1

∣∣∣ (xn − 1

g(x)
· f(x)

)
=⇒ g(x) | f(x)

Let f(x) = h(x)g(x). Then

g(σ)(h(σ)γ) = θ

Therefore, ∃β i.e., g(σ)β = θ. Concretely, β = h(σ)γ.

Lemma A.5. Define θ and g(x) as in Lemma A.4. Assume there exists a solution β such that

deg(Ordβ(x)) ≤ deg(Ordθ(x)). Respectively there exists a nonzero element η such that

g(σ)η = 0

and

deg(Ordθ+η(x)) > deg(Ordθ(x))
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Proof. Assume γ is the desired normal element. Similarly,

∃η = Ordθ(σ)γ 6= 0, g(σ)η = 0

Follow the setup in Lemma A.4, we have

g(σ)β = θ,
xn − 1

Ordθ(x)

∣∣∣
σ
·β = θ

Subsequently,

Ordθ(x) · x
n − 1

Ordθ(x)

∣∣∣
σ
β = 0 = Ordβ(x)β

which implies

Ordθ(x)
∣∣ Ordβ(x), deg(Ordθ(x)) ≤ deg(Ordβ(x))

Combining with the assumption in the lemma: deg(Ordβ(x)) ≤ deg(Ordθ(x)), we derive

deg(Ordβ(x)) = deg(Ordθ(x)) =⇒ Ordθ(x) = Ordβ(x)

In the next part we need to prove g(x) ⊥ Ordθ(x) by contradiction. Assume h(x) = gcd(g(x), Ordθ(x)) 6=

1, and

g(σ)β = a(σ)h(σ)β = θ, Ordθ(σ)θ = a(σ)b(σ)h2(σ)β

However,Ordθ(x) = Ordβ(x) indicates thatOrdβ(x)β = b(x)h(x)a(x)β = 0. Thus,Ordθ(x) =

b(x). This is true if and only if h(x) = 1. As a result, we assert that

g(x) ⊥ Ordθ(x)

Consider g(σ)η = 0 =⇒ Ordη(x)
∣∣ g(x). It further implies that

Ordθ(x) ⊥ Ordη(x) =⇒ Ordθ+η(x) = Ordθ(x) ·Ordη(x)

Since η 6= 0, we derive the result

deg(Ordθ+η(x)) > deg(Ordθ(x))

Based on Lemmas A.4 and A.5, Lenstra’s algorithm is described below:

1) Take an arbitrary element θ ∈ Fpn , determine Ordθ(x).

2) If Ordθ(x) = xn − 1 then algorithm terminates and return θ as a normal element.
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3) Otherwise, compute g(x) = (xn − 1)/Ordθ(x), and solve β from g(σ)β = θ.

4) Determine Ordβ(x). If deg(Ordβ(x)) > deg(Ordθ(x)) then replace θ by β and go to 2);

otherwise if deg(Ordβ(x)) ≤ deg(Ordθ(x)) then find a nonzero element η such that g(σ)η = 0,

replace θ by θ + η and determine the order of new θ, and go to 2).

Lenstra’s algorithm is an approximation algorithm in nature. For each iteration Ordθ(x) mono-

tonically increases, so it will finally reach termination condition Ordθ(x) = xn − 1.

A.3 Bases Conversion and λ-Matrix Construction
Given a normal basis (NB), we can easily convert it to a standard basis (StdB) by reducing αt

with irreducible polynomial p(α) since normal element is already given as β = αt. The reverse

conversion requires solving a system of equations. In Example 3.7, the system of equations is as

follows:



α = α

α2 = α2

α4 = α4

α8 = α7 + α6 + α4 + α2 + α+ 1

α16 = α7 + α6 + α5 + α3 + α+ 1

α32 = α7 + α4 + α3 + α2 + α

α64 = α7 + α6 + α3 + α2

α128 = α6 + α5 + α4 + α3 + 1

(A.1)

We treat StdB {1, α, . . . , α7} as unknowns and NB {α, α2, . . . , α128} as parameters. Then we

can obtain a solution to this system denoting mapping from StdB to NB:



1 = α128 + α64 + α32 + α16 + α8 + α4 + α2 + α

α = α

α2 = α2

α3 = α128 + α32 + α16 + α2

α4 = α4

α5 = α128 + α32 + α8 + α4

α6 = α64 + α32 + α4 + α

α7 = α128 + α16 + α4 + α

(A.2)

Directly constructing λ-Matrix is difficult for general NBs. In Section 3.3, we introduced the

concept of a multiplication table (M-table) and explained how its entries are transformed from the
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0-th λ-Matrix. Recall the M-table is defined as

β


β
β2

β2
2

...
β2

n−1

 = T


β
β2

β2
2

...
β2

n−1

 (A.3)

Therefore we can compute M-table and then covert it to λ-Matrix. Using Equation A.3, we derive

entry Ti,j in the M-table by equating it to the j-th bit of the NB representation of element β · β2i .

For example, the i-th row of the M-table for NB in Example 3.7 satisfies

β · β2i =

7∑
j=0

Ti,jβ
2j

Thus, the M-table can be written as

T =



0 1 0 0 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 0 1 1 0 1 0


Using equation M (0)

i,j = Tj−i,−i, we can obtain the λ-Matrix in Equation 3.7.

Actually we can mathematically prove the relationship between them:

Theorem A.4. M-table T is a conjugate of the λ-Matrix M . In other words, Equation M (0)
i,j =

Tj−i,−i holds as the relation between their entries.

Proof. Recall the definition of λ-Matrix over field F2k :

C = A×B =

(∑
i

aiβ
2i

)∑
j

bjβ
2j

 =
∑
i

∑
j

aibjβ
2iβ2

j

Then there always exist λ(l)ij , such that

β2
i
β2

j
=
∑
l

λ
(l)
ij β

2l

We call it the cross-product term. The l-th bit of the product C is

cl =
∑
i

∑
j

aibjλ
(l)
ij
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For the sake of simplification, we let i = 0, thus

β · β2j =
∑
l

λ
(l)
0j β

2l

Since the multiplication table is defined as

β


β
β2

β2
2

...
β2

n−1

 = T


β
β2

β2
2

...
β2

n−1

 (A.4)

The j-th row of T can be written as

β · β2j =
∑
l

λ
(l)
0j β

2l (M-table definition)

=
∑
l

λ
(0)
jl β

2l (cross-product term) (A.5)

Notice that λ corresponds to λ-Matrix entries. In Equation A.5 we assign 0 to the row index i, the

proof can be extended to all row indices i < n but fix l to 0 because of the conjugation generated

by right-down cyclic-shift of λ-Matrix. Therefore we have

M
(0)
i,j = λ

(0)
ij = λ

(i)
j,0 = Tj−i,0−i



APPENDIX B

OPTIMAL NORMAL BASIS

The number of nonzero entries in λ-Matrix or multiplication table (M-table) is known as Com-

plexity (CN ). To define optimal normal basis, it is necessary to find the lower bound of CN .

Theorem B.1. IfN is a normal basis over Fpn with λ-Matrix M (k), then nonzero entries in matrix

CN ≥ 2n− 1.

Proof. Let basisN = {β, βp, βp2 , . . . , βpn−1}, let us denote βp
i

by βi for the sake of simplification.

Then
∑n−1

i=0 βi = trace β. Denote trace β by b, consider a n× n matrix M (0). Then

bβ0 =

n−1∑
i=0

ββi

Therefore, the sum of all rows in M (0) is an n-tuple with b as the first element and zeros

elsewhere. So the first column always includes at least one nonzero element. Since the sum of

entries in each of the other columns should equal zero (modulo 2), they need to include an even

number of “1”s. Meanwhile, in order to maintain the linear independence among each row, they

cannot be all “0”s. Therefore, there are always at least two nonzero elements in each column.

As a result, CN ≥ 2(n− 1) + 1 = 2n− 1.

If there exists a set of normal basis satisfying CN = 2n − 1, this normal basis is named as

Optimal Normal Basis (ONB).

Example B.1. In F24 constructed with p(α) = α4 + α + 1, two normal bases can be found:

β = α3,N1 = {α3, α6, α12, α9} and β = α7,N2 = {α7, α14, α13, α11}. Their multiplication

tables are listed below. For basis N1:

T1 =


0 1 0 0
0 0 0 1
1 1 1 1
0 0 1 0

 (B.1)

Complexity CN = 7, so N1 is an ONB. For basis N2:
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T2 =


0 1 0 0
1 1 0 1
1 0 1 0
1 0 1 1

 (B.2)

Complexity CN = 9, so basis N2 is not optimal.

ONBs are widely used in finite field circuit design, not only because of its low complexity, but

also because of the convenience to construct the λ-Matrix and M-table for them. To explain the

convenience and the reason behind it, we introduce two types of ONBs and the method to construct

them. The following section refers to [149].

B.1 Construction of Optimal Normal Basis
Type-I ONB over F2n satisfies following criteria:

• n+ 1 must be prime.

• 2 must be primitive in Zn+1.

The second criterion indicates that powers of 2 (exponent from 0 to n−1) modulo n+1 must cover

all integers from 1 to n.

In the following, we derive a simple way to construct the λ-Matrix of type-I ONB from the

criteria above. Assume λ(k)ij is the entry with coordinate (i, j) from k-th λ-Matrix. Then the

crossproduct term can be written as

β2
i
β2

j
=

n−1∑
k=0

λ
(k)
ij β

2k (B.3)

Suppose we only care about k = 0. So simplified to following equations:

{
β2

i
β2

j
= β

β2
i
β2

j
= 1 ( if 2i = 2j (mod n+ 1))

Solution (i, j) implies location of entries that equal “1” in λ-Matrix. Let β be an optimal normal

element, {β2i | 0 ≤ i < n} cover all powers of β and generates the basis. Thus by solving{
2i + 2j = 1 (mod n+ 1)

2i + 2j = 0 (mod n+ 1)

we obtain λ-Matrix M (0). This construction method does not require information about primitive

polynomial or normal element, so it is very convenient for circuit designers. Basis N1 in Example

B.1 is a type-I ONB over F24 .
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Type-II ONB over F2n satisfies following criteria:

• 2n+ 1 must be prime. And either

• 2 is primitive in Z2n+1, or

• 2n+ 1 = 3 (mod 4) and 2 generates the quadratic residues in Z2n+1

The last criterion means that that 2n + 1 should be congruent to 1 or 3 modulo 4. To generate a

Type-II ONB, we first pick an element γ with order 2n + 1 in F22n , such that the corresponding

normal element β from F2n can be written as β = γ + γ−1. Thus the cross-product terms will be:

β2
i
β2

j
= (γ2

i
+ γ−2

i
)(γ2

j
+ γ−2

j
)

= (γ2
i+2j + γ−(2

i+2j)) + (γ2
i−2j + γ−(2

i−2j))

=

{
β2

k
+ β2

k′
if 2i 6= 2j (mod 2n+ 1)

β2
k

if 2i = 2j (mod 2n+ 1)

(B.4)

k and k′ are the 2 possible solutions to multiplication of any 2 basis elements. This guarantees the

optimum of the basis since it has the minimum number of possible terms. In the case of 2i 6= 2j

(mod 2n+ 1), at least one of following equations{
2i + 2j = 2k (mod 2n+ 1)

2i + 2j = −2k (mod 2n+ 1)
(B.5)

has a solution, meanwhile at least one of following equations{
2i − 2j = 2k′ (mod 2n+ 1)

2i − 2j = −2k′ (mod 2n+ 1)
(B.6)

has a solution as well.

In another case that 2i = ±2j (mod 2n + 1), at least one of the following 4 equations has a

solution 
2i + 2j = 2k (mod 2n+ 1)

2i + 2j = −2k (mod 2n+ 1)

2i − 2j = 2k (mod 2n+ 1)

2i − 2j = −2k (mod 2n+ 1)

(B.7)

In set of Equations B.5 and B.6, there are two possible solutions in total. In set of Equations B.7,

there is only one possible solution. Since these equations are all similar, instead of working with
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two different sets we can combine them together and solve a system of 4 equations. As a result, to

construct the λ-Matrix M (0), we set k = 0 and find solutions to:


2i + 2j = 1 (mod 2n+ 1)

2i + 2j = −1 (mod 2n+ 1)

2i − 2j = 1 (mod 2n+ 1)

2i − 2j = −1 (mod 2n+ 1)

(B.8)

Example B.2. By solving the system of Equations B.8 with n = 5, we find 9 pairs of indices (i, j)

such that 0 ≤ i, j < 5. Assign “1” to corresponding entries in a 5× 5 matrix, the result is M (0) for

type-II ONB over F25:

M (0) =


0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
0 0 1 0 1

 (B.9)

B.2 Optimal Normal Basis Multiplier Design
Designers can easily generate the λ-Matrix for GF multipliers, which is sufficient to derive the

structure of the circuit. However, our GB based approach requires specifying the exact normal

element β, i.e., it is necessary to obtain t as β = αt before executing our technique. Lüneburg’s

algorithm and Lenstra’s algorithm do not guarantee the output normal element is the optimal normal

element, and usually result in high computation cost. Actually if the type of ONB within the design

is known, instead of looking up the optimal normal element, we can construct a special irreducible

p(α) such that the optimal normal element is equal to the primitive element: β = α. The concepts

and algorithms refer to IEEE standard 1363-2000 [150].

For type-I ONB over F2k , the irreducible polynomial is

p(α) = αk + αk−1 + · · ·+ α+ 1 =

k∑
i=0

αi

For type-II ONB, the following iterative algorithm is required to generate the desired irreducible

polynomial:
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Algorithm 13: Generating irreducible polynomial for type-II ONB over F2k

Input: Field F2k which contains a type-II ONB
Output: The irreducible polynomial p(α) for the ONB

1 f(α)← 1;
2 p(α)← α+ 1;
3 for i = 1 . . . k − 1 do
4 g(α)← f(α);
5 f(α)← p(α);
6 p(α)← αf(α) + g(α);
7 end
8 return p(α)
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of a set of polynomials using the Gröbner basis algorithm”, in International Conference on
Principles and Practice of Constraint Programming, pp. 859–875. Springer, 2016.

[47] Olivier Coudert and Jean Christophe Madre, “A unified framework for the formal verification
of sequential circuits”, in The Best of ICCAD, pp. 39–50. Springer, 2003.

[48] Zurab Khasidashvili, Marcelo Skaba, Daher Kaiss, and Ziyad Hanna, “Theoretical frame-
work for compositional sequential hardware equivalence verification in presence of design
constraints”, in Proceedings of the 2004 IEEE/ACM International conference on Computer-
aided design, pp. 58–65. IEEE Computer Society, 2004.

[49] Jason Baumgartner, Hari Mony, Viresh Paruthi, Robert Kanzelman, and Geert Janssen,
“Scalable sequential equivalence checking across arbitrary design transformations”, in
Computer Design, 2006. ICCD 2006. International Conference on, pp. 259–266. IEEE, 2007.

[50] CAJ Van Eijk, “Sequential equivalence checking without state space traversal”, in Design,
Automation and Test in Europe, 1998., Proceedings, pp. 618–623. IEEE, 1998.

[51] Hamid Savoj, David Berthelot, Alan Mishchenko, and Robert Brayton, “Combinational
techniques for sequential equivalence checking”, in Formal Methods in Computer-Aided
Design (FMCAD), 2010, pp. 145–149. IEEE, 2010.

[52] I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi,
“Algebraic Decision Diagrams and their Applications”, in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, pp. 188–191, Nov. 93.

[53] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spectral Transforms for
Large Boolean Functions with Applications to Technology Mapping”, in DAC, pp. 54–60,
93.

[54] E. M. Clarke, M. Fujita, and X. Zhao, “Hybrid Decision Diagrams - Overcoming the Limi-
tation of MTBDDs and BMDs”, in Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 159–163, 1995.

[55] Y-T. Lai, M. Pedram, and S. B. Vrudhula, “FGILP: An ILP Solver based on Function
Graphs”, in ICCAD, pp. 685–689, 93.

[56] Shin-ichi Minato, “Calculation of unate cube set algebra using zero-suppressed BDDs”, in
Proceedings of the 31st annual Design Automation Conference, pp. 420–424. ACM, 1994.

[57] R. Dreschler, B. Becker, and S. Ruppertz, “The K*BMD: A Verification Data Structure”,
IEEE Design & Test of Computers, vol. 14, pp. 51–59, 1997.

[58] Y. A. Chen and R. E. Bryant, “*PHDD: An Efficient Graph Representation for Floating Point
Verification”, in Proc. ICCAD, 1997.

[59] A. Jabir and Pradhan D., “MODD: A New Decision Diagram and Representation for
Multiple Output Binary Functions”, in IEEE Design, Automation and Test in Europe, 2004.

[60] A. Jabir, D. Pradhan, T. Rajaprabhu, and A. Singh, “A Technique for Representing Multiple
Output Binary Functions with Applications to Verification and Simulation”, IEEE Transac-
tions on Computers, vol. 56, pp. 1133–1145, 2007.



177

[61] M. Ciesielski, P. Kalla, and S. Askar, “Taylor Expansion Diagrams: A Canonical Represen-
tation for Verification of Data-Flow Designs”, IEEE Transactions on Computers, vol. 55, pp.
1188–1201, 2006.

[62] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean Reasoning
for Equivalence Checking and Functional Property Verification”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 21, pp. 1377–1394, Nov.
2006.

[63] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Improvements to Combinational
Equivalence Checking”, in Proc. Intl. Conf. on CAD (ICCAD), pp. 836–843, 2006.

[64] L. Erkök, M. Carlsson, and A. Wick, “Hardware/Software Co-verification of Cryptographic
Algorithms using Cryptol”, in Proc. Formal Methods in CAD (FMCAD), pp. 188–191, 2009.

[65] Maciej Ciesielski, Walter Brown, Duo Liu, and André Rossi, “Function extraction from
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