18,325 research outputs found

    Partial Order Reduction for Security Protocols

    Get PDF
    Security protocols are concurrent processes that communicate using cryptography with the aim of achieving various security properties. Recent work on their formal verification has brought procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability, vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits the scalability and practical impact of the verification tools. In this paper, we overcome this difficulty by developing partial order reduction techniques for the verification of security protocols. We provide reduced transition systems that optimally eliminate redundant traces, and which are adequate for model-checking trace equivalence properties of protocols by means of symbolic execution. We have implemented our reductions in the tool Apte, and demonstrated that it achieves the expected speedup on various protocols

    CryptoBap: A Binary Analysis Platform for Cryptographic Protocols

    Full text link
    We introduce CryptoBap, a platform to verify weak secrecy and authentication for the (ARMv8 and RISC-V) machine code of cryptographic protocols. We achieve this by first transpiling the binary of protocols into an intermediate representation and then performing a crypto-aware symbolic execution to automatically extract a model of the protocol that represents all its execution paths. Our symbolic execution resolves indirect jumps and supports bounded loops using the loop-summarization technique, which we fully automate. The extracted model is then translated into models amenable to automated verification via ProVerif and CryptoVerif using a third-party toolchain. We prove the soundness of the proposed approach and used CryptoBap to verify multiple case studies ranging from toy examples to real-world protocols, TinySSH, an implementation of SSH, and WireGuard, a modern VPN protocol

    CryptoBap: A Binary Analysis Platform for Cryptographic Protocols

    Get PDF
    We introduce CryptoBap, a platform to verify weak secrecy and authentication for the (ARMv8 and RISC-V) machine code of cryptographic protocols. We achieve this by first transpiling the binary of protocols into an intermediate representation and then performing a crypto-aware symbolic execution to automatically extract a model of the protocol that represents all its execution paths. Our symbolic execution resolves indirect jumps and supports bounded loops using the loop-summarization technique, which we fully automate. The extracted model is then translated into models amenable to automated verification via ProVerif and CryptoVerif using a third-party toolchain. We prove the soundness of the proposed approach and used CryptoBap to verify multiple case studies ranging from toy examples to real-world protocols, TinySSH, an implementation of SSH, and WireGaurd, a modern VPN protocol

    A Reduced Semantics for Deciding Trace Equivalence

    Full text link
    Many privacy-type properties of security protocols can be modelled using trace equivalence properties in suitable process algebras. It has been shown that such properties can be decided for interesting classes of finite processes (i.e., without replication) by means of symbolic execution and constraint solving. However, this does not suffice to obtain practical tools. Current prototypes suffer from a classical combinatorial explosion problem caused by the exploration of many interleavings in the behaviour of processes. M\"odersheim et al. have tackled this problem for reachability properties using partial order reduction techniques. We revisit their work, generalize it and adapt it for equivalence checking. We obtain an optimisation in the form of a reduced symbolic semantics that eliminates redundant interleavings on the fly. The obtained partial order reduction technique has been integrated in a tool called APTE. We conducted complete benchmarks showing dramatic improvements.Comment: Accepted for publication in LMC

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Symbolic Abstractions for Quantum Protocol Verification

    Get PDF
    Quantum protocols such as the BB84 Quantum Key Distribution protocol exchange qubits to achieve information-theoretic security guarantees. Many variants thereof were proposed, some of them being already deployed. Existing security proofs in that field are mostly tedious, error-prone pen-and-paper proofs of the core protocol only that rarely account for other crucial components such as authentication. This calls for formal and automated verification techniques that exhaustively explore all possible intruder behaviors and that scale well. The symbolic approach offers rigorous, mathematical frameworks and automated tools to analyze security protocols. Based on well-designed abstractions, it has allowed for large-scale formal analyses of real-life protocols such as TLS 1.3 and mobile telephony protocols. Hence a natural question is: Can we use this successful line of work to analyze quantum protocols? This paper proposes a first positive answer and motivates further research on this unexplored path

    Compiling symbolic attacks to protocol implementation tests

    Full text link
    Recently efficient model-checking tools have been developed to find flaws in security protocols specifications. These flaws can be interpreted as potential attacks scenarios but the feasability of these scenarios need to be confirmed at the implementation level. However, bridging the gap between an abstract attack scenario derived from a specification and a penetration test on real implementations of a protocol is still an open issue. This work investigates an architecture for automatically generating abstract attacks and converting them to concrete tests on protocol implementations. In particular we aim to improve previously proposed blackbox testing methods in order to discover automatically new attacks and vulnerabilities. As a proof of concept we have experimented our proposed architecture to detect a renegotiation vulnerability on some implementations of SSL/TLS, a protocol widely used for securing electronic transactions.Comment: In Proceedings SCSS 2012, arXiv:1307.802
    corecore