Quantum protocols such as the BB84 Quantum Key Distribution protocol exchange
qubits to achieve information-theoretic security guarantees. Many variants
thereof were proposed, some of them being already deployed. Existing security
proofs in that field are mostly tedious, error-prone pen-and-paper proofs of
the core protocol only that rarely account for other crucial components such as
authentication. This calls for formal and automated verification techniques
that exhaustively explore all possible intruder behaviors and that scale well.
The symbolic approach offers rigorous, mathematical frameworks and automated
tools to analyze security protocols. Based on well-designed abstractions, it
has allowed for large-scale formal analyses of real-life protocols such as TLS
1.3 and mobile telephony protocols. Hence a natural question is: Can we use
this successful line of work to analyze quantum protocols? This paper proposes
a first positive answer and motivates further research on this unexplored path