7 research outputs found

    RPP: Automatic Proof of Relational Properties by Self-Composition

    Full text link
    Self-composition provides a powerful theoretical approach to prove relational properties, i.e. properties relating several program executions, that has been applied to compare two runs of one or similar programs (in secure dataflow properties, code transformations, etc.). This tool demo paper presents RPP, an original implementation of self-composition for specification and verification of relational properties in C programs in the FRAMA-C platform. We consider a very general notion of relational properties invoking any finite number of function calls of possibly dissimilar functions with possible nested calls. The new tool allows the user to specify a relational property, to prove it in a completely automatic way using classic deductive verification, and to use it as a hypothesis in the proof of other properties that may rely on it

    Chapter Dynamic Dispatch for Method Contracts Through Abstract Predicates

    Get PDF
    Dynamic method dispatch is a core feature of object-oriented programming by which the executed implementation for a polymorphic method is only chosen at runtime. In this paper, we present a specification and verification methodology which extends the concept of dynamic dispatch to design-by-contract specifications. The formal specification language JML has only rudimentary means for polymorphic abstraction in expressions. We promote these to fully flexible specification-only query methods called model methods that can, like ordinary methods, be overridden to give specifications a new semantics in subclasses in a transparent and modular fashion. Moreover, we allow them to refer to more than one program state which give us the possibility to fully abstract and encapsulate two-state specification contexts, i.e., history constraints and method postconditions. Finally, we provide an elegant and flexible mechanism to specify restrictions on specifications in subtypes. Thus behavioural subtyping can be enforced, yet it still allows for other specification paradigms. We provide the semantics for model methods by giving a translation into a first order logic and according proof obligations. We fully implemented this framework in the KeY program verifier and successfully verified relevant examples. We have also implemented an extension to KeY to support permission-based verification of concurrent Java programs. In this context model methods provide a modular specification method to treat code synchronisation through API methods

    Integrating ADTs in KeY and their application to history-based reasoning about collection

    Get PDF
    We discuss integrating abstract data types (ADTs) in the KeY theorem prover by a new approach to model data types using Isabelle/HOL as an interactive back-end, and represent Isabelle theorems as user-defined taclets in KeY. As a case study of this new approach, we reason about Java’s Collection interface using histories, and we prove the correctness of several clients that operate on multiple objects, thereby significantly improving the state-of-the-art of history-based reasoning. Open Science. Includes video material (Bian and Hiep in FigShare, 2021. https://doi.org/10.6084/m9.figshare.c.5413263) and a source code artifact (Bian et al. in Zenodo, 2022. https://doi.org/10.5281/zenodo.7079126)

    Capturing and exploiting abstract views of states in OO verification

    Get PDF
    In this thesis, we study several implementation, specification and verification techniques for Object-Oriented (OO) programs. Our focus is on capturing conceptual structures in OO states in abstractions, and then exploiting such an abstract view of the state in specification and implementation approaches in a way that allows for formal verification. Generally, an OO state consists of many objects that reference each other in possibly complicated ways. At the same time, at any one point in the execution of the program, we can often reason about what is happening using an abstract view of the state that is much less complicated. To further improve the quality of implementations, better techniques must be developed for 1) specification of the abstract views that are used by the client and the programmer, and 2) the verification that an implementation satisfies its specification. This thesis contributes to that effort. We distinguish between client-level and programmer-level specification. A client-level specification acts as a contract between the client and the implementer. A programmer-level specification allows to reason formally about the implementation. We consider two specification formalisms that differ in the basic abstract view that is used: Algebraic Specification and OO Specification. We consider both client-level and programmer-level specifications based on algebraic specification. We contribute a novel syntax and semantics for the former, and we contribute an implementation approach for OO implementations based on the latter. We show that the implementation approach is suitable for problem-independent verification. We propose the programmer-level OO specification constructs inc and coop. The inc construct allows method specification to make explicit that a certain enumeration of invariants does not have to hold when that method is executed. The coop construct allows a field specification to make explicit that a certain enumeration of invariants might be invalidated when the field is updated. This allows for the specification and verification of OO designs in which in the process of updating one object, other objects with which it together implements a common purpose must be updated as well. We then generalize the inc and coop constructs by removing a restriction to enumerations of invariants. For instance, this is needed in the well-known Observer Pattern, where a Subject can have an arbitrary and dynamically changing number of Observers. A more general interpretation of invariants and accompanying proof system are provided as well. We contribute a programmer-level OO specification technique to capture layers in OO architectures, and we exploit these layers by providing a more liberal semantics of class invariants. We also provide a verification technique for the semantics. Layers are an abstraction at the architectural level in OO implementations that designate certain object structures in the design as sub-structures that are shared by other structures. An object in a higher layer is not relevant to the purpose of an object in the sub-structure. Given this intuition, an object in a higher layer is not part of the abstract view from an object in a lower layer. Therefore, the invariant of a higher layer object does not have to hold when a method of a lower-layer object is executing. Finally, we contribute a verification technique for pure methods and model fields, which are existing specification techniques for capturing an abstract view of the state in OO specifications. A method that is pure can be used as a function in predicates in class specifications. The function is axiomatized using the pre- and postcondition that are specified for the method. A model field abstracts part of the concrete state of an object into an abstract value. This too introduces an additional axiom in the underlying reasoning. The technique contributed establishes that such additional axioms do no introduce inconsistencies into the formal reasoning. It comes with heuristics that that make it amenable to automatic verification

    Verification of equivalent-results methods

    No full text
    Methods that query the state of a data structure often return identical or equivalent values as long as the data structure does not change. Program verification depends on this fact, but it has been difficult to specify and verify such equivalent-results methods and their callers. This paper presents an encoding from which one can determine equivalent-results methods to be deterministic modulo a user-defined equivalence relation. It also presents a technique for checking that a query method returns equivalent results and enforcing that the result depends only on a user-defined influence set. The technique is general, for example it supports user-defined equivalence relations based on Equals methods and it supports query methods that return newly allocated objects. The paper also discusses the implementation of the technique in the context of the Spec # static program verifier
    corecore