9,014 research outputs found

    Vacant Parking Lot Information System Using Transfer Learning and IoT

    Get PDF
    Parking information systems have become very important, especially in metropolitan areas as they help to save time, effort and fuel when searching for parking. This paper offers a novel low-cost deep learning approach to easily implement vacancy detection at outdoor parking spaces with CCTV surveillance. The proposed method also addresses issues due to perspective distortion in CCTV images. The architecture consists of three classifiers for checking the availability of parking spaces. They were developed on the TensorFlow platform by re-training MobileNet (a pre-trained Convolutional Neural Network (CNN)) model using the transfer learning technique. A performance analysis showed 88% accuracy for vacancy detection. An end-to-end application model with Internet of Things (IoT) and an Android application is also presented. Users can interact with the cloud using their Android application to get real-time updates on parking space availability and the parking location. In the future, an autonomous car could use this system as a V2I (Vehicle to Infrastructure) application in deciding the nearest parking space

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras

    Fast Automatic Vehicle Annotation for Urban Traffic Surveillance

    Get PDF
    Automatic vehicle detection and annotation for streaming video data with complex scenes is an interesting but challenging task for intelligent transportation systems. In this paper, we present a fast algorithm: detection and annotation for vehicles (DAVE), which effectively combines vehicle detection and attributes annotation into a unified framework. DAVE consists of two convolutional neural networks: a shallow fully convolutional fast vehicle proposal network (FVPN) for extracting all vehicles' positions, and a deep attributes learning network (ALN), which aims to verify each detection candidate and infer each vehicle's pose, color, and type information simultaneously. These two nets are jointly optimized so that abundant latent knowledge learned from the deep empirical ALN can be exploited to guide training the much simpler FVPN. Once the system is trained, DAVE can achieve efficient vehicle detection and attributes annotation for real-world traffic surveillance data, while the FVPN can be independently adopted as a real-time high-performance vehicle detector as well. We evaluate the DAVE on a new self-collected urban traffic surveillance data set and the public PASCAL VOC2007 car and LISA 2010 data sets, with consistent improvements over existing algorithms

    A Baseline for Cross-Domain Fine-Grained Vehicle Classification in a Supervised Partially Zero-Shot Setting

    Get PDF
    Fine-grained vehicle classification is an important task particularly for security applications like searching for cars of suspects who abuse stolen license plates. However, data privacy and the large number of existing car models render it highly difficult to create a large up-to-date dataset for fine-grained vehicle classification with surveillance images. While a large number of images of vehicles are available in the web due to car selling sites, they have a perspective which is vastly different to surveillance images. Domain adaptation is the field of research that uses domain-wise inappropriate images for training of classification models with the target of running accurate inference on images of a different domain. Since the widely considered unsupervised and semi-supervised domain adaptation settings are unrealistic for fine-grained vehicle classification, we establish a baseline for cross-domain fine-grained vehicle classification in a supervised partially zero-shot setting. Our results indicate that existing domain adaptation methods like domain adversarial training and triplet loss are still advantageous for this setting and we show the benefit of distance-based classification for this task

    Towards Developing Computer Vision Algorithms and Architectures for Real-world Applications

    Get PDF
    abstract: Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading. To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time. Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists. Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore