9 research outputs found

    Vehicle Tracking and Speed Estimation from Traffic Videos

    Get PDF
    The rapid recent advancements in the computation ability of everyday computers have made it possible to widely apply deep learning methods to the analysis of traffic surveillance videos. Traffic flow prediction, anomaly detection, vehicle re-identification, and vehicle tracking are basic components in traffic analysis. Among these applications, traffic flow prediction, or vehicle speed estimation, is one of the most important research topics of recent years. Good solutions to this problem could prevent traffic collisions and help improve road planning by better estimating transit demand. In the 2018 NVIDIA AI City Challenge, we combine modern deep learning models with classic computer vision approaches to propose an efficient way to predict vehicle speed. In this paper, we introduce some state-of-the-art approaches in vehicle speed estimation, vehicle detection, and object tracking, as well as our solution for Track 1 of the Challenge

    An algorithm using YOLOv4 and DeepSORT for tracking vehicle speed on highway

    Get PDF
    Currently, expressways are increasingly developed and expanded. Several highways of Vietnam allow vehicles to travel up to 120 kilometers per hour helping to transport goods quickly and bring a lot of socio-economic benefits. Vehicle monitoring plays an important role in reducing traffic accidents helping to handle violations.The paper proposes a model to identify and monitor car speed on highways. The proposal method uses YOLOv4 combining with DeepSORT for vehicle identification and tracking. We then calculate the speed of car based on video recording and sending back from highway. The execution context is highway where vehicles move very fast. The results show that system meets set requirements with over 90% accuracy and execution times for up to 70 frames per second that is suitable for real systems

    Vehicle speed estimation based on license plate detection

    Get PDF
    In this work, we present an approach for vehicle speed estimation using a flexible camera setup: the only requirement is a calibrated camera. Then we use the calibrated camera to record images of the vehicle on the road, and use a state-of-the-art object detector to identify if there is a vehicle in the image. For each vehicle we use a license plate detector to extract the corresponding pixels for the four corners of the license plate (LP), and we use the known dimensions of the LP and estimate the homography matrix to be able to obtain the real world coordinates for the LP. Then, we propose a two methods to better estimate the vehicle speed based on the tracking of the LP. We create a dataset to test the proposed method, and we show the results for each method proposed method. Our best method was able to estimate the speed of vehicles with an average error of 11.15%.Neste trabalho propomos uma solução para estimação da velocidade de veículos usando uma configuração de câmera com apenas uma restrição: a câmera precisa estar calibrada. Após isso,usamos a câmera calibrada para gravar imagens de veículos nas vias, e usamos um detector de objeto estado da arte para identificar se existe um veículo na imagem. Para cada veículo que o detector de objetos detectar, usamos detector de placas de veículo para extrair os pixels correspondentes às quinas da placa, como sabemos as dimensões reais da placa, estimamos uma matriz capaz de obter as coordenadas de mundo da placa. Então propomos uma série de métodos para melhor estimar a velocidade do veículo com base no monitoramento da placa. Também criamos um dataset para podermos testar os métodos propostos. Também mostramos os resultados para cada método proposto. Nosso melhor método é capaz de estimar a velocidade dos veiculos com um erro médio de 11.15%

    Image-Based Roadway Assessment Using Convolutional Neural Networks

    Get PDF
    Road crashes are one of the main causes of death in the United States. To reduce the number of accidents, roadway assessment programs take a proactive approach, collecting data and identifying high-risk roads before crashes occur. However, the cost of data acquisition and manual annotation has restricted the effect of these programs. In this thesis, we propose methods to automate the task of roadway safety assessment using deep learning. Specifically, we trained convolutional neural networks on publicly available roadway images to predict safety-related metrics: the star rating score and free-flow speed. Inference speeds for our methods are mere milliseconds, enabling large-scale roadway study at a fraction of the cost of manual approaches

    Small Object Detection and Tracking: A Comprehensive Review

    Get PDF
    Object detection and tracking are vital in computer vision and visual surveillance, allowing for the detection, recognition, and subsequent tracking of objects within images or video sequences. These tasks underpin surveillance systems, facilitating automatic video annotation, identification of significant events, and detection of abnormal activities. However, detecting and tracking small objects introduce significant challenges within computer vision due to their subtle appearance and limited distinguishing features, which results in a scarcity of crucial information. This deficit complicates the tracking process, often leading to diminished efficiency and accuracy. To shed light on the intricacies of small object detection and tracking, we undertook a comprehensive review of the existing methods in this area, categorizing them from various perspectives. We also presented an overview of available datasets specifically curated for small object detection and tracking, aiming to inform and benefit future research in this domain. We further delineated the most widely used evaluation metrics for assessing the performance of small object detection and tracking techniques. Finally, we examined the present challenges within this field and discussed prospective future trends. By tackling these issues and leveraging upcoming trends, we aim to push forward the boundaries in small object detection and tracking, thereby augmenting the functionality of surveillance systems and broadening their real-world applicability

    Drone-based Computer Vision-Enabled Vehicle Dynamic Mobility and Safety Performance Monitoring

    Get PDF
    This report documents the research activities to develop a drone-based computer vision-enabled vehicle dynamic safety performance monitoring in Rural, Isolated, Tribal, or Indigenous (RITI) communities. The acquisition of traffic system information, especially the vehicle speed and trajectory information, is of great significance to the study of the characteristics and management of the traffic system in RITI communities. The traditional method of relying on video analysis to obtain vehicle number and trajectory information has its application scenarios, but the common video source is often a camera fixed on a roadside device. In the videos obtained in this way, vehicles are likely to occlude each other, which seriously affects the accuracy of vehicle detection and the estimation of speed. Although there are methods to obtain high-view road video by means of aircraft and satellites, the corresponding cost will be high. Therefore, considering that drones can obtain high-definition video at a higher viewing angle, and the cost is relatively low, we decided to use drones to obtain road videos to complete vehicle detection. In order to overcome the shortcomings of traditional object detection methods when facing a large number of targets and complex scenes of RITI communities, our proposed method uses convolutional neural network (CNN) technology. We modified the YOLO v3 network structure and used a vehicle data set captured by drones for transfer learning, and finally trained a network that can detect and classify vehicles in videos captured by drones. A self-calibrated road boundary extraction method based on image sequences was used to extract road boundaries and filter vehicles to improve the detection accuracy of cars on the road. Using the results of neural network detection as input, we use video-based object tracking to complete the extraction of vehicle trajectory information for traffic safety improvements. Finally, the number of vehicles, speed and trajectory information of vehicles were calculated, and the average speed and density of the traffic flow were estimated on this basis. By analyzing the acquiesced data, we can estimate the traffic condition of the monitored area to predict possible crashes on the highways

    Drone-Based Computer Vision-Enabled Vehicle Dynamic Mobility and Safety Performance Monitoring

    Get PDF
    This report documents the research activities to develop a drone-based computer vision-enabled vehicle dynamic safety performance monitoring in Rural, Isolated, Tribal, or Indigenous (RITI) communities. The acquisition of traffic system information, especially the vehicle speed and trajectory information, is of great significance to the study of the characteristics and management of the traffic system in RITI communities. The traditional method of relying on video analysis to obtain vehicle number and trajectory information has its application scenarios, but the common video source is often a camera fixed on a roadside device. In the videos obtained in this way, vehicles are likely to occlude each other, which seriously affects the accuracy of vehicle detection and the estimation of speed. Although there are methods to obtain high-view road video by means of aircraft and satellites, the corresponding cost will be high. Therefore, considering that drones can obtain high-definition video at a higher viewing angle, and the cost is relatively low, we decided to use drones to obtain road videos to complete vehicle detection. In order to overcome the shortcomings of traditional object detection methods when facing a large number of targets and complex scenes of RITI communities, our proposed method uses convolutional neural network (CNN) technology. We modified the YOLO v3 network structure and used a vehicle data set captured by drones for transfer learning, and finally trained a network that can detect and classify vehicles in videos captured by drones. A self-calibrated road boundary extraction method based on image sequences was used to extract road boundaries and filter vehicles to improve the detection accuracy of cars on the road. Using the results of neural network detection as input, we use video-based object tracking to complete the extraction of vehicle trajectory information for traffic safety improvements. Finally, the number of vehicles, speed and trajectory information of vehicles were calculated, and the average speed and density of the traffic flow were estimated on this basis. By analyzing the acquiesced data, we can estimate the traffic condition of the monitored area to predict possible crashes on the highways

    Vehicle Tracking and Speed Estimation from Traffic Videos

    No full text
    The rapid recent advancements in the computation ability of everyday computers have made it possible to widely apply deep learning methods to the analysis of traffic surveillance videos. Traffic flow prediction, anomaly detection, vehicle re-identification, and vehicle tracking are basic components in traffic analysis. Among these applications, traffic flow prediction, or vehicle speed estimation, is one of the most important research topics of recent years. Good solutions to this problem could prevent traffic collisions and help improve road planning by better estimating transit demand. In the 2018 NVIDIA AI City Challenge, we combine modern deep learning models with classic computer vision approaches to propose an efficient way to predict vehicle speed. In this paper, we introduce some state-of-the-art approaches in vehicle speed estimation, vehicle detection, and object tracking, as well as our solution for Track 1 of the Challenge
    corecore