
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Computer Science Computer Science 

2019 

Image-Based Roadway Assessment Using Convolutional Neural Image-Based Roadway Assessment Using Convolutional Neural 

Networks Networks 

Weilian Song 
University of Kentucky, weiliansong19@gmail.com 
Author ORCID Identifier: 

https://orcid.org/0000-0002-8357-4995 
Digital Object Identifier: https://doi.org/10.13023/etd.2019.136 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Song, Weilian, "Image-Based Roadway Assessment Using Convolutional Neural Networks" (2019). Theses 
and Dissertations--Computer Science. 78. 
https://uknowledge.uky.edu/cs_etds/78 

This Master's Thesis is brought to you for free and open access by the Computer Science at UKnowledge. It has been 
accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0002-8357-4995
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Weilian Song, Student 

Dr. Nathan Jacobs, Major Professor 

Dr. Miroslaw Truszczynski, Director of Graduate Studies 



Image-Based Roadway Assessment Using Convolutional Neural Networks

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in the

College of Engineering
at the University of Kentucky

By

Weilian Song

Lexington, Kentucky

Director: Dr. Nathan Jacobs, Associate Professor of Computer Science

Lexington, Kentucky

2019

Copyright c© Weilian Song 2019



ABSTRACT OF THESIS

Image-Based Roadway Assessment Using Convolutional Neural Networks

Road crashes are one of the main causes of death in the United States. To reduce the num-

ber of accidents, roadway assessment programs take a proactive approach, collecting data

and identifying high-risk roads before crashes occur. However, the cost of data acquisition

and manual annotation has restricted the effect of these programs. In this thesis, we propose

methods to automate the task of roadway safety assessment using deep learning. Specif-

ically, we trained convolutional neural networks on publicly available roadway images to

predict safety-related metrics: the star rating score and free-flow speed. Inference speeds

for our methods are mere milliseconds, enabling large-scale roadway study at a fraction of

the cost of manual approaches.

KEYWORDS: urban understanding, transportation engineering, roadway safety, deep

learning
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Chapter 1

Introduction

1.1 Importance of Roadway Safety

Development of roads and motorized vehicles has revolutionized our daily lives, reducing

travel times and connecting the world in more ways than one. However, as vehicles become

cheaper and more performant, the lethality of them has increased as well. Just in the US,

over 35 000 people died in road crashes in 2015 [3], with millions more injured or disabled.

From an economic point of view, road crashes are a significant burden as well, costing over

200 billion dollars [2]. Highway crashes have indeed become one of the primary cause of

accidental deaths in the US [41].

With the staggering number of deaths and expense wasted, governments all around

the world are investing billions of dollars in road infrastructure improvements. However,

with millions of miles of roads, the funding needs to be efficiently distributed to roads

that need the most repair. In fact, more than half of the road deaths and serious injuries

occur on less than 10% of the road lengths in the world. [3] As a response, many road

assessment programs have been founded, using data-driven approaches to discover high-

risk road segments and intersections.

Efforts made by these road assessment programs have lead to a reduction in the number
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Figure 1.1: Some roads are safer than others.

of fatalities observed [40]. Unfortunately, this reduction has plateaued in recent years. The

main challenge that programs face is the inefficiency of conducting safety assessment.

It is a costly process to collect raw data (road imagery, degree of incline, LiDAR data),

and then perform manual annotation of road attributes such as traffic volume, pavement

condition, and roadside hazards. Services like Google Streetview and OpenStreetMap have

offered significant time savings when it comes to raw data acquisition, but annotation of

data remains a manual process, as it requires a human-level understanding of road data.

1.2 Roadway Assessment using Deep Learning

Thanks to advancements in deep learning technologies, computer agents have achieved

near human-level performance in many tasks, such as scene classification and object recog-

nition. Adoption of these technologies in roadway applications have also become popular,

due to neural networks’ powerful ability at extracting high-level information from imagery

data. In this thesis, we propose methods to automate the annotation process of roadway

2



safety assessment using deep convolutional neural networks. We built two safety-related

image datasets–one on Star Ratings and the other on free-flow speeds–and trained neu-

ral networks to predict the two metrics. We evaluate our methods both quantitatively and

qualitatively, and discuss possible applications of our work in addressing roadway safety

issues.

1.3 Thesis Overview

In Chapter 2, we consider the task of predicting the Star Rating of a road from its ground-

level imagery. The Star Rating metric is used by the United States Road Assessment Pro-

gram to rate roads on a five-star scale, which roughly indicates the likelihood and cost of a

crash at a particular location. In Chapter 3, we consider the task of predicting the free-flow

speed of a road using aerial-level imagery. Free-flow speed is the expected average speed

of drivers on a given road, an important metric to consider for understanding driver behav-

ior. Finally in Chapter 4, we discuss future direction of roadway safety assessment, and the

in-progress work of combining ground and aerial image modalities for prediction.

Copyright c© Weilian Song, 2019.
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Chapter 2

Automated Safety Assessment

2.1 Introduction

An emerging technique for systemically addressing the highway crash problem is repre-

sented by the protocols of the United States Road Assessment Program (usRAP). In this

process, a trained coder annotates, at regular intervals, various features of the roadway

such as roadway width, shoulder characteristics and roadside hazards, and the presence

of road protection devices such as guardrail. These annotations are based on either direct

observation or from imagery captured in the field and can be used to augment any existing

highway inventory of these features. These data are then used to rate the roadway, and in

turn, these ratings may be classified into a 5-tier star-rating scale, from highest risk (1 star)

to lowest (5 stars). This manual process is laborious and time consuming, and sometimes

cost prohibitive. Moreover, the speed and accuracy of the rating process can and does vary

across coders and over time.

To automate this manual process, we propose a deep convolutional neural network

(CNN) architecture that directly estimates the star rating from a ground-level panorama.

We name our work FARSA, Fully Automated Roadway Safety Assessment. See Figure 2.1

for examples of input panoramas. Note the lack of a physical median, paved shoulder, and

4



Figure 2.1: Example panoramas that our system uses to estimate the safety star rating. The
top two are rated 1 star, the most dangerous. The bottom two are rated 5 star, the safest.

sidewalks in the less safe roads. The key features of our approach are:

• multi-task learning: we find that augmenting the network to support estimating

lower-level roadway features improves performance on the main task of estimating

the star rating;

• task-dependent spatial attention layer: this allows the network to focus on particular

regions of the panorama that are most useful for a particular task; and

• unsupervised learning: we add a loss that encourages the star rating distribution to

be similar for nearby panoramas, greatly expanding the number of panoramas seen

by the network, without requiring any manual annotation.

We evaluate this approach on a large dataset of real-world imagery and find that it outper-

forms several natural baselines. Lastly, we present an ablation study that demonstrates the

benefits of the various components of our approach.

5



2.2 Related Work

Our work builds upon work in several areas: general purpose scene understanding, auto-

matic methods for understanding urban areas, and current practice in the assessment of

roadway features.

Scene Classification and Image Segmentation Over the past ten years, the state of the

art in scene classification has dramatically improved. Today, most, if not all, of the best per-

forming methods are instances of deep convolutional neural networks (CNNs). For many

tasks, these methods can estimate the probability distribution across hundreds of classes

in milliseconds at human-level accuracy [13]. A notable example is the Places CNN [45],

developed by Zhou et al., which adapts a network that was created for image classifi-

cation [18]. This network, or similar networks, has been adapted for a variety of tasks,

including: horizon line estimation [42], focal length estimation [37], geolocalization [21],

and a variety of geo-informative attributes [19].

This ability to adapt methods developed for scene classification and image segmen-

tation to other tasks was one of the main motivations for our work. However, we found

that naively applying these techniques to the task of panorama understanding did not work

well. The main problem is that these methods normally use lower resolution imagery which

means they cannot identify small features of the roadways that have a significant impact on

the assessment of safety. We propose a CNN architecture that overcomes these problems

by incorporating a spatial attention mechanism to support the extraction of small image

features.

In some ways, what we propose is similar to the task of semantic segmentation [8],

which focuses on estimating properties of individual pixels. The current best methods are

all CNN-based and require a densely annotated training set. Constructing such datasets

is a labor intensive process. Fortunately, unlike semantic segmentation, we are estimating

a high-level attribute of the entire scene so the effort required to construct an annotated

6



dataset is lower. It also means that our CNNs can have a different structure; we extract

features at a coarser resolution and have many fewer loss computations. This means faster

training and inference.

Urban Perception and High-Definition Mapping Recently there has been a surge in

interest for applying techniques for scene classification [5, 9, 24, 26, 31, 38, 39] and image

segmentation to understanding urban areas and transportation infrastructure [10, 23, 36].

The former focuses on higher-level labels, such as perceived safety, population density, or

beauty, while the later focuses on finer-grained labels, such as the location on line markings

or the presence of sidewalks. Our work, to some extent, combines both of these ideas.

However, we focus on estimating the higher-level labels and use finer-grained labels as

a form of multi-task learning. Our evaluation demonstrates that by combining these in a

single network enables better results.

Current Practice in Roadway Assessment The Highway Safety Manual (HSM) [16]

outlines strategies for conducting quantitative safety analysis, including a predictive

method for estimating crash frequency and severity from traffic volume and roadway

characteristics. The usRAP Star Rating Protocol is an internationally established method-

ology for assessing road safety, and is used to assign road protection scores resulting

in five-star ratings of road segments. A star rating is partly determined based on the

presence of approximately 60 road safety features [12]. More implementation of road

safety features entails a higher safety rating, and vice versa. There are separate ratings for

vehicle occupants, cyclists, and pedestrians, but we focus on vehicle occupant star ratings

in this paper.
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Figure 2.2: Overview of our network architecture.

2.3 Approach

We propose a CNN architecture for automatic road safety assessment. We optimize the

parameters of this model by minimizing a loss function that combines supervised, multi-

task, and unsupervised component losses. We begin by outlining our base architecture,

which we use in computing all component loss functions.

2.3.1 Convolutional Neural Network Architecture

Our base CNN architecture takes as input a street-level, equirectangular panorama (e.g.,

from Google Street View) and outputs a categorical distribution over a discrete label space.

Our focus is on the roadway safety label space, which is defined by usRAP to have five tiers.

Other label spaces will be defined in the following section. In all experiments, panoramas

are cropped vertically, to reduce the number of distorted sky and ground pixels, and then

resized to be 224× 960.

The CNN consists of a portion of the VGG architecture [33], followed by a 1 × 1

convolution, a spatial attention layer, and a final fully connected layer. See Figure 2.2

for a visual overview of the full architecture and the various ways we use it to train our

model. We use the VGG-16 architecture [33] for low-level feature extraction. It consists of

5 convolutional blocks followed by 3 fully connected layers, totaling 16 individual layers.

8



We remove the fully connected layers and use the output of the last convolutional block,

after spatial pooling. We denote this output feature map as S1, which is a 7 × 30 tensor

with 512 channels. S1 is then passed to a convolutional layer (ReLU activation function),

with kernels of size 1× 1, a stride of 1, and 512 output channels. The resulting tensor, S2,

has the following shape: 7× 30× 512. This gives us a set of mid-level features that we use

to predict the safety of a given panorama.

As the target safety rating may depend on where in the image a particular roadway fea-

ture is present, we introduce an attention layer to fuse the mid-level features. Specifically,

we use a learnable vector a that takes the weighted average of S2 across the first two di-

mensions. Our process is as follows: we flatten the spatial dimensions of S2 (210 × 512)

and multiply it by a (1×210). This process is akin to global average pooling [20], but with

location-specific weights. The output (1 × 512) is then passed to a task-dependent fully

connected layer with K outputs.

2.3.2 Loss Function

A key challenge in training large neural network architectures, especially with small

datasets, is avoiding overfitting. For this work, we propose to use a combination of

supervised, multi-task, and unsupervised learning to train our model. The end result is a

total loss function:

L = λsLs + λmLm + λuLu.

Each component loss function processes panoramas using the base architecture defined in

the previous section. In all cases, the parameters of the VGG sub-network and the subse-

quent 1 × 1 convolution are tied. The attention and final fully connected layers are inde-

pendent and, therefore, task specific. The remainder of this section describes the various

components of this loss in detail.

9



Supervised Loss

The first component, Ls, of our total loss, L, corresponds to the main goal of our project:

estimating the safety of a given roadway from an input panorama. Each panorama is associ-

ated with a star rating label, l ∈ {1, . . . , 5}. We apply the network defined in Section 2.3.1

with K = 5 outputs, representing a categorical distribution over star ratings. Our first

loss, Ls, incorporates both a classification and regression component. For classification,

we use the standard cross-entropy loss between the predicted distribution, ŷ, and target

distribution, y:

Ls1 = −
1

N

N∑
i=1

yi(li) log ŷi(li) (2.1)

where N is the number of training examples. For regression, we use the Cramer distance

between ŷ and y:

Ls2 =
1

N

N∑
i=1

‖F (ŷi)− F (yi)‖22 (2.2)

where F (x) is the cumulative distribution function of x. Each component is weighted by

λs1 and λs2 , respectively:

Ls = λs1Ls1 + λs2Ls2 . (2.3)

Multi-task Loss

The second component, Lm, of our total loss, L, represents a set of auxiliary tasks. We

selected M auxiliary tasks with discrete label space for learning, specifically: area type,

intersection channelization, curvature, upgrade cost, land use (driver/passenger-side),

median type, roadside severity (driver/passenger-side distance/object), paved shoulder

(driver/passenger-side), intersecting road volume, intersection quality, number of lanes,

lane width, quality of curve, road condition, vehicle parking, sidewalk (passenger/driver-

side), and facilities for bicycles. All images were annotated by a trained coder as part of

the usRAP protocol.

10



For each new task, the prediction process is very similar to the safety rating task, with

its own attention mechanism and final prediction layer. The only difference is the output

size of the prediction layer which varies to match the label space of the specific task.To

compute Lm, we sum the cross-entropy loss across all tasks: Lm =
∑M

t=1 Lt where Lt is

the loss for task t.

Unsupervised Loss

The third component, Lu, of our total loss, L, represents Tobler’s First Law of Geography:

“Everything is related to everything else, but near things are more related than distant

things.” Given two geographically close street-level panoramas, their star ratings should be

relatively close to each other, due to similar road safety features present in both imagery. To

satisfy this constraint, we encourage the network to produce identical output distributions

for adjacent panoramas. Empirically, we find that optimizing for the unsupervised loss

improves the accuracy of our final network.

The key feature of this loss is that it does not require the panoramas to be manually an-

notated. Therefore, we can greatly expand our training set size by including unsupervised

examples. This is important, because due to the small size of the safety rating dataset and

a large number of parameters in the network, we found it impossible to update VGG layer

weights without overfitting when using only supervised losses.

To define this loss, we first build a set, U = {(ai, bi)} of panorama pairs. The pairs are

selected so that they are spatially close (within 50 feet) and along the same road. For each

pair, we compute the Cramer distance between their rating predictions, (ŷa, ŷb), as in:

Lu =
1

|U |
∑

(a,b)∈U

‖F (ŷa)− F (ŷb)‖22. (2.4)

2.3.3 Implementation Details

Our network is optimized using ADAM [17]. We initialize VGG using weights pre-trained

for object classification [28]. We experimented with weights for scene categorization [44]

11



and found that object classification was superior, and both were significantly better than

random initialization. We allow the final convolutional block of VGG to optimize with

learning rate 0.0001, while all task-specific layers use a learning rate of 0.001. We decay

the learning rates three times during training, by a factor of 10 each time.

Through experimentation, we find that optimizing the total loss with λs1 = 1, λs2 =

100, λs = 0.1, λm = 1, and λu = 0.001 offers the best results. We use ReLU activations

throughout, except for attention mechanisms and final output layers, which apply a soft-

max function. For every trainable layer other than the attention mechanisms, we apply L2

regularization to the weights with a scale of 0.0005. We train with a mini-batch size of 16,

with each batch consisting of 16 supervised panoramas and labels along with 16 pairs of

unsupervised panoramas.

2.4 Evaluation

We evaluate our methods both quantitatively and qualitatively. Below we describe the

datasets used for these experiments, explore the performance of our network through an

ablation study, and present an application to safety-aware vehicle routing.

2.4.1 Datasets

For supervised and multi-task training, we utilize a dataset annotated through the U.S.

Road Assessment Program (usRAP), which contains star ratings and auxiliary task labels

for 100-meter segments of roads in both Urban and Rural regions. To obtain the labels for

each location, a trained coder visually inspects the imagery for a road segment and assigns

multi-task labels using a custom user interface. During this process the coder is free to

adjust the viewing direction. The star rating for each location is then calculated from the

auxiliary labels using the Star Rating Score equations. For more information on dataset

annotation methods, please refer to [1] [12] [25].

12



Figure 2.3: Maps showing the locations and star ratings (red is highest risk, yellow is
average risk, and green is least risk) of the panoramas in our Urban (left) and Rural (right)
study regions.

The Rural area has 1,829 panoramas and the Urban area has 5,459 panoramas, for a to-

tal of 7,288 samples. Figure 2.3 shows scatter plots of panorama locations for each region,

color coded by the safety score manually estimated from the imagery. For unsupervised

training data, we uniformly sample road segments from the state surrounding the Rural re-

gion and then query for panoramas that are less than 50-feet apart along the segment. The

result is a dataset of approximately 36,000 pairs of panoramas.

2.4.2 Preprocessing

Panorama Processing For each sample, we download an orbital panorama through

Google Street View. We orient panoramas to the heading used during manual coding.

This is important because safety ratings are sensitive to the direction of travel. During

training only, random augmentation is performed by randomly jittering the direction of

travel uniformly between -5 and 5 degrees. Finally, each image is cropped vertically and

reshaped to 224 × 960. The cropping operation removes the unneeded sky and ground

portion of the panorama, and we preserve the aspect ratio of the cropped image when

reshaping.
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Table 2.1: Parameter settings for each method.

Method λs1 λs2 λs λm λu
Baseline 1 102 1 0 0
M1 1 102 1 0 0
M2 1 102 0.1 1 0
M3 1 102 1 0 0.001
M4 1 102 0.1 1 0
Ours 1 102 0.1 1 0.001

Train/Test Split To create train/test splits for network training and evaluation, we utilize

a stratified sampling method for each region’s data, 90% for train and 10% for test. A

validation set (2% of train) is used for model selection. Corresponding splits from the two

regions are combined to form the final sets. We have ensured that locations in the test set

are at least 300 meters away from locations in the train set.

Class Weighting The distribution of labels in our training split is very unbalanced, which

led to poor fitting to panoramas with labels in the minority groups (1 star roads specifically).

To alleviate this issue, we deploy a class weighting strategy on the star rating loss function

to proportionally adjust the loss of each sample based on the frequency of its ground truth

label.

We first find the weight vector of each star rating class w through the equation below:

wl =
N

K ∗ count(l)
(2.5)

where wl is the weight for class l. With the weight vector w, we modify equation 2.1 and

2.2 as follows,

Ls1 = −
1

N

N∑
i=1

wliyi(li) log ŷi(li) (2.6)

Ls2 =
1

N

N∑
i=1

wli‖F (ŷi)− F (yi)‖22 (2.7)

where wli is the weight for class li.
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Table 2.2: Top-1 accuracy for each method.

Method Attn. Multi. Unsuper. Acc.
Baseline 43.06
M1 X 43.28
M2 X 43.56
M3 X X 43.63
M4 X X 45.68
Ours X X X 46.91

2.4.3 Ablation Study

We compare our complete architecture with five variants. The simplest method, Baseline,

omits the adaptive attention layer and instead equally weights all parts of the input feature

map (i.e., global average pooling). The remaining variants include different combinations

of adaptive attention, multi-task loss, and unsupervised loss. For each method, we per-

formed a greedy hyperparameters search using our validation set. We initially selected the

optimal weighting of λs2 relative to λs1 by selecting λs2 from (.01, .1, 1, 10, 100). We used

the same strategy when adding a new feature, while keeping the existing hyperparameters

fixed. We train all networks for 10,000 iterations.

Table 2.2 displays the macro-averaged accuracy for all methods on the test set, where

for each method we compute the per-class accuracy and average the class accuracies. Our

method outperforms all other methods, each of which includes a subset of the complete

approach. We observe that the Baseline, M1, M2, and M3 methods all achieve similar

accuracy. The next method, M4, which combines the per-task attention and multi-task

learning, performs significantly better. It seems that the multi-task loss and attention in

isolation are not particularly helpful, but when they are combined they lead to improved

performance. We also observe that the unsupervised loss is only significantly helpful when

combined with per-task attention and the multi-task loss.

Figure 2.4 shows the test-set confusion matrix for our best method. The results are

quite satisfactory except for the 1-star rating category, but that is as expected due to the
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Figure 2.4: The test-set confusion matrix (row normalized) for our method.

imbalanced nature of our training dataset, with only 5.6% of all samples being 1-star roads.

2.4.4 Visualizing Attention

As described in Section 2.3.2, each task has an independent attention mask, a, whose shape

(1× 210) corresponds to the flattened spatial dimensions of the feature map, S2, output by

the previous convolutional layer. Therefore, a reshaped version of a corresponds to the

regions in S2 that are important when making predictions for a given task. Figure 2.5

visualizes the attention mechanism for our main task and several of our auxiliary tasks,

where lighter (yellow) regions have higher weight than darker (red) regions. For example,

in Figure 2.5 (e), attention is focused on the left side of the panorama, which makes sense

given the task is related to identifying dangerous driver-side objects, such as a drainage

ditch or safety barrier.

2.4.5 Multi-task Evaluation

We evaluate the multi-task prediction performance of our architecture. Table 2.3 shows

the Top-1 macro-averaged accuracy for each of our auxiliary tasks, along with random
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Example Panorama

(a) Star Rating

(b) Median Type

(c) Land Use (driver-side)

(d) Number of Lanes

(e) Roadside Severity (driver-side object)

Figure 2.5: Heatmaps that visualize the weights of the task-specific attention layers. White
(red) corresponds to higher (lower) weight.
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Table 2.3: Multi-task evaluation for our architecture. R. = roadside, P. = passenger, and D.
= driver.

Label type Top-1 Random % inc.
Area type 97.40 50.39 47.01
Lane width 77.22 33.25 43.97
Curve quality 63.57 32.78 30.79
P. side land use 54.88 28.38 26.50
D. side land use 52.72 28.32 24.40
D. side sidewalk 77.17 57.00 20.17
Vehicle parking 52.39 33.06 19.33
Road condition 51.38 33.35 18.03
P. side sidewalk 60.34 43.54 16.80
Intersection quality 83.06 66.69 16.37
Intersection road volume 28.21 14.18 14.03
D. side paved shoulder 38.61 24.71 13.90
P. side paved shoulder 37.56 24.42 13.14
Number of lanes 45.78 33.13 12.65
R. D. side distance 37.51 25.47 12.04
R. P. side distance 36.45 24.98 11.47
Median type 57.30 46.86 10.44
R. P. side object 38.89 29.59 9.30
Upgrade cost 42.82 33.93 8.89
R. D. side object 49.24 41.15 8.09
Intersect channel 56.25 49.88 6.37
Bicycle facilities 75.19 71.51 3.68
Curvature 25.83 25.52 0.31

performance if we sample predictions based on the prior distribution of labels for that task.

The rightmost column shows the relative increase in accuracy for each task over random

performance, in some cases with a performance gain of almost 50%.

2.4.6 Safety-Aware Vehicle Routing

While our focus is on road safety assessment for infrastructure planning, our network could

be used for other tasks. Here we show how it could be used to suggest less-risky driving

routes. We use a GPS routing engine that identifies the optimal path, usually the shortest

and simplest, a vehicle should traverse to reach a target destination. Some work has been

done to explore semantic routing with respect to scenery [27], carpooling [14], and per-
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Figure 2.6: Unaltered routing (left) and predicted safety score route (right).

sonalization [32]. We propose routing that employs road safety scores for navigating to a

destination, in order to balance speed and safety.

We selected a subset of the panorama test split and used it to influence the Mapzen

Valhalla routing engines edge cost calculation. From the subset, each safety score was

used as an edge factor corresponding to the safety scores GPS coordinate. When the routing

engine searched the GPS graph for a routes traversal cost, it would identify if a cost factor

corresponding to a specific edge existed in the subset. Should a cost factor be present,

the edge cost of the traversal would be cedge = co ∗ factor. The routing engine utilizes

the augmented edge costs to determine the optimal route, namely, the lowest cumulative

cost route. The two routes depicted in Figure 2.6 demonstrate the impact of safety-aware

routing in a major US urban area. Figure 2.6-right shows a less risky, but longer, route

chosen by the enhanced routing engine, while Figure 2.6-left shows the default route. The

enhanced routing engine chooses this route to circumvent a low (1 or 2) safety scoring road

and instead travel on a high (4 or 5) scoring road. Figure 2.7-top shows a panorama from

the higher risk road. It has numerous issues, including poor pavement condition and small

lane widths. Figure 2.7-bottom shows a panorama from the less risky road. This road has
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Figure 2.7: Annotation of one star (top) and four star (bottom) roads.

wider lanes, better pavement, and a physical median. While this route may take longer, it

clearly traverses a less risky path.

While this is a minor modification to an existing routing engine, we think the ability to

optimize for safety over speed could lead to significant reduction in injuries and deaths for

vehicle users.

2.5 Conclusion

We introduced an automated approach to estimate roadway safety that is significantly faster

than previous methods requiring significant manual effort. We demonstrate how a combi-

nation of a spatial attention mechanism, transfer learning, multi-task learning, and unsuper-

vised learning results in the best performance on a large dataset of real-world images. This

approach has the potential to dramatically affect the deployment of limited transportation

network improvement funds toward locations that will have maximum impact on safety.

The outlined approach addresses the main concern of many agencies in deploying sys-
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temic analysis (such as usRAP)—cost to collect and process data. As the availability of

street-level panoramas is growing rapidly, employing automation techniques could allow

many more agencies to take advantage of systemic road safety techniques. For many agen-

cies, there are few options available to prioritize roadway safety investments. Even when

and where sufficient data are available, smaller agencies typically lack the expertise to con-

duct robust safety analysis as described in the HSM [16] for high crash location assessment

or in usRAP for systemic study. Our approach could reduce the cost of systemic analysis

to these agencies, or help larger agencies assess more of their roads, more frequently. For

future contributions, we plan to explore at least three offshoots of this work: 1) apply the

proposed method to additional highway safety tasks, 2) integrate overhead imagery, and 3)

make assessments using multiple panoramas.
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Chapter 3

Remote Estimation of Free-flow Speeds

3.1 Introduction

Aside from understanding road conditions, analysis of driver behavior is also crucial for

roadway safety assessment. The behavior of an average automobile driver is based on nu-

merous factors. In this chapter, we focus on one aspect of behavior: the speed of travel.

We specifically focus on the free-flow speed, which is the average vehicle speed along a

roadway when there is no congestion or adverse weather conditions. The free-flow speed is

used in a wide variety of planning and regulatory contexts. Standard practice for estimating

free-flow speeds relies on the availability of many road features, such as lane widths and

curvature. While some of these features are easy to gather, others require expensive sur-

veying equipment and expert annotators, restricting their availability. As a result, in many

states, roads are assigned the default speed limit of 35 mph for urban areas and 55 mph

for rural areas, which can often be inconsistent with actual operational speeds and lead to

undesired driver behavior.

To automate the costly process of estimating free-flow speeds, we propose a deep con-

volutional neural network (CNN) that takes as input the overhead imagery of the roadway

and coarse-grained road features, including the posted speed limit, the functional classi-
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fication, and the type of area. As output, our CNN generates a probability distribution

over integer free-flow speeds. For training data, we use aggregated data collected from

real-world drivers. At inference time, since the input features are all easily obtainable,

it should be possible to rapidly, and inexpensively, estimate free-flow speeds over large

spatial regions.

Using a large-scale evaluation dataset, we find that using only image features result in

the poorest performance, but that combining imagery and road features result in signifi-

cantly better performance than road features alone.

3.2 Related Work

Different studies have been proposed to estimate and map properties of the visual world

using overhead images. Several authors have proposed different deep learning based ap-

proaches for vehicle detection [29, 34] and road extraction [43, 6, 4, 22] from aerial images.

Salem et al. [30] introduced an approach for mapping soundscapes of geographic regions

using overhead imagery. Greenwell et al. [11] proposed a model that is capable of predict-

ing object histograms from overhead imagery. Several works have addressed the problem

of speed estimation. Shuai et al. [15] introduced an approach to estimate the vehicle speed

in traffic videos. Most similar to our work, Song et al. [35] proposed a model for road

safety estimation based on the usRAP Star Rating Protocol. While this star rating is based

on approximately 60 road safety features [12], their network works directly on ground level

panorama images. We propose a new method that instead uses overhead imagery with the

addition of auxiliary features.

3.3 Approach

We utilize a CNN architecture to estimate the free-flow speed of a given road segment. The

neural network uses both aerial imagery and relevant road features as input, and outputs
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Figure 3.1: Histograms of various road features in our dataset.

a probability mass function over K possible free-flow speeds. We begin by describing

the dataset that we use, followed by a more detailed description of the proposed network

architecture.

3.3.1 Dataset

Our free-flow speed dataset is obtained through HERE Technologies and further annotated

to incorporate coarse-grained road feature data needed for training. To calculate the free-

flow speed for a particular road segment, driving speeds of vehicles were monitored during

the year 2014. As free-flow speed refers to the speed that a driver can achieve without

traffic congestion, we only consider data during non-holiday weekday periods from 9am

to 3pm. The speeds are then averaged to obtain the ground-truth for each road segment.

We rounded each ground-truth speed to the nearest integer to obtain a discrete label for

training. This results in K = 79 unique free-flow speeds

For each road segment, we obtain an aerial image through the National Agriculture

Imagery Program (NAIP) data. Each image is centered at the beginning of the segment,

and covers an aerial view of 400 × 400 m2 of land. We orient the images such that the

direction of travel is up, and we reshape it to 224 × 224. In total, our dataset consists of
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Figure 3.2: Network architecture for predicting free-flow speeds.

1 335 135 pairs of road segments and their corresponding aerial images.

Figure 3.1 shows the distribution of the free-flow speeds along with road features used

for training. The drastic difference between the distribution of free-flow speeds and speed

limits is evident here. In fact, over half of the roads have free-flow speeds significantly

slower than the speed limits (more than 10-miles-per-hour). We will examine a few roads

with such differences in Section 3.4.2, using predictions obtained from our model.

We split our dataset into training and testing sets. To ensure the sets are disjoint, we

partition the dataset by location. The dataset is divided into counties, eight of which are

selected for evaluation. The resulting test set is roughly 7% of the total data, and contains

a variety of roads with different area types, terrain, and free-flow speeds. A validation set

(1% of the training set) is reserved for model selection.

3.3.2 Network Architecture

The backbone of our architecture is the Xception [7] model, which is used to extract high-

level features from the aerial image. The resulting feature vector of length 2048 is passed

to a dense layer with output size 512, denoted as S, as shown in Figure 3.2. In addition

25



to aerial imagery, the network is trained using three discrete features related to driving

speed: area type, functional classification, and posted speed limit. The three features are

concatenated with S before feeding the combined feature vector into the final dense layer

with output size K. We denote the output of the final layer as ŷ.

3.3.3 Loss Function

We formulate the task of predicting the free-flow speed of a road segment as a multiclass

classification problem with ground-truth free-flow speed label l. With the output of the net-

work defined in Section 3.3.2, we compute the training loss as the standard cross-entropy

loss between the predicted distribution ŷ and the target distribution y, as shown in the

following equation:

L = − 1

N

N∑
i=1

K∑
k=1

yi,k log ŷi,k (3.1)

where N is the number of training examples.

3.3.4 Implementation Details

Our model is implemented using the Tensorflow framework. The network is optimized

using the Adam optimizer. We initialize the Xception network with weights pre-trained on

ImageNet for image classification. During training, we freeze the weights of the Xception

network and optimize only the last two dense layers with learning rate 0.001. We decay the

learning rate by a factor of 10 every 5 epochs. ReLU activation layers are used throughout

the network except for the last layer, which uses the Softmax activation instead. We apply

L2 regularization to the two dense layers with scale 0.00005. We train with batch size 16,

for a total of 15 epochs.
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Table 3.1: Within-5 accuracy for each method.

Method Within-5 Acc.
Imagery Only 37.60
Road Features Only 40.07
Combined 49.86

3.4 Evaluation

Using the dataset described in Section 3.3.1, we trained our proposed model along with two

other variations: one using only imagery as input and the other using only road features.

We conducted quantitative and qualitative evaluation on our reserved test set.

3.4.1 Quantitative Analysis

We aim to discover the effect of each input modality in predicting free-flow speeds. We

calculate the accuracy of the three trained models (overhead imagery only, road features

only, and both) on the test set. Table 3.1 displays the within-5 accuracy for each method,

where we consider a prediction to be positive if it is within five-miles-per-hour of the

ground-truth speed. As we can see, road feature data is better than aerial imagery for

predicting free-flow speeds, but we obtain the best performance when we combine both

modalities.

3.4.2 Qualitative Evaluation

Free-flow speed should be similar to the speed limit for a given road, but that is often not

the case. We are interested in finding roads where the predicted free-flow speed is drasti-

cally different than the speed limit. Figure 3.3 shows such examples. The top two roads

have free-flow speeds much lower than the speed limits, most likely due to the curvature

and number of intersections present. The bottom two roads have free-flow speeds much

higher than the speed limits, which is understandable since the roads are straight, wide,

and without congestion. Detection of these discrepancies is very useful, as traffic engi-
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(a) Free-flow: 18, Limit: 55 (b) Free-flow: 17, Limit: 55

(c) Free-flow: 27, Limit: 15 (d) Free-flow: 67, Limit: 55

Figure 3.3: Examples of discrepancies in the predicted free-flow speed and the speed limit
of roads in miles per hour. Predictions obtained from the combined feature model.

neers can quickly filter through millions of roads to identify ones that need to have their

speed limits re-evaluated.

We also compared predictions from our top two models: one trained on both aerial

imagery and road features, and the other trained only on road features. Figure 3.4 shows

the images that had drastically different predictions from the two models. The images in

the right column received higher free-flow speed predictions from the combined model,

where the images in the left column received higher free-flow speed predictions from the

feature only model. These differences further support the importance of image features

for prediction, as imagery can provide hidden, but powerful, information about the road

segment. For the left three roads, it is natural for people to drive slower in residential areas

or at intersections; for the right three, straight roads and ones parallel to interstates allow

drivers to achieve greater speeds. Fine-grained labels such as presence of intersections,
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method A: 50, method B: 16 method A: 31, method B: 42

method A: 46, method B: 15 method A: 24, method B: 50

method A: 30, method B: 15 method A: 24, method B: 40

Figure 3.4: Free-flow speed predictions in miles per hour from two methods, where method
A is the road feature only model and method B is the combined feature model.

population density, and curvature of the road are hard to obtain, but they can easily be

inferred from aerial imagery.
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3.5 Conclusion

We introduced a method for estimating the free-flow speed of a road segment, which is

important for understanding driver behavior. We demonstrated that a combination of aerial

imagery and related road features as input is best for prediction, since it obtained higher

accuracy than models trained on either features alone. We also qualitatively analyzed our

predictions, and obtained insights on the effect of input modalities along with the relation-

ship between free-flow speeds and speed limits. We hope to extend this work and include

ground-level imagery as an additional input to our method, since information such as road-

side hazards may not be visible in aerial imagery.

Copyright c© Weilian Song, 2019.
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Chapter 4

Conclusion and Future Work

In this thesis, we have looked at two roadway safety metrics: the Star Rating score and the

free-flow speed. To predict Star Ratings, we utilized ground-level imagery through Google

Streetview, which is available almost everywhere in the US. For the task of estimating free-

flow speeds, aerial-level imagery is used instead, which is available at a global scale. Both

methods use convolutional neural networks, enabling powerful performance at a fraction

of the cost of manual labeling. While these methods are not at the same level as human

performance yet, they demonstrated good results on a limited dataset, and should improve

with more available data. Each method can greatly assist with assessment of roads on a

country-wide scale. Given enough computing resources, one can infer Star Rating scores

and free-flow speeds of every road in the US within a single day. Such tools allow rapid

evaluation of roads, help keep road information up-to-date, and provide safer roads for

drivers.

A natural future direction for automatic roadway safety assessment is to combine dif-

ferent data modalities for prediction. We have seen an example where overhead imagery

features are fused with road metadata for prediction of free-flow speeds, and the results are

better than either data modality alone. It is of interest to combine different image modali-

ties, as curvature can easily be inferred from an aerial-level image while roadside hazards
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are easily distinguished from ground-level imagery. At the same time, the method needs

to account for the difference in data availability, as aerial imagery is in greater abundance

than ground imagery.
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