190 research outputs found

    Vapor SIMD: Auto-Vectorize Once, Run Everywhere

    Get PDF
    International audienceJust-in-Time (JIT) compiler technology offers portability while facilitating target- and context-specific specialization. Single-Instruction-Multiple-Data (SIMD) hardware is ubiquitous and markedly diverse, but can be difficult for JIT compilers to efficiently target due to resource and budget constraints. We present our design for a synergistic auto-vectorizing compilation scheme. The scheme is composed of an aggressive, generic offline stage coupled with a lightweight, target-specific online stage. Our method leverages the optimized intermediate results provided by the first stage across disparate SIMD architectures from different vendors, having distinct characteristics ranging from different vector sizes, memory alignment and access constraints, to special computational idioms.We demonstrate the effectiveness of our design using a set of kernels that exercise innermost loop, outer loop, as well as straight-line code vectorization, all automatically extracted by the common offline compilation stage. This results in performance comparable to that provided by specialized monolithic offline compilers. Our framework is implemented using open-source tools and standards, thereby promoting interoperability and extendibility

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics

    Get PDF
    Vectorization support in hardware continues to expand and grow as well we still continue on superscalar architectures. Unfortunately, compilers are not always able to generate optimal code for the hardware;detecting and generating vectorized code is extremely complex. Programmers can use a number of tools to aid in development and tuning, but most of these tools require expert or domain-specific knowledge to use. In this work we aim to provide techniques for determining the best way to optimize certain codes, with an end goal of guiding the compiler into generating optimized code without requiring expert knowledge from the developer. Initally, we study how to combine vectorization reports with iterative comilation and code generation and summarize our insights and patterns on how the compiler vectorizes code. Our utilities for iterative compiliation and code generation can be further used by non-experts in the generation and analysis of programs. Finally, we leverage the obtained knowledge to design a Support Vector Machine classifier to predict the speedup of a program given a sequence of optimization underprediction, with 82% of these accurate within 15 % both ways

    Optimizing SIMD execution in HW/SW co-designed processors

    Get PDF
    SIMD accelerators are ubiquitous in microprocessors from different computing domains. Their high compute power and hardware simplicity improve overall performance in an energy efficient manner. Moreover, their replicated functional units and simple control mechanism make them amenable to scaling to higher vector lengths. However, code generation for these accelerators has been a challenge from the days of their inception. Compilers generate vector code conservatively to ensure correctness. As a result they lose significant vectorization opportunities and fail to extract maximum benefits out of SIMD accelerators. This thesis proposes to vectorize the program binary at runtime in a speculative manner, in addition to the compile time static vectorization. There are different environments that support runtime profiling and optimization support required for dynamic vectorization, one of most prominent ones being: 1) Dynamic Binary Translators and Optimizers (DBTO) and 2) Hardware/Software (HW/SW) Co-designed Processors. HW/SW co-designed environment provides several advantages over DBTOs like transparent incorporations of new hardware features, binary compatibility, etc. Therefore, we use HW/SW co-designed environment to assess the potential of speculative dynamic vectorization. Furthermore, we analyze vector code generation for wider vector units and find out that even though SIMD accelerators are amenable to scaling from the hardware point of view, vector code generation at higher vector length is even more challenging. The two major factors impeding vectorization for wider SIMD units are: 1) Reduced dynamic instruction stream coverage for vectorization and 2) Large number of permutation instructions. To solve the first problem we propose Variable Length Vectorization that iteratively vectorizes for multiple vector lengths to improve dynamic instruction stream coverage. Secondly, to reduce the number of permutation instructions we propose Selective Writing that selectively writes to different parts of a vector register and avoids permutations. Finally, we tackle the problem of leakage energy in SIMD accelerators. Since SIMD accelerators consume significant amount of real estate on the chip, they become the principle source of leakage if not utilized judiciously. Power gating is one of the most widely used techniques to reduce leakage energy of functional units. However, power gating has its own energy and performance overhead associated with it. We propose to selectively devectorize the vector code when higher SIMD lanes are used intermittently. This selective devectorization keeps the higher SIMD lanes idle and power gated for maximum duration. Therefore, resulting in overall leakage energy reduction.Postprint (published version

    Vapor SIMD: Auto-Vectorize Once, Run Everywhere

    Get PDF
    International audienceJust-in-Time (JIT) compiler technology offers portability while facilitating target- and context-specific specialization. Single-Instruction-Multiple-Data (SIMD) hardware is ubiquitous and markedly diverse, but can be difficult for JIT compilers to efficiently target due to resource and budget constraints. We present our design for a synergistic auto-vectorizing compilation scheme. The scheme is composed of an aggressive, generic offline stage coupled with a lightweight, target-specific online stage. Our method leverages the optimized intermediate results provided by the first stage across disparate SIMD architectures from different vendors, having distinct characteristics ranging from different vector sizes, memory alignment and access constraints, to special computational idioms.We demonstrate the effectiveness of our design using a set of kernels that exercise innermost loop, outer loop, as well as straight-line code vectorization, all automatically extracted by the common offline compilation stage. This results in performance comparable to that provided by specialized monolithic offline compilers. Our framework is implemented using open-source tools and standards, thereby promoting interoperability and extendibility

    Assisting Static Compiler Vectorization with a Speculative Dynamic Vectorizer in an HW/SW Codesigned Environment

    Get PDF
    Compiler-based static vectorization is used widely to extract data-level parallelism from computation-intensive applications. Static vectorization is very effective in vectorizing traditional array-based applications. However, compilers' inability to do accurate interprocedural pointer disambiguation and interprocedural array dependence analysis severely limits vectorization opportunities. HW/SW codesigned processors provide an excellent opportunity to optimize the applications at runtime. The availability of dynamic application behavior at runtime helps in capturing vectorization opportunities generally missed by the compilers. This article proposes to complement the static vectorization with a speculative dynamic vectorizer in an HW/SW codesigned processor. We present a speculative dynamic vectorization algorithm that speculatively reorders ambiguous memory references to uncover vectorization opportunities. The speculative reordering of memory instructions avoids the need for accurate interprocedural pointer disambiguation and interprocedural array dependence analysis. The hardware checks for any memory dependence violation due to speculative vectorization and takes corrective action in case of violation. Our experiments show that the combined (static + dynamic) vectorization approach provides a 2× performance benefit compared to the static GCC vectorization alone, for SPECFP2006. Furthermore, the speculative dynamic vectorizer is able to vectorize 48% of the loops that ICC failed to vectorize due to conservative dependence analysis in the TSVC benchmark suite. Moreover, the dynamic vectorization scheme is as effective in vectorization of pointer-based applications as for the array-based ones, whereas compilers lose significant vectorization opportunities in pointer-based applications. Furthermore, we show that speculation is not only a luxury but also a necessity for runtime vectorization.Peer ReviewedPostprint (author's final draft

    Speculative dynamic vectorization to assist static vectorization in a HW/SW co-designed environment

    Get PDF
    • 

    corecore