41 research outputs found

    Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels under Limited Feedback

    Full text link
    In this paper, we study the sum rate performance of zero-forcing (ZF) and regularized ZF (RZF) precoding in large MISO broadcast systems under the assumptions of imperfect channel state information at the transmitter and per-user channel transmit correlation. Our analysis assumes that the number of transmit antennas MM and the number of single-antenna users KK are large while their ratio remains bounded. We derive deterministic approximations of the empirical signal-to-interference plus noise ratio (SINR) at the receivers, which are tight as M,K→∞M,K\to\infty. In the course of this derivation, the per-user channel correlation model requires the development of a novel deterministic equivalent of the empirical Stieltjes transform of large dimensional random matrices with generalized variance profile. The deterministic SINR approximations enable us to solve various practical optimization problems. Under sum rate maximization, we derive (i) for RZF the optimal regularization parameter, (ii) for ZF the optimal number of users, (iii) for ZF and RZF the optimal power allocation scheme and (iv) the optimal amount of feedback in large FDD/TDD multi-user systems. Numerical simulations suggest that the deterministic approximations are accurate even for small M,KM,K.Comment: submitted to IEEE Transactions on Information Theor

    Energy-Efficient System Design for Future Wireless Communications

    Get PDF
    The exponential growth of wireless data traffic has caused a significant increase in the power consumption of wireless communications systems due to the higher complexity of the transceiver structures required to establish the communication links. For this reason, in this Thesis we propose and characterize technologies for improving the energy efficiency of multiple-antenna wireless communications. This Thesis firstly focuses on energy-efficient transmission schemes and commences by introducing a scheme for alleviating the power loss experienced by the Tomlinson-Harashima precoder, by aligning the interference of a number of users with the symbols to transmit. Subsequently, a strategy for improving the performance of space shift keying transmission via symbol pre-scaling is presented. This scheme re-formulates complex optimization problems via semidefinite relaxation to yield problem formulations that can be efficiently solved. In a similar line, this Thesis designs a signal detection scheme based on compressive sensing to improve the energy efficiency of spatial modulation systems in multiple access channels. The proposed technique relies on exploiting the particular structure and sparsity that spatial modulation systems inherently possess to enhance performance. This Thesis also presents research carried out with the aim of reducing the hardware complexity and associated power consumption of large scale multiple-antenna base stations. In this context, the employment of incomplete channel state information is proposed to achieve the above-mentioned objective in correlated communication channels. The candidate’s work developed in Bell Labs is also presented, where the feasibility of simplified hardware architectures for massive antenna systems is assessed with real channel measurements. Moreover, a strategy for reducing the hardware complexity of antenna selection schemes by simplifying the design of the switching procedure is also analyzed. Overall, extensive theoretical and simulation results support the improved energy efficiency and complexity of the proposed schemes, towards green wireless communications systems

    Deterministic equivalent performance analysis of time-varying massive MIMO systems

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Delayed channel state information at the transmitter (CSIT) due to time variation of the channel, coming from the users' relative movement with regard to the BS antennas, is an inevitable degrading performance factor in practical systems. Despite its importance, little attention has been paid to the literature of multi-cellular multiple-input massive multiple-output (MIMO) system by investigating only the maximal ratio combining (MRC) receiver and the maximum ratio transmission (MRT) precoder. Hence, the contribution of this work is designated by the performance analysis/comparison of/with more sophisticated linear techniques, i.e., a minimum-mean-square-error (MMSE) detector for the uplink and a regularized zero-forcing (RZF) precoder for the downlink are assessed. In particular, we derive the deterministic equivalents of the signal-to-interference-plus-noise ratios (SINRs), which capture the effect of delayed CSIT, and make the use of lengthy Monte Carlo simulations unnecessary. Furthermore, prediction of the current CSIT after applying a Wiener filter allows to evaluate the mitigation capabilities of MMSE and RZF. Numerical results depict that the proposed achievable SINRs (MMSE/RZF) are more efficient than simpler solutions (MRC/MRT) in delayed CSIT conditions, and yield a higher prediction at no special computational cost due to their deterministic nature. Nevertheless, it is shown that massive MIMO are preferable even in time-varying channel conditions.Peer reviewe

    Novel transmission and beamforming strategies for multiuser MIMO with various CSIT types

    Get PDF
    In multiuser multi-antenna wireless systems, the transmission and beamforming strategies that achieve the sum rate capacity depend critically on the acquisition of perfect Channel State Information at the Transmitter (CSIT). Accordingly, a high-rate low-latency feedback link between the receiver and the transmitter is required to keep the latter accurately and instantaneously informed about the CSI. In realistic wireless systems, however, only imperfect CSIT is achievable due to pilot contamination, estimation error, limited feedback and delay, etc. As an intermediate solution, this thesis investigates novel transmission strategies suitable for various imperfect CSIT scenarios and the associated beamforming techniques to optimise the rate performance. First, we consider a two-user Multiple-Input-Single-Output (MISO) Broadcast Channel (BC) under statistical and delayed CSIT. We mainly focus on linear beamforming and power allocation designs for ergodic sum rate maximisation. The proposed designs enable higher sum rate than the conventional designs. Interestingly, we propose a novel transmission framework which makes better use of statistical and delayed CSIT and smoothly bridges between statistical CSIT-based strategies and delayed CSIT-based strategies. Second, we consider a multiuser massive MIMO system under partial and statistical CSIT. In order to tackle multiuser interference incurred by partial CSIT, a Rate-Splitting (RS) transmission strategy has been proposed recently. We generalise the idea of RS into the large-scale array. By further exploiting statistical CSIT, we propose a novel framework Hierarchical-Rate-Splitting that is particularly suited to massive MIMO systems. Third, we consider a multiuser Millimetre Wave (mmWave) system with hybrid analog/digital precoding under statistical and quantised CSIT. We leverage statistical CSIT to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. For very limited feedback and/or very sparse channels, the proposed precoding scheme yields higher sum rate than the conventional precoding schemes under a fixed total feedback constraint. Moreover, a RS transmission strategy is introduced to further tackle the multiuser interference, enabling remarkable saving in feedback overhead compared with conventional transmission strategies. Finally, we investigate the downlink hybrid precoding for physical layer multicasting with a limited number of RF chains. We propose a low complexity algorithm to compute the analog precoder that achieves near-optimal max-min performance. Moreover, we derive a simple condition under which the hybrid precoding driven by a limited number of RF chains incurs no loss of optimality with respect to the fully digital precoding case.Open Acces

    Survey of Large-Scale MIMO Systems

    Full text link

    Energy Efficient Massive MIMO and Beamforming for 5G Communications

    Get PDF
    Massive multiple-input multiple-output (MIMO) has been a key technique in the next generation of wireless communications for its potential to achieve higher capacity and data rates. However, the exponential growth of data traffic has led to a significant increase in the power consumption and system complexity. Therefore, we propose and study wireless technologies to improve the trade-off between system performance and power consumption of wireless communications. This Thesis firstly proposes a strategy with partial channel state information (CSI) acquisition to reduce the power consumption and hardware complexity of massive MIMO base stations. In this context, the employment of partial CSI is proposed in correlated communication channels with user mobility. By exploiting both the spatial correlation and temporal correlation of the channel, our analytical results demonstrate significant gains in the energy efficiency of the massive MIMO base station. Moreover, relay-aided communications have experienced raising interest; especially, two-way relaying systems can improve spectral efficiency with short required operating time. Therefore, this Thesis focuses on an uncorrelated massive MIMO two-way relaying system and studies power scaling laws to investigate how the transmit powers can be scaled to improve the energy efficiency up to several times the energy efficiency without power scaling while approximately maintaining the system performance. In a similar line, large antenna arrays deployed at the space-constrained relay would give rise to the spatial correlation. For this reason, this Thesis presents an incomplete CSI scheme to evaluate the trade-off between the spatial correlation and system performance. In addition, the advantages of linear processing methods and the effects of channel aging are investigated to further improve the relay-aided system performance. Similarly, large antenna arrays are required in millimeter-wave communications to achieve narrow beams with higher power gain. This poses the problem that locating the best beam direction requires high power and complexity consumption. Therefore, this Thesis presents several low-complexity beam alignment methods with respect to the state-of-the-art to evaluate the trade-off between complexity and system performance. Overall, extensive analytical and numerical results show an improved performance and validate the effectiveness of the proposed techniques
    corecore