406 research outputs found

    Orbital structure of the GJ876 extrasolar planetary system, based on the latest Keck and HARPS radial velocity data

    Full text link
    We use full available array of radial velocity data, including recently published HARPS and Keck observatory sets, to characterize the orbital configuration of the planetary system orbiting GJ876. First, we propose and describe in detail a fast method to fit perturbed orbital configuration, based on the integration of the sensitivity equations inferred by the equations of the original NN-body problem. Further, we find that it is unsatisfactory to treat the available radial velocity data for GJ876 in the traditional white noise model, because the actual noise appears autocorrelated (and demonstrates non-white frequency spectrum). The time scale of this correlation is about a few days, and the contribution of the correlated noise is about 2 m/s (i.e., similar to the level of internal errors in the Keck data). We propose a variation of the maximum-likelihood algorithm to estimate the orbital configuration of the system, taking into account the red noise effects. We show, in particular, that the non-zero orbital eccentricity of the innermost planet \emph{d}, obtained in previous studies, is likely a result of misinterpreted red noise in the data. In addition to offsets in some orbital parameters, the red noise also makes the fit uncertainties systematically underestimated (while they are treated in the traditional white noise model). Also, we show that the orbital eccentricity of the outermost planet is actually ill-determined, although bounded by 0.2\sim 0.2. Finally, we investigate possible orbital non-coplanarity of the system, and limit the mutual inclination between the planets \emph{b} and \emph{c} orbits by 5155^\circ-15^\circ, depending on the angular position of the mutual orbital nodes.Comment: 36 pages, 11 figures, 3 tables; Accepted to Celestial Mechanics and Dynamical Astronom

    Relative Pose Uncertainty Quantification Using Lie Group Variational Filtering

    Get PDF
    The applications of visual sensing techniques have revolutionized the way autonomous systems perceive their environment on Earth. In space, the challenge of accurate perception has proven to be a difficult task. Due to adverse lighting conditions, high-noise images are common and degrade the performance of traditional feature-based estimation and perception algorithms. This work explores the applications of a variational filtering scheme founded in Lie Group theory to an autonomous rendezvous, proximity operations and docking problem. Two methodologies, a Monte Carlo approach and an Unscented Transform, for propagating uncertainty using a Lie Group Variational Filter are introduced and developed

    Energy Minimization Scheme for Split Potential Systems Using Exponential Variational Integrators

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-06-18, pub-electronic 2021-06-24Publication status: PublishedIn previous works we developed a methodology of deriving variational integrators to provide numerical solutions of systems having oscillatory behavior. These schemes use exponential functions to approximate the intermediate configurations and velocities, which are then placed into the discrete Lagrangian function characterizing the physical system. We afterwards proved that, higher order schemes can be obtained through the corresponding discrete Euler–Lagrange equations and the definition of a weighted sum of “continuous intermediate Lagrangians” each of them evaluated at an intermediate time node. In the present article, we extend these methods so as to include Lagrangians of split potential systems, namely, to address cases when the potential function can be decomposed into several components. Rather than using many intermediate points for the complete Lagrangian, in this work we introduce different numbers of intermediate points, resulting within the context of various reliable quadrature rules, for the various potentials. Finally, we assess the accuracy, convergence and computational time of the proposed technique by testing and comparing them with well known standards

    Orbit Determination Using Vinti\u27s Solution

    Get PDF
    Orbital altitudes congested with spacecraft and debris combined with recent collisions have all but negated the Big Sky Theory. As the sheer number of orbital objects to track grows unbounded so does interest in prediction methods that are rapid and minimally computational. Claimed as the \other solvable solution, the recently completed solution too orbital motion about the earth, based on Vinti\u27s method and including the major effects of the equatorial bulge, opens up the prospect of much more accurate analytical models for space situational awareness. A preliminary examination of this solution is presented. A numerical state transition matrix is found using Lagrange partial derivatives to implement a nonlinear least squares fitting routine. Orbit fits using only the solvable solution for non-circular, non-equatorial trajectories less than 60 degrees inclination are on the order of a few hundred meters with projected, average error growth of less than a kilometer per day which is similar to the expected performance of the Air Force\u27s method. Also, a classical perturbations approach to incorporate the dissipative effects of air drag using Hamiltonian action and angle formulation is developed. Predicted drag effects re 97.5 correct after one day and 87 correct after five days when compared to an integrated truth. Results are validated by performing a similar method on the two body problem

    Comparative study of variational chaos indicators and ODEs' numerical integrators

    Get PDF
    The reader can find in the literature a lot of different techniques to study the dynamics of a given system and also, many suitable numerical integrators to compute them. Notwithstanding the recent work of Maffione et al. (2011a) for mappings, a detailed comparison among the widespread indicators of chaos in a general system is still lacking. Such a comparison could lead to select the most efficient algorithms given a certain dynamical problem. Furthermore, in order to choose the appropriate numerical integrators to compute them, more comparative studies among numerical integrators are also needed. This work deals with both problems. We first extend the work of Maffione et al. (2011) for mappings to the 2D H\'enon & Heiles (1964) potential, and compare several variational indicators of chaos: the Lyapunov Indicator (LI); the Mean Exponential Growth Factor of Nearby Orbits (MEGNO); the Smaller Alignment Index (SALI) and its generalized version, the Generalized Alignment Index (GALI); the Fast Lyapunov Indicator (FLI) and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI); the Spectral Distance (D) and the Dynamical Spectras of Stretching Numbers (SSNs). We also include in the record the Relative Lyapunov Indicator (RLI), which is not a variational indicator as the others. Then, we test a numerical technique to integrate Ordinary Differential Equations (ODEs) based on the Taylor method implemented by Jorba & Zou (2005) (called taylor), and we compare its performance with other two well-known efficient integrators: the Prince & Dormand (1981) implementation of a Runge-Kutta of order 7-8 (DOPRI8) and a Bulirsch-St\"oer implementation. These tests are run under two very different systems from the complexity of their equations point of view: a triaxial galactic potential model and a perturbed 3D quartic oscillator.Instituto de Astrofísica de La Plat
    corecore