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ABSTRACT

The applications of visual sensing techniques have revolutionized the way autonomous

systems perceive their environment on Earth. In space, the challenge of accurate perception

has proven to be a difficult task. Due to adverse lighting conditions, high-noise images are

common and degrade the performance of traditional feature-based estimation and perception

algorithms. This work explores the applications of a variational filtering scheme founded in

Lie Group theory to an autonomous rendezvous, proximity operations and docking problem.

Two methodologies, a Monte Carlo approach and an Unscented Transform, for propagating

uncertainty using a Lie Group Variational Filter are introduced and developed.
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1. Introduction

Typically, the infrastructure for successful space-based operations requires extensive

utilization of ground-based assets. The limited availability of these resources restricts the

capabilities of space operations on a large scale. Specifically, missions that require

significant amounts of decision-making and data analysis consume a considerable amount

of ground-based support. As the frequency and scale of these missions increase, the

availability of ground-based resources will begin to strain, especially at the scale required

for effective orbital debris removal and satellite servicing. Additionally, interplanetary

exploration comes with its own challenges that come with dependence on ground-based

resources, such as information lag-time. As a result, increased data analysis and

decision-making capabilities for space-based autonomous systems is warranted.

A significant portion of increasing these capabilities lies with autonomous navigation

and methods by which the spacecraft may build and modify its own trajectory based on

information gathered in real-time. In scenarios where the spacecraft’s operational

environment may or may not be defined, the challenge of navigation starts as a

simultaneous localization and mapping (SLAM) problem. The spacecraft must be able to

understand what the operational environment looks like where it is within the operational

environment. There has been an extensive amount of literature dedicated to solving the

SLAM problem with ground-based applications and with ground-based resources. However,

few have found utilization in the space domain.

Simultaneous Localization and Mapping in space presents its own challenges that

makes the gathering and interpretation of information difficult. The rapidly changing

lighting conditions cause low signal-to-noise ratios and high contrast images that render the

traditional feature identification and tracking techniques near ineffective. Subsequently, the

filtering techniques that rely on feature-identification tend to diverge and mischaracterize

the pose of the spacecraft. These challenges have made autonomous space exploration and

orbital debris difficult and overcoming these challenges through autonomous system



2

sensing and navigation development will help push scientific advancement and exploration

of the solar system.

This work will decrease the knowledge gap presented by focusing on filter robustness to

mis-identification errors by applying a new almost global asymptotic stable filter to the

SLAM problem. Combining this with recently derived feature association-free processing

methods, will drive autonomous sensing capabilities forward and adequately equip them for

space applications. The technologies developed here can also be applied to aerial and

ground-based systems that rely significantly on localization and mapping in unknown

environments.

1.1. Autonomous Rendezvous, Proximity Operations, and Docking

While spacecraft maintain a relatively close proximity, such as seen in Figure 1.1,

ground-based measurements are unable to accurately provide state estimates due to the

relative proximity of the target and agent spacecraft. Known as the diffraction limit, this

threshold at which target and agent spacecraft become near indistinguishable presents a

significant hazard for operations relying solely on ground-based observations. This problem

is magnified for interplanetary missions during which the communication lag time renders

state estimates made via ground-based observations obsolete and impractical.

Figure 1.1 Example ARPOD scenario with one spacecraft (chaser) maintaining close
proximity with another spacecraft (target).

Typically defined as two or more spacecraft maintaining relatively close distance and

velocity, ARPOD scenarios have become a necessity for a significant portion of space
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missions. Most applications of ARPOD are an attempt to reduce/remove the necessity for a

human operator, increasing safety and decreasing cost. A large sum of these missions

include on-orbit satellite servicing, space asset monitoring, and decision-making. In other

scenarios, autonomy is unquestionably required. These types of missions include long

duration interplanetary mission where communication lag-times become cumbersome and

missions that inherently expose any man to harsh environments beyond which current

technology can accommodate.

1.2. Problem Statement

The recent near-collision event between the two defunct IRAS and GGSE satellites has

added fuel to the discussion for active orbital debris removal. Mark and Kamath in their

paper entitled Review of Active Space Debris Removal Methods (2019) survey a number of

satellite-based methods for active orbital debris removal, all of which require a high-degree

of autonomy which can be aided by the improvement of relative optical navigation (OpNav)

techniques OpNav has become state-of-the-art to augment ground-based radiometric

measurements for precise satellite localization. However, there are situations, during RPO

and interplanetary missions, that necessitate full reliance of on-board relative localization

schemes.

1.2.1. Mission Hazards

In fact, technologies to mitigate this problem for orbital debris removal, on-orbit

satellite servicing, have become of increasing interest to the defense, scientific, and

commercial sectors. These technologies are under development to explicitly prevent

near-conjunction and conjunction events that significantly increase the number of orbital

debris which presents further hazards for already difficult space-operations. As seen by the

Iridium 33-Cosmos 2251 collision in 2009 (Kelso et al., 2009).

A major hindrance to the success of these technologies have proven to be the navigation

suite according to (C. Dennehy & Carpenter, 2006; C. J. Dennehy & Carpenter, 2011;

Holland, 2002; Reesman & Rogers, 2018). A full overview of these and related problems

will be given in Section 2.1.. Here, it is important to know that problems in the navigation
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suite present mission-level hazards due to imprecise knowledge of state that influences

flawed autonomous decision-making creating either a mission-failure or necessitating a

significant level of human intervention.

In other cases, such as the Hayabusa 1, Hayabusa 2, and OSIRIS-REx missions

(Barnouin et al., 2020; Yamaguchi et al., 2018; Yoshimitsu et al., 2009) the potential for

human intervention, GPS, or other standard means of navigation may not be available.

Creating a requirement for increased capabilities in relative navigation via visual methods.

To summarize, Reesman and Rogers in Getting in Your Space: Learning from Past

Rendezvous and Proximity Operations (2018) state “A key issue with space-based

navigation is that the precise state of the system is rarely, if ever, known perfectly. . . ” (pg.

6).

1.2.2. Space Environment

Precise state knowledge is particularly challenging within the space environment due to

adverse lighting conditions, coupled relative dynamics, and large scenario-scaling. Each of

these contributors present different obstacles any state determination scheme must

overcome to accurately estimate the spacecraft’s relative position and velocity.

Lighting conditions pose a hazard particularly for vision-based sensors that rely on

incoming light to view their environment. Consider an ARPOD scenario during which a

chaser spacecraft is observing a target spacecraft, similar to the depiction in Figure 1.1.

Depending on the location of the two spacecraft system to the sun, the lighting conditions

may vary, see Figure 1.2. Particularly in low-earth orbit (LEO), the lighting conditions for

optimal observations are minimal. Either the system will lie within the Earth’s shadow and

the chaser will have low to no visibility of the target, or the system will be at such an angle

that the sun will lie within the camera’s field-of-view (fov), effectively blinding the camera

to everything else in its fov as seen in the image of the International Space Station (ISS) in

Figure 1.3.
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Figure 1.2 Parts of the Earth’s shadow illustrating visibility of an observer viewing the sun
located in each part. Image Credit: Umbra01 by Daniel M. Short CC BY-SA 2.5.

Figure 1.3 Example of on-orbit lighting conditions.

1.3. Autonomous Decision-Making

A key element of this research is improving the ability of autonomous systems to make

the correct decision under a variety of influences. Particularly, this work focuses on

guidance and navigation to answer the question: Where and how should an agent move

given a set of information? This question becomes very important for space systems due to

the Mission Hazards outlined in Section 1.2.1. Autonomous systems must be capable of

making these decisions before they can be wholly relied upon for in-space applications.

1.3.1. Probability in Decision-Making

Particularly for guidance and navigation applications, this decision-making process is

influenced by the probability a spacecraft occupies a state and whether or not that that state

puts the spacecraft at risk of collision, or any other undesired occurrence. This probability
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measure is dependent on the mean and uncertainty of the state, as shown in Equation 1.1.

F (x) =

∫
B

1

2π|P | 12
exp(−1

2
xTP−1x) (1.1)

where P is the state covariance matrix, quantifying uncertainty defined by:

P , E[(x− x̂)(x− x̂)T ] (1.2)

with x being the true or mean state, and x̂ is the estimated state. F (x) is the probability that

the spacecraft occupies that state.

This probability measure provides a quantification by which autonomous systems can

make informed decisions on guidance and navigation. Note, that to provide an effective

probability measure, an accurate mean and uncertainty parameters must be provided. An

estimate is no good without a quantifying reliability measure, and a reliability measure is no

good without a quantifying estimate. Both are necessary.

1.3.2. Contributors to State Uncertainty

The ability of the spacecraft to perform relative operations is susceptible to the

deficiencies posed by the chosen relative sensing modality. Ground based observations such

as radar and optical telescopes have higher relative uncertainties and problems

distinguishing spacecraft when these spacecraft get too close to the diffraction limit. For

this reason, this work employs on-board sensors such as the LiDAR and the visual camera

to obtain relative state measurements. While these sensing modalities have their own

associated uncertainties, they are significantly less than ground-based observations.

1.4. Camera Perception

Visual sensing has played a key role in the advancements of autonomous robotics here

on Earth. The development of key situational awareness and collision avoidance

technologies has laid the foundation for the autonomous driving industry, factory robotics,

and unmanned aerial vehicles. The information provided by these visual sensing modalities

allows the robot to make informed decisions based on its immediate surroundings.
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Similarly, such techniques can be applied within the space domain. Fully autonomous

algorithms can be used for rendezvous and proximity operations (RPO) and interplanetary

exploration by providing the spacecraft with the information required to make

knowledgeable decisions about the state of its environment.

1.4.1. Lighting Conditions

In many visual sensing applications, it is common to use feature-based approaches to

obtain relative position measurements between a camera and its environment. This area of

research has produced a number of different feature identification and association

algorithms such as ORB ((Mur-Artal et al., 2015)), SURF ((Bay et al., 2006)), and SIFT

((Lindeberg, 2012)). However, particularly in the space environment, these

feature-identification methods struggle to identify relevant information due to low

signal-to-noise ratios, high contrast imaging, and rapidly changing lighting conditions.

Because of the lighting conditions discussed in Section 1.2.2., visual cameras may have

trouble identifying and associating features across a series of images. As a result, erroneous

features may be detected, missed, or misplaced. The inherent noise of this scheme must be

overcome by a robust, stable state estimation capable of accounting for potentially high

levels of noise from feature based measurement schemes.

1.4.2. Loss of Dimensionality

Additionally, cameras, specifically mono-cameras, have great difficuly measuring range.

This effectively reduces a three-dimensional scene into a two-dimensional representation.

By losing accuracy in the range dimension, may cause an ambiguity in relative orbit

estimation, two different orbits look the same. This may cause the chaser spacecraft to

incorrectly estimate its relative orbit to the target.

1.4.3. Computational Loads

Conducting the appropriate image processing to identify and associated features can be

exceptionally expensive to perform real-time processing (Lovelly et al., 2018). This

problem is magnified on space-grade processors that are typically single-threaded (not

parallel) due to radiation shielding and mass constraints. As a result, a trade-off must occur.
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Any solution must either choose to accurately estimate relative state information, or be

computationally efficient to be performed in real-time.

1.5. Requirements for a Solution

At its core, this is a computer vision problem that has a solution through the lens of state

estimation. To accommodate for the problems presented in space-based computer vision,

any potential solution must accomplish three tasks:

• Accurately represent the system uncertainty

• Be robust to high-levels of measurement noise

• Compute estimates and uncertainties efficiently

This thesis presents the beginnings of an extended project to accomplish each of the above

listed objectives. With the end goal of improving the overall efficacy of vision-based

navigation methods for autonomous operations on-orbit and in interplanetary exploration.

This thesis focuses on the first two objectives to lay a baseline for future work. Once the

first two objectives are accomplished, computationally efficiency will be considered.
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2. Literature Review

This chapter discusses previous literature that has laid a foundation for the development

of this work. It expands on the stated problem by providing real-world examples of

autonomous on-orbit operations and a brief description of their outcomes. Next, it discusses

some of the current research aimed at developing solutions to these problems and to

improve the current state-of-the-art in on-orbit navigation technology. Finally, this chapter

provides the necessary theoretical background used in the development of this work.

2.1. Real World Examples

The government, scientific, and commercial sectors have demonstrated an increasing

interest in on-orbit operations with a variety of objectives. Many of which have provided

technical demonstrations for autonomous on-orbit capabilities that have resulted in

off-nominal outcomes. This section presents real-world examples that demonstrate the

necessity for improved autonomous decision-making and navigation filtering for effective

on-orbit and interplanetary operations.

2.1.1. Satellite Servicing Examples

There have been a number of technology demonstrations to exhibit the capabilities of

autonomous systems for on-orbit satellite servicing, and autonomous rendezvous. One of

the first being DART (Demonstrate Autonomous Rendezvous Technology) of 2005. The

intended goal of this mission was to autonomously rendezvous and perform proximity

operations to an uncooperative target.

However, during the mission the spacecraft began to use additional amounts of fuel than

what was required. In his report, (C. Dennehy & Carpenter, 2006) finds that this mishap

was due to faulty estimates from the navigation filter. These faulty estimates were a result of

divergence of the Extended Kalman Filter (EKF) that caused the spacecraft to believe it was

at an incorrect state. A few years later Orbital Express, an on-orbit satellite servicing

technical demonstration funded by DARPA (Defense Advanced Research Projects Agency),

experienced navigation suite degradation that caused an underestimated its uncertainty
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causing the chaser spacecraft to bump into the passive target spacecraft (C. J. Dennehy &

Carpenter, 2011).

2.1.2. Asteroid Exploration

The Hayabusa 1, Hayabusa 2, and OSIRIS-REx missions have had significant amounts

of ground-based operation for terrain mapping and relative state estimation (Barnouin et al.,

2020; Yamaguchi et al., 2018; Yoshimitsu et al., 2009). In each, a team of scientists

collected, processed, and evaluated terrain data to map the surface of the asteroid. Based on

these evaluations, the landing site was selected and the spacecraft’s trajectories were

generated. However, as seen with Hayabusa 1, ground-based image processing and

decision-making becomes inefficient as the spacecraft nears the surface of the asteroid. The

rough terrain present on many asteroids leaves little margin for error during descent and

landing magnifies the importance of accurate relative state estimation. As a part of NASA’s

Project Morpheus to develop vertical takeoff and vertical landing capabilities, the

Autonomous Landing Hazard Avoidance Technology (ALHAT) (Ivanov et al., 2013)

focused on equipment development for autonomous landings. ALHAT demonstrated

advancements in terrain-relative navigation (TRN) and hazard detection and avoidance

technologies. Presently, the Artemis program is employing these methods for autonomous

landing.

2.2. Related Work

Research conducted by Setterfield (2017) utilizing the Synchronized Position Hold

Engage and Reorient Experimental Satellites (SPHERES) for 3D mapping, relative pose

estimation, and trajectory planning for spin stabilization mission used a factor graph

methodology to build and navigate a relative map using a combination of stereo cameras,

LiDAR, and intertial measurement units (IMUs). This work uses a feature identification

approach with an EKF for mapping and localization and is subsequently vulnerable to

mis-identification errors causing filter divergence.

A graph-based approach to space SLAM is discussed in (Nakath et al., 2019). By

adaptively adjusting filter behavior for localization or mapping operations by weighting
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information intake with a gain factor controlled by the uncertainty distribution, it improves

scenario specific performance. Although, the work specifically discusses asteroid

applications, the same methodology can be directly applied to relative orbital motion

scenarios. It is mentioned that in the interest of numerical stability, the camera should only

monitor the illuminated portions of the asteroid. As a result, the presented algorithm is

limited in application. A probability hypothesis density (PHD) filter based method to

perform in-space SLAM based in random-finite set theory is proposed in (Schlenker et al.,

2019). However, because the pose estimation scheme remains as a particle filter, it is still

susceptible to divergence.

In review, the methodologies presented showcase a variety of approaches for effective

SLAM implementation in space. However, many attempt to tailor the representation of

measurement data to reduce the probability of divergence rather than improve the stability

of the filter directly. Therefore, each is inclined to divergence in the presence of incorrect

data association. This work attempts to fill this knowledge gap by not relying on

feature-based detection methods and focusing on filter stability for appropriate state

estimation in the presence of mis-identification errors.

2.3. Work on the Lie Groups

The work on Lie Groups and the development of geometrically exact integrators on

these smooth manifolds have allowed for significant advancement in modeling and

simulation of dynamic systems. Lie Groups are a general area of mathematics developed by

Sophus Lie that have found significant uses in topology, dynamic systems theory, and more

recently, state estimation for robotics systems.

2.3.1. Lie Group Variational Integration

Focusing on spacecraft activities inherently poses a 12 degree-of-freedom dynamics

problem that is dependent on the parameters of the target spacecraft. This problem is

magnified in the presence of highly-perturbed gravitational fields, such as the ones found

about asteroids. The commonly assumed point-mass body becomes insufficient due to the

torques gravity exerts on a rigid body. At a kinetic level, the rotational and translational
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motion of the spacecraft are tightly coupled in the orbital regime, and decoupling each facet

of motion inherently introduces modeling errors. For this reason, the work chooses to work

on the Special Euclidean Group (SE(3)) - a specific variation of a Lie Group. Integrating

the dynamics directly on SE(3) couples the motion in a compact form allowing for

higher-fidelity modeling without significantly increasing computational time (Lee et al.,

2007). Propagating the dynamics in this way maintains the added benefit of preserving the

geometric characteristics of the system allowing for a greater level of accuracy for extended

periods of time.

Over the past decade a series of works (Lee et al., 2007; Lee & Leve, 2014; Nordkvist &

Sanyal, 2010) have been published on the theory, development, and applications of a Lie

Group Variational Integrator (LGVI) that preserved the geometric characteristics and allows

for higher-fidelity coupled dynamics modeling. The LGVI has a number of desirable

qualities that make it attractive for propagating dynamics. The LGVI is a class of geometric

integrators that are geometric characteristic preserving (Leok, 2007). This property alone

makes this class of integrators allow for accurate solutions for longer periods of time than

other methods - such as Runge-Kutta algorithms. By evolving directly on the smooth

manifolds on which they exist they mitigate any reliance on reprojections, constraints or

local coordinates that reduced the efficacty of other algorithms. For this reason they are a

basis for efficient exact algorithms.

2.3.2. Lie Group Variational Filtering

Building off this work, Izadi and Sanyal develop a Lie Group Variational Filter (LGVF)

(Izadi et al., 2015; Izadi & Sanyal, 2016; Sanyal, Izadi, & Butcher, 2014; Sanyal, Izadi,

Scheeres, et al., 2014) that is shown to use strictly vector measurements to accurately

estimate the pose of a body. The developed filtering scheme is model agnostic and is almost

globally asymptotically stable under no measurement noise and bounded stability under

measurement noise. However, a method to quantify uncertainty using this method was not

developed. This allows for autonomous systems to estimate its state without relying on

external measurement sources such as GPS, which may not be available for all on-orbit and
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interplanetary missions. As such, the filter lays the foundation on which these thesis

expands on to include a method of uncertainty measurement.

2.4. Lie Group Theory

In recent years, the robotics community has seen an increasing trend in the applications

of Lie Groups for estimation. Specifically, they become useful in representing pose for

SLAM and visual odometry applications. The authors recognize the abstraction of Lie

theory and have provided this section as a brief introduction to its applications in state

estimation. For a more detailed discussion on Lie theory as is pertains to state estimation,

the authors point the interested reader to (Sola et al., 2018) which provides a thorough

introduction to Lie theory for roboticists.

2.4.1. The Lie Group

Specifically, a Lie Group is a smooth manifold that upholds the criteria of a group.

1. Closure: g ◦ h ∈ G

2. Identity: e ◦ g = g ◦ e = g

3. Inverse: g−1 ◦ g = e

4. Associativity: (g ◦ h) ◦ f = g ◦ (h ◦ f)

where G is defined to be a group, ◦ is an operator on that group, and g, h, f ∈ G. Closure

under operation ’◦’, defined mathematically above, states that if two operands reside in a

group the resulting quantity through that operation will also reside in that group. The

Identity of a group applied to a member of that group will result in the same member of that

group. The Inverse of a group applied to a member of that group will result in the Identity

of that group. Associativity states that the same result can be obtained through different

groupings of the same order of the operands.

Mathematically, a smooth manifold is an infinitely differentiable manifold, or the

smooth manifold has infinitely many continuous derivatives; that is to say a smooth

manifold is a surface that exhibits no corners, peaks, or sharp turns. The fact the manifold is

smooth indicates the existence of a tangent vector space at each point along the smooth

manifold.
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Some common examples of Lie Groups in dynamic systems theory are the rotation

matrix R ∈ SO(n) which is the Special Orthogonal Group, the unit quaternion q ∈ S3

which is the symmetric group of the third degree, and the pose matrix G ∈ SE(n) which is

the Special Euclidean Group where r ∈ Rn, and 0 ∈ (Rn)T :

G =

R r

0 1

 (2.1)

2.4.2. The Lie Algebra

The first tangent space of the Lie Group is often referred to as its Lie algebra which is

expressed as m , TεM at the identity and as m , TχM at every other point in the group -

M is a smooth manifold and χ is a specific point on that manifold. While the structure of

the Lie group prevents typical calculus, the tangent space, that can be represented as a

vector space, this attribute conveniently allows for an alternative representation of the Lie

group on which calculus may be performed. Figure 2.1 provides a visual representation of a

smooth manifold and its tangent space.

Figure 2.1 A smooth manifold and its tangent space (Sola et al., 2018).

Every element of the Lie algebra m with m degrees of freedom can be expressed in Rm.

Conveniently the degrees of freedom of m is equal to the number of degrees of freedom in

M. This idea can be directly applied in dynamic systems theory. For example, take a point

χ evolving on a smooth manifold. Physically, this may be taken to represent the pose of a

rigid body. The tangent space of the manifold can then be interpreted as its velocities

χ̇ = δχ/δt.
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2.4.3. Fundamental Operations

To fully understand Lie Group Theory, this section defines a few fundamental

operations available to make use of Lie Group Theory for dynamical systems. Each of the

operations have been fundamental to the development of Lie Group Theory as applied to

dynamic systems. Each of these operations provide the means an element of a Lie group

may be transformed to an element of its Lie algebra (and vice versa), an element may

undergo a frame transformation, and how dynamic systems theory may be directly applied.

2.4.3.1. Topographical Mappings

Because the transformation from a Lie algebra to its vector space representation is a

common operation, the (·)∧ and its inverse, (·)∨ are defined:

(·)∧ : Rm → m

(·)∨ : m→ Rm

(2.2)

These topographical mappings allow for efficient transformation between the two spaces. It

must be noted that these become an overloaded operator depending on the dimensionality of

the space. Here, the topographical mappings for so(3) and se(3) are defined. The author

chooses to use (·)× as the operator to perform this mapping for so(3), the Lie algebra of

SO(3), and (·)∧ as the operator to perform this mapping for se(3), the Lie algebra of SE(3):

ω× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.3)

V∧ =

ω× ν

0 0

 (2.4)

where V = [ωT νT ]T . The inverses of these mappings are denoted (·)| and (·)∨ for so(3)

and se(3), respectively.
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2.4.3.2. The Adjoint Map

In dynamic systems theory it is often necessary to define multiple frames to establish a

relationship between each body of interest, and a global representation of the scenario as a

whole. This necessitates a means to transform from a local frame to a global frame. The

adjoint and the adjoint matrix provides such a means to accomplish this transformation.

ετ∧ = Adχ(χτ∧) = χχτ∧χ−1 (2.5)

where χτ∧ is a Lie algebra defined in m with respect to the local frame χ. ετ∧ is that same

Lie algebra expressed in the global frame established at ε. Therefore, Adχ : m→ m.

Linearity : Adχ(aτ∧ + bγ∧) = aAdχ(τ∧) + bAdχ(γ∧)

Homomorphic : Adχ(AdΨ(τ∧)) = AdχΨ(τ∧)

(2.6)

Due to the linearity and homomorphic properties, noted in Equation 2.6 of the Adχ operator,

it is classified as a linear operator and therefore, an analogous matrix operator may be

defined that Adχ : Rm → Rm

Adχ = (χχτ∧χ−1)∨ (2.7)

This work focuses on two primary Lie groups SO(3) and SE(3). For SO(3), Adχ = R

is the standard rotation matrix. The Adχ for SE(3) takes the form:

AdT =

R b×R

0 R

 ∈ R6×6 (2.8)

where,

T =

R b

0 1

 (2.9)
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This allows for a linear transformation of the vector elements of the Lie algebra at T to

the origin εV∧ = AdT
TV∧. Analogously, the adjoint mapping can be defined to manipulate

elements of m. The adjoint matrix operator for elements of se(3) is defined as:

adV =

ω× 0

ν× ω×

 (2.10)

This mapping becomes significant for the linear transformation of vector elements in the

second tangent space of the manifold. In dynamic systems, that is acceleration.

2.4.3.3. Exponential and Logarithmic Maps

The relationship between the Lie group and its Lie algebra is tied through the

exponential map. Given a dynamic system that takes the form:

Ṫ = TV∧ (2.11)

The solution of this differential equation is of the standard form:

T(t) = T(0)exp(V∧t) (2.12)

Geometrically, the mapping curves the tangent vector to form on the smooth manifold

exp(·) : m→M. Figure 2.2 shows a visualization of this mapping.

Figure 2.2 Visualization of the exponential and logarithmic mapping of a smooth manifold
and its tangent space (Mangelson et al., 2020).
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Because T(t), T(0) ∈ SE(3), by closure, exp(V∧t) must exist in SE(3). It is

computationally convenient to represent the exponential map as a closed form solution that

may be derived via its Taylor Series Expansion:

exp(V∧t) =
∞∑
n=0

1

n!
(V∧t)n (2.13)

which, through expansion and some algebraic manipulation can be presented in

closed-form as:

exp(V∧t) =

R Sp

0 0

 (2.14)

where,

R = I + sin(θ)ê× + (1− cos(θ))ê×2 ∈ SO(3) (2.15)

θ and ê are the principal angle and axes determined from ω×t implicit in V∧t, and where,

S = I + S1ê
× + S2(ê×)2 (2.16)

with,

S1 =
1− cos θ

θ
(2.17)

S2 =
θ − sin θ

θ
(2.18)

This representation of S1 and S2 are obtained via algebraic manipulation of the Taylor

Expansion, mentioned previously, to construct the Taylor Series form of cos θ and sin θ with

the additional terms included. Therefore, Equations 2.15 and 2.16 present a closed-form

solution of the exponential map.
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The inverse of the exponential map is the logarithmic map and takes elements of the

manifold back onto its tangent space log(·) :M→ m. Specifically for T ∈ SE(3):

log(T) =

Θ× S−1b

0 0

 (2.19)

where Θ is obtained from R:

Θ× =
φ

2 sin(φ)
(R− RT ) (2.20)

where φ = cos−1(0.5 tr(R)− 0.5).

2.5. Probability and Uncertainty

In order to thoroughly understand estimation, a clear understanding of probability and

uncertainty must be built. As mentioned in Chapter 1, perfect state knowledge is impossible

to achieve. For this reason, probability and uncertainty metrics are commonplace in

guidance and navigation.

2.5.1. The Gaussian Distribution

The Gaussian distribution, also known as the normal distribution, is a specific type of

continuous probability distribution. It is commonly used within estimation theory to model

noise. Measurements may be sampled from a Gaussian distribution to provide perturbations

to the measurements that are representative of the uncertainties.

The Gaussian distribution is characterized as having an area under its curve equal to one

and a symmetry about the mean values as can be seen in Figure 2.3. The mean value, µ, and

the standard deviation, σ, are all that is needed to find the probability a particular sample is

obtained. The quantity σ2 is known as the variance and is frequently used in estimation

theory to represent the uncertainty in a mean estimate.

Because of these characteristics it allows for simplifications in the theoretical

developments of many concepts in stochastic estimation and control theory. Modeling and
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Figure 2.3 A sample Gaussian Distribution.

applying non-Gaussian distributions to these same concepts is still an active area of

research.

2.5.2. Uncertainty Representation in Lie Group Theory

Uncertainty cannot be explicitly represented on the Lie group. Rather uncertainty is

represented on the tangent space of the Lie group known as the Lie algebra. This Lie

algebra is a vector space on which calculus is allowed to be performed. For the Special

Euclidean group this can be notated as SE(3) and se(3), respectively Setting T̃ ∈ SE(3)

and ξ ∈ R6 ∼ N (0,Σ) is a Gaussian-noise process with Σ = E[ξξT ]. T̃ can then be

perturbed such that:
T = T̃ exp (ξ∧) (2.21)

The value T is a perturbed quantity obtained from the mean T̃ governed by a

perturbation ξ sampled from a Gaussian noise process. Conceptually, a vector is mapped to

the Lie algebra and then mapped onto the Lie Group to apply a perturbation to a quantity on

the Lie Group.
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3. Special Euclidean Group Filter Derivation

This chapter details the derivation of a variational filter founded in the Special

Euclidean Group, SE(3). This development follows the procedure firtst developed by Izadi

(2016). For clarification, this derivation is repeated here and to ensure the implementation

of this filter is understood before uncertainty representation is included in later chapters.

3.1. Measurement Model

Take a scenario where an agent is monitoring a target from a relative trajectory. A visual

of this system is provided in Figure 3.1. The remainder of this section details how each of

these vectors are measured and will be used throughout the chapter to developed the LGVF.

Figure 3.1 Measurement model with vector measurements to identifiable features on target
body. This is used for derivation of the Lie Group Variational Filter.

3.1.1. Position Measurement Model

Assign Frame O in the figure to be an Inertial Frame, and Frame S to be the body-fixed

frame of the chaser. The rotation matrix R maps vectors expressed in S to O. Because only

one sensor is considered, the notation (·)k is omitted. Now, take qj to be the measurement

vector of feature j expressed in S. This same feature is expressed as pj on O. The true

position of S on O is the vector b, and the sensor placement relative to S is s.

Mathematically, and without any measurement noise, these vectors are related through

Equation 3.1

pj = R(qj + s) + b = Raj + b (3.1)
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where aj is the vector between feature j and the origin of S. To focus on the development

of the measurement scheme and associated filters, and for notational convenience, it is

assumed that the sensor is placed at the origin of S and therefore qj = aj .

While this form presents a convenient way to express the measurement vectors, a

problem arises for the vectors expressed in the inertial frame because the exact position of

the Inertial frame is rarely, if ever, known. Therefore, one strategy is to arbitrarily assign the

origin of the inertial frame to be one of the features measured during the initialized timestep

(t0, j = 0). The orientation of this frame is assigned the same orientation as S so that the

relative rotation R0 = I3×3. Now each of the features expressed in the inertial frame must

be converted to the origin of the new inertial frame: dj = pi − p0 where i = 1, 2..., n where

n is the number of measured features. Similarly, lj = ai − a0 where i = 1, 2, ..., n.

The relationship between dj and lj is dj = Rlj which can be written in matrix form as

D = RL, where D,L ∈ R3×n, D = [0, d1, d2, ..., dn−1] and L = [l0, l1, ..., ln−1]. L can be

thought of as the feature map expressed in S, and D is the feature map expressed in O,

these vectors can now be used to estimate the pose of the chaser relative to target. In this

case, the orientation of the chaser is not directly measured. Rather, it is obtained by solving

Wahba’s Cost function of the general form:

U0 =
1

2

k∑
i=1

wi(ei − R̂ui)T (ei − R̂ui) (3.2)

Specifically, how this is handled will be discussed in Section 3.2.

3.1.2. Velocity Measurement Model

For full state estimation, relative velocities must be taken into account. In this work, it is

assumed the relative velocities of each of the features measured above are able to be

measured. Because of the rigid body kinematics it is necessary for the velocities to be

known or estimated: Ω̇ = RΩ× and ḃ = Rν leads to the rigid body kinematic formulation

Ṫ = TV∧.
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3.2. Filter Derivation

This next section provides the derivation of a filter founded using the

Lagrange-d’Alambert Principle from Variational Mechanics onto the Special Euclidean

group. This filter is found in (Izadi & Sanyal, 2016) to be have almost-global asymptotic

stability to the origin, for error dynamics, using strictly vector measurements.

3.2.1. Error Dynamics

First, the pose and velocity estimation parameters are defined under the hat notation (̂·):

˙̂T = T̂V̂
∧

(3.3)

this allows for the estimation error to be defined:

h = TT̂
−1

=

Q bm −Qb̂

0 1

 ∈ SE(3) (3.4)

where Q = RR̂
T

is the attitude estimation error. From here, the error kinematics are defined

to be:

ḣ = hϕ∧ (3.5)

where ϕ is the velocity error [(ωm − ω̂)T , (νm − ν̂)T ]T . In the case of perfect

measurements, xm = x. In the case of measurement noise, xm = x+ γ, where γ is a

random perturbation governed by a Weiner Process. This inherently implies that the state

estimates will try to converge to the measured values. This is under the assumption that

there is no bias is the state measurements.

3.2.2. Error Lagrangian

Now that the error kinematics have been defined, it is possible to begin the derivation of

the state estimation scheme founded in SE(3). The goal now, is to develop a method that

drives the error to the origin. Which, in this case, is I4×4. It is important to note that the

smooth manifold on which rigid body motion exists (SE(3), is comprised of translational
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and rotational components. Here, in an effort to facilitate development, consider potential

energy-like functions for the translational and rotational components. The rotational portion

is considered as Wahba’s Cost function a slight reformulation on Equation 3.2.

U0
r =

1

2
(D− R̂L)TW (D− R̂L) (3.6)

where W is a positive definite diagonal weighting matrix. The translational potential

function is defined as:

U0
t =

1

2
κyTy (3.7)

where y = p̄− R̂ām − b̂.

The total potential energy function is then the sum of the rotational and translational

potential energy functions:
U = Ur + Ut (3.8)

To obtain this formulation, an operator must be defined to map U0
r ∈ Rn×n → R1. This

operator will be defined as Φ(·) : Rn×n → R1. Φ itself must be a C2-function that satisfies:

Φ(0) = 0 and 0 < Φ′(·) ≤ α(·). With α(·) is a Class - κ function. In this case, Φ(U0
r ) = U0

r

which leaves Φ′(U0
r ) = I . Alternatively, the kinetic energies are defined as:

Tt =
1

2
νTMν (3.9)

Tr =
1

2
ωTJω (3.10)

which can be combined to form:

T =
1

2
ϕTJϕ (3.11)

where J is an artificial inertia-like kernel matrix used to help drive the estimates to their

correct values. Now that the potential and kinetic energies of the errors have been defined,

the error Lagrangian is defined as:
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L = T − U (3.12)

plugging in values for T and U :

L =
1

2
ϕTJϕ− 1

2
(D− R̂L)TW (D− R̂L)− 1

2
κyTy (3.13)

3.2.3. The Action Functional

The construction of the error Lagrangian leads to the formulation of an action

functional:

S(L) =

∫ T

t0

Ldt (3.14)

Here, the Lagrange-d’Alembert Principle from variational mechanics is applied to Equation

3.15:

δS = δ

∫ T

t0

Ldt = 0 (3.15)

By plugging the Lagrangian of Equation 3.13 into Equation 3.15 and applying the

variational operator (δ), the full nonlinear variational estimator for pose and velocities is

obtained:

Jϕ̇ = adTϕ − Z − Dϕ (3.16)

V̂ = Vm − AdT−1ϕ (3.17)

˙̂T = T̂V̂
∧

(3.18)

where D is a linear Rayleigh dissipation term, and

Z =

Φ′(U0
r )SΓ + κp̄×y

κy

 (3.19)

with Φ′(U0
r ) = I . The above LGVF can be discretized for computer implementation as:

∆t(Jωi)
× = FiJ − JF T

i (3.20)
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(M + ∆tDt)νi+1 = F T
i Mνi + ∆tκ(b̂i+1 + R̂i+1āi+1 − p̄i+1) (3.21)

(J + ∆tDr)ωi+1 =F T
i Jωi + ∆tMνi+1 × νi+1

+ ∆tκ(b̂i+1 + R̂i+1āi+1)−∆tΦ′(U0
r )SΓi+1

(3.22)

V̂i = V̂m
i − AdT̂−1

i
ϕi (3.23)

T̂i+1 = T̂i exp (∆tV̂∨i ) (3.24)

The full solution to Equation 3.15 and the subsequent discretization is left to (Izadi &

Sanyal, 2016). However, the remaining significant undefined terms are defined here: Fi is a

discretized rotation element, J is an inertia-like matrix found in the derivation of the

discretized equations: J = 1
2
tr(J)I − J . The Rayleigh Dissipation terms Dt and Dr are

included to facilitate the dissipation of the “energy” leftover in the measurement residual.

This allows for them to collapse towards the origin. SΓ is another term found in the solution

of Equation 3.15:
SΓ = (DWLmT R̂

T − R̂LmWDT ) (3.25)

It is noteworthy that in its current form Equation 3.20 is implicit and must be solved via a

Newton-Rhapson method in (Nordkvist & Sanyal, 2010) or an explicit method presented in

(Cardoso & Leite, 2003).

3.3. A Sample Scenario

This section describes a sample scenario of a relative orbital motion scenario that will

be used through the rest of the work. Let us assume a chaser spacecraft follows an elliptical

natural motion trajectory around a target spacecraft in a circular orbit about the earth

described by the Clohessy-Wiltshire Dynamics in Equations 3.26.

ẋ = Ax (3.26)
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Figure 3.2 Representative model scenario with a “nadir” pointing spacecraft represented as
the blue hexagon. Each × represents an identifiable feature on the target.

where x, and ẋ are the translational states, and time derivative of the translational states,

respectively and A is defined by Equation 3.27.

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0


(3.27)

where n is the mean motion of the target spacecraft. For simplicity it is assumed the

spacecraft has an angular rate (ω) that maintains the alignment of the sensor boresight with

the origin of the inertial frame:
ω =

r× ṙ

r2
(3.28)

This is similar to a nadir pointing spacecraft. A representative scenario can be seen in

Figure 3.2.

The relative attitude dynamics of the system are expressed via the kinematic differential

equation for rotation matrices:
Ṙ = Rω× (3.29)

where ω× denotes the skew symmetric mapping of the angular rate shown in Equation 2.3
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Depicted in Figure 3.1 is a spacecraft following an elliptical natural motion trajectory

equipped with a sensor capable of measuring feature position in the spacecraft’s body fixed

frame, denoted S. An inertial frame is assigned to the center-of-mass of the target

spacecraft and is denoted as frame O. Then let rotation matrix R and translational vector b

provide a relative pose transformation from frame O to frame S.

3.4. Numerical Simulations of Mean Estimator

In order to maintain consistency throughout the work, a sample scenario was defined to

verify performance of the estimator. All values are defined relative to the inertial/global

frame defined at the center-of-mass of the target. The vehicular mass and moment of inertia

were set to be m = 0.42kg and J = diag([0.0512, 0.0602, 0.0596])kg ·m2, respectively.

The initial relative configuration was defined as: b = [2.5, 0, 0]T and R0 = exp([0, 0, π]T ),

and the initial velocities were set as ν0 = [0, 0.5, 0]T and ω defined by Equation 3.28.

The estimator also requires a set of initial values as initial conditions to begin. While, it

does not matter where these values are set, the initial estimated states and gains are provided

here: Initial Estimates: R̂0 = I , b̂0 = [−3, 2, 4]T and Estimator Gains: W = Im×m,

J = diag([0.09, 0.06, 0.03]), M = diag([0.061, 0.049, 0.0365]), D = diag([2.7, 2.2, 1.5,

0.1, 0.12, 0.14]), and κ = 0.1. This was first used on a scenario with no measurement noise.

Figures 3.3 and 3.4 present filter results under this scenario.

Observing the results presented in Figures 3.3 and 3.4, the mean estimator collapses

down to the truth values within the first 10 seconds of the simulation for the position

responses. However, the attitude estimate converges much quicker, on the order of 1 second,

Figure 3.5 provides a zoomed in view of this convergence. This converges is maintained

throughout the entirety of the simulation, suggesting the velocities are correctly being

estimated as well.

Next, a measurement noise value of 1 m was selected to evaluate filter performance

under measurement noise. This made the measurement noise matrix Q = I . Figures 3.6 and

3.7 present filter results under this scenario:
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From Figures 3.6 and 3.7, the LGVF successfully filters out a majority of the

measurement noise for the position estimates with similar converge times to the no noise

case. However, there remains a significant level of residual noise in the estimate that

remains in a bounded neighborhood about the true value. This suggests the velocity

estimates are performing in a similar manner. It must be noted that rz is blown up. Each

dimension shared a similar level of noise post-filtering.

The existence of the noise post-filtering suggests further work be placed on smoothing

the estimate after the LGVF, and a requirement for uncertainty quantification. It must also

be noted that the existence of noisy estimates does not carry over to the attitude estimate. It

is hypothesized that this is a result of solving Wahba’s cost function as an optimization

problem, and the stochasticity of the estimates are not preserved through the problem.

Further work will be required to confirm this hypothesis. While the estimator presents an

almost-global asymptotically stable estimator that is robust to measurement noise, it

provides no quantification of uncertainty. As a result, in its current form, the estimator

cannot be used to make informed decisions. The next chapter discusses implementations

and adaptations of this presented estimator to incorporate a quantification on uncertainty.
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4. Uncertainty Propagation Implementation

This chapter presents adaptations of the Lie Group Variational Filter to handle

uncertainty quantification given a set of vector measurements passed through the LGVF.

Methods of uncertainty quantification and propagation are divided into Monte Carlo and

Unscented methods. The Monte Carlo methods begin with a significant number of initial

estimates each passed through individually through the LGVF to generate both mean and

uncertainty estimates. The unscented transformation methods follow the unscented

transform algorithm standard in estimation theory to select and propagate initial estimates

representative of the true probability distribution.

4.1. Monte Carlo Methods

The Monte Carlo method begins with 100 initial particles. Each particle was randomly

selected from within a 6-dimensional hyper-rectangle with outer bounds set by the 3σ

uncertainties of the position and attitude expressed as [θx, θy, θz]. This method can be

extended to a 12-dimensional hyper-rectangle to incorporate uncertainties in the velocities

as well. For computational reasons, and because the interest of this work is the

demonstration of the algorithm, only the 6-dimensional version was used. Figure 4.1 gives a

visual representation of how the initial estimates are generated. The sampled particles are

then placed into SE(3) via the exponential mapping.

Figure 4.1 Initializing the Monte Carlo distribution using bounding boxes.

Using the same simulated scenario as presented in Section 3.3. combined with the

initial particle estimates are then put through the LGVF described in Section 3.2.:
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∆t(Jωi)
× = FiJ − JF T

i (4.1)

(M + ∆tDt)νi+1 = F T
i Mνi + ∆tκ(b̂i+1 + R̂i+1āi+1 − p̄i+1) (4.2)

(J + ∆tDr)ωi+1 =F T
i Jωi + ∆tMνi+1 × νi+1

+ ∆tκ(b̂i+1 + R̂i+1āi+1)−∆tΦ′(U0
r )SΓi+1

(4.3)

V̂i = V̂m
i − AdT̂−1

i
ϕi (4.4)

T̂i+1 = T̂i exp (∆tV∨i ) (4.5)

and applied it to every particle estimate. Each estimate was referenced against the same ā, p̄

and Vm to produce the next iteration for that particle. Figures 4.2 and 4.3 shows the results

of this Monte Carlo method.

Each particle represents a different estimate throughout the simulation. As the

simulation progresses, each particle exhibits a convergence to the true value. Independent of

its initialization. This is an attribute of the almost-global asymptotic nature of the filter. As

seen with the mean estimators from Figures 3.3, 3.4, 3.6, and 3.7, the position estimate

takes a few seconds to converge, while the attitude estimate seems to collapse in under a

second. Future work will investigate why this is the case, but, it is again hypothesized this is

a result of the optimization problem posed by solving Wahba’s cost function. To evaluate

the behavior of the estimator towards the end of the simulation, Figures 4.4 and 4.5 presents

the final 5 seconds of the simulation.

The almost-global asymptotic stability of the LGVF has presented a problem for

uncertainty quantification via a Monte Carlo method. As seen in Figures 4.2 and 4.3, each

of the estimates converge to a single estimate. In essence, the estimator becomes 100%

confident of the noisy values. This skews the uncertainty quantification as the estimator

begins to model the measurement noise on top of the true values. As a result, a direct

implementation of the LGVF on an array of initial particle estimates does not correctly

portray uncertainty.
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Figure 4.2 Monte Carlo Method attitude estimate results using direct vector measurements.

To accommodate this, the vector measurements were reformulated as Gaussian

distributions about the measured vector a ∼ N (am,Q) where Q is the measurement

covariance matrix. A visualization is provided in Figure 4.6.
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Figure 4.3 Monte Carlo Method position estimate results using direct vector measurements.

So, rather than comparing the estimates to a measured vector, the estimates are

referenced to a probability distribution function. As a result, each particle is referenced to a

different ā within the distribution. This generates different estimates at each time step and

the estimates do not converge to the same noisy value, eliminating the problem posed by the
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Figure 4.4 Monte Carlo Method attitude estimate results using direct vector measurements.
(Zoomed on the last 5 seconds of the simulation)

previous method. The standard deviation of the particle estimates may then be used to

quantify the uncertainty. The results of this method are presented in Figures 4.7 and 4.8:

At first glance, the results are very similar to the results observed in Figures 4.2 and 4.3

with marginally more noise in the estimates. However, a zoomed in view of the final 5
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Figure 4.5 Monte Carlo Method position results using direct vector measurements (Zoomed
on the last 5 seconds of the simulation).

seconds, seen in Figures 4.9 and 4.10, suggests the small perturbations applied by

formulating the measurements as a probability distribution function allows for the

uncertainty in the estimates to capture the true value.

According to Figures 4.9 and 4.10, the uncertainty is maintained and does not converge

like the previous Monte Carlo method. However, due to the formulation of the LGVF, this
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Figure 4.6 Updated measurement with measured features represented as probability
distribution functions. This probability distribution function is then sampled for each
particle during estimation.

uncertainty is not carried over the attitude parameters. The attitude parameters maintain the

convergence of uncertainty over extended periods of time.

Care must be taken using this or similar methods to quantify uncertainty. Because the

LGVF uses the mean value of the features in both the map through p̄ and the measurement

through ā, the effect of the probability distribution is diminished as more features are

included to obtain the estimate. By nature, the average will go to the truth value as the

number of samples tends toward infinity. In this case, this means the amalgamation of the

probability distribution functions will tend towards the amalgamation of the measured

values and will not produce the desired results. Therefore, the number of particles and the

number of features must be taken into account when the evaluating the efficacy of such a

method.
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Figure 4.7 Monte Carlo Method attitude estimate results using probability distribution
function measurements.
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Figure 4.8 Monte Carlo Method position results using probability distribution function
measurements
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Figure 4.9 Monte Carlo Method attitude estimate results using probability distribution
function measurements (Zoomed on the last 5 seconds of the simulation)
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Figure 4.10 Monte Carlo Method position estimate results using probability distribution
function measurements (Zoomed on the last 5 seconds of the simulation)
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4.2. A Sigma Point Compounding Method

Another approach to quantifying uncertainty is a pose compounding method. Rather

than propagating the uncertainty frame an initial frame, assume a small enough timestep

that P1 ≈ P2 and that T̄k−1 and T̄k are given to be the initial mean state estimate and first

propagate mean state estimate, respectively. Given each of these elements, the poses and

their uncertainties may be compounded to quantify each uncertainty for all additional

timesteps. Figure 4.11 gives a visual representation of this process.

Figure 4.11 Combining Pose and Uncertainty compounds into a singular pose change with
associated uncertainty Σ = P (Barfoot & Furgale, 2014).

Algorithm 1: A SE(3) Pose Uncertainty Compounding Method.
Input :T̄k−1, T̄k, Pk−1,Pk
Output :P+

1 λ = 1
2 SST = diag{Pk−1,Pk}
3 ψl =

√
λS, l = 1...L

4 ψl+L = −
√
λS, l = L+ 1...2L

5

[
ξk−1,l

ξk,l

]
=ψl, l = 1...2L

6 Tk−1,l = exp(ξ∧k−1,l)T̄k−1

7 Tk,l = exp(ξ∧k,l)T̄k

8 T̄ = T̄k−1T̄k

9 ξl = log(Tk−1,lTk,lT̄
−1

), l = 1...2L

10 P+ = 1
2λ

∑2L
l=1 ξlξ

T
l

11

where L is the chosen number of sigma points, in this case is 12. λ is a user defined

parameter. Line 2 of the algorithm is solved via Cholesky Decomposition. This method of

pose compounding allows for the pose and associated uncertainty to be quantifying over

time. However, there is a downfall in the assumption that Pk−1 ≈ Pk: it is only good for
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local approximations and small timesteps. Over time this begins to break down, and is not

able to take into account significant decreases in uncertainty due to updated measurements

or any other method of improving the state estimate. Figures 4.12 and 4.13 show the results

obtained from the Sigma Point method presented in Section 3.B of (Barfoot & Furgale,

2014).

This figure captures an uncertainty, but due to the assumptions can not be definitively

declared to be the true uncertainty of the system. Particularly because it does not match the

behavior seen in the estimator from Figures 4.7 and 4.8. However, these pose compounding

methods may be an interesting method of data and sensor fusion and can be the subject of

future work.
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4.3. Unscented Transform

Building on the Sigma Point Compounding Method of the previous sections, an

Unscented Transform method can be used. This method is similar to the methods developed

in (Brossard et al., 2017) and (Wittal et al., 2021). The measurement function and LGVF

estimate for each sigma point are substituted in where typically just a measurement function

would be. This allows for each sigma point to be formulated as an element of SE(3).

Algorithm 2: Lie Group Unscented Transform.
Input :χ̂k−1, χ̂k,P
Output :P+

1 λ = (α2 − 1)l
2 αj = + chol((λ+ l)P) ∀j = 0, ..., l
3 αj = − chol((λ+ l)P) ∀j = l + 1, ..., 2l
4 ξ = α
5 yj = measurement function(χ̂k exp(ξj)) ∀j = 0, ..., 2l

6 χ̂jk = LieGroupV ariationalF ilter(χ̂k−1, yj)
7 yj = log(χ̂jk)

|

8 ȳ = 1
l

∑2l
j=0 yj or ȳ = log(χ̂k)

|

9 Pyy =
∑2l

j=0(yj − ȳ)(yj − ȳ)T

10 Pαy =
∑2l

j=0(αj)(yj − ȳ)T

11 P+ = P - Pαy(PαyP−1
yy )T

The algorithm described above presents the currently employed Lie Group Unscented

Transform Algorithm, where χ̂k−1, χ̂k ∈ SE(3) are the estimates at their respective time

steps. P is the a priori covariance matrix. The measurement function() returns a set of

vectors corresponding to known features on a map, and the LieGroupVariationalFilter()

function returns a pose estimate based on the measurements y and the estimate at previous

time step χ̂k−1. From the results presented in Figures 4.14 and 4.15, the covariances

exhibit a collapsing behavior towards the true covariances found in Figures 4.7 and 4.8.

However, there are no guarantees the covariance matrix will maintain positive

definiteness. It was found that in this simulation the covariance matrix will lose its positive

definitiveness about 50 seconds into the simulation. This is a result of the model-free nature

of the filter. In typical estimation scenarios the dynamic model will place constraints on the
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Figure 4.14 Uncertainty in Pose Estimation from the Unscented Transform in Algorithm 1 -
Attitude Estimate.

covariance matrix restricting it to be positive definite. The model-free nature of this filter

relaxes these constraints and allows for the covariance to lose its positive definitiveness

subject to numerical discrepancies. This behavior is a result of numerical imperfection, the
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Figure 4.15 Uncertainty in Pose Estimation from the Unscented Transform in Algorithm 1 -
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noisy values, that results in the covariance matrix becoming negative as it collapses. This

causes a problem in the Cholesky Decomposition and halts any progress being made in the

estimation.

Therefore, an alternative method must be put into place to ensure the covariance matrix

maintains its positive definitiveness. To fix this issue, Line 12 of Algorithm 3 was included

to force the covariance matrix to become positive definite. This line pre-multiplies P+T to

P+ to ensure the resulting quantity is positive. This is analogous to squaring a scalar value.

The matrix square root of that value is then taken to retrieve a guaranteed positive form of

the matrix. Technically, x = ±
√
x2. However, here, only the positive solution is considered

for the reasons mentioned previously.

Algorithm 3: Lie Group Unscented Transform.
Input :χ̂k−1, χ̂k,P
Output :P+

1 λ = (α2 − 1)l
2 αj = + chol((λ+ l)P) ∀j = 0, ..., l
3 αj = − chol((λ+ l)P) ∀j = l + 1, ..., 2l
4 ξ = α
5 yj = measurement function(χ̂k exp(ξj)) ∀j = 0, ..., 2l

6 χ̂jk = LieGroupV ariationalF ilter(χ̂k−1, yj)
7 yj = log(χ̂jk)

|

8 ȳ = 1
l

∑2l
j=0 yj or ȳ = log(χ̂k)

|

9 Pyy =
∑2l

j=0(yj − ȳ)(yj − ȳ)T

10 Pαy =
∑2l

j=0(αj)(yj − ȳ)T

11 P+ = P - Pαy(PαyP−1
yy )T

12 P+ =
√

P+TP+

The results of this method are presented in Figures 4.16 and 4.17. The behavior of the

attitude and position estimates from Figures 4.14 and 4.15 is replicated with this method.

Uncertainty in the attitude estimate is quantified, in contrast to the behavior of the Monte

Carlo methods. The attitude estimates remain smooth as seen in the previous sections, while

the position estimates maintain residual noise levels post-filtering. This behavior is

consistent to what is observed in previous sections.
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This simulation was run for 80 seconds to ensure that by forcing the covariance matrix

to remain positive allowed for the filtering to continue past the point where the previous

method failed. In Figures 4.18 and 4.19, it is observed that the covariances converge

similarly to the covariances found in the Monte-Carlo method.
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Figure 4.16 UKF Force Positive Definite - Attitude Estimate.
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Figure 4.17 UKF Force Positive Definite - Position Estimate.
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5. Conclusions and Future Work

In conclusion, the enclosed work presents a methodology to capture uncertainty built

around the Lie Group Variational Filter developed in (Izadi & Sanyal, 2016). The

implementation of Monte Carlo and Unscented methods are presented and discussed.

The Monte Carlo methods provide a baseline to which the Unscented methods may be

compared for capturing uncertainty. Because the LGVF can be thought of more as a

dynamics model than a true estimation scheme, this process is analogous to the standard

methods of evaluating uncertainty characterization against a Monte Carlo approach.

The Monte Carlo approaches while providing a good baseline, are not computationally

efficient for implementation and, furthermore, do not seem to capture uncertainty in the

attitude estimates over extended amounts of time. This is a result of the measurement model

being developed from strictly vector measurements of feature positions and there associated

velocities.

On the other hand, the unscented methods are more computationally efficient due to the

strategic selection of particles, or sigma points, to be used in the estimator. This significant

decrease in particle number allows for the estimator to quantify uncertainty in a way that

collapse to the steady-state uncertainty presented in the Monte Carlo method.

However, as mentioned in Chapter 1, this thesis provides a foundation on which the

author intends to build from. This leaves significant opportunities for future work and

development for estimation on the SE(3) for real applications. The authors

recommendation for topics of future work include but are not limited to:

• Updated measurement models to more closely match measurements seen through

cameras or other visual sensor.

• The use of optical flow or another computer vision scheme to measure relative

velocities.

• Development of a method of data fusion to include multiple measurement sources

and their associated uncertainties.



60

• Development of a hybrid model-free and model-based estimator to take leverage the

advantages presented by both schemes.

• Evaluate the performance of the estimator under control actuations.

• Development of smoother to eliminate any residual noise present in the mean state

estimate
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